diff options
Diffstat (limited to 'lib/Transforms/Scalar/GVNPRE.cpp')
-rw-r--r-- | lib/Transforms/Scalar/GVNPRE.cpp | 1885 |
1 files changed, 1885 insertions, 0 deletions
diff --git a/lib/Transforms/Scalar/GVNPRE.cpp b/lib/Transforms/Scalar/GVNPRE.cpp new file mode 100644 index 0000000..e3b0937 --- /dev/null +++ b/lib/Transforms/Scalar/GVNPRE.cpp @@ -0,0 +1,1885 @@ +//===- GVNPRE.cpp - Eliminate redundant values and expressions ------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This pass performs a hybrid of global value numbering and partial redundancy +// elimination, known as GVN-PRE. It performs partial redundancy elimination on +// values, rather than lexical expressions, allowing a more comprehensive view +// the optimization. It replaces redundant values with uses of earlier +// occurences of the same value. While this is beneficial in that it eliminates +// unneeded computation, it also increases register pressure by creating large +// live ranges, and should be used with caution on platforms that are very +// sensitive to register pressure. +// +// Note that this pass does the value numbering itself, it does not use the +// ValueNumbering analysis passes. +// +//===----------------------------------------------------------------------===// + +#define DEBUG_TYPE "gvnpre" +#include "llvm/Value.h" +#include "llvm/Transforms/Scalar.h" +#include "llvm/Instructions.h" +#include "llvm/Function.h" +#include "llvm/DerivedTypes.h" +#include "llvm/Analysis/Dominators.h" +#include "llvm/ADT/BitVector.h" +#include "llvm/ADT/DenseMap.h" +#include "llvm/ADT/DepthFirstIterator.h" +#include "llvm/ADT/PostOrderIterator.h" +#include "llvm/ADT/SmallPtrSet.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/ADT/Statistic.h" +#include "llvm/Transforms/Utils/UnifyFunctionExitNodes.h" +#include "llvm/Support/CFG.h" +#include "llvm/Support/Compiler.h" +#include "llvm/Support/Debug.h" +#include <algorithm> +#include <deque> +#include <map> +using namespace llvm; + +//===----------------------------------------------------------------------===// +// ValueTable Class +//===----------------------------------------------------------------------===// + +namespace { + +/// This class holds the mapping between values and value numbers. It is used +/// as an efficient mechanism to determine the expression-wise equivalence of +/// two values. + +struct Expression { + enum ExpressionOpcode { ADD, SUB, MUL, UDIV, SDIV, FDIV, UREM, SREM, + FREM, SHL, LSHR, ASHR, AND, OR, XOR, ICMPEQ, + ICMPNE, ICMPUGT, ICMPUGE, ICMPULT, ICMPULE, + ICMPSGT, ICMPSGE, ICMPSLT, ICMPSLE, FCMPOEQ, + FCMPOGT, FCMPOGE, FCMPOLT, FCMPOLE, FCMPONE, + FCMPORD, FCMPUNO, FCMPUEQ, FCMPUGT, FCMPUGE, + FCMPULT, FCMPULE, FCMPUNE, EXTRACT, INSERT, + SHUFFLE, SELECT, TRUNC, ZEXT, SEXT, FPTOUI, + FPTOSI, UITOFP, SITOFP, FPTRUNC, FPEXT, + PTRTOINT, INTTOPTR, BITCAST, GEP, EMPTY, + TOMBSTONE }; + + ExpressionOpcode opcode; + const Type* type; + uint32_t firstVN; + uint32_t secondVN; + uint32_t thirdVN; + SmallVector<uint32_t, 4> varargs; + + Expression() { } + explicit Expression(ExpressionOpcode o) : opcode(o) { } + + bool operator==(const Expression &other) const { + if (opcode != other.opcode) + return false; + else if (opcode == EMPTY || opcode == TOMBSTONE) + return true; + else if (type != other.type) + return false; + else if (firstVN != other.firstVN) + return false; + else if (secondVN != other.secondVN) + return false; + else if (thirdVN != other.thirdVN) + return false; + else { + if (varargs.size() != other.varargs.size()) + return false; + + for (size_t i = 0; i < varargs.size(); ++i) + if (varargs[i] != other.varargs[i]) + return false; + + return true; + } + } + + bool operator!=(const Expression &other) const { + if (opcode != other.opcode) + return true; + else if (opcode == EMPTY || opcode == TOMBSTONE) + return false; + else if (type != other.type) + return true; + else if (firstVN != other.firstVN) + return true; + else if (secondVN != other.secondVN) + return true; + else if (thirdVN != other.thirdVN) + return true; + else { + if (varargs.size() != other.varargs.size()) + return true; + + for (size_t i = 0; i < varargs.size(); ++i) + if (varargs[i] != other.varargs[i]) + return true; + + return false; + } + } +}; + +} + +namespace { + class VISIBILITY_HIDDEN ValueTable { + private: + DenseMap<Value*, uint32_t> valueNumbering; + DenseMap<Expression, uint32_t> expressionNumbering; + + uint32_t nextValueNumber; + + Expression::ExpressionOpcode getOpcode(BinaryOperator* BO); + Expression::ExpressionOpcode getOpcode(CmpInst* C); + Expression::ExpressionOpcode getOpcode(CastInst* C); + Expression create_expression(BinaryOperator* BO); + Expression create_expression(CmpInst* C); + Expression create_expression(ShuffleVectorInst* V); + Expression create_expression(ExtractElementInst* C); + Expression create_expression(InsertElementInst* V); + Expression create_expression(SelectInst* V); + Expression create_expression(CastInst* C); + Expression create_expression(GetElementPtrInst* G); + public: + ValueTable() { nextValueNumber = 1; } + uint32_t lookup_or_add(Value* V); + uint32_t lookup(Value* V) const; + void add(Value* V, uint32_t num); + void clear(); + void erase(Value* v); + unsigned size(); + }; +} + +namespace llvm { +template <> struct DenseMapInfo<Expression> { + static inline Expression getEmptyKey() { + return Expression(Expression::EMPTY); + } + + static inline Expression getTombstoneKey() { + return Expression(Expression::TOMBSTONE); + } + + static unsigned getHashValue(const Expression e) { + unsigned hash = e.opcode; + + hash = e.firstVN + hash * 37; + hash = e.secondVN + hash * 37; + hash = e.thirdVN + hash * 37; + + hash = ((unsigned)((uintptr_t)e.type >> 4) ^ + (unsigned)((uintptr_t)e.type >> 9)) + + hash * 37; + + for (SmallVector<uint32_t, 4>::const_iterator I = e.varargs.begin(), + E = e.varargs.end(); I != E; ++I) + hash = *I + hash * 37; + + return hash; + } + static bool isEqual(const Expression &LHS, const Expression &RHS) { + return LHS == RHS; + } + static bool isPod() { return true; } +}; +} + +//===----------------------------------------------------------------------===// +// ValueTable Internal Functions +//===----------------------------------------------------------------------===// +Expression::ExpressionOpcode + ValueTable::getOpcode(BinaryOperator* BO) { + switch(BO->getOpcode()) { + case Instruction::Add: + return Expression::ADD; + case Instruction::Sub: + return Expression::SUB; + case Instruction::Mul: + return Expression::MUL; + case Instruction::UDiv: + return Expression::UDIV; + case Instruction::SDiv: + return Expression::SDIV; + case Instruction::FDiv: + return Expression::FDIV; + case Instruction::URem: + return