diff options
Diffstat (limited to 'lib/Transforms/InstCombine/InstructionCombining.cpp')
-rw-r--r-- | lib/Transforms/InstCombine/InstructionCombining.cpp | 401 |
1 files changed, 336 insertions, 65 deletions
diff --git a/lib/Transforms/InstCombine/InstructionCombining.cpp b/lib/Transforms/InstCombine/InstructionCombining.cpp index 68ecd51..9a46f25 100644 --- a/lib/Transforms/InstCombine/InstructionCombining.cpp +++ b/lib/Transforms/InstCombine/InstructionCombining.cpp @@ -40,7 +40,7 @@ #include "llvm/Analysis/ConstantFolding.h" #include "llvm/Analysis/InstructionSimplify.h" #include "llvm/Analysis/MemoryBuiltins.h" -#include "llvm/Target/TargetData.h" +#include "llvm/DataLayout.h" #include "llvm/Target/TargetLibraryInfo.h" #include "llvm/Transforms/Utils/Local.h" #include "llvm/Support/CFG.h" @@ -88,7 +88,7 @@ void InstCombiner::getAnalysisUsage(AnalysