summaryrefslogtreecommitdiffstats
path: root/lib/Transforms/Scalar/IndVarSimplify.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'lib/Transforms/Scalar/IndVarSimplify.cpp')
-rw-r--r--lib/Transforms/Scalar/IndVarSimplify.cpp1142
1 files changed, 606 insertions, 536 deletions
diff --git a/lib/Transforms/Scalar/IndVarSimplify.cpp b/lib/Transforms/Scalar/IndVarSimplify.cpp
index dee3d38..75fa011 100644
--- a/lib/Transforms/Scalar/IndVarSimplify.cpp
+++ b/lib/Transforms/Scalar/IndVarSimplify.cpp
@@ -11,17 +11,6 @@
// computations derived from them) into simpler forms suitable for subsequent
// analysis and transformation.
//
-// This transformation makes the following changes to each loop with an
-// identifiable induction variable:
-// 1. All loops are transformed to have a SINGLE canonical induction variable
-// which starts at zero and steps by one.
-// 2. The canonical induction variable is guaranteed to be the first PHI node
-// in the loop header block.
-// 3. The canonical induction variable is guaranteed to be in a wide enough
-// type so that IV expressions need not be (directly) zero-extended or
-// sign-extended.
-// 4. Any pointer arithmetic recurrences are raised to use array subscripts.
-//
// If the trip count of a loop is computable, this pass also makes the following
// changes:
// 1. The exit condition for the loop is canonicalized to compare the
@@ -33,9 +22,6 @@
// purpose of the loop is to compute the exit value of some derived
// expression, this transformation will make the loop dead.
//
-// This transformation should be followed by strength reduction after all of the
-// desired loop transformations have been performed.
-//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "indvars"
@@ -57,11 +43,11 @@
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
+#include "llvm/Transforms/Utils/SimplifyIndVar.h"
#include "llvm/Target/TargetData.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
-#include "llvm/ADT/STLExtras.h"
using namespace llvm;
STATISTIC(NumRemoved , "Number of aux indvars removed");
@@ -69,15 +55,21 @@ STATISTIC(NumWidened , "Number of indvars widened");
STATISTIC(NumInserted , "Number of canonical indvars added");
STATISTIC(NumReplaced , "Number of exit values replaced");
STATISTIC(NumLFTR , "Number of loop exit tests replaced");
-STATISTIC(NumElimIdentity, "Number of IV identities eliminated");
STATISTIC(NumElimExt , "Number of IV sign/zero extends eliminated");
-STATISTIC(NumElimRem , "Number of IV remainder operations eliminated");
-STATISTIC(NumElimCmp , "Number of IV comparisons eliminated");
STATISTIC(NumElimIV , "Number of congruent IVs eliminated");
-static cl::opt<bool> DisableIVRewrite(
- "disable-iv-rewrite", cl::Hidden,
- cl::desc("Disable canonical induction variable rewriting"));
+namespace llvm {
+ cl::opt<bool> EnableIVRewrite(
+ "enable-iv-rewrite", cl::Hidden,
+ cl::desc("Enable canonical induction variable rewriting"));
+
+ // Trip count verification can be enabled by default under NDEBUG if we
+ // implement a strong expression equivalence checker in SCEV. Until then, we
+ // use the verify-indvars flag, which may assert in some cases.
+ cl::opt<bool> VerifyIndvars(
+ "verify-indvars", cl::Hidden,
+ cl::desc("Verify the ScalarEvolution result after running indvars"));
+}
namespace {
class IndVarSimplify : public LoopPass {
@@ -105,12 +97,12 @@ namespace {
AU.addRequired<ScalarEvolution>();
AU.addRequiredID(LoopSimplifyID);
AU.addRequiredID(LCSSAID);
- if (!DisableIVRewrite)
+ if (EnableIVRewrite)
AU.addRequired<IVUsers>();
AU.addPreserved<ScalarEvolution>();
AU.addPreservedID(LoopSimplifyID);
AU.addPreservedID(LCSSAID);
- if (!DisableIVRewrite)
+ if (EnableIVRewrite)
AU.addPreserved<IVUsers>();
AU.setPreservesCFG();
}
@@ -125,24 +117,14 @@ namespace {
void HandleFloatingPointIV(Loop *L, PHINode *PH);
void RewriteNonIntegerIVs(Loop *L);
- void RewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter);
-
- void SimplifyIVUsers(SCEVExpander &Rewriter);
- void SimplifyIVUsersNoRewrite(Loop *L, SCEVExpander &Rewriter);
+ void SimplifyAndExtend(Loop *L, SCEVExpander &Rewriter, LPPassManager &LPM);
- bool EliminateIVUser(Instruction *UseInst, Instruction *IVOperand);
- void EliminateIVComparison(ICmpInst *ICmp, Value *IVOperand);
- void EliminateIVRemainder(BinaryOperator *Rem,
- Value *IVOperand,
- bool IsSigned);
-
- void SimplifyCongruentIVs(Loop *L);
+ void RewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter);
void RewriteIVExpressions(Loop *L, SCEVExpander &Rewriter);
- ICmpInst *LinearFunctionTestReplace(Loop *L, const SCEV *BackedgeTakenCount,
- PHINode *IndVar,
- SCEVExpander &Rewriter);
+ Value *LinearFunctionTestReplace(Loop *L, const SCEV *BackedgeTakenCount,
+ PHINode *IndVar, SCEVExpander &Rewriter);
void SinkUnusedInvariants(Loop *L);
};
@@ -211,6 +193,36 @@ bool IndVarSimplify::isValidRewrite(Value *FromVal, Value *ToVal) {
return true;
}
+/// Determine the insertion point for this user. By default, insert immediately
+/// before the user. SCEVExpander or LICM will hoist loop invariants out of the
+/// loop. For PHI nodes, there may be multiple uses, so compute the nearest
+/// common dominator for the incoming blocks.
+static Instruction *getInsertPointForUses(Instruction *User, Value *Def,
+ DominatorTree *DT) {
+ PHINode *PHI = dyn_cast<PHINode>(User);
+ if (!PHI)
+ return User;
+
+ Instruction *InsertPt = 0;
+ for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) {
+ if (PHI->getIncomingValue(i) != Def)
+ continue;
+
+ BasicBlock *InsertBB = PHI->getIncomingBlock(i);
+ if (!InsertPt) {
+ InsertPt = InsertBB->getTerminator();
+ continue;
+ }
+ InsertBB = DT->findNearestCommonDominator(InsertPt->getParent(), InsertBB);
+ InsertPt = InsertBB->getTerminator();
+ }
+ assert(InsertPt && "Missing phi operand");
+ assert((!isa<Instruction>(Def) ||
+ DT->dominates(cast<Instruction>(Def), InsertPt)) &&
+ "def does not dominate all uses");
+ return InsertPt;
+}
+
//===----------------------------------------------------------------------===//
// RewriteNonIntegerIVs and helpers. Prefer integer IVs.
//===----------------------------------------------------------------------===//
@@ -337,14 +349,14 @@ void IndVarSimplify::HandleFloatingPointIV(Loop *L, PHINode *PN) {
// Positive and negative strides have different safety conditions.
if (IncValue > 0) {
// If we have a positive stride, we require the init to be less than the
- // exit value and an equality or less than comparison.
- if (InitValue >= ExitValue ||
- NewPred == CmpInst::ICMP_SGT || NewPred == CmpInst::ICMP_SGE)
+ // exit value.
+ if (InitValue >= ExitValue)
return;
uint32_t Range = uint32_t(ExitValue-InitValue);
- if (NewPred == CmpInst::ICMP_SLE) {
- // Normalize SLE -> SLT, check for infinite loop.
+ // Check for infinite loop, either:
+ // while (i <= Exit) or until (i > Exit)
+ if (NewPred == CmpInst::ICMP_SLE || NewPred == CmpInst::ICMP_SGT) {
if (++Range == 0) return; // Range overflows.
}
@@ -364,14 +376,14 @@ void IndVarSimplify::HandleFloatingPointIV(Loop *L, PHINode *PN) {
} else {
// If we have a negative stride, we require the init to be greater than the
- // exit value and an equality or greater than comparison.
- if (InitValue >= ExitValue ||
- NewPred == CmpInst::ICMP_SLT || NewPred == CmpInst::ICMP_SLE)
+ // exit value.
+ if (InitValue <= ExitValue)
return;
uint32_t Range = uint32_t(InitValue-ExitValue);
- if (NewPred == CmpInst::ICMP_SGE) {
- // Normalize SGE -> SGT, check for infinite loop.
+ // Check for infinite loop, either:
+ // while (i >= Exit) or until (i < Exit)
+ if (NewPred == CmpInst::ICMP_SGE || NewPred == CmpInst::ICMP_SLT) {
if (++Range == 0) return; // Range overflows.
}
@@ -390,7 +402,7 @@ void IndVarSimplify::HandleFloatingPointIV(Loop *L, PHINode *PN) {
return;
}
- const IntegerType *Int32Ty = Type::getInt32Ty(PN->getContext());
+ IntegerType *Int32Ty = Type::getInt32Ty(PN->getContext());
// Insert new integer induction variable.
