diff options
Diffstat (limited to 'lib/Transforms/InstCombine/InstructionCombining.cpp')
-rw-r--r-- | lib/Transforms/InstCombine/InstructionCombining.cpp | 250 |
1 files changed, 151 insertions, 99 deletions
diff --git a/lib/Transforms/InstCombine/InstructionCombining.cpp b/lib/Transforms/InstCombine/InstructionCombining.cpp index 066b2ec..68ecd51 100644 --- a/lib/Transforms/InstCombine/InstructionCombining.cpp +++ b/lib/Transforms/InstCombine/InstructionCombining.cpp @@ -87,30 +87,34 @@ void InstCombiner::getAnalysisUsage(AnalysisUsage &AU) const { } +Value *InstCombiner::EmitGEPOffset(User *GEP) { + return llvm::EmitGEPOffset(Builder, *getTargetData(), GEP); +} + /// ShouldChangeType - Return true if it is desirable to convert a computation /// from 'From' to 'To'. We don't want to convert from a legal to an illegal /// type for example, or from a smaller to a larger illegal type. bool InstCombiner::ShouldChangeType(Type *From, Type *To) const { assert(From->isIntegerTy() && To->isIntegerTy()); - + // If we don't have TD, we don't know if the source/dest are legal. if (!TD) return false; - + unsigned FromWidth = From->getPrimitiveSizeInBits(); unsigned ToWidth = To->getPrimitiveSizeInBits(); bool FromLegal = TD->isLegalInteger(FromWidth); bool ToLegal = TD->isLegalInteger(ToWidth); - + // If this is a legal integer from type, and the result would be an illegal // type, don't do the transformation. if (FromLegal && !ToLegal) return false; - + // Otherwise, if both are illegal, do not increase the size of the result. We // do allow things like i160 -> i64, but not i64 -> i160. if (!FromLegal && !ToLegal && ToWidth > FromWidth) return false; - + return true; } @@ -127,7 +131,7 @@ static bool MaintainNoSignedWrap(BinaryOperator &I, Value *B, Value *C) { // We reason about Add and Sub Only. Instruction::BinaryOps Opcode = I.getOpcode(); - if (Opcode != Instruction::Add && + if (Opcode != Instruction::Add && Opcode != Instruction::Sub) { return false; } @@ -203,7 +207,7 @@ bool InstCombiner::SimplifyAssociativeOrCommutative(BinaryOperator &I) { // Conservatively clear the optional flags, since they may not be // preserved by the reassociation. if (MaintainNoSignedWrap(I, B, C) && - (!Op0 || (isa<BinaryOperator>(Op0) && Op0->hasNoSignedWrap()))) { + (!Op0 || (isa<BinaryOperator>(Op0) && Op0->hasNoSignedWrap()))) { // Note: this is only valid because SimplifyBinOp doesn't look at // the operands to Op0. I.clearSubclassOptionalData(); @@ -211,7 +215,7 @@ bool InstCombiner::SimplifyAssociativeOrCommutative(BinaryOperator &I) { } else { I.clearSubclassOptionalData(); } - + Changed = true; ++NumReassoc; continue; @@ -540,7 +544,7 @@ static Value *FoldOperationIntoSelectOperand(Instruction &I, Value *SO, Value *Op0 = SO, *Op1 = ConstOperand; if (!ConstIsRHS) std::swap(Op0, Op1); - + if (BinaryOperator *BO = dyn_cast<BinaryOperator>(&I)) return IC->Builder->CreateBinOp(BO->getOpcode(), Op0, Op1, SO->getName()+".op"); @@ -579,7 +583,7 @@ Instruction *InstCombiner::FoldOpIntoSelect(Instruction &Op, SelectInst *SI) { if (SrcTy && SrcTy->getNumElements() != DestTy->getNumElements()) return 0; } - + Value *SelectTrueVal = FoldOperationIntoSelectOperand(Op, TV, this); Value *SelectFalseVal = FoldOperationIntoSelectOperand(Op, FV, this); @@ -599,7 +603,7 @@ Instruction *InstCombiner::FoldOpIntoPhi(Instruction &I) { unsigned NumPHIValues = PN->getNumIncomingValues(); if (NumPHIValues == 0) return 0; - + // We normally only transform phis with a single use. However, if a PHI has // multiple uses and they are all the same operation, we can fold *all* of the // uses into the PHI. @@ -613,7 +617,7 @@ Instruction *InstCombiner::FoldOpIntoPhi(Instruction &I) { } // Otherwise, we can replace *all* users with the new PHI we form. } - + // Check to see if all of the operands of the PHI are simple constants // (constantint/constantfp/undef). If there is one non-constant value, // remember the BB it is in. If there is more than one or if *it* is a PHI, @@ -627,7 +631,7 @@ Instruction *InstCombiner::FoldOpIntoPhi(Instruction &I) { if (isa<PHINode>(InVal)) return 0; // Itself a phi. if (NonConstBB) return 0; // More than one non-const value. - + NonConstBB = PN->getIncomingBlock(i); // If the InVal is an invoke at the end of the pred block, then we can't @@ -635,14 +639,14 @@ Instruction *InstCombiner::FoldOpIntoPhi(Instruction &I) { if (InvokeInst *II = dyn_cast<InvokeInst>(InVal)) if (II->getParent() == NonConstBB) return 0; - + // If the incoming non-constant value is in I's block, we will remove one // instruction, but insert another equivalent one, leading to infinite // instcombine. if (NonConstBB == I.getParent()) return 0; } - + // If there is exactly one non-constant value, we can insert a copy of the // operation in that block. However, if this is a critical edge, we would be // inserting the computation one some other paths (e.g. inside a loop). Only @@ -656,12 +660,12 @@ Instruction *InstCombiner::FoldOpIntoPhi(Instruction &I) { PHINode *NewPN = PHINode::Create(I.getType(), PN->getNumIncomingValues()); InsertNewInstBefore(NewPN, *PN); NewPN->takeName(PN); - + // If we are going to have to insert a new computation, do so right before the // predecessors terminator. if (NonConstBB) Builder->SetInsertPoint(NonConstBB->getTerminator()); - + // Next, add all of the operands to the PHI. if (SelectInst *SI = dyn_cast<SelectInst>(&I)) { // We only currently try to fold the condition of a select when it is a phi, @@ -706,20 +710,20 @@ Instruction *InstCombiner::FoldOpIntoPhi(Instruction &I) { PN->getIncomingValue(i), C, "phitmp"); NewPN->addIncoming(InV, PN->getIncomingBlock(i)); } - } else { + } else { CastInst *CI = cast<CastInst>(&I); Type *RetTy = CI->getType(); for (unsigned i = 0; i != NumPHIValues; ++i) { Value *InV; if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) InV = ConstantExpr::getCast(CI->getOpcode(), InC, RetTy); - else + else InV = Builder->CreateCast(CI->getOpcode(), PN->getIncomingValue(i), I.getType(), "phitmp"); NewPN->addIncoming(InV, PN->getIncomingBlock(i)); } } - + for (Value::use_iterator UI = PN->use_begin(), E = PN->use_end(); UI != E; ) { Instruction *User = cast<Instruction>(*UI++); @@ -734,11 +738,11 @@ Instruction *InstCombiner::FoldOpIntoPhi(Instruction &I) { /// or not there is a sequence of GEP indices into the type that will land us at /// the specified offset. If so, fill them into NewIndices and return the /// resultant element type, otherwise return null. -Type *InstCombiner::FindElementAtOffset(Type *Ty, int64_t Offset, +Type *InstCombiner::FindElementAtOffset(Type *Ty, int64_t Offset, SmallVectorImpl<Value*> &NewIndices) { if (!TD) return 0; if (!Ty->isSized()) return 0; - + // Start with the index over the outer type. Note that the type size // might be zero (even if the offset isn't zero) if the indexed type // is something like [0 x {int, int}] @@ -747,7 +751,7 @@ Type *InstCombiner::FindElementAtOffset(Type *Ty, int64_t Offset, if (int64_t TySize = TD->getTypeAllocSize(Ty)) { FirstIdx = Offset/TySize; Offset -= FirstIdx*TySize; - + // Handle hosts where % returns negative instead of values [0..TySize). if (Offset < 0) { --FirstIdx; @@ -756,24 +760,24 @@ Type *InstCombiner::FindElementAtOffset(Type *Ty, int64_t