Expression::UREM; + case Instruction::SRem: + return Expression::SREM; + case Instruction::FRem: + return Expression::FREM; + case Instruction::Shl: + return Expression::SHL; + case Instruction::LShr: + return Expression::LSHR; + case Instruction::AShr: + return Expression::ASHR; + case Instruction::And: + return Expression::AND; + case Instruction::Or: + return Expression::OR; + case Instruction::Xor: + return Expression::XOR; + + // THIS SHOULD NEVER HAPPEN + default: + assert(0 && "Binary operator with unknown opcode?"); + return Expression::ADD; + } +} + +Expression::ExpressionOpcode ValueTable::getOpcode(CmpInst* C) { + if (C->getOpcode() == Instruction::ICmp) { + switch (C->getPredicate()) { + case ICmpInst::ICMP_EQ: + return Expression::ICMPEQ; + case ICmpInst::ICMP_NE: + return Expression::ICMPNE; + case ICmpInst::ICMP_UGT: + return Expression::ICMPUGT; + case ICmpInst::ICMP_UGE: + return Expression::ICMPUGE; + case ICmpInst::ICMP_ULT: + return Expression::ICMPULT; + case ICmpInst::ICMP_ULE: + return Expression::ICMPULE; + case ICmpInst::ICMP_SGT: + return Expression::ICMPSGT; + case ICmpInst::ICMP_SGE: + return Expression::ICMPSGE; + case ICmpInst::ICMP_SLT: + return Expression::ICMPSLT; + case ICmpInst::ICMP_SLE: + return Expression::ICMPSLE; + + // THIS SHOULD NEVER HAPPEN + default: + assert(0 && "Comparison with unknown predicate?"); + return Expression::ICMPEQ; + } + } else { + switch (C->getPredicate()) { + case FCmpInst::FCMP_OEQ: + return Expression::FCMPOEQ; + case FCmpInst::FCMP_OGT: + return Expression::FCMPOGT; + case FCmpInst::FCMP_OGE: + return Expression::FCMPOGE; + case FCmpInst::FCMP_OLT: + return Expression::FCMPOLT; + case FCmpInst::FCMP_OLE: + return Expression::FCMPOLE; + case FCmpInst::FCMP_ONE: + return Expression::FCMPONE; + case FCmpInst::FCMP_ORD: + return Expression::FCMPORD; + case FCmpInst::FCMP_UNO: + return Expression::FCMPUNO; + case FCmpInst::FCMP_UEQ: + return Expression::FCMPUEQ; + case FCmpInst::FCMP_UGT: + return Expression::FCMPUGT; + case FCmpInst::FCMP_UGE: + return Expression::FCMPUGE; + case FCmpInst::FCMP_ULT: + return Expression::FCMPULT; + case FCmpInst::FCMP_ULE: + return Expression::FCMPULE; + case FCmpInst::FCMP_UNE: + return Expression::FCMPUNE; + + // THIS SHOULD NEVER HAPPEN + default: + assert(0 && "Comparison with unknown predicate?"); + return Expression::FCMPOEQ; + } + } +} + +Expression::ExpressionOpcode + ValueTable::getOpcode(CastInst* C) { + switch(C->getOpcode()) { + case Instruction::Trunc: + return Expression::TRUNC; + case Instruction::ZExt: + return Expression::ZEXT; + case Instruction::SExt: + return Expression::SEXT; + case Instruction::FPToUI: + return Expression::FPTOUI; + case Instruction::FPToSI: + return Expression::FPTOSI; + case Instruction::UIToFP: + return Expression::UITOFP; + case Instruction::SIToFP: + return Expression::SITOFP; + case Instruction::FPTrunc: + return Expression::FPTRUNC; + case Instruction::FPExt: + return Expression::FPEXT; + case Instruction::PtrToInt: + return Expression::PTRTOINT; + case Instruction::IntToPtr: + return Expression::INTTOPTR; + case Instruction::BitCast: + return Expression::BITCAST; + + // THIS SHOULD NEVER HAPPEN + default: + assert(0 && "Cast operator with unknown opcode?"); + return Expression::BITCAST; + } +} + +Expression ValueTable::create_expression(BinaryOperator* BO) { + Expression e; + + e.firstVN = lookup_or_add(BO->getOperand(0)); + e.secondVN = lookup_or_add(BO->getOperand(1)); + e.thirdVN = 0; + e.type = BO->getType(); + e.opcode = getOpcode(BO); + + return e; +} + +Expression ValueTable::create_expression(CmpInst* C) { + Expression e; + + e.firstVN = lookup_or_add(C->getOperand(0)); + e.secondVN = lookup_or_add(C->getOperand(1)); + e.thirdVN = 0; + e.type = C->getType(); + e.opcode = getOpcode(C); + + return e; +} + +Expression ValueTable::create_expression(CastInst* C) { + Expression e; + + e.firstVN = lookup_or_add(C->getOperand(0)); + e.secondVN = 0; + e.thirdVN = 0; + e.type = C->getType(); + e.opcode = getOpcode(C); + + return e; +} + +Expression ValueTable::create_expression(ShuffleVectorInst* S) { + Expression e; + + e.firstVN = lookup_or_add(S->getOperand(0)); + e.secondVN = lookup_or_add(S->getOperand(1)); + e.thirdVN = lookup_or_add(S->getOperand(2)); + e.type = S->getType(); + e.opcode = Expression::SHUFFLE; + + return e; +} + +Expression ValueTable::create_expression(ExtractElementInst* E) { + Expression e; + + e.firstVN = lookup_or_add(E->getOperand(0)); + e.secondVN = lookup_or_add(E->getOperand(1)); + e.thirdVN = 0; + e.type = E->getType(); + e.opcode = Expression::EXTRACT; + + return e; +} + +Expression ValueTable::create_expression(InsertElementInst* I) { + Expression e; + + e.firstVN = lookup_or_add(I->getOperand(0)); + e.secondVN = lookup_or_add(I->getOperand(1)); + e.thirdVN = lookup_or_add(I->getOperand(2)); + e.type = I->getType(); + e.opcode = Expression::INSERT; + + return e; +} + +Expression ValueTable::create_expression(SelectInst* I) { + Expression e; + + e.firstVN = lookup_or_add(I->getCondition()); + e.secondVN = lookup_or_add(I->getTrueValue()); + e.thirdVN = lookup_or_add(I->getFalseValue()); + e.type = I->getType(); + e.opcode = Expression::SELECT; + + return e; +} + +Expression ValueTable::create_expression(GetElementPtrInst* G) { + Expression e; + + e.firstVN = lookup_or_add(G->getPointerOperand()); + e.secondVN = 0; + e.thirdVN = 0; + e.type = G->getType(); + e.opcode = Expression::GEP; + + for (GetElementPtrInst::op_iterator I = G->idx_begin(), E = G->idx_end(); + I != E; ++I) + e.varargs.push_back(lookup_or_add(*I)); + + return e; +} + +//===----------------------------------------------------------------------===// +// ValueTable External Functions +//===----------------------------------------------------------------------===// + +/// lookup_or_add - Returns the value number for the specified value, assigning +/// it a new number if it did not have one before. +uint32_t ValueTable::lookup_or_add(Value* V) { + DenseMap<Value*, uint32_t>::iterator VI = valueNumbering.find(V); + if (VI != valueNumbering.end()) + return VI->second; + + + if (BinaryOperator* BO = dyn_cast<BinaryOperator>(V)) { + Expression e = create_expression(BO); + + DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e); + if (EI != expressionNumbering.end()) { + valueNumbering.insert(std::make_pair(V, EI->second)); + return EI->second; + } else { + expressionNumbering.insert(std::make_pair(e, nextValueNumber)); + valueNumbering.insert(std::make_pair(V, nextValueNumber)); + + return nextValueNumber++; + } + } else if (CmpInst* C = dyn_cast<CmpInst>(V)) { + Expression e = create_expression(C); + + DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e); + if (EI != expressionNumbering.end()) { + valueNumbering.insert(std::make_pair(V, EI->second)); + return EI->second; + } else { + expressionNumbering.insert(std::make_pair(e, nextValueNumber)); + valueNumbering.insert(std::make_pair(V, nextValueNumber)); + + return nextValueNumber++; + } + } else if (ShuffleVectorInst* U = dyn_cast<ShuffleVectorInst>(V)) { + Expression e = create_expression(U); + + DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e); + if (EI != expressionNumbering.end()) { + valueNumbering.insert(std::make_pair(V, EI->second)); + return EI->second; + } else { + expressionNumbering.insert(std::make_pair(e, nextValueNumber)); + valueNumbering.insert(std::make_pair(V, nextValueNumber)); + + return nextValueNumber++; + } + } else if (ExtractElementInst* U = dyn_cast<ExtractElementInst>(V)) { + Expression e = create_expression(U); + + DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e); + if (EI != expressionNumbering.end()) { + valueNumbering.insert(std::make_pair(V, EI->second)); + return EI->second; + } else { + expressionNumbering.insert(std::make_pair(e, nextValueNumber)); + valueNumbering.insert(std::make_pair(V, nextValueNumber)); + + return nextValueNumber++; + } + } else if (InsertElementInst* U = dyn_cast<InsertElementInst>(V)) { + Expression e = create_expression(U); + + DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e); + if (EI != expressionNumbering.end()) { + valueNumbering.insert(std::make_pair(V, EI->second)); + return EI->second; + } else { + expressionNumbering.insert(std::make_pair(e, nextValueNumber)); + valueNumbering.insert(std::make_pair(V, nextValueNumber)); + + return nextValueNumber++; + } + } else if (SelectInst* U = dyn_cast<SelectInst>(V)) { + Expression e = create_expression(U); + + DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e); + if (EI != expressionNumbering.end()) { + valueNumbering.insert(std::make_pair(V, EI->second)); + return EI->second; + } else { + expressionNumbering.insert(std::make_pair(e, nextValueNumber)); + valueNumbering.insert(std::make_pair(V, nextValueNumber)); + + return nextValueNumber++; + } + } else if (CastInst* U = dyn_cast<CastInst>(V)) { + Expression e = create_expression(U); + + DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e); + if (EI != expressionNumbering.end()) { + valueNumbering.insert(std::make_pair(V, EI->second)); + return EI->second; + } else { + expressionNumbering.insert(std::make_pair(e, nextValueNumber)); + valueNumbering.insert(std::make_pair(V, nextValueNumber)); + + return nextValueNumber++; + } + } else if (GetElementPtrInst* U = dyn_cast<GetElementPtrInst>(V)) { + Expression e = create_expression(U); + + DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e); + if (EI != expressionNumbering.end()) { + valueNumbering.insert(std::make_pair(V, EI->second)); + return EI->second; + } else { + expressionNumbering.insert(std::make_pair(e, nextValueNumber)); + valueNumbering.insert(std::make_pair(V, nextValueNumber)); + + return nextValueNumber++; + } + } else { + valueNumbering.insert(std::make_pair(V, nextValueNumber)); + return nextValueNumber++; + } +} + +/// lookup - Returns the value number of the specified value. Fails if +/// the value has not yet been numbered. +uint32_t ValueTable::lookup(Value* V) const { + DenseMap<Value*, uint32_t>::iterator VI = valueNumbering.find(V); + if (VI != valueNumbering.end()) + return VI->second; + else + assert(0 && "Value not numbered?"); + + return 0; +} + +/// add - Add the specified value with the given value number, removing +/// its old number, if any +void ValueTable::add(Value* V, uint32_t num) { + DenseMap<Value*, uint32_t>::iterator VI = valueNumbering.find(V); + if (VI != valueNumbering.end()) + valueNumbering.erase(VI); + valueNumbering.insert(std::make_pair(V, num)); +} + +/// clear - Remove all entries from the ValueTable +void ValueTable::clear() { + valueNumbering.clear(); + expressionNumbering.clear(); + nextValueNumber = 1; +} + +/// erase - Remove a value from the value numbering +void ValueTable::erase(Value* V) { + valueNumbering.erase(V); +} + +/// size - Return the number of assigned value numbers +unsigned ValueTable::size() { + // NOTE: zero is never assigned + return nextValueNumber; +} + +namespace { + +//===----------------------------------------------------------------------===// +// ValueNumberedSet Class +//===----------------------------------------------------------------------===// + +class ValueNumberedSet { + private: + SmallPtrSet<Value*, 8> contents; + BitVector numbers; + public: + ValueNumberedSet() { numbers.resize(1); } + ValueNumberedSet(const ValueNumberedSet& other) { + numbers = other.numbers; + contents = other.contents; + } + + typedef SmallPtrSet<Value*, 8>::iterator iterator; + + iterator begin() { return contents.begin(); } + iterator end() { return contents.end(); } + + bool insert(Value* v) { return contents.insert(v); } + void insert(iterator I, iterator E) { contents.insert(I, E); } + void erase(Value* v) { contents.erase(v); } + unsigned count(Value* v) { return contents.count(v); } + size_t size() { return contents.size(); } + + void set(unsigned i) { + if (i >= numbers.size()) + numbers.resize(i+1); + + numbers.set(i); + } + + void operator=(const ValueNumberedSet& other) { + contents = other.contents; + numbers = other.numbers; + } + + void reset(unsigned i) { + if (i < numbers.size()) + numbers.reset(i); + } + + bool test(unsigned i) { + if (i >= numbers.size()) + return false; + + return numbers.test(i); + } + + void clear() { + contents.clear(); + numbers.clear(); + } +}; + +} + +//===----------------------------------------------------------------------===// +// GVNPRE Pass +//===----------------------------------------------------------------------===// + +namespace { + + class VISIBILITY_HIDDEN GVNPRE : public FunctionPass { + bool runOnFunction(Function &F); + public: + static char ID; // Pass identification, replacement for typeid + GVNPRE() : FunctionPass(&ID) {} + + private: + ValueTable VN; + SmallVector<Instruction*, 8> createdExpressions; + + DenseMap<BasicBlock*, ValueNumberedSet> availableOut; + DenseMap<BasicBlock*, ValueNumberedSet> anticipatedIn; + DenseMap<BasicBlock*, ValueNumberedSet> generatedPhis; + + // This transformation requires dominator postdominator info + virtual void getAnalysisUsage(AnalysisUsage &AU) const { + AU.setPreservesCFG(); + AU.addRequiredID(BreakCriticalEdgesID); + AU.addRequired<UnifyFunctionExitNodes>(); + AU.addRequired<DominatorTree>(); + } + + // Helper fuctions + // FIXME: eliminate or document these better + void dump(ValueNumberedSet& s) const ; + void clean(ValueNumberedSet& set) ; + Value* find_leader(ValueNumberedSet& vals, uint32_t