PHINode *NewPHI = PHINode::Create(Int32Ty, 2, PN->getName()+".int", PN);
@@ -429,7 +441,7 @@ void IndVarSimplify::HandleFloatingPointIV(Loop *L, PHINode *PN) {
// platforms.
if (WeakPH) {
Value *Conv = new SIToFPInst(NewPHI, PN->getType(), "indvar.conv",
- PN->getParent()->getFirstNonPHI());
+ PN->getParent()->getFirstInsertionPt());
PN->replaceAllUsesWith(Conv);
RecursivelyDeleteTriviallyDeadInstructions(PN);
}
@@ -437,6 +449,8 @@ void IndVarSimplify::HandleFloatingPointIV(Loop *L, PHINode *PN) {
// Add a new IVUsers entry for the newly-created integer PHI.
if (IU)
IU->AddUsersIfInteresting(NewPHI);
+
+ Changed = true;
}
void IndVarSimplify::RewriteNonIntegerIVs(Loop *L) {
@@ -582,45 +596,15 @@ void IndVarSimplify::RewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter) {
//===----------------------------------------------------------------------===//
// Rewrite IV users based on a canonical IV.
-// To be replaced by -disable-iv-rewrite.
+// Only for use with -enable-iv-rewrite.
//===----------------------------------------------------------------------===//
-/// SimplifyIVUsers - Iteratively perform simplification on IVUsers within this
-/// loop. IVUsers is treated as a worklist. Each successive simplification may
-/// push more users which may themselves be candidates for simplification.
-///
-/// This is the old approach to IV simplification to be replaced by
-/// SimplifyIVUsersNoRewrite.
-///
-void IndVarSimplify::SimplifyIVUsers(SCEVExpander &Rewriter) {
- // Each round of simplification involves a round of eliminating operations
- // followed by a round of widening IVs. A single IVUsers worklist is used
- // across all rounds. The inner loop advances the user. If widening exposes
- // more uses, then another pass through the outer loop is triggered.
- for (IVUsers::iterator I = IU->begin(); I != IU->end(); ++I) {
- Instruction *UseInst = I->getUser();
- Value *IVOperand = I->getOperandValToReplace();
-
- if (ICmpInst *ICmp = dyn_cast<ICmpInst>(UseInst)) {
- EliminateIVComparison(ICmp, IVOperand);
- continue;
- }
- if (BinaryOperator *Rem = dyn_cast<BinaryOperator>(UseInst)) {
- bool IsSigned = Rem->getOpcode() == Instruction::SRem;
- if (IsSigned || Rem->getOpcode() == Instruction::URem) {
- EliminateIVRemainder(Rem, IVOperand, IsSigned);
- continue;
- }
- }
- }
-}
-
-// FIXME: It is an extremely bad idea to indvar substitute anything more
-// complex than affine induction variables. Doing so will put expensive
-// polynomial evaluations inside of the loop, and the str reduction pass
-// currently can only reduce affine polynomials. For now just disable
-// indvar subst on anything more complex than an affine addrec, unless
-// it can be expanded to a trivial value.
+/// FIXME: It is an extremely bad idea to indvar substitute anything more
+/// complex than affine induction variables. Doing so will put expensive
+/// polynomial evaluations inside of the loop, and the str reduction pass
+/// currently can only reduce affine polynomials. For now just disable
+/// indvar subst on anything more complex than an affine addrec, unless
+/// it can be expanded to a trivial value.
static bool isSafe(const SCEV *S, const Loop *L, ScalarEvolution *SE) {
// Loop-invariant values are safe.
if (SE->isLoopInvariant(S, L)) return true;
@@ -631,7 +615,8 @@ static bool isSafe(const SCEV *S, const Loop *L, ScalarEvolution *SE) {
return AR->isAffine();
// An add is safe it all its operands are safe.
- if (const SCEVCommutativeExpr *Commutative = dyn_cast<SCEVCommutativeExpr>(S)) {
+ if (const SCEVCommutativeExpr *Commutative
+ = dyn_cast<SCEVCommutativeExpr>(S)) {
for (SCEVCommutativeExpr::op_iterator I = Commutative->op_begin(),
E = Commutative->op_end(); I != E; ++I)
if (!isSafe(*I, L, SE)) return false;
@@ -665,7 +650,7 @@ void IndVarSimplify::RewriteIVExpressions(Loop *L, SCEVExpander &Rewriter) {
// of different sizes.
for (IVUsers::iterator UI = IU->begin(), E = IU->end(); UI != E; ++UI) {
Value *Op = UI->getOperandValToReplace();
- const Type *UseTy = Op->getType();
+ Type *UseTy = Op->getType();
Instruction *User = UI->getUser();
// Compute the final addrec to expand into code.
@@ -692,18 +677,7 @@ void IndVarSimplify::RewriteIVExpressions(Loop *L, SCEVExpander &Rewriter) {
// hoist loop invariants out of the loop. For PHI nodes, there may be
// multiple uses, so compute the nearest common dominator for the
// incoming blocks.
- Instruction *InsertPt = User;
- if (PHINode *PHI = dyn_cast<PHINode>(InsertPt))
- for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i)
- if (PHI->getIncomingValue(i) == Op) {
- if (InsertPt == User)
- InsertPt = PHI->getIncomingBlock(i)->getTerminator();
- else
- InsertPt =
- DT->findNearestCommonDominator(InsertPt->getParent(),
- PHI->getIncomingBlock(i))
- ->getTerminator();
- }
+ Instruction *InsertPt = getInsertPointForUses(User, Op, DT);
// Now expand it into actual Instructions and patch it into place.
Value *NewVal = Rewriter.expandCodeFor(AR, UseTy, InsertPt);
@@ -747,19 +721,38 @@ namespace {
// extend operations. This information is recorded by CollectExtend and
// provides the input to WidenIV.
struct WideIVInfo {
- const Type *WidestNativeType; // Widest integer type created [sz]ext
- bool IsSigned; // Was an sext user seen before a zext?
+ PHINode *NarrowIV;
+ Type *WidestNativeType; // Widest integer type created [sz]ext
+ bool IsSigned; // Was an sext user seen before a zext?
- WideIVInfo() : WidestNativeType(0), IsSigned(false) {}
+ WideIVInfo() : NarrowIV(0), WidestNativeType(0), IsSigned(false) {}
+ };
+
+ class WideIVVisitor : public IVVisitor {
+ ScalarEvolution *SE;
+ const TargetData *TD;
+
+ public:
+ WideIVInfo WI;
+
+ WideIVVisitor(PHINode *NarrowIV, ScalarEvolution *SCEV,
+ const TargetData *TData) :
+ SE(SCEV), TD(TData) { WI.NarrowIV = NarrowIV; }
+
+ // Implement the interface used by simplifyUsersOfIV.
+ virtual void visitCast(CastInst *Cast);
};
}
-/// CollectExtend - Update information about the induction variable that is
+/// visitCast - Update information about the induction variable that is
/// extended by this sign or zero extend operation. This is used to determine
/// the final width of the IV before actually widening it.
-static void CollectExtend(CastInst *Cast, bool IsSigned, WideIVInfo &WI,
- ScalarEvolution *SE, const TargetData *TD) {
- const Type *Ty = Cast->getType();
+void WideIVVisitor::visitCast(CastInst *Cast) {
+ bool IsSigned = Cast->getOpcode() == Instruction::SExt;
+ if (!IsSigned && Cast->getOpcode() != Instruction::ZExt)
+ return;
+
+ Type *Ty = Cast->getType();
uint64_t Width = SE->getTypeSizeInBits(Ty);
if (TD && !TD->isLegalInteger(Width))
return;
@@ -779,6 +772,21 @@ static void CollectExtend(CastInst *Cast, bool IsSigned, WideIVInfo &WI,
}
namespace {
+
+/// NarrowIVDefUse - Record a link in the Narrow IV def-use chain along with the
+/// WideIV that computes the same value as the Narrow IV def. This avoids
+/// caching Use* pointers.
+struct NarrowIVDefUse {
+ Instruction *NarrowDef;
+ Instruction *NarrowUse;
+ Instruction *WideDef;
+
+ NarrowIVDefUse(): NarrowDef(0), NarrowUse(0), WideDef(0) {}
+
+ NarrowIVDefUse(Instruction *ND, Instruction *NU, Instruction *WD):
+ NarrowDef(ND), NarrowUse(NU), WideDef(WD) {}
+};
+
/// WidenIV - The goal of this transform is to remove sign and zero extends
/// without creating any new induction variables. To do this, it creates a new
/// phi of the wider type and redirects all users, either removing extends or
@@ -787,7 +795,7 @@ namespace {
class WidenIV {
// Parameters
PHINode *OrigPhi;
- const Type *WideType;
+ Type *WideType;
bool IsSigned;
// Context
@@ -803,13 +811,13 @@ class WidenIV {
SmallVectorImpl<WeakVH> &DeadInsts;
SmallPtrSet<Instruction*,16> Widened;
- SmallVector<std::pair<Use *, Instruction *>, 8> NarrowIVUsers;
+ SmallVector<NarrowIVDefUse, 8> NarrowIVUsers;
public:
- WidenIV(PHINode *PN, const WideIVInfo &WI, LoopInfo *LInfo,
+ WidenIV(const WideIVInfo &WI, LoopInfo *LInfo,
ScalarEvolution *SEv, DominatorTree *DTree,
SmallVectorImpl<WeakVH> &DI) :
- OrigPhi(PN),
+ OrigPhi(WI.NarrowIV),
WideType(WI.WidestNativeType),
IsSigned(WI.IsSigned),
LI(LInfo),
@@ -826,21 +834,42 @@ public:
PHINode *CreateWideIV(SCEVExpander &Rewriter);
protected:
- Instruction *CloneIVUser(Instruction *NarrowUse,
- Instruction *NarrowDef,
- Instruction *WideDef);
+ Value *getExtend(Value *NarrowOper, Type *WideType, bool IsSigned,
+ Instruction *Use);
+
+ Instruction *CloneIVUser(NarrowIVDefUse DU);
const SCEVAddRecExpr *GetWideRecurrence(Instruction *NarrowUse);
- Instruction *WidenIVUse(Use &NarrowDefUse, Instruction *NarrowDef,
- Instruction *WideDef);
+ const SCEVAddRecExpr* GetExtendedOperandRecurrence(NarrowIVDefUse DU);
+
+ Instruction *WidenIVUse(NarrowIVDefUse DU);
void pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef);
};
} // anonymous namespace
-static Value *getExtend( Value *NarrowOper, const Type *WideType,
- bool IsSigned, IRBuilder<> &Builder) {
+/// isLoopInvariant - Perform a quick domtree based check for loop invariance
+/// assuming that V is used within the loop. LoopInfo::isLoopInvariant() seems
+/// gratuitous for this purpose.