Offset, } assert((uint64_t)Offset < (uint64_t)TySize && "Out of range offset"); } - + NewIndices.push_back(ConstantInt::get(IntPtrTy, FirstIdx)); - + // Index into the types. If we fail, set OrigBase to null. while (Offset) { // Indexing into tail padding between struct/array elements. if (uint64_t(Offset*8) >= TD->getTypeSizeInBits(Ty)) return 0; - + if (StructType *STy = dyn_cast<StructType>(Ty)) { const StructLayout *SL = TD->getStructLayout(STy); assert(Offset < (int64_t)SL->getSizeInBytes() && "Offset must stay within the indexed type"); - + unsigned Elt = SL->getElementContainingOffset(Offset); NewIndices.push_back(ConstantInt::get(Type::getInt32Ty(Ty->getContext()), Elt)); - + Offset -= SL->getElementOffset(Elt); Ty = STy->getElementType(Elt); } else if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) { @@ -787,7 +791,7 @@ Type *InstCombiner::FindElementAtOffset(Type *Ty, int64_t Offset, return 0; } } - + return Ty; } @@ -948,7 +952,7 @@ Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) { Res->setIsInBounds(GEP.isInBounds()); return Res; } - + if (ArrayType *XATy = dyn_cast<ArrayType>(StrippedPtrTy->getElementType())){ // GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... ? @@ -981,16 +985,16 @@ Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) { // V and GEP are both pointer types --> BitCast return new BitCastInst(NewGEP, GEP.getType()); } - + // Transform things like: // getelementptr i8* bitcast ([100 x double]* X to i8*), i32 %tmp // (where tmp = 8*tmp2) into: // getelementptr [100 x double]* %arr, i32 0, i32 %tmp2; bitcast - + if (TD && SrcElTy->isArrayTy() && ResElTy->isIntegerTy(8)) { uint64_t ArrayEltSize = TD->getTypeAllocSize(cast<ArrayType>(SrcElTy)->getElementType()); - + // Check to see if "tmp" is a scale by a multiple of ArrayEltSize. We // allow either a mul, shift, or constant here. Value *NewIdx = 0; @@ -1015,7 +1019,7 @@ Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) { NewIdx = Inst->getOperand(0); } } - + // If the index will be to exactly the right offset with the scale taken // out, perform the transformation. Note, we don't know whether Scale is // signed or not. We'll use unsigned version of division/modulo @@ -1054,10 +1058,9 @@ Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) { !isa<BitCastInst>(BCI->getOperand(0)) && GEP.hasAllConstantIndices() && StrippedPtrTy->getAddressSpace() == GEP.getPointerAddressSpace()) { - // Determine how much the GEP moves the pointer. We are guaranteed to get - // a constant back from EmitGEPOffset. - ConstantInt *OffsetV = cast<ConstantInt>(EmitGEPOffset(&GEP)); - int64_t Offset = OffsetV->getSExtValue(); + // Determine how much the GEP moves the pointer. + SmallVector<Value*, 8> Ops(GEP.idx_begin(), GEP.idx_end()); + int64_t Offset = TD->getIndexedOffset(GEP.getPointerOperandType(), Ops); // If this GEP instruction doesn't move the pointer, just replace the GEP // with a bitcast of the real input to the dest type. @@ -1065,7 +1068,7 @@ Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) { // If the bitcast is of an allocation, and the allocation will be // converted to match the type of the cast, don't touch this. if (isa<AllocaInst>(BCI->getOperand(0)) || - isMalloc(BCI->getOperand(0))) { + isAllocationFn(BCI->getOperand(0))) { // See if the bitcast simplifies, if so, don't nuke this GEP yet. if (Instruction *I = visitBitCast(*BCI)) { if (I != BCI) { @@ -1078,7 +1081,7 @@ Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) { } return new BitCastInst(BCI->getOperand(0), GEP.getType()); } - + // Otherwise, if the offset is non-zero, we need to find out if there is a // field at Offset