v) ; + Value* phi_translate(Value* V, BasicBlock* pred, BasicBlock* succ) ; + void phi_translate_set(ValueNumberedSet& anticIn, BasicBlock* pred, + BasicBlock* succ, ValueNumberedSet& out) ; + + void topo_sort(ValueNumberedSet& set, + SmallVector<Value*, 8>& vec) ; + + void cleanup() ; + bool elimination() ; + + void val_insert(ValueNumberedSet& s, Value* v) ; + void val_replace(ValueNumberedSet& s, Value* v) ; + bool dependsOnInvoke(Value* V) ; + void buildsets_availout(BasicBlock::iterator I, + ValueNumberedSet& currAvail, + ValueNumberedSet& currPhis, + ValueNumberedSet& currExps, + SmallPtrSet<Value*, 16>& currTemps); + bool buildsets_anticout(BasicBlock* BB, + ValueNumberedSet& anticOut, + SmallPtrSet<BasicBlock*, 8>& visited); + unsigned buildsets_anticin(BasicBlock* BB, + ValueNumberedSet& anticOut, + ValueNumberedSet& currExps, + SmallPtrSet<Value*, 16>& currTemps, + SmallPtrSet<BasicBlock*, 8>& visited); + void buildsets(Function& F) ; + + void insertion_pre(Value* e, BasicBlock* BB, + DenseMap<BasicBlock*, Value*>& avail, + std::map<BasicBlock*,ValueNumberedSet>& new_set); + unsigned insertion_mergepoint(SmallVector<Value*, 8>& workList, + df_iterator<DomTreeNode*>& D, + std::map<BasicBlock*, ValueNumberedSet>& new_set); + bool insertion(Function& F) ; + + }; + + char GVNPRE::ID = 0; + +} + +// createGVNPREPass - The public interface to this file... +FunctionPass *llvm::createGVNPREPass() { return new GVNPRE(); } + +static RegisterPass<GVNPRE> X("gvnpre", + "Global Value Numbering/Partial Redundancy Elimination"); + + +STATISTIC(NumInsertedVals, "Number of values inserted"); +STATISTIC(NumInsertedPhis, "Number of PHI nodes inserted"); +STATISTIC(NumEliminated, "Number of redundant instructions eliminated"); + +/// find_leader - Given a set and a value number, return the first +/// element of the set with that value number, or 0 if no such element +/// is present +Value* GVNPRE::find_leader(ValueNumberedSet& vals, uint32_t v) { + if (!vals.test(v)) + return 0; + + for (ValueNumberedSet::iterator I = vals.begin(), E = vals.end(); + I != E; ++I) + if (v == VN.lookup(*I)) + return *I; + + assert(0 && "No leader found, but present bit is set?"); + return 0; +} + +/// val_insert - Insert a value into a set only if there is not a value +/// with the same value number already in the set +void GVNPRE::val_insert(ValueNumberedSet& s, Value* v) { + uint32_t num = VN.lookup(v); + if (!s.test(num)) + s.insert(v); +} + +/// val_replace - Insert a value into a set, replacing any values already in +/// the set that have the same value number +void GVNPRE::val_replace(ValueNumberedSet& s, Value* v) { + if (s.count(v)) return; + + uint32_t num = VN.lookup(v); + Value* leader = find_leader(s, num); + if (leader != 0) + s.erase(leader); + s.insert(v); + s.set(num); +} + +/// phi_translate - Given a value, its parent block, and a predecessor of its +/// parent, translate the value into legal for the predecessor block. This +/// means translating its operands (and recursively, their operands) through +/// any phi nodes in the parent into values available in the predecessor +Value* GVNPRE::phi_translate(Value* V, BasicBlock* pred, BasicBlock* succ) { + if (V == 0) + return 0; + + // Unary Operations + if (CastInst* U = dyn_cast<CastInst>(V)) { + Value* newOp1 = 0; + if (isa<Instruction>(U->getOperand(0))) + newOp1 = phi_translate(U->getOperand(0), pred, succ); + else + newOp1 = U->getOperand(0); + + if (newOp1 == 0) + return 0; + + if (newOp1 != U->getOperand(0)) { + Instruction* newVal = 0; + if (CastInst* C = dyn_cast<CastInst>(U)) + newVal = CastInst::Create(C->getOpcode(), + newOp1, C->getType(), + C->getName()+".expr"); + + uint32_t v = VN.lookup_or_add(newVal); + + Value* leader = find_leader(availableOut[pred], v); + if (leader == 0) { + createdExpressions.push_back(newVal); + return newVal; + } else { + VN.erase(newVal); + delete newVal; + return leader; + } + } + + // Binary Operations + } if (isa<BinaryOperator>(V) || isa<CmpInst>(V) || + isa<ExtractElementInst>(V)) { + User* U = cast<User>(V); + + Value* newOp1 = 0; + if (isa<Instruction>(U->getOperand(0))) + newOp1 = phi_translate(U->getOperand(0), pred, succ); + else + newOp1 = U->getOperand(0); + + if (newOp1 == 0) + return 0; + + Value* newOp2 = 0; + if (isa<Instruction>(U->getOperand(1))) + newOp2 = phi_translate(U->getOperand(1), pred, succ); + else + newOp2 = U->getOperand(1); + + if (newOp2 == 0) + return 0; + + if (newOp1 != U->getOperand(0) || newOp2 != U->getOperand(1)) { + Instruction* newVal = 0; + if (BinaryOperator* BO = dyn_cast<BinaryOperator>(U)) + newVal = BinaryOperator::Create(BO->getOpcode(), + newOp1, newOp2, + BO->getName()+".expr"); + else if (CmpInst* C = dyn_cast<CmpInst>(U)) + newVal = CmpInst::Create(C->getOpcode(), + C->getPredicate(), + newOp1, newOp2, + C->getName()+".expr"); + else if (ExtractElementInst* E = dyn_cast<ExtractElementInst>(U)) + newVal = new ExtractElementInst(newOp1, newOp2, E->getName()+".expr"); + + uint32_t v = VN.lookup_or_add(newVal); + + Value* leader = find_leader(availableOut[pred], v); + if (leader == 0) { + createdExpressions.push_back(newVal); + return newVal; + } else { + VN.erase(newVal); + delete newVal; + return leader; + } + } + + // Ternary Operations + } else if (isa<ShuffleVectorInst>(V) || isa<InsertElementInst>(V) || + isa<SelectInst>(V)) { + User* U = cast<User>(V); + + Value* newOp1 = 0; + if (isa<Instruction>(U->getOperand(0))) + newOp1 = phi_translate(U->getOperand(0), pred, succ); + else + newOp1 = U->getOperand(0); + + if (newOp1 == 0) + return 0; + + Value* newOp2 = 0; + if (isa<Instruction>(U->getOperand(1))) + newOp2 = phi_translate(U->getOperand(1), pred, succ); + else + newOp2 = U->getOperand(1); + + if (newOp2 == 0) + return 0; + + Value* newOp3 = 0; + if (isa<Instruction>(U->getOperand(2))) + newOp3 = phi_translate(U->getOperand(2), pred, succ); + else + newOp3 = U->getOperand(2); + + if (newOp3 == 0) + return 0; + + if (newOp1 != U->getOperand(0) || + newOp2 != U->getOperand(1) || + newOp3 != U->getOperand(2)) { + Instruction* newVal = 0; + if (ShuffleVectorInst* S = dyn_cast<ShuffleVectorInst>(U)) + newVal = new ShuffleVectorInst(newOp1, newOp2, newOp3, + S->getName() + ".expr"); + else if (InsertElementInst* I = dyn_cast<InsertElementInst>(U)) + newVal = InsertElementInst::Create(newOp1, newOp2, newOp3, + I->getName() + ".expr"); + else if (SelectInst* I = dyn_cast<SelectInst>(U)) + newVal = SelectInst::Create(newOp1, newOp2, newOp3, + I->getName() + ".expr"); + + uint32_t v = VN.lookup_or_add(newVal); + + Value* leader = find_leader(availableOut[pred], v); + if (leader == 0) { + createdExpressions.push_back(newVal); + return newVal; + } else { + VN.erase(newVal); + delete newVal; + return