+static bool isLoopInvariant(Value *V, const Loop *L, const DominatorTree *DT) {
+ Instruction *Inst = dyn_cast<Instruction>(V);
+ if (!Inst)
+ return true;
+
+ return DT->properlyDominates(Inst->getParent(), L->getHeader());
+}
+
+Value *WidenIV::getExtend(Value *NarrowOper, Type *WideType, bool IsSigned,
+ Instruction *Use) {
+ // Set the debug location and conservative insertion point.
+ IRBuilder<> Builder(Use);
+ // Hoist the insertion point into loop preheaders as far as possible.
+ for (const Loop *L = LI->getLoopFor(Use->getParent());
+ L && L->getLoopPreheader() && isLoopInvariant(NarrowOper, L, DT);
+ L = L->getParentLoop())
+ Builder.SetInsertPoint(L->getLoopPreheader()->getTerminator());
+
return IsSigned ? Builder.CreateSExt(NarrowOper, WideType) :
Builder.CreateZExt(NarrowOper, WideType);
}
@@ -848,10 +877,8 @@ static Value *getExtend( Value *NarrowOper, const Type *WideType,
/// CloneIVUser - Instantiate a wide operation to replace a narrow
/// operation. This only needs to handle operations that can evaluation to
/// SCEVAddRec. It can safely return 0 for any operation we decide not to clone.
-Instruction *WidenIV::CloneIVUser(Instruction *NarrowUse,
- Instruction *NarrowDef,
- Instruction *WideDef) {
- unsigned Opcode = NarrowUse->getOpcode();
+Instruction *WidenIV::CloneIVUser(NarrowIVDefUse DU) {
+ unsigned Opcode = DU.NarrowUse->getOpcode();
switch (Opcode) {
default:
return 0;
@@ -865,24 +892,23 @@ Instruction *WidenIV::CloneIVUser(Instruction *NarrowUse,
case Instruction::Shl:
case Instruction::LShr:
case Instruction::AShr:
- DEBUG(dbgs() << "Cloning IVUser: " << *NarrowUse << "\n");
-
- IRBuilder<> Builder(NarrowUse);
+ DEBUG(dbgs() << "Cloning IVUser: " << *DU.NarrowUse << "\n");
// Replace NarrowDef operands with WideDef. Otherwise, we don't know
// anything about the narrow operand yet so must insert a [sz]ext. It is
// probably loop invariant and will be folded or hoisted. If it actually
// comes from a widened IV, it should be removed during a future call to
// WidenIVUse.
- Value *LHS = (NarrowUse->getOperand(0) == NarrowDef) ? WideDef :
- getExtend(NarrowUse->getOperand(0), WideType, IsSigned, Builder);
- Value *RHS = (NarrowUse->getOperand(1) == NarrowDef) ? WideDef :
- getExtend(NarrowUse->getOperand(1), WideType, IsSigned, Builder);
+ Value *LHS = (DU.NarrowUse->getOperand(0) == DU.NarrowDef) ? DU.WideDef :
+ getExtend(DU.NarrowUse->getOperand(0), WideType, IsSigned, DU.NarrowUse);
+ Value *RHS = (DU.NarrowUse->getOperand(1) == DU.NarrowDef) ? DU.WideDef :
+ getExtend(DU.NarrowUse->getOperand(1), WideType, IsSigned, DU.NarrowUse);
- BinaryOperator *NarrowBO = cast<BinaryOperator>(NarrowUse);
+ BinaryOperator *NarrowBO = cast<BinaryOperator>(DU.NarrowUse);
BinaryOperator *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(),
LHS, RHS,
NarrowBO->getName());
+ IRBuilder<> Builder(DU.NarrowUse);
Builder.Insert(WideBO);
if (const OverflowingBinaryOperator *OBO =
dyn_cast<OverflowingBinaryOperator>(NarrowBO)) {
@@ -894,45 +920,46 @@ Instruction *WidenIV::CloneIVUser(Instruction *NarrowUse,
llvm_unreachable(0);
}
-/// HoistStep - Attempt to hoist an IV increment above a potential use.
-///
-/// To successfully hoist, two criteria must be met:
-/// - IncV operands dominate InsertPos and
-/// - InsertPos dominates IncV
-///
-/// Meeting the second condition means that we don't need to check all of IncV's
-/// existing uses (it's moving up in the domtree).
-///
-/// This does not yet recursively hoist the operands, although that would
-/// not be difficult.
-static bool HoistStep(Instruction *IncV, Instruction *InsertPos,
- const DominatorTree *DT)
-{
- if (DT->dominates(IncV, InsertPos))
- return true;
+/// No-wrap operations can transfer sign extension of their result to their
+/// operands. Generate the SCEV value for the widened operation without
+/// actually modifying the IR yet. If the expression after extending the
+/// operands is an AddRec for this loop, return it.
+const SCEVAddRecExpr* WidenIV::GetExtendedOperandRecurrence(NarrowIVDefUse DU) {
+ // Handle the common case of add<nsw/nuw>
+ if (DU.NarrowUse->getOpcode() != Instruction::Add)
+ return 0;
- if (!DT->dominates(InsertPos->getParent(), IncV->getParent()))
- return false;
+ // One operand (NarrowDef) has already been extended to WideDef. Now determine
+ // if extending the other will lead to a recurrence.
+ unsigned ExtendOperIdx = DU.NarrowUse->getOperand(0) == DU.NarrowDef ? 1 : 0;
+ assert(DU.NarrowUse->getOperand(1-ExtendOperIdx) == DU.NarrowDef && "bad DU");
+
+ const SCEV *ExtendOperExpr = 0;
+ const OverflowingBinaryOperator *OBO =
+ cast<OverflowingBinaryOperator>(DU.NarrowUse);
+ if (IsSigned && OBO->hasNoSignedWrap())
+ ExtendOperExpr = SE->getSignExtendExpr(
+ SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType);
+ else if(!IsSigned && OBO->hasNoUnsignedWrap())
+ ExtendOperExpr = SE->getZeroExtendExpr(
+ SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType);
+ else
+ return 0;
- if (IncV->mayHaveSideEffects())
- return false;
+ const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(
+ SE->getAddExpr(SE->getSCEV(DU.WideDef), ExtendOperExpr,
+ IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW));
- // Attempt to hoist IncV
- for (User::op_iterator OI = IncV->op_begin(), OE = IncV->op_end();
- OI != OE; ++OI) {
- Instruction *OInst = dyn_cast<Instruction>(OI);
- if (OInst && !DT->dominates(OInst, InsertPos))
- return false;
- }
- IncV->moveBefore(InsertPos);
- return true;
+ if (!AddRec || AddRec->getLoop() != L)
+ return 0;
+ return AddRec;
}
-// GetWideRecurrence - Is this instruction potentially interesting from IVUsers'
-// perspective after widening it's type? In other words, can the extend be
-// safely hoisted out of the loop with SCEV reducing the value to a recurrence
-// on the same loop. If so, return the sign or zero extended
-// recurrence. Otherwise return NULL.
+/// GetWideRecurrence - Is this instruction potentially interesting from
+/// IVUsers' perspective after widening it's type? In other words, can the
+/// extend be safely hoisted out of the loop with SCEV reducing the value to a
+/// recurrence on the same loop. If so, return the sign or zero extended
+/// recurrence. Otherwise return NULL.
const SCEVAddRecExpr *WidenIV::GetWideRecurrence(Instruction *NarrowUse) {
if (!SE->isSCEVable(NarrowUse->getType()))
return 0;
@@ -951,47 +978,45 @@ const SCEVAddRecExpr *WidenIV::GetWideRecurrence(Instruction *NarrowUse) {
const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(WideExpr);
if (!AddRec || AddRec->getLoop() != L)
return 0;
-
return AddRec;
}
/// WidenIVUse - Determine whether an individual user of the narrow IV can be
/// widened. If so, return the wide clone of the user.
-Instruction *WidenIV::WidenIVUse(Use &NarrowDefUse, Instruction *NarrowDef,
- Instruction *WideDef) {
- Instruction *NarrowUse = cast<Instruction>(NarrowDefUse.getUser());
+Instruction *WidenIV::WidenIVUse(NarrowIVDefUse DU) {
// Stop traversing the def-use chain at inner-loop phis or post-loop phis.
- if (isa<PHINode>(NarrowUse) && LI->getLoopFor(NarrowUse->getParent()) != L)
+ if (isa<PHINode>(DU.NarrowUse) &&
+ LI->getLoopFor(DU.NarrowUse->getParent()) != L)
return 0;
// Our raison d'etre! Eliminate sign and zero extension.