in 'A's type. If so, we can pull the cast through the // GEP. @@ -1089,68 +1092,103 @@ Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) { Value *NGEP = GEP.isInBounds() ? Builder->CreateInBoundsGEP(BCI->getOperand(0), NewIndices) : Builder->CreateGEP(BCI->getOperand(0), NewIndices); - + if (NGEP->getType() == GEP.getType()) return ReplaceInstUsesWith(GEP, NGEP); NGEP->takeName(&GEP); return new BitCastInst(NGEP, GEP.getType()); } } - } - + } + return 0; } -static bool IsOnlyNullComparedAndFreed(Value *V, SmallVectorImpl<WeakVH> &Users, - int Depth = 0) { - if (Depth == 8) - return false; +static bool +isAllocSiteRemovable(Instruction *AI, SmallVectorImpl<WeakVH> &Users) { + SmallVector<Instruction*, 4> Worklist; + Worklist.push_back(AI); - for (Value::use_iterator UI = V->use_begin(), UE = V->use_end(); - UI != UE; ++UI) { - User *U = *UI; - if (isFreeCall(U)) { - Users.push_back(U); - continue; - } - if (ICmpInst *ICI = dyn_cast<ICmpInst>(U)) { - if (ICI->isEquality() && isa<ConstantPointerNull>(ICI->getOperand(1))) { - Users.push_back(ICI); + do { + Instruction *PI = Worklist.pop_back_val(); + for (Value::use_iterator UI = PI->use_begin(), UE = PI->use_end(); UI != UE; + ++UI) { + Instruction *I = cast<Instruction>(*UI); + switch (I->getOpcode()) { + default: + // Give up the moment we see something we can't handle. + return false; + + case Instruction::BitCast: + case Instruction::GetElementPtr: + Users.push_back(I); + Worklist.push_back(I); continue; - } - } - if (BitCastInst *BCI = dyn_cast<BitCastInst>(U)) { - if (IsOnlyNullComparedAndFreed(BCI, Users, Depth+1)) { - Users.push_back(BCI); + + case Instruction::ICmp: { + ICmpInst *ICI = cast<ICmpInst>(I); + // We can fold eq/ne comparisons with null to false/true, respectively. + if (!ICI->isEquality() || !isa<ConstantPointerNull>(ICI->getOperand(1))) + return false; + Users.push_back(I); continue; } - } - if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) { - if (IsOnlyNullComparedAndFreed(GEPI, Users, Depth+1)) { - Users.push_back(GEPI); + + case Instruction::Call: + // Ignore no-op and store intrinsics. + if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { + switch (II->getIntrinsicID()) { + default: + return false; + + case Intrinsic::memmove: + case Intrinsic::memcpy: + case Intrinsic::memset: { + MemIntrinsic *MI = cast<MemIntrinsic>(II); + if (MI->isVolatile() || MI->getRawDest() != PI) + return false; + } + // fall through + case Intrinsic::dbg_declare: + case Intrinsic::dbg_value: + case Intrinsic::invariant_start: + case Intrinsic::invariant_end: + case Intrinsic::lifetime_start: + case Intrinsic::lifetime_end: + case Intrinsic::objectsize: + Users.push_back(I); + continue; + } + } + + if (isFreeCall(I)) { + Users.push_back(I); + continue; + } + return false; + + case Instruction::Store: { + StoreInst *SI = cast<StoreInst>(I); + if (SI->isVolatile() || SI->getPointerOperand() != PI) + return false; + Users.push_back(I); continue; } - } - if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U)) { - if (II->getIntrinsicID() == Intrinsic::lifetime_start || - II->getIntrinsicID() == Intrinsic::lifetime_end) { - Users.push_back(II); - continue; } + llvm_unreachable("missing a return?"); } - return false; - } + } while (!Worklist.empty()); return true; } -Instruction *InstCombiner::visitMalloc(Instruction &MI) { +Instruction *InstCombiner::visitAllocSite(Instruction &MI) { // If we have a malloc call which is only used in any amount of comparisons // to null and free calls, delete the calls and replace the comparisons with // true or false as appropriate. SmallVector<WeakVH, 64> Users; - if (IsOnlyNullComparedAndFreed(&MI, Users)) { + if (isAllocSiteRemovable(&MI, Users)) { for (unsigned i = 0, e = Users.size(); i != e; ++i) { Instruction *I = cast_or_null<Instruction>(&*Users[i]); if (!I) continue; @@ -1161,9 +1199,23 @@ Instruction *InstCombiner::visitMalloc(Instruction &MI) { C->isFalseWhenEqual())); } else if (isa<BitCastInst>(I) || isa<GetElementPtrInst>(I)) { ReplaceInstUsesWith(*I, UndefValue::get(I->getType())); + } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { + if (II->getIntrinsicID() == Intrinsic::objectsize) { + ConstantInt *CI = cast<ConstantInt>(II->getArgOperand(1)); + uint64_t DontKnow = CI->isZero() ? -1ULL : 0; + ReplaceInstUsesWith(*I, ConstantInt::get(I->getType(), DontKnow)); + } } EraseInstFromFunction(*I); } + + if (InvokeInst *II = dyn_cast<InvokeInst>(&MI)) { + // Replace invoke with a NOP intrinsic to maintain the original CFG + Module *M = II->getParent()->getParent()->getParent(); + Function *F = Intrinsic::getDeclaration(M, Intrinsic::donothing); + InvokeInst::Create(F, II->getNormalDest(), II->getUnwindDest(), + ArrayRef<Value *>(), "", II->getParent()); + } return EraseInstFromFunction(MI); } return 0; @@ -1181,7 +1233,7 @@ Instruction *InstCombiner::visitFree(CallInst &FI) { UndefValue::get(Type::getInt1PtrTy(FI.getContext()))); return EraseInstFromFunction(FI); } - + // If we have 'free null' delete the instruction. This can happen in stl code // when lots of inlining happens. if (isa<ConstantPointerNull>(Op)) @@ -1207,14 +1259,14 @@ Instruction *InstCombiner::visitBranchInst(BranchInst &BI) { // Cannonicalize fcmp_one -> fcmp_oeq FCmpInst::Predicate FPred; Value *Y; - if (match(&BI, m_Br(m_FCmp(FPred, m_Value(X), m_Value(Y)), + if (match(&BI, m_Br(m_FCmp(FPred, m_Value(X), m_Value(Y)), TrueDest, FalseDest)) && BI.getCondition()->hasOneUse()) if (FPred == FCmpInst::FCMP_ONE || FPred == FCmpInst::FCMP_OLE || FPred == FCmpInst::FCMP_OGE) { FCmpInst *Cond = cast<FCmpInst>(BI.getCondition()); Cond->setPredicate(FCmpInst::getInversePredicate(FPred)); - + // Swap Destinations and condition. BI.swapSuccessors(); Worklist.Add(Cond); @@ -1280,7 +1332,7 @@ Instruction *InstCombiner::visitExtractValueInst(ExtractValueInst &EV) { } return 0; // Can't handle other constants } - + if (InsertValueInst *IV = dyn_cast<InsertValueInst>(Agg)) { // We're extracting from an insertvalue instruction, compare the indices const unsigned *exti, *exte, *insi, *inse; @@ -1329,7 +1381,7 @@ Instruction *InstCombiner::visitExtractValueInst(ExtractValueInst &EV) { // %E = extractvalue { i32, { i32 } } %I, 1, 0 // with // %E extractvalue { i32 } { i32 42 }, 0 - return ExtractValueInst::Create(IV->getInsertedValueOperand(), + return ExtractValueInst::Create(IV->getInsertedValueOperand(), makeArrayRef(exti, exte)); } if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Agg)) { @@ -1349,7 +1401,7 @@ Instruction *InstCombiner::visitExtractValueInst(ExtractValueInst &EV) { EraseInstFromFunction(*II); return BinaryOperator::CreateAdd(LHS, RHS); } - + // If the normal result of the add is dead, and the RHS is a constant, // we can transform this into a range comparison. // overflow = uadd a, -4 --> overflow = icmp ugt a, 3 @@ -1798,7 +1850,7 @@ static bool TryToSinkInstruction(Instruction *I, BasicBlock *DestBlock) { /// many instructions are dead or constant). Additionally, if we find a branch /// whose condition is a known constant, we only visit the reachable successors. /// -static bool AddReachableCodeToWorklist(BasicBlock *BB, +static bool AddReachableCodeToWorklist(BasicBlock *BB, SmallPtrSet<BasicBlock*, 64> &Visited, InstCombiner &IC, const TargetData *TD, @@ -1812,13 +1864,13 @@ static bool AddReachableCodeToWorklist(BasicBlock *BB, do { BB = Worklist.pop_back_val(); - + // We have now visited this block! If we've already been here, ignore it. if (!Visited.insert(BB)) continue; for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) { Instruction *Inst = BBI++; - + // DCE instruction if trivially dead. if (isInstructionTriviallyDead(Inst)) { ++NumDeadInst; @@ -1826,7 +1878,7 @@ static bool AddReachableCodeToWorklist(BasicBlock *BB, Inst->eraseFromParent(); continue; } - + // ConstantProp instruction if trivially constant. if (!Inst->use_empty() && isa<Constant>(Inst->getOperand(0))) if (Constant *C = ConstantFoldInstruction(Inst, TD, TLI)) { @@ -1837,7 +1889,7 @@ static bool AddReachableCodeToWorklist(BasicBlock *BB, Inst->eraseFromParent(); continue; } - + if (TD) { // See if we can constant fold its operands. for (User::op_iterator i = Inst->op_begin(), e = Inst->op_end(); @@ -1881,17 +1933,17 @@ static bool AddReachableCodeToWorklist(BasicBlock *BB, Worklist.push_back(ReachableBB); continue; } - + // Otherwise it is the default destination. Worklist.push_back(SI->getDefaultDest()); continue; } } - + for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) Worklist.push_back(TI->getSuccessor(i)); } while (!Worklist.empty()); - + // Once we've found all of the instructions to add to instcombine's worklist, // add them in reverse order. This way instcombine will visit from the top // of the function down. This jives well with the way that it adds all uses @@ -1899,13 +1951,13 @@ static bool AddReachableCodeToWorklist(BasicBlock *BB, // some N^2 behavior in pathological cases. IC.Worklist.AddInitialGroup(&InstrsForInstCombineWorklist[0], InstrsForInstCombineWorklist.size()); - + return MadeIRChange; } bool InstCombiner::DoOneIteration(Function &F, unsigned Iteration) { MadeIRChange = false; - + DEBUG(errs() << "\n\nINSTCOMBINE ITERATION #" << Iteration << " on " << F.getName() << "\n"); @@ -1976,13 +2028,13 @@ bool InstCombiner::DoOneIteration(Function &F, unsigned Iteration) { BasicBlock *BB = I->getParent(); Instruction *UserInst = cast<Instruction>(I->use_back()); BasicBlock *UserParent; - + // Get the block the use occurs in. if (PHINode *PN = dyn_cast<PHINode>(UserInst)) UserParent = PN->getIncomingBlock(I->use_begin().getUse()); else UserParent = UserInst->getParent(); - + if (UserParent != BB) { bool UserIsSuccessor = false; // See if the user is one of our successors. @@ -2004,7 +2056,7 @@ bool InstCombiner::DoOneIteration(Function &F, unsigned Iteration) { // Now that we have an instruction, try combining it to simplify it. Builder->SetInsertPoint(I->getParent(), I); Builder->SetCurrentDebugLocation(I->getDebugLoc()); - + #ifndef NDEBUG std::string OrigI; #endif @@ -2069,14 +2121,14 @@ bool InstCombiner::DoOneIteration(Function &F, unsigned Iteration) { bool InstCombiner::runOnFunction(Function &F) { TD = getAnalysisIfAvailable<TargetData>(); TLI = &getAnalysis<TargetLibraryInfo>(); - + /// Builder - This is an IRBuilder that automatically inserts new /// instructions into the worklist when they are created. - IRBuilder<true, TargetFolder, InstCombineIRInserter> + IRBuilder<true, TargetFolder, InstCombineIRInserter> TheBuilder(F.getContext(), TargetFolder(TD), InstCombineIRInserter(Worklist)); Builder = &TheBuilder; - + bool EverMadeChange = false; // Lower dbg.declare intrinsics otherwise their value may be clobbered @@ -2087,7 +2139,7 @@ bool InstCombiner::runOnFunction(Function &F) { unsigned Iteration = 0; while (DoOneIteration(F, Iteration++)) EverMadeChange = true; - + Builder = 0; return EverMadeChange; } |