leader; + } + } + + // Varargs operators + } else if (GetElementPtrInst* U = dyn_cast<GetElementPtrInst>(V)) { + Value* newOp1 = 0; + if (isa<Instruction>(U->getPointerOperand())) + newOp1 = phi_translate(U->getPointerOperand(), pred, succ); + else + newOp1 = U->getPointerOperand(); + + if (newOp1 == 0) + return 0; + + bool changed_idx = false; + SmallVector<Value*, 4> newIdx; + for (GetElementPtrInst::op_iterator I = U->idx_begin(), E = U->idx_end(); + I != E; ++I) + if (isa<Instruction>(*I)) { + Value* newVal = phi_translate(*I, pred, succ); + newIdx.push_back(newVal); + if (newVal != *I) + changed_idx = true; + } else { + newIdx.push_back(*I); + } + + if (newOp1 != U->getPointerOperand() || changed_idx) { + Instruction* newVal = + GetElementPtrInst::Create(newOp1, + newIdx.begin(), newIdx.end(), + U->getName()+".expr"); + + uint32_t v = VN.lookup_or_add(newVal); + + Value* leader = find_leader(availableOut[pred], v); + if (leader == 0) { + createdExpressions.push_back(newVal); + return newVal; + } else { + VN.erase(newVal); + delete newVal; + return leader; + } + } + + // PHI Nodes + } else if (PHINode* P = dyn_cast<PHINode>(V)) { + if (P->getParent() == succ) + return P->getIncomingValueForBlock(pred); + } + + return V; +} + +/// phi_translate_set - Perform phi translation on every element of a set +void GVNPRE::phi_translate_set(ValueNumberedSet& anticIn, + BasicBlock* pred, BasicBlock* succ, + ValueNumberedSet& out) { + for (ValueNumberedSet::iterator I = anticIn.begin(), + E = anticIn.end(); I != E; ++I) { + Value* V = phi_translate(*I, pred, succ); + if (V != 0 && !out.test(VN.lookup_or_add(V))) { + out.insert(V); + out.set(VN.lookup(V)); + } + } +} + +/// dependsOnInvoke - Test if a value has an phi node as an operand, any of +/// whose inputs is an invoke instruction. If this is true, we cannot safely +/// PRE the instruction or anything that depends on it. +bool GVNPRE::dependsOnInvoke(Value* V) { + if (PHINode* p = dyn_cast<PHINode>(V)) { + for (PHINode::op_iterator I = p->op_begin(), E = p->op_end(); I != E; ++I) + if (isa<InvokeInst>(*I)) + return true; + return false; + } else { + return false; + } +} + +/// clean - Remove all non-opaque values from the set whose operands are not +/// themselves in the set, as well as all values that depend on invokes (see +/// above) +void GVNPRE::clean(ValueNumberedSet& set) { + SmallVector<Value*, 8> worklist; + worklist.reserve(set.size()); + topo_sort(set, worklist); + + for (unsigned i = 0; i < worklist.size(); ++i) { + Value* v = worklist[i]; + + // Handle unary ops + if (CastInst* U = dyn_cast<CastInst>(v)) { + bool lhsValid = !isa<Instruction>(U->getOperand(0)); + lhsValid |= set.test(VN.lookup(U->getOperand(0))); + if (lhsValid) + lhsValid = !dependsOnInvoke(U->getOperand(0)); + + if (!lhsValid) { + set.erase(U); + set.reset(VN.lookup(U)); + } + + // Handle binary ops + } else if (isa<BinaryOperator>(v) || isa<CmpInst>(v) || + isa<ExtractElementInst>(v)) { + User* U = cast<User>(v); + + bool lhsValid = !isa<Instruction>(U->getOperand(0)); + lhsValid |= set.test(VN.lookup(U->getOperand(0))); + if (lhsValid) + lhsValid = !dependsOnInvoke(U->getOperand(0)); + + bool rhsValid = !isa<Instruction>(U->getOperand(1)); + rhsValid |= set.test(VN.lookup(U->getOperand(1))); + if (rhsValid) + rhsValid = !dependsOnInvoke(U->getOperand(1)); + + if (!lhsValid || !rhsValid) { + set.erase(U); + set.reset(VN.lookup(U)); + } + + // Handle ternary ops + } else if (isa<ShuffleVectorInst>(v) || isa<InsertElementInst>(v) || + isa<SelectInst>(v)) { + User* U = cast<User>(v); + + bool lhsValid = !isa<Instruction>(U->getOperand(0)); + lhsValid |= set.test(VN.lookup(U->getOperand(0))); + if (lhsValid) + lhsValid = !dependsOnInvoke(U->getOperand(0)); + + bool rhsValid = !isa<Instruction>(U->getOperand(1)); + rhsValid |= set.test(VN.lookup(U->getOperand(1))); + if (rhsValid) + rhsValid = !dependsOnInvoke(U->getOperand(1)); + + bool thirdValid = !isa<Instruction>(U->getOperand(2)); + thirdValid |= set.test(VN.lookup(U->getOperand(2))); + if (thirdValid) + thirdValid = !dependsOnInvoke(U->getOperand(2)); + + if (!lhsValid || !rhsValid || !thirdValid) { + set.erase(U); + set.reset(VN.lookup(U)); + } + + // Handle varargs ops + } else if (GetElementPtrInst* U = dyn_cast<GetElementPtrInst>(v)) { + bool ptrValid = !isa<Instruction>(U->getPointerOperand()); + ptrValid |= set.test(VN.lookup(U->getPointerOperand())); + if (ptrValid) + ptrValid = !dependsOnInvoke(U->getPointerOperand()); + + bool varValid = true; + for (GetElementPtrInst::op_iterator I = U->idx_begin(), E = U->idx_end(); + I != E; ++I) + if (varValid) { + varValid &= !isa<Instruction>(*I) || set.test(VN.lookup(*I)); + varValid &= !dependsOnInvoke(*I); + } + + if (!ptrValid || !varValid) { + set.erase(U); + set.reset(VN.lookup(U)); + } + } + } +} + +/// topo_sort - Given a set of values, sort them by topological +/// order into the provided vector. +void GVNPRE::topo_sort(ValueNumberedSet& set, SmallVector<Value*, 8>& vec) { + SmallPtrSet<Value*, 16> visited; + SmallVector<Value*, 8> stack; + for (ValueNumberedSet::iterator I = set.begin(), E = set.end(); + I != E; ++I) { + if (visited.count(*I) == 0) + stack.push_back(*I); + + while (!stack.empty()) { + Value* e = stack.back(); + + // Handle unary ops + if (CastInst* U = dyn_cast<CastInst>(e)) { + Value* l = find_leader(set, VN.lookup(U->getOperand(0))); + + if (l != 0 && isa<Instruction>(l) && + visited.count(l) == 0) + stack.push_back(l); + else { + vec.push_back(e); + visited.insert(e); + stack.pop_back(); + } + + // Handle binary ops + } else if (isa<BinaryOperator>(e) || isa<CmpInst>(e) || + isa<ExtractElementInst>(e)) { + User* U = cast<User>(e); + Value* l = find_leader(set, VN.lookup(U->getOperand(0))); + Value* r = find_leader(set, VN.lookup(U->getOperand(1))); + + if (l != 0 && isa<Instruction>(l) && + visited.count(l) == 0) + stack.push_back(l); + else if (r != 0 && isa<Instruction>(r) && + visited.count(r) == 0) + stack.push_back(r); + else { + vec.push_back(e); + visited.insert(e); + stack.pop_back(); + } + + // Handle ternary ops + } else if (isa<InsertElementInst>(e) || isa<ShuffleVectorInst>(e) || + isa<SelectInst>(e)) { + User* U = cast<User>(e); + Value* l = find_leader(set, VN.lookup(U->getOperand(0))); + Value* r = find_leader(set, VN.lookup(U->getOperand(1))); + Value* m = find_leader(set, VN.lookup(U->getOperand(2))); + + if (l != 0 && isa<Instruction>(l) && + visited.count(l) == 0) + stack.push_back(l); + else if (r != 0 && isa<Instruction>(r) && + visited.count(r) == 0) + stack.push_back(r); + else if (m != 0 && isa<Instruction>(m) && + visited.count(m) == 0) + stack.push_back(m); + else { + vec.push_back(e); + visited.insert(e); + stack.pop_back(); + } + + // Handle