- if (IsSigned ? isa<SExtInst>(NarrowUse) : isa<ZExtInst>(NarrowUse)) {
- Value *NewDef = WideDef;
- if (NarrowUse->getType() != WideType) {
- unsigned CastWidth = SE->getTypeSizeInBits(NarrowUse->getType());
+ if (IsSigned ? isa<SExtInst>(DU.NarrowUse) : isa<ZExtInst>(DU.NarrowUse)) {
+ Value *NewDef = DU.WideDef;
+ if (DU.NarrowUse->getType() != WideType) {
+ unsigned CastWidth = SE->getTypeSizeInBits(DU.NarrowUse->getType());
unsigned IVWidth = SE->getTypeSizeInBits(WideType);
if (CastWidth < IVWidth) {
// The cast isn't as wide as the IV, so insert a Trunc.
- IRBuilder<> Builder(NarrowDefUse);
- NewDef = Builder.CreateTrunc(WideDef, NarrowUse->getType());
+ IRBuilder<> Builder(DU.NarrowUse);
+ NewDef = Builder.CreateTrunc(DU.WideDef, DU.NarrowUse->getType());
}
else {
// A wider extend was hidden behind a narrower one. This may induce
// another round of IV widening in which the intermediate IV becomes
// dead. It should be very rare.
DEBUG(dbgs() << "INDVARS: New IV " << *WidePhi
- << " not wide enough to subsume " << *NarrowUse << "\n");
- NarrowUse->replaceUsesOfWith(NarrowDef, WideDef);
- NewDef = NarrowUse;
+ << " not wide enough to subsume " << *DU.NarrowUse << "\n");
+ DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef);
+ NewDef = DU.NarrowUse;
}
}
- if (NewDef != NarrowUse) {
- DEBUG(dbgs() << "INDVARS: eliminating " << *NarrowUse
- << " replaced by " << *WideDef << "\n");
+ if (NewDef != DU.NarrowUse) {
+ DEBUG(dbgs() << "INDVARS: eliminating " << *DU.NarrowUse
+ << " replaced by " << *DU.WideDef << "\n");
++NumElimExt;
- NarrowUse->replaceAllUsesWith(NewDef);
- DeadInsts.push_back(NarrowUse);
+ DU.NarrowUse->replaceAllUsesWith(NewDef);
+ DeadInsts.push_back(DU.NarrowUse);
}
// Now that the extend is gone, we want to expose it's uses for potential
// further simplification. We don't need to directly inform SimplifyIVUsers
@@ -1004,29 +1029,32 @@ Instruction *WidenIV::WidenIVUse(Use &NarrowDefUse, Instruction *NarrowDef,
}
// Does this user itself evaluate to a recurrence after widening?
- const SCEVAddRecExpr *WideAddRec = GetWideRecurrence(NarrowUse);
+ const SCEVAddRecExpr *WideAddRec = GetWideRecurrence(DU.NarrowUse);
+ if (!WideAddRec) {
+ WideAddRec = GetExtendedOperandRecurrence(DU);
+ }
if (!WideAddRec) {
// This user does not evaluate to a recurence after widening, so don't
// follow it. Instead insert a Trunc to kill off the original use,
// eventually isolating the original narrow IV so it can be removed.
- IRBuilder<> Builder(NarrowDefUse);
- Value *Trunc = Builder.CreateTrunc(WideDef, NarrowDef->getType());
- NarrowUse->replaceUsesOfWith(NarrowDef, Trunc);
+ IRBuilder<> Builder(getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT));
+ Value *Trunc = Builder.CreateTrunc(DU.WideDef, DU.NarrowDef->getType());
+ DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, Trunc);
return 0;
}
- // We assume that block terminators are not SCEVable. We wouldn't want to
+ // Assume block terminators cannot evaluate to a recurrence. We can't to
// insert a Trunc after a terminator if there happens to be a critical edge.
- assert(NarrowUse != NarrowUse->getParent()->getTerminator() &&
+ assert(DU.NarrowUse != DU.NarrowUse->getParent()->getTerminator() &&
"SCEV is not expected to evaluate a block terminator");
// Reuse the IV increment that SCEVExpander created as long as it dominates
// NarrowUse.
Instruction *WideUse = 0;
- if (WideAddRec == WideIncExpr && HoistStep(WideInc, NarrowUse, DT)) {
+ if (WideAddRec == WideIncExpr
+ && SCEVExpander::hoistStep(WideInc, DU.NarrowUse, DT))
WideUse = WideInc;
- }
else {
- WideUse = CloneIVUser(NarrowUse, NarrowDef, WideDef);
+ WideUse = CloneIVUser(DU);
if (!WideUse)
return 0;
}
@@ -1051,13 +1079,13 @@ Instruction *WidenIV::WidenIVUse(Use &NarrowDefUse, Instruction *NarrowDef,
void WidenIV::pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef) {
for (Value::use_iterator UI = NarrowDef->use_begin(),
UE = NarrowDef->use_end(); UI != UE; ++UI) {
- Use &U = UI.getUse();
+ Instruction *NarrowUse = cast<Instruction>(*UI);
// Handle data flow merges and bizarre phi cycles.
- if (!Widened.insert(cast<Instruction>(U.getUser())))
+ if (!Widened.insert(NarrowUse))
continue;
- NarrowIVUsers.push_back(std::make_pair(&UI.getUse(), WideDef));
+ NarrowIVUsers.push_back(NarrowIVDefUse(NarrowDef, NarrowUse, WideDef));
}
}
@@ -1124,23 +1152,19 @@ PHINode *WidenIV::CreateWideIV(SCEVExpander &Rewriter) {
pushNarrowIVUsers(OrigPhi, WidePhi);
while (!NarrowIVUsers.empty()) {
- Use *UsePtr;
- Instruction *WideDef;
- tie(UsePtr, WideDef) = NarrowIVUsers.pop_back_val();
- Use &NarrowDefUse = *UsePtr;
+ NarrowIVDefUse DU = NarrowIVUsers.pop_back_val();
// Process a def-use edge. This may replace the use, so don't hold a
// use_iterator across it.
- Instruction *NarrowDef = cast<Instruction>(NarrowDefUse.get());
- Instruction *WideUse = WidenIVUse(NarrowDefUse, NarrowDef, WideDef);
+ Instruction *WideUse = WidenIVUse(DU);
// Follow all def-use edges from the previous narrow use.
if (WideUse)
- pushNarrowIVUsers(cast<Instruction>(NarrowDefUse.getUser()), WideUse);
+ pushNarrowIVUsers(DU.NarrowUse, WideUse);
// WidenIVUse may have removed the def-use edge.
- if (NarrowDef->use_empty())
- DeadInsts.push_back(NarrowDef);
+ if (DU.NarrowDef->use_empty())
+ DeadInsts.push_back(DU.NarrowDef);
}
return WidePhi;
}
@@ -1149,187 +1173,17 @@ PHINode *WidenIV::CreateWideIV(SCEVExpander &Rewriter) {
// Simplification of IV users based on SCEV evaluation.
//===----------------------------------------------------------------------===//
-void IndVarSimplify::EliminateIVComparison(ICmpInst *ICmp, Value *IVOperand) {
- unsigned IVOperIdx = 0;
- ICmpInst::Predicate Pred = ICmp->getPredicate();
- if (IVOperand != ICmp->getOperand(0)) {
- // Swapped
- assert(IVOperand == ICmp->getOperand(1) && "Can't find IVOperand");
- IVOperIdx = 1;
- Pred = ICmpInst::getSwappedPredicate(Pred);
- }
-
- // Get the SCEVs for the ICmp operands.
- const SCEV *S = SE->getSCEV(ICmp->getOperand(IVOperIdx));
- const SCEV *X = SE->getSCEV(ICmp->getOperand(1 - IVOperIdx));
-
- // Simplify unnecessary loops away.
- const Loop *ICmpLoop = LI->getLoopFor(ICmp->getParent());
- S = SE->getSCEVAtScope(S, ICmpLoop);
- X = SE->getSCEVAtScope(X, ICmpLoop);
-
- // If the condition is always true or always false, replace it with
- // a constant value.
- if (SE->isKnownPredicate(Pred, S, X))
- ICmp->replaceAllUsesWith(ConstantInt::getTrue(ICmp->getContext()));
- else if (SE->isKnownPredicate(ICmpInst::getInversePredicate(Pred), S, X))
- ICmp->replaceAllUsesWith(ConstantInt::getFalse(ICmp->getContext()));
- else
- return;
-
- DEBUG(dbgs() << "INDVARS: Eliminated comparison: " << *ICmp << '\n');
- ++NumElimCmp;
- Changed = true;
- DeadInsts.push_back(ICmp);
-}
-
-void IndVarSimplify::EliminateIVRemainder(BinaryOperator *Rem,
- Value *IVOperand,
- bool IsSigned) {
- // We're only interested in the case where we know something about
- // the numerator.
- if (IVOperand != Rem->getOperand(0))
- return;
-
- // Get the SCEVs for the ICmp operands.
- const SCEV *S = SE->getSCEV(Rem->getOperand(0));
- const SCEV *X = SE->getSCEV(Rem->getOperand(1));
-
- // Simplify unnecessary loops away.
- const Loop *ICmpLoop = LI->getLoopFor(Rem->getParent());
- S = SE->getSCEVAtScope(S, ICmpLoop);
- X = SE->getSCEVAtScope(X, ICmpLoop);
-
- // i % n --> i if i is in [0,n).
- if ((!IsSigned || SE->isKnownNonNegative(S)) &&
- SE->isKnownPredicate(IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT,
- S, X))
- Rem->replaceAllUsesWith(Rem->getOperand(0));
- else {
- // (i+1) % n --> (i+1)==n?0:(i+1) if i is in [0,n).
- const SCEV *LessOne =
- SE->getMinusSCEV(S, SE->getConstant(S->getType(), 1));
- if (IsSigned && !SE->isKnownNonNegative(LessOne))
- return;
-
- if (!SE->isKnownPredicate(IsSigned ?
- ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT,
- LessOne, X))
- return;
-
- ICmpInst *ICmp = new ICmpInst(Rem, ICmpInst::ICMP_EQ,
- Rem->getOperand(0), Rem->getOperand(1),
- "tmp");
- SelectInst *Sel =
- SelectInst::Create(ICmp,
- ConstantInt::get(Rem->getType(), 0),
- Rem->getOperand(0), "tmp", Rem);
- Rem->replaceAllUsesWith(Sel);
- }
-
- // Inform IVUsers about the new users.
- if (IU) {
- if (Instruction *I = dyn_cast<Instruction>(Rem->getOperand(0)))
- IU->AddUsersIfInteresting(I);
- }
- DEBUG(dbgs() << "INDVARS: Simplified rem: " << *Rem << '\n');
- ++NumElimRem;
- Changed = true;
- DeadInsts.push_back(Rem);
-}
-
-/// EliminateIVUser - Eliminate an operation that consumes a simple IV and has
-/// no observable side-effect given the range of IV values.
-bool IndVarSimplify::EliminateIVUser(Instruction *UseInst,
- Instruction *IVOperand) {
- if (ICmpInst *ICmp = dyn_cast<ICmpInst>(UseInst)) {
- EliminateIVComparison(ICmp, IVOperand);
- return true;
- }
- if (BinaryOperator *Rem = dyn_cast<BinaryOperator>(UseInst)) {
- bool IsSigned = Rem->getOpcode() == Instruction::SRem;
- if (IsSigned || Rem->getOpcode() == Instruction::URem) {
- EliminateIVRemainder(Rem, IVOperand, IsSigned);
- return true;
- }
- }
-
- // Eliminate any operation that SCEV can prove is an identity function.
- if (!SE->isSCEVable(UseInst->getType()) ||
- (UseInst->getType() != IVOperand->getType()) ||
- (SE->getSCEV(UseInst) != SE->getSCEV(IVOperand)))
- return false;
-
- DEBUG(dbgs() << "INDVARS: Eliminated identity: " << *UseInst << '\n');
-
- UseInst->replaceAllUsesWith(IVOperand);
- ++NumElimIdentity;
- Changed = true;
- DeadInsts.push_back(UseInst);
- return true;
-}
-
-/// pushIVUsers - Add all uses of Def to the current IV's worklist.
-///
-static void pushIVUsers(
- Instruction *Def,
- SmallPtrSet<Instruction*,16> &Simplified,
- SmallVectorImpl< std::pair<Instruction*,Instruction*> > &SimpleIVUsers) {
-
- for (Value::use_iterator UI = Def->use_begin(), E = Def->use_end();
- UI != E; ++UI) {
- Instruction *User = cast<Instruction>(*UI);
-
- // Avoid infinite or exponential worklist processing.
- // Also ensure unique worklist users.
- // If Def is a LoopPhi, it may not be in the Simplified set, so check for
- // self edges first.
- if (User != Def && Simplified.insert(User))
- SimpleIVUsers.push_back(std::make_pair(User, Def));
- }
-}
-
-/// isSimpleIVUser - Return true if this instruction generates a simple SCEV
-/// expression in terms of that IV.
-///
-/// This is similar to IVUsers' isInsteresting() but processes each instruction
-/// non-recursively when the operand is already known to be a simpleIVUser.
-///
-static bool isSimpleIVUser(Instruction *I, const Loop *L, ScalarEvolution *SE) {
- if (!SE->isSCEVable(I->getType()))
- return false;
-
- // Get the symbolic expression for this instruction.
- const SCEV *S = SE->getSCEV(I);
-
- // We assume that terminators are not SCEVable.
- assert((!S || I != I->getParent()->getTerminator()) &&
- "can't fold terminators");
-
- // Only consider affine recurrences.
- const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S);
- if (AR && AR->getLoop() == L)
- return true;
-
- return false;
-}
-/// SimplifyIVUsersNoRewrite - Iteratively perform simplification on a worklist
-/// of IV users. Each successive simplification may push more users which may
+/// SimplifyAndExtend - Iteratively perform simplification on a worklist of IV
+/// users. Each successive simplification may push more users which may
/// themselves be candidates for simplification.
///
-/// The "NoRewrite" algorithm does not require IVUsers analysis. Instead, it
-/// simplifies instructions in-place during analysis. Rather than rewriting
-/// induction variables bottom-up from their users, it transforms a chain of
-/// IVUsers top-down, updating the IR only when it encouters a clear
-/// optimization opportunitiy. A SCEVExpander "Rewriter" instance is still
-/// needed, but only used to generate a new IV (phi) of wider type for sign/zero
-/// extend elimination.
+/// Sign/Zero extend elimination is interleaved with IV simplification.
///
-/// Once DisableIVRewrite is default, LSR will be the only client of IVUsers.
-///
-void IndVarSimplify::SimplifyIVUsersNoRewrite(Loop *L, SCEVExpander &Rewriter) {
- std::map<PHINode *, WideIVInfo> WideIVMap;
+void IndVarSimplify::SimplifyAndExtend(Loop *L,
+ SCEVExpander &Rewriter,
+ LPPassManager &LPM) {
+ SmallVector<WideIVInfo, 8> WideIVs;
SmallVector<PHINode*, 8> LoopPhis;
for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
@@ -1345,108 +1199,81 @@ void IndVarSimplify::SimplifyIVUsersNoRewrite(Loop *L, SCEVExpander &Rewriter) {
// extension. The first time SCEV attempts to normalize sign/zero extension,
// the result becomes final. So for the most predictable results, we delay
// evaluation of sign/zero extend evaluation until needed, and avoid running
- // other SCEV based analysis prior to SimplifyIVUsersNoRewrite.
+ // other SCEV based analysis prior to SimplifyAndExtend.
do {
PHINode *CurrIV = LoopPhis.pop_back_val();
// Information about sign/zero extensions of CurrIV.
- WideIVInfo WI;
-
- // Instructions processed by SimplifyIVUsers for CurrIV.
- SmallPtrSet<Instruction*,16> Simplified;
-
- // Use-def pairs if IV users waiting to be processed for CurrIV.
- SmallVector<std::pair<Instruction*, Instruction*>, 8> SimpleIVUsers;
-
- // Push users of the current LoopPhi. In rare cases, pushIVUsers may be
- // called multiple times for the same LoopPhi. This is the proper thing to
- // do for loop header phis that use each other.
- pushIVUsers(CurrIV, Simplified, SimpleIVUsers);
+ WideIVVisitor WIV(CurrIV, SE, TD);
- while (!SimpleIVUsers.empty()) {
- Instruction *UseInst, *Operand;
- tie(UseInst, Operand) = SimpleIVUsers.pop_back_val();
- // Bypass back edges to avoid extra work.
- if (UseInst == CurrIV) continue;
+ Changed |= simplifyUsersOfIV(CurrIV, SE, &LPM, DeadInsts, &WIV);
- if (EliminateIVUser(UseInst, Operand)) {
- pushIVUsers(Operand, Simplified, SimpleIVUsers);
- continue;
- }
- if (CastInst *Cast = dyn_cast<CastInst>(UseInst)) {
- bool IsSigned = Cast->getOpcode() == Instruction::SExt;
- if (IsSigned || Cast->getOpcode() == Instruction::ZExt) {
- CollectExtend(Cast, IsSigned, WI, SE, TD);
- }
- continue;
- }
- if (isSimpleIVUser(UseInst, L, SE)) {
- pushIVUsers(UseInst, Simplified, SimpleIVUsers);
- }
- }
- if (WI.WidestNativeType) {
- WideIVMap[CurrIV] = WI;
+ if (WIV.WI.WidestNativeType) {
+ WideIVs.push_back(WIV.WI);
}
} while(!LoopPhis.empty());
- for (std::map<PHINode *, WideIVInfo>::const_iterator I = WideIVMap.begin(),
- E = WideIVMap.end(); I != E; ++I) {
- WidenIV Widener(I->first, I->second, LI, SE, DT, DeadInsts);
+ for (; !WideIVs.empty(); WideIVs.pop_back()) {
+ WidenIV Widener(WideIVs.back(), LI, SE, DT, DeadInsts);
if (PHINode *WidePhi = Widener.CreateWideIV(Rewriter)) {
Changed = true;
LoopPhis.push_back(WidePhi);
}
}
- WideIVMap.clear();
}
}
-/// SimplifyCongruentIVs - Check for congruent phis in this loop header and
-/// populate ExprToIVMap for use later.
-///
-void IndVarSimplify::SimplifyCongruentIVs(Loop *L) {
- DenseMap<const SCEV *, PHINode *> ExprToIVMap;
- for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
- PHINode *Phi = cast<PHINode>(I);
- if (!SE->isSCEVable(Phi->getType()))
- continue;
+//===----------------------------------------------------------------------===//
+// LinearFunctionTestReplace and its kin. Rewrite the loop exit condition.
+//===----------------------------------------------------------------------===//
- const SCEV *S = SE->getSCEV(Phi);
- DenseMap<const SCEV *, PHINode *>::const_iterator Pos;
- bool Inserted;
- tie(Pos, Inserted) = ExprToIVMap.insert(std::make_pair(S, Phi));
- if (Inserted)
- continue;
- PHINode *OrigPhi = Pos->second;
- // Replacing the congruent phi is sufficient because acyclic redundancy
- // elimination, CSE/GVN, should handle the rest. However, once SCEV proves
- // that a phi is congruent, it's almost certain to be the head of an IV
- // user cycle that is isomorphic with the original phi. So it's worth
- // eagerly cleaning up the common case of a single IV increment.
- if (BasicBlock *LatchBlock = L->getLoopLatch()) {
- Instruction *OrigInc =
- cast<Instruction>(OrigPhi->getIncomingValueForBlock(LatchBlock));
- Instruction *IsomorphicInc =
- cast<Instruction>(Phi->getIncomingValueForBlock(LatchBlock));
- if (OrigInc != IsomorphicInc &&
- SE->getSCEV(OrigInc) == SE->getSCEV(IsomorphicInc) &&
- HoistStep(OrigInc, IsomorphicInc, DT)) {
- DEBUG(dbgs() << "INDVARS: Eliminated congruent iv.inc: "
- << *IsomorphicInc << '\n');
- IsomorphicInc->replaceAllUsesWith(OrigInc);
- DeadInsts.push_back(IsomorphicInc);
- }
+/// Check for expressions that ScalarEvolution generates to compute
+/// BackedgeTakenInfo. If these expressions have not been reduced, then
+/// expanding them may incur additional cost (albeit in the loop preheader).
+static bool isHighCostExpansion(const SCEV *S, BranchInst *BI,
+ ScalarEvolution *SE) {
+ // If the backedge-taken count is a UDiv, it's very likely a UDiv that
+ // ScalarEvolution's HowFarToZero or HowManyLessThans produced to compute a
+ // precise expression, rather than a UDiv from the user's code. If we can't
+ // find a UDiv in the code with some simple searching, assume the former and
+ // forego rewriting the loop.
+ if (isa<SCEVUDivExpr>(S)) {
+ ICmpInst *OrigCond = dyn_cast<ICmpInst>(BI->getCondition());
+ if (!OrigCond) return true;
+ const SCEV *R = SE->getSCEV(OrigCond->getOperand(1));
+ R = SE->getMinusSCEV(R, SE->getConstant(R->getType(), 1));
+ if (R != S) {
+ const SCEV *L = SE->getSCEV(OrigCond->getOperand(0));
+ L = SE->getMinusSCEV(L, SE->getConstant(L->getType(), 1));
+ if (L != S)
+ return true;
}
- DEBUG(dbgs() << "INDVARS: Eliminated congruent iv: " << *Phi << '\n');
- ++NumElimIV;
- Phi->replaceAllUsesWith(OrigPhi);
- DeadInsts.push_back(Phi);
}
-}
-//===----------------------------------------------------------------------===//
-// LinearFunctionTestReplace and its kin. Rewrite the loop exit condition.
-//===----------------------------------------------------------------------===//
+ if (EnableIVRewrite)
+ return false;
+
+ // Recurse past add expressions, which commonly occur in the
+ // BackedgeTakenCount. They may already exist in program code, and if not,
+ // they are not too expensive rematerialize.
+ if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
+ for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
+ I != E; ++I) {
+ if (isHighCostExpansion(*I, BI, SE))
+ return true;
+ }
+ return false;
+ }
+
+ // HowManyLessThans uses a Max expression whenever the loop is not guarded by
+ // the exit condition.
+ if (isa<SCEVSMaxExpr>(S) || isa<SCEVUMaxExpr>(S))
+ return true;
+
+ // If we haven't recognized an expensive SCEV patter, assume its an expression
+ // produced by program code.
+ return false;
+}
/// canExpandBackedgeTakenCount - Return true if this loop's backedge taken
/// count expression can be safely and cheaply expanded into an instruction
@@ -1465,31 +1292,17 @@ static bool canExpandBackedgeTakenCount(Loop *L, ScalarEvolution *SE) {
if (!BI)
return false;
- // Special case: If the backedge-taken count is a UDiv, it's very likely a
- // UDiv that ScalarEvolution produced in order to compute a precise
- // expression, rather than a UDiv from the user's code. If we can't find a
- // UDiv in the code with some simple searching, assume the former and forego
- // rewriting the loop.
- if (isa<SCEVUDivExpr>(BackedgeTakenCount)) {
- ICmpInst *OrigCond = dyn_cast<ICmpInst>(BI->getCondition());
- if (!OrigCond) return false;
- const SCEV *R = SE->getSCEV(OrigCond->getOperand(1));
- R = SE->getMinusSCEV(R, SE->getConstant(R->getType(), 1));
- if (R != BackedgeTakenCount) {
- const SCEV *L = SE->getSCEV(OrigCond->getOperand(0));
- L = SE->getMinusSCEV(L, SE->getConstant(L->getType(), 1));
- if (L != BackedgeTakenCount)
- return false;
- }
- }
+ if (isHighCostExpansion(BackedgeTakenCount, BI, SE))
+ return false;
+
return true;
}
/// getBackedgeIVType - Get the widest type used by the loop test after peeking
/// through Truncs.
///
-/// TODO: Unnecessary if LFTR does not force a canonical IV.
-static const Type *getBackedgeIVType(Loop *L) {
+/// TODO: Unnecessary when ForceLFTR is removed.
+static Type *getBackedgeIVType(Loop *L) {
if (!L->getExitingBlock())
return 0;
@@ -1502,7 +1315,7 @@ static const Type *getBackedgeIVType(Loop *L) {
if (!Cond)
return 0;
- const Type *Ty = 0;
+ Type *Ty = 0;
for(User::op_iterator OI = Cond->op_begin(), OE = Cond->op_end();
OI != OE; ++OI) {
assert((!Ty || Ty == (*OI)->getType()) && "bad icmp operand types");
@@ -1515,12 +1328,187 @@ static const Type *getBackedgeIVType(Loop *L) {
return Ty;
}
+/// getLoopPhiForCounter - Return the loop header phi IFF IncV adds a loop
+/// invariant value to the phi.
+static PHINode *getLoopPhiForCounter(Value *IncV, Loop *L, DominatorTree *DT) {
+ Instruction *IncI = dyn_cast<Instruction>(IncV);
+ if (!IncI)
+ return 0;
+
+ switch (IncI->getOpcode()) {
+ case Instruction::Add:
+ case Instruction::Sub:
+ break;
+ case Instruction::GetElementPtr:
+ // An IV counter must preserve its type.
+ if (IncI->getNumOperands() == 2)
+ break;
+ default:
+ return 0;
+ }
+
+ PHINode *Phi = dyn_cast<PHINode>(IncI->getOperand(0));
+ if (Phi && Phi->getParent() == L->getHeader()) {
+ if (isLoopInvariant(IncI->getOperand(1), L, DT))
+ return Phi;
+ return 0;
+ }
+ if (IncI->getOpcode() == Instruction::GetElementPtr)
+ return 0;
+
+ // Allow add/sub to be commuted.
+ Phi = dyn_cast<PHINode>(IncI->getOperand(1));
+ if (Phi && Phi->getParent() == L->getHeader()) {
+ if (isLoopInvariant(IncI->getOperand(0), L, DT))
+ return Phi;
+ }
+ return 0;
+}
+
+/// needsLFTR - LinearFunctionTestReplace policy. Return true unless we can show
+/// that the current exit test is already sufficiently canonical.
+static bool needsLFTR(Loop *L, DominatorTree *DT) {
+ assert(L->getExitingBlock() && "expected loop exit");
+
+ BasicBlock *LatchBlock = L->getLoopLatch();
+ // Don't bother with LFTR if the loop is not properly simplified.
+ if (!LatchBlock)
+ return false;
+
+ BranchInst *BI = dyn_cast<BranchInst>(L->getExitingBlock()->getTerminator());
+ assert(BI && "expected exit branch");
+
+ // Do LFTR to simplify the exit condition to an ICMP.
+ ICmpInst *Cond = dyn_cast<ICmpInst>(BI->getCondition());
+ if (!Cond)
+ return true;
+
+ // Do LFTR to simplify the exit ICMP to EQ/NE
+ ICmpInst::Predicate Pred = Cond->getPredicate();
+ if (Pred != ICmpInst::ICMP_NE && Pred != ICmpInst::ICMP_EQ)
+ return true;
+
+ // Look for a loop invariant RHS
+ Value *LHS = Cond->getOperand(0);
+ Value *RHS = Cond->getOperand(1);
+ if (!isLoopInvariant(RHS, L, DT)) {
+ if (!isLoopInvariant(LHS, L, DT))
+ return true;
+ std::swap(LHS, RHS);
+ }
+ // Look for a simple IV counter LHS
+ PHINode *Phi = dyn_cast<PHINode>(LHS);
+ if (!Phi)
+ Phi = getLoopPhiForCounter(LHS, L, DT);
+
+ if (!Phi)
+ return true;
+
+ // Do LFTR if the exit condition's IV is *not* a simple counter.
+ Value *IncV = Phi->getIncomingValueForBlock(L->getLoopLatch());
+ return Phi != getLoopPhiForCounter(IncV, L, DT);
+}
+
+/// AlmostDeadIV - Return true if this IV has any uses other than the (soon to
+/// be rewritten) loop exit test.
+static bool AlmostDeadIV(PHINode *Phi, BasicBlock *LatchBlock, Value *Cond) {
+ int LatchIdx = Phi->getBasicBlockIndex(LatchBlock);
+ Value *IncV = Phi->getIncomingValue(LatchIdx);
+
+ for (Value::use_iterator UI = Phi->use_begin(), UE = Phi->use_end();
+ UI != UE; ++UI) {
+ if (*UI != Cond && *UI != IncV) return false;
+ }
+
+ for (Value::use_iterator UI = IncV->use_begin(), UE = IncV->use_end();
+ UI != UE; ++UI) {
+ if (*UI != Cond && *UI != Phi) return false;
+ }
+ return true;
+}
+
+/// FindLoopCounter - Find an affine IV in canonical form.
+///
+/// FIXME: Accept -1 stride and set IVLimit = IVInit - BECount
+///
+/// FIXME: Accept non-unit stride as long as SCEV can reduce BECount * Stride.
+/// This is difficult in general for SCEV because of potential overflow. But we
+/// could at least handle constant BECounts.
+static PHINode *
+FindLoopCounter(Loop *L, const SCEV *BECount,
+ ScalarEvolution *SE, DominatorTree *DT, const TargetData *TD) {
+ // I'm not sure how BECount could be a pointer type, but we definitely don't
+ // want to LFTR that.
+ if (BECount->getType()->isPointerTy())
+ return 0;
+
+ uint64_t BCWidth = SE->getTypeSizeInBits(BECount->getType());
+
+ Value *Cond =
+ cast<BranchInst>(L->getExitingBlock()->getTerminator())->getCondition();
+
+ // Loop over all of the PHI nodes, looking for a simple counter.
+ PHINode *BestPhi = 0;
+ const SCEV *BestInit = 0;
+ BasicBlock *LatchBlock = L->getLoopLatch();
+ assert(LatchBlock && "needsLFTR should guarantee a loop latch");
+
+ for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
+ PHINode *Phi = cast<PHINode>(I);
+ if (!SE->isSCEVable(Phi->getType()))
+ continue;
+
+ const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Phi));
+ if (!AR || AR->getLoop() != L || !AR->isAffine())
+ continue;
+
+ // AR may be a pointer type, while BECount is an integer type.
+ // AR may be wider than BECount. With eq/ne tests overflow is immaterial.
+ // AR may not be a narrower type, or we may never exit.
+ uint64_t PhiWidth = SE->getTypeSizeInBits(AR->getType());
+ if (PhiWidth < BCWidth || (TD && !TD->isLegalInteger(PhiWidth)))
+ continue;
+
+ const SCEV *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE));
+ if (!Step || !Step->isOne())
+ continue;
+
+ int LatchIdx = Phi->getBasicBlockIndex(LatchBlock);
+ Value *IncV = Phi->getIncomingValue(LatchIdx);
+ if (getLoopPhiForCounter(IncV, L, DT) != Phi)
+ continue;
+
+ const SCEV *Init = AR->getStart();
+
+ if (BestPhi && !AlmostDeadIV(BestPhi, LatchBlock, Cond)) {
+ // Don't force a live loop counter if another IV can be used.
+ if (AlmostDeadIV(Phi, LatchBlock, Cond))
+ continue;
+
+ // Prefer to count-from-zero. This is a more "canonical" counter form. It
+ // also prefers integer to pointer IVs.
+ if (BestInit->isZero() != Init->isZero()) {
+ if (BestInit->isZero())
+ continue;
+ }
+ // If two IVs both count from zero or both count from nonzero then the
+ // narrower is likely a dead phi that has been widened. Use the wider phi
+ // to allow the other to be eliminated.
+ if (PhiWidth <= SE->getTypeSizeInBits(BestPhi->getType()))
+ continue;
+ }
+ BestPhi = Phi;
+ BestInit = Init;
+ }
+ return BestPhi;
+}
+
/// LinearFunctionTestReplace - This method rewrites the exit condition of the
/// loop to be a canonical != comparison against the incremented loop induction
/// variable. This pass is able to rewrite the exit tests of any loop where the
/// SCEV analysis can determine a loop-invariant trip count of the loop, which
/// is actually a much broader range than just linear tests.
-ICmpInst *IndVarSimplify::
+Value *IndVarSimplify::
LinearFunctionTestReplace(Loop *L,
const SCEV *BackedgeTakenCount,
PHINode *IndVar,
@@ -1528,62 +1516,117 @@ LinearFunctionTestReplace(Loop *L,
assert(canExpandBackedgeTakenCount(L, SE) && "precondition");
BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator());
+ // LFTR can ignore IV overflow and truncate to the width of
+ // BECount. This avoids materializing the add(zext(add)) expression.
+ Type *CntTy = !EnableIVRewrite ?
+ BackedgeTakenCount->getType() : IndVar->getType();
+
+ const SCEV *IVLimit = BackedgeTakenCount;
+
// If the exiting block is not the same as the backedge block, we must compare
// against the preincremented value, otherwise we prefer to compare against
// the post-incremented value.
Value *CmpIndVar;
- const SCEV *RHS = BackedgeTakenCount;
if (L->getExitingBlock() == L->getLoopLatch()) {
// Add one to the "backedge-taken" count to get the trip count.
// If this addition may overflow, we have to be more pessimistic and
// cast the induction variable before doing the add.
- const SCEV *Zero = SE->getConstant(BackedgeTakenCount->getType(), 0);
const SCEV *N =
- SE->getAddExpr(BackedgeTakenCount,
- SE->getConstant(BackedgeTakenCount->getType(), 1));
- if ((isa<SCEVConstant>(N) && !N->isZero()) ||
- SE->isLoopEntryGuardedByCond(L, ICmpInst::ICMP_NE, N, Zero)) {
- // No overflow. Cast the sum.
- RHS = SE->getTruncateOrZeroExtend(N, IndVar->getType());
- } else {
- // Potential overflow. Cast before doing the add.
- RHS = SE->getTruncateOrZeroExtend(BackedgeTakenCount,
- IndVar->getType());
- RHS = SE->getAddExpr(RHS,
- SE->getConstant(IndVar->getType(), 1));
+ SE->getAddExpr(IVLimit, SE->getConstant(IVLimit->getType(), 1));
+ if (CntTy == IVLimit->getType())
+ IVLimit = N;
+ else {
+ const SCEV *Zero = SE->getConstant(IVLimit->getType(), 0);
+ if ((isa<SCEVConstant>(N) && !N->isZero()) ||
+ SE->isLoopEntryGuardedByCond(L, ICmpInst::ICMP_NE, N, Zero)) {
+ // No overflow. Cast the sum.
+ IVLimit = SE->getTruncateOrZeroExtend(N, CntTy);
+ } else {
+ // Potential overflow. Cast before doing the add.
+ IVLimit = SE->getTruncateOrZeroExtend(IVLimit, CntTy);
+ IVLimit = SE->getAddExpr(IVLimit, SE->getConstant(CntTy, 1));
+ }
}
-
// The BackedgeTaken expression contains the number of times that the
// backedge branches to the loop header. This is one less than the
// number of times the loop executes, so use the incremented indvar.
CmpIndVar = IndVar->getIncomingValueForBlock(L->getExitingBlock());
} else {
// We have to use the preincremented value...
- RHS = SE->getTruncateOrZeroExtend(BackedgeTakenCount,
- IndVar->getType());
+ IVLimit = SE->getTruncateOrZeroExtend(IVLimit, CntTy);
CmpIndVar = IndVar;
}
+ // For unit stride, IVLimit = Start + BECount with 2's complement overflow.
+ // So for, non-zero start compute the IVLimit here.
+ bool isPtrIV = false;
+ Type *CmpTy = CntTy;
+ const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(IndVar));
+ assert(AR && AR->getLoop() == L && AR->isAffine() && "bad loop counter");
+ if (!AR->getStart()->isZero()) {
+ assert(AR->getStepRecurrence(*SE)->isOne() && "only handles unit stride");
+ const SCEV *IVInit = AR->getStart();
+
+ // For pointer types, sign extend BECount in order to materialize a GEP.
+ // Note that for without EnableIVRewrite, we never run SCEVExpander on a
+ // pointer type, because we must preserve the existing GEPs. Instead we
+ // directly generate a GEP later.
+ if (IVInit->getType()->isPointerTy()) {
+ isPtrIV = true;
+ CmpTy = SE->getEffectiveSCEVType(IVInit->getType());
+ IVLimit = SE->getTruncateOrSignExtend(IVLimit, CmpTy);
+ }
+ // For integer types, truncate the IV before computing IVInit + BECount.
+ else {
+ if (SE->getTypeSizeInBits(IVInit->getType())
+ > SE->getTypeSizeInBits(CmpTy))
+ IVInit = SE->getTruncateExpr(IVInit, CmpTy);
+
+ IVLimit = SE->getAddExpr(IVInit, IVLimit);
+ }
+ }
// Expand the code for the iteration count.
- assert(SE->isLoopInvariant(RHS, L) &&
+ IRBuilder<> Builder(BI);
+
+ assert(SE->isLoopInvariant(IVLimit, L) &&
"Computed iteration count is not loop invariant!");
- Value *ExitCnt = Rewriter.expandCodeFor(RHS, IndVar->getType(), BI);
+ Value *ExitCnt = Rewriter.expandCodeFor(IVLimit, CmpTy, BI);
+
+ // Create a gep for IVInit + IVLimit from on an existing pointer base.
+ assert(isPtrIV == IndVar->getType()->isPointerTy() &&
+ "IndVar type must match IVInit type");
+ if (isPtrIV) {
+ Value *IVStart = IndVar->getIncomingValueForBlock(L->getLoopPreheader());
+ assert(AR->getStart() == SE->getSCEV(IVStart) && "bad loop counter");
+ assert(SE->getSizeOfExpr(
+ cast<PointerType>(IVStart->getType())->getElementType())->isOne()
+ && "unit stride pointer IV must be i8*");
+
+ Builder.SetInsertPoint(L->getLoopPreheader()->getTerminator());
+ ExitCnt = Builder.CreateGEP(IVStart, ExitCnt, "lftr.limit");
+ Builder.SetInsertPoint(BI);
+ }
// Insert a new icmp_ne or icmp_eq instruction before the branch.