vararg ops + } else if (GetElementPtrInst* U = dyn_cast<GetElementPtrInst>(e)) { + Value* p = find_leader(set, VN.lookup(U->getPointerOperand())); + + if (p != 0 && isa<Instruction>(p) && + visited.count(p) == 0) + stack.push_back(p); + else { + bool push_va = false; + for (GetElementPtrInst::op_iterator I = U->idx_begin(), + E = U->idx_end(); I != E; ++I) { + Value * v = find_leader(set, VN.lookup(*I)); + if (v != 0 && isa<Instruction>(v) && visited.count(v) == 0) { + stack.push_back(v); + push_va = true; + } + } + + if (!push_va) { + vec.push_back(e); + visited.insert(e); + stack.pop_back(); + } + } + + // Handle opaque ops + } else { + visited.insert(e); + vec.push_back(e); + stack.pop_back(); + } + } + + stack.clear(); + } +} + +/// dump - Dump a set of values to standard error +void GVNPRE::dump(ValueNumberedSet& s) const { + DOUT << "{ "; + for (ValueNumberedSet::iterator I = s.begin(), E = s.end(); + I != E; ++I) { + DOUT << "" << VN.lookup(*I) << ": "; + DEBUG((*I)->dump()); + } + DOUT << "}\n\n"; +} + +/// elimination - Phase 3 of the main algorithm. Perform full redundancy +/// elimination by walking the dominator tree and removing any instruction that +/// is dominated by another instruction with the same value number. +bool GVNPRE::elimination() { + bool changed_function = false; + + SmallVector<std::pair<Instruction*, Value*>, 8> replace; + SmallVector<Instruction*, 8> erase; + + DominatorTree& DT = getAnalysis<DominatorTree>(); + + for (df_iterator<DomTreeNode*> DI = df_begin(DT.getRootNode()), + E = df_end(DT.getRootNode()); DI != E; ++DI) { + BasicBlock* BB = DI->getBlock(); + + for (BasicBlock::iterator BI = BB->begin(), BE = BB->end(); + BI != BE; ++BI) { + + if (isa<BinaryOperator>(BI) || isa<CmpInst>(BI) || + isa<ShuffleVectorInst>(BI) || isa<InsertElementInst>(BI) || + isa<ExtractElementInst>(BI) || isa<SelectInst>(BI) || + isa<CastInst>(BI) || isa<GetElementPtrInst>(BI)) { + + if (availableOut[BB].test(VN.lookup(BI)) && + !availableOut[BB].count(BI)) { + Value *leader = find_leader(availableOut[BB], VN.lookup(BI)); + if (Instruction* Instr = dyn_cast<Instruction>(leader)) + if (Instr->getParent() != 0 && Instr != BI) { + replace.push_back(std::make_pair(BI, leader)); + erase.push_back(BI); + ++NumEliminated; + } + } + } + } + } + + while (!replace.empty()) { + std::pair<Instruction*, Value*> rep = replace.back(); + replace.pop_back(); + rep.first->replaceAllUsesWith(rep.second); + changed_function = true; + } + + for (SmallVector<Instruction*, 8>::iterator I = erase.begin(), + E = erase.end(); I != E; ++I) + (*I)->eraseFromParent(); + + return changed_function; +} + +/// cleanup - Delete any extraneous values that were created to represent +/// expressions without leaders. +void GVNPRE::cleanup() { + while (!createdExpressions.empty()) { + Instruction* I = createdExpressions.back(); + createdExpressions.pop_back(); + + delete I; + } +} + +/// buildsets_availout - When calculating availability, handle an instruction +/// by inserting it into the appropriate sets +void GVNPRE::buildsets_availout(BasicBlock::iterator I, + ValueNumberedSet& currAvail, + ValueNumberedSet& currPhis, + ValueNumberedSet& currExps, + SmallPtrSet<Value*, 16>& currTemps) { + // Handle PHI nodes + if (PHINode* p = dyn_cast<PHINode>(I)) { + unsigned num = VN.lookup_or_add(p); + + currPhis.insert(p); + currPhis.set(num); + + // Handle unary ops + } else if (CastInst* U = dyn_cast<CastInst>(I)) { + Value* leftValue = U->getOperand(0); + + unsigned num = VN.lookup_or_add(U); + + if (isa<Instruction>(leftValue)) + if (!currExps.test(VN.lookup(leftValue))) { + currExps.insert(leftValue); + currExps.set(VN.lookup(leftValue)); + } + + if (!currExps.test(num)) { + currExps.insert(U); + currExps.set(num); + } + + // Handle binary ops + } else if (isa<BinaryOperator>(I) || isa<CmpInst>(I) || + isa<ExtractElementInst>(I)) { + User* U = cast<User>(I); + Value* leftValue = U->getOperand(0); + Value* rightValue = U->getOperand(1); + + unsigned num = VN.lookup_or_add(U); + + if (isa<Instruction>(leftValue)) + if (!currExps.test(VN.lookup(leftValue))) { + currExps.insert(leftValue); + currExps.set(VN.lookup(leftValue)); + } + + if (isa<Instruction>(rightValue)) + if (!currExps.test(VN.lookup(rightValue))) { + currExps.insert(rightValue); + currExps.set(VN.lookup(rightValue)); + } + + if (!currExps.test(num)) { + currExps.insert(U); + currExps.set(num); + } + + // Handle ternary ops + } else if (isa<InsertElementInst>(I) || isa<ShuffleVectorInst>(I) || + isa<SelectInst>(I)) { + User* U = cast<User>(I); + Value* leftValue = U->getOperand(0); + Value* rightValue = U->getOperand(1); + Value* thirdValue = U->getOperand(2); + + VN.lookup_or_add(U); + + unsigned num = VN.lookup_or_add(U); + + if (isa<Instruction>(leftValue)) + if (!currExps.test(VN.lookup(leftValue))) { + currExps.insert(leftValue); + currExps.set(VN.lookup(leftValue)); + } + if (isa<Instruction>(rightValue)) + if (!currExps.test(VN.lookup(rightValue))) { + currExps.insert(rightValue); + currExps.set(VN.lookup(rightValue)); + } + if (isa<Instruction>(thirdValue)) + if (!currExps.test(VN.lookup(thirdValue))) { + currExps.insert(thirdValue); + currExps.set(VN.lookup(thirdValue)); + } + + if (!currExps.test(num)) { + currExps.insert(U); + currExps.set(num); + } + + // Handle vararg ops + } else if (GetElementPtrInst* U = dyn_cast<GetElementPtrInst>(I)) { + Value* ptrValue = U->getPointerOperand(); + + VN.lookup_or_add(U); + + unsigned num = VN.lookup_or_add(U); + + if (isa<Instruction>(ptrValue)) + if (!currExps.test(VN.lookup(ptrValue))) { + currExps.insert(ptrValue); + currExps.set(VN.lookup(ptrValue)); + } + + for (GetElementPtrInst::op_iterator OI = U->idx_begin(), OE = U->idx_end(); + OI != OE; ++OI) + if (isa<Instruction>(*OI) && !currExps.test(VN.lookup(*OI))) { + currExps.insert(*OI); + currExps.set(VN.lookup(*OI)); + } + + if (!currExps.test(VN.lookup(U))) { + currExps.insert(U); + currExps.set(num); + } + + // Handle opaque ops + } else if (!I->isTerminator()){ + VN.lookup_or_add(I); + + currTemps.insert(I); + } + + if (!I->isTerminator()) + if (!currAvail.test(VN.lookup(I))) { + currAvail.insert(I); + currAvail.set(VN.lookup(I)); + } +} + +/// buildsets_anticout - When walking the postdom tree, calculate the ANTIC_OUT +/// set as a function of the ANTIC_IN set of the block's predecessors +bool GVNPRE::buildsets_anticout(BasicBlock* BB, + ValueNumberedSet& anticOut, + SmallPtrSet<BasicBlock*, 8>& visited) { + if (BB->getTerminator()->getNumSuccessors() == 1) { + if (BB->getTerminator()->getSuccessor(0) != BB && + visited.count(BB->getTerminator()->getSuccessor(0)) == 0) { + return true; + } + else { + phi_translate_set(anticipatedIn[BB->getTerminator()->getSuccessor(0)], + BB, BB->getTerminator()->getSuccessor(0), anticOut); + } + } else if (BB->getTerminator()->getNumSuccessors() > 1) { + BasicBlock* first = BB->getTerminator()->getSuccessor(0); + for (ValueNumberedSet::iterator I = anticipatedIn[first].begin(), + E = anticipatedIn[first].end(); I != E; ++I) { + anticOut.insert(*I); + anticOut.set(VN.lookup(*I)); + } + + for (unsigned i = 1; i < BB->getTerminator()->getNumSuccessors(); ++i) { + BasicBlock* currSucc = BB->getTerminator()->getSuccessor(i); + ValueNumberedSet& succAnticIn = anticipatedIn[currSucc]; + + SmallVector<Value*, 16> temp; + + for (ValueNumberedSet::iterator I = anticOut.begin(), + E = anticOut.end(); I != E; ++I) + if (!succAnticIn.test(VN.lookup(*I))) + temp.push_back(*I); + + for (SmallVector<Value*, 16>::iterator I = temp.begin(), E = temp.end(); + I != E; ++I) { + anticOut.erase(*I); + anticOut.reset(VN.lookup(*I)); + } + } + } + + return false; +} + +/// buildsets_anticin - Walk the postdom tree, calculating ANTIC_OUT for +/// each block. ANTIC_IN is then a function of ANTIC_OUT and the GEN +/// sets populated in buildsets_availout +unsigned GVNPRE::buildsets_anticin(BasicBlock* BB, + ValueNumberedSet& anticOut, + ValueNumberedSet& currExps, + SmallPtrSet<Value*, 16>& currTemps, + SmallPtrSet<BasicBlock*, 8>& visited) { + ValueNumberedSet& anticIn = anticipatedIn[BB]; + unsigned old = anticIn.size(); + + bool defer = buildsets_anticout(BB, anticOut, visited); + if (defer) + return 0; + + anticIn.clear(); + + for (ValueNumberedSet::iterator I = anticOut.begin(), + E = anticOut.end(); I != E; ++I) { + anticIn.insert(*I); + anticIn.set(VN.lookup(*I)); + } + for (ValueNumberedSet::iterator I = currExps.begin(), + E = currExps.end(); I != E; ++I) { + if (!anticIn.test(VN.lookup(*I))) { + anticIn.insert(*I); + anticIn.set(VN.lookup(*I)); + } + } + + for (SmallPtrSet<Value*, 16>::iterator I = currTemps.begin(), + E = currTemps.end(); I != E; ++I) { + anticIn.erase(*I); + anticIn.reset(VN.lookup(*I)); + } + + clean(anticIn); + anticOut.clear(); + + if (old != anticIn.size()) + return 2; + else + return 1; +} + +/// buildsets - Phase 1 of the main algorithm. Construct the AVAIL_OUT +/// and the ANTIC_IN sets. +void GVNPRE::buildsets(Function& F) { + DenseMap<BasicBlock*, ValueNumberedSet> generatedExpressions; + DenseMap<BasicBlock*, SmallPtrSet<Value*, 16> > generatedTemporaries; + + DominatorTree &DT = getAnalysis<DominatorTree>(); + + // Phase 1, Part 1: calculate AVAIL_OUT + + // Top-down walk of the dominator tree + for (df_iterator<DomTreeNode*> DI = df_begin(DT.getRootNode()), + E = df_end(DT.getRootNode()); DI != E; ++DI) { + + // Get the sets to update for this block + ValueNumberedSet& currExps = generatedExpressions[DI->getBlock()]; + ValueNumberedSet& currPhis = generatedPhis[DI->getBlock()]; + SmallPtrSet<Value*, 16>& currTemps = generatedTemporaries[DI->getBlock()]; + ValueNumberedSet& currAvail = availableOut[DI->getBlock()]; + + BasicBlock* BB = DI->getBlock(); + + // A block inherits AVAIL_OUT from its dominator + if (DI->getIDom() != 0) + currAvail = availableOut[DI->getIDom()->getBlock()]; + + for (BasicBlock::iterator BI = BB->begin(), BE = BB->end(); + BI != BE; ++BI) + buildsets_availout(BI, currAvail, currPhis, currExps, + currTemps); + + } + + // Phase 1, Part 2: calculate ANTIC_IN + + SmallPtrSet<BasicBlock*, 8> visited; + SmallPtrSet<BasicBlock*, 4> block_changed; + for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI) + block_changed.insert(FI); + + bool changed = true; + unsigned iterations = 0; + + while (changed) { + changed = false; + ValueNumberedSet anticOut; + + // Postorder walk of the CFG + for (po_iterator<BasicBlock*> BBI = po_begin(&F.getEntryBlock()), + BBE = po_end(&F.getEntryBlock()); BBI != BBE; ++BBI) { + BasicBlock* BB = *BBI; + + if (block_changed.count(BB) != 0) { + unsigned ret = buildsets_anticin(BB, anticOut,generatedExpressions[BB], + generatedTemporaries[BB], visited); + + if (ret == 0) { + changed = true; + continue; + } else { + visited.insert(BB); + + if (ret == 2) + for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); + PI != PE; ++PI) { + block_changed.insert(*PI); + } + else + block_changed.erase(BB); + + changed |= (ret == 2); + } + } + } + + iterations++; + } +} + +/// insertion_pre - When a partial redundancy has been identified, eliminate it +/// by inserting appropriate values into the predecessors and a phi node in +/// the main block +void GVNPRE::insertion_pre(Value* e, BasicBlock* BB, + DenseMap<BasicBlock*, Value*>& avail, + std::map<BasicBlock*, ValueNumberedSet>& new_sets) { + for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI) { + Value* e2 = avail[*PI]; + if (!availableOut[*PI].test(VN.lookup(e2))) { + User* U = cast<User>(e2); + + Value* s1 = 0; + if (isa<BinaryOperator>(U->getOperand(0)) || + isa<CmpInst>(U->getOperand(0)) || + isa<ShuffleVectorInst>(U->getOperand(0)) || + isa<ExtractElementInst>(U->getOperand(0)) || + isa<InsertElementInst>(U->getOperand(0)) || + isa<SelectInst>(U->getOperand(0)) || + isa<CastInst>(U->getOperand(0)) || + isa<GetElementPtrInst>(U->getOperand(0))) + s1 = find_leader(availableOut[*PI], VN.lookup(U->getOperand(0))); + else + s1 = U->getOperand(0); + + Value* s2 = 0; + + if (isa<BinaryOperator>(U) || + isa<CmpInst>(U) || + isa<ShuffleVectorInst>(U) || + isa<ExtractElementInst>(U) || + isa<InsertElementInst>(U) || + isa<SelectInst>(U)) { + if (isa<BinaryOperator>(U->getOperand(1)) || + isa<CmpInst>(U->getOperand(1)) || + isa<ShuffleVectorInst>(U->getOperand(1)) || + isa<ExtractElementInst>(U->getOperand(1)) || + isa<InsertElementInst>(U->getOperand(1)) || + isa<SelectInst>(U->getOperand(1)) || + isa<CastInst>(U->getOperand(1)) || + isa<GetElementPtrInst>(U->getOperand(1))) { + s2 = find_leader(availableOut[*PI], VN.lookup(U->getOperand(1))); + } else { + s2 = U->getOperand(1); + } + } + + // Ternary Operators + Value* s3 = 0; + if (isa<ShuffleVectorInst>(U) || + isa<InsertElementInst>(U) || + isa<SelectInst>(U)) { + if (isa<BinaryOperator>(U->getOperand(2)) || + isa<CmpInst>(U->getOperand(2)) || + isa<ShuffleVectorInst>(U->getOperand(2)) || + isa<ExtractElementInst>(U->getOperand(2)) || + isa<InsertElementInst>(U->getOperand(2)) || + isa<SelectInst>(U->getOperand(2)) || + isa<CastInst>(U->getOperand(2)) || + isa<GetElementPtrInst>(U->getOperand(2))) { + s3 = find_leader(availableOut[*PI], VN.lookup(U->getOperand(2))); + } else { + s3 = U->getOperand(2); + } + } + + // Vararg operators + SmallVector<Value*, 4> sVarargs; + if (GetElementPtrInst* G = dyn_cast<GetElementPtrInst>(U)) { + for (GetElementPtrInst::op_iterator OI = G->idx_begin(), + OE = G->idx_end(); OI != OE; ++OI) { + if (isa<BinaryOperator>(*OI) || + isa<CmpInst>(*OI) || + isa<ShuffleVectorInst>(*OI) || + isa<ExtractElementInst>(*OI) || + isa<InsertElementInst>(*OI) || + isa<SelectInst>(*OI) || + isa<CastInst>(*OI) || + isa<GetElementPtrInst>(*OI)) { + sVarargs.push_back(find_leader(availableOut[*PI], + VN.lookup(*OI))); + } else { + sVarargs.push_back(*OI); + } + } + } + + Value* newVal = 0; + if (BinaryOperator* BO = dyn_cast<BinaryOperator>(U)) + newVal = BinaryOperator::Create(BO->getOpcode(), s1, s2, + BO->getName()+".gvnpre", + (*PI)->getTerminator()); + else if (CmpInst* C = dyn_cast<CmpInst>(U)) + newVal = CmpInst::Create(C->getOpcode(), C->getPredicate(), s1, s2, + C->getName()+".gvnpre", + (*PI)->getTerminator()); + else if (ShuffleVectorInst* S = dyn_cast<ShuffleVectorInst>(U)) + newVal = new ShuffleVectorInst(s1, s2, s3, S->getName()+".gvnpre", + (*PI)->getTerminator()); + else if (InsertElementInst* S = dyn_cast<InsertElementInst>(U)) + newVal = InsertElementInst::Create(s1, s2, s3, S->getName()+".gvnpre", + (*PI)->getTerminator()); + else if (ExtractElementInst* S = dyn_cast<ExtractElementInst>(U)) + newVal = new ExtractElementInst(s1, s2, S->getName()+".gvnpre", + (*PI)->getTerminator()); + else if (SelectInst* S = dyn_cast<SelectInst>(U)) + newVal = SelectInst::Create(s1, s2, s3, S->getName()+".gvnpre", + (*PI)->getTerminator()); + else if (CastInst* C = dyn_cast<CastInst>(U)) + newVal = CastInst::Create(C->getOpcode(), s1, C->getType(), + C->getName()+".gvnpre", + (*PI)->getTerminator()); + else if (GetElementPtrInst* G = dyn_cast<GetElementPtrInst>(U)) + newVal = GetElementPtrInst::Create(s1, sVarargs.begin(), sVarargs.end(), + G->getName()+".gvnpre", + (*PI)->getTerminator()); + + VN.add(newVal, VN.lookup(U)); + + ValueNumberedSet& predAvail = availableOut[*PI]; + val_replace(predAvail, newVal); + val_replace(new_sets[*PI], newVal); + predAvail.set(VN.lookup(newVal)); + + DenseMap<BasicBlock*, Value*>::iterator av = avail.find(*PI); + if (av != avail.end()) + avail.erase(av); + avail.insert(std::make_pair(*PI, newVal)); + + ++NumInsertedVals; + } + } + + PHINode* p = 0; + + for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI) { + if (p == 0) + p = PHINode::Create(avail[*PI]->getType(), "gvnpre-join", BB->begin()); + + p->addIncoming(avail[*PI], *PI); + } + + VN.add(p, VN.lookup(e)); + val_replace(availableOut[BB], p); + availableOut[BB].set(VN.lookup(e)); + generatedPhis[BB].insert(p); + generatedPhis[BB].set(VN.lookup(e)); + new_sets[BB].insert(p); + new_sets[BB].set(VN.lookup(e)); + + ++NumInsertedPhis; +} + +/// insertion_mergepoint - When walking the dom tree, check at each merge +/// block for the possibility of a partial redundancy. If present, eliminate it +unsigned GVNPRE::insertion_mergepoint(SmallVector<Value*, 8>& workList, + df_iterator<DomTreeNode*>& D, + std::map<BasicBlock*, ValueNumberedSet >& new_sets) { + bool changed_function = false; + bool new_stuff = false; + + BasicBlock* BB = D->getBlock(); + for (unsigned i = 0; i < workList.size(); ++i) { + Value* e = workList[i]; + + if (isa<BinaryOperator>(e) || isa<CmpInst>(e) || + isa<ExtractElementInst>(e) || isa<InsertElementInst>(e) || + isa<ShuffleVectorInst>(e) || isa<SelectInst>(e) || isa<CastInst>(e) || + isa<GetElementPtrInst>(e)) { + if (availableOut[D->getIDom()->getBlock()].test(VN.lookup(e))) + continue; + + DenseMap<BasicBlock*, Value*> avail; + bool by_some = false; + bool all_same = true; + Value * first_s = 0; + + for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; + ++PI) { + Value *e2 = phi_translate(e, *PI, BB); + Value *e3 = find_leader(availableOut[*PI], VN.lookup(e2)); + + if (e3 == 0) { + DenseMap<BasicBlock*, Value*>::iterator av = avail.find(*PI); + if (av != avail.end()) + avail.erase(av); + avail.insert(std::make_pair(*PI, e2)); + all_same = false; + } else { + DenseMap<BasicBlock*, Value*>::iterator av = avail.find(*PI); + if (av != avail.end()) + avail.erase(av); + avail.insert(std::make_pair(*PI, e3)); + + by_some = true; + if (first_s == 0) + first_s = e3; + else if (first_s != e3) + all_same = false; + } + } + + if (by_some && !all_same && + !generatedPhis[BB].test(VN.lookup(e))) { + insertion_pre(e, BB, avail, new_sets); + + changed_function = true; + new_stuff = true; + } + } + } + + unsigned retval = 0; + if (changed_function) + retval += 1; + if (new_stuff) + retval += 2; + + return retval; +} + +/// insert - Phase 2 of the main algorithm. Walk the dominator tree looking for +/// merge points. When one is found, check for a partial redundancy. If one is +/// present, eliminate it. Repeat this walk until no changes are made. +bool GVNPRE::insertion(Function& F) { + bool changed_function = false; + + DominatorTree &DT = getAnalysis<DominatorTree>(); + + std::map<BasicBlock*, ValueNumberedSet> new_sets; + bool new_stuff = true; + while (new_stuff) { + new_stuff = false; + for (df_iterator<DomTreeNode*> DI = df_begin(DT.getRootNode()), + E = df_end(DT.getRootNode()); DI != E; ++DI) { + BasicBlock* BB = DI->getBlock(); + + if (BB == 0) + continue; + + ValueNumberedSet& availOut = availableOut[BB]; + ValueNumberedSet& anticIn = anticipatedIn[BB]; + + // Replace leaders with leaders inherited from dominator + if (DI->getIDom() != 0) { + ValueNumberedSet& dom_set = new_sets[DI->getIDom()->getBlock()]; + for (ValueNumberedSet::iterator I = dom_set.begin(), + E = dom_set.end(); I != E; ++I) { + val_replace(new_sets[BB], *I); + val_replace(availOut, *I); + } + } + + // If there is more than one predecessor... + if (pred_begin(BB) != pred_end(BB) && ++pred_begin(BB) != pred_end(BB)) { + SmallVector<Value*, 8> workList; + workList.reserve(anticIn.size()); + topo_sort(anticIn, workList); + + unsigned result = insertion_mergepoint(workList, DI, new_sets); + if (result & 1) + changed_function = true; + if (result & 2) + new_stuff = true; + } + } + } + + return changed_function; +} + +// GVNPRE::runOnFunction - This is the main transformation entry point for a +// function. +// +bool GVNPRE::runOnFunction(Function &F) { + // Clean out global sets from any previous functions + VN.clear(); + createdExpressions.clear(); + availableOut.clear(); + anticipatedIn.clear(); + generatedPhis.clear(); + + bool changed_function = false; + + // Phase 1: BuildSets + // This phase calculates the AVAIL_OUT and ANTIC_IN sets + buildsets(F); + + // Phase 2: Insert + // This phase inserts values to make partially redundant values + // fully redundant + changed_function |= insertion(F); + + // Phase 3: Eliminate + // This phase performs trivial full redundancy elimination + changed_function |= elimination(); + + // Phase 4: Cleanup + // This phase cleans up values that were created solely + // as leaders for expressions + cleanup(); + + return changed_function; +} |