- ICmpInst::Predicate Opcode;
+ ICmpInst::Predicate P;
if (L->contains(BI->getSuccessor(0)))
- Opcode = ICmpInst::ICMP_NE;
+ P = ICmpInst::ICMP_NE;
else
- Opcode = ICmpInst::ICMP_EQ;
+ P = ICmpInst::ICMP_EQ;
DEBUG(dbgs() << "INDVARS: Rewriting loop exit condition to:\n"
<< " LHS:" << *CmpIndVar << '\n'
<< " op:\t"
- << (Opcode == ICmpInst::ICMP_NE ? "!=" : "==") << "\n"
- << " RHS:\t" << *RHS << "\n");
+ << (P == ICmpInst::ICMP_NE ? "!=" : "==") << "\n"
+ << " RHS:\t" << *ExitCnt << "\n"
+ << " Expr:\t" << *IVLimit << "\n");
+
+ if (SE->getTypeSizeInBits(CmpIndVar->getType())
+ > SE->getTypeSizeInBits(CmpTy)) {
+ CmpIndVar = Builder.CreateTrunc(CmpIndVar, CmpTy, "lftr.wideiv");
+ }
- ICmpInst *Cond = new ICmpInst(BI, Opcode, CmpIndVar, ExitCnt, "exitcond");
- Cond->setDebugLoc(BI->getDebugLoc());
+ Value *Cond = Builder.CreateICmp(P, CmpIndVar, ExitCnt, "exitcond");
Value *OrigCond = BI->getCondition();
// It's tempting to use replaceAllUsesWith here to fully replace the old
// comparison, but that's not immediately safe, since users of the old
@@ -1612,7 +1655,7 @@ void IndVarSimplify::SinkUnusedInvariants(Loop *L) {
BasicBlock *Preheader = L->getLoopPreheader();
if (!Preheader) return;
- Instruction *InsertPt = ExitBlock->getFirstNonPHI();
+ Instruction *InsertPt = ExitBlock->getFirstInsertionPt();
BasicBlock::iterator I = Preheader->getTerminator();
while (I != Preheader->begin()) {
--I;
@@ -1633,6 +1676,10 @@ void IndVarSimplify::SinkUnusedInvariants(Loop *L) {
if (isa<DbgInfoIntrinsic>(I))
continue;
+ // Skip landingpad instructions.
+ if (isa<LandingPadInst>(I))
+ continue;
+
// Don't sink static AllocaInsts out of the entry block, which would
// turn them into dynamic allocas!
if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
@@ -1699,7 +1746,7 @@ bool IndVarSimplify::runOnLoop(Loop *L, LPPassManager &LPM) {
if (!L->isLoopSimplifyForm())
return false;
- if (!DisableIVRewrite)
+ if (EnableIVRewrite)
IU = &getAnalysis<IVUsers>();
LI = &getAnalysis<LoopInfo>();
SE = &getAnalysis<ScalarEvolution>();
@@ -1717,6 +1764,9 @@ bool IndVarSimplify::runOnLoop(Loop *L, LPPassManager &LPM) {
// Create a rewriter object which we'll use to transform the code with.
SCEVExpander Rewriter(*SE, "indvars");
+#ifndef NDEBUG
+ Rewriter.setDebugType(DEBUG_TYPE);
+#endif
// Eliminate redundant IV users.
//
@@ -1724,9 +1774,9 @@ bool IndVarSimplify::runOnLoop(Loop *L, LPPassManager &LPM) {
// attempt to avoid evaluating SCEVs for sign/zero extend operations until
// other expressions involving loop IVs have been evaluated. This helps SCEV
// set no-wrap flags before normalizing sign/zero extension.
- if (DisableIVRewrite) {
+ if (!EnableIVRewrite) {
Rewriter.disableCanonicalMode();
- SimplifyIVUsersNoRewrite(L, Rewriter);
+ SimplifyAndExtend(L, Rewriter, LPM);
}
// Check to see if this loop has a computable loop-invariant execution count.
@@ -1739,25 +1789,25 @@ bool IndVarSimplify::runOnLoop(Loop *L, LPPassManager &LPM) {
RewriteLoopExitValues(L, Rewriter);
// Eliminate redundant IV users.
- if (!DisableIVRewrite)
- SimplifyIVUsers(Rewriter);
+ if (EnableIVRewrite)
+ Changed |= simplifyIVUsers(IU, SE, &LPM, DeadInsts);
// Eliminate redundant IV cycles.
- if (DisableIVRewrite)
- SimplifyCongruentIVs(L);
+ if (!EnableIVRewrite)
+ NumElimIV += Rewriter.replaceCongruentIVs(L, DT, DeadInsts);
// Compute the type of the largest recurrence expression, and decide whether
// a canonical induction variable should be inserted.
- const Type *LargestType = 0;
+ Type *LargestType = 0;
bool NeedCannIV = false;
bool ExpandBECount = canExpandBackedgeTakenCount(L, SE);
- if (ExpandBECount) {
+ if (EnableIVRewrite && ExpandBECount) {
// If we have a known trip count and a single exit block, we'll be
// rewriting the loop exit test condition below, which requires a
// canonical induction variable.
NeedCannIV = true;
- const Type *Ty = BackedgeTakenCount->getType();
- if (DisableIVRewrite) {
+ Type *Ty = BackedgeTakenCount->getType();
+ if (!EnableIVRewrite) {
// In this mode, SimplifyIVUsers may have already widened the IV used by
// the backedge test and inserted a Trunc on the compare's operand. Get
// the wider type to avoid creating a redundant narrow IV only used by the
@@ -1769,10 +1819,10 @@ bool IndVarSimplify::runOnLoop(Loop *L, LPPassManager &LPM) {
SE->getTypeSizeInBits(LargestType))
LargestType = SE->getEffectiveSCEVType(Ty);
}
- if (!DisableIVRewrite) {
+ if (EnableIVRewrite) {
for (IVUsers::const_iterator I = IU->begin(), E = IU->end(); I != E; ++I) {
NeedCannIV = true;
- const Type *Ty =
+ Type *Ty =
SE->getEffectiveSCEVType(I->getOperandValToReplace()->getType());
if (!LargestType ||
SE->getTypeSizeInBits(Ty) >
@@ -1811,18 +1861,16 @@ bool IndVarSimplify::runOnLoop(Loop *L, LPPassManager &LPM) {
// the end of the pass.
while (!OldCannIVs.empty()) {
PHINode *OldCannIV = OldCannIVs.pop_back_val();
- OldCannIV->insertBefore(L->getHeader()->getFirstNonPHI());
+ OldCannIV->insertBefore(L->getHeader()->getFirstInsertionPt());
}
}
-
+ else if (!EnableIVRewrite && ExpandBECount && needsLFTR(L, DT)) {
+ IndVar = FindLoopCounter(L, BackedgeTakenCount, SE, DT, TD);
+ }
// If we have a trip count expression, rewrite the loop's exit condition
// using it. We can currently only handle loops with a single exit.
- ICmpInst *NewICmp = 0;
- if (ExpandBECount) {
- assert(canExpandBackedgeTakenCount(L, SE) &&
- "canonical IV disrupted BackedgeTaken expansion");
- assert(NeedCannIV &&
- "LinearFunctionTestReplace requires a canonical induction variable");
+ Value *NewICmp = 0;
+ if (ExpandBECount && IndVar) {
// Check preconditions for proper SCEVExpander operation. SCEV does not
// express SCEVExpander's dependencies, such as LoopSimplify. Instead any
// pass that uses the SCEVExpander must do it. This does not work well for
@@ -1837,7 +1885,7 @@ bool IndVarSimplify::runOnLoop(Loop *L, LPPassManager &LPM) {
LinearFunctionTestReplace(L, BackedgeTakenCount, IndVar, Rewriter);
}
// Rewrite IV-derived expressions.
- if (!DisableIVRewrite)
+ if (EnableIVRewrite)
RewriteIVExpressions(L, Rewriter);
// Clear the rewriter cache, because values that are in the rewriter's cache
@@ -1860,12 +1908,34 @@ bool IndVarSimplify::runOnLoop(Loop *L, LPPassManager &LPM) {
// For completeness, inform IVUsers of the IV use in the newly-created
// loop exit test instruction.
- if (NewICmp && IU)
- IU->AddUsersIfInteresting(cast<Instruction>(NewICmp->getOperand(0)));
-
+ if (IU && NewICmp) {
+ ICmpInst *NewICmpInst = dyn_cast<ICmpInst>(NewICmp);
+ if (NewICmpInst)
+ IU->AddUsersIfInteresting(cast<Instruction>(NewICmpInst->getOperand(0)));
+ }
// Clean up dead instructions.
Changed |= DeleteDeadPHIs(L->getHeader());
// Check a post-condition.
- assert(L->isLCSSAForm(*DT) && "Indvars did not leave the loop in lcssa form!");
+ assert(L->isLCSSAForm(*DT) &&
+ "Indvars did not leave the loop in lcssa form!");
+
+ // Verify that LFTR, and any other change have not interfered with SCEV's
+ // ability to compute trip count.
+#ifndef NDEBUG
+ if (!EnableIVRewrite && VerifyIndvars &&
+ !isa<SCEVCouldNotCompute>(BackedgeTakenCount)) {
+ SE->forgetLoop(L);
+ const SCEV *NewBECount = SE->getBackedgeTakenCount(L);
+ if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) <
+ SE->getTypeSizeInBits(NewBECount->getType()))
+ NewBECount = SE->getTruncateOrNoop(NewBECount,
+ BackedgeTakenCount->getType());
+ else
+ BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount,
+ NewBECount->getType());
+ assert(BackedgeTakenCount == NewBECount && "indvars must preserve SCEV");
+ }
+#endif
+
return Changed;
}
OpenPOWER on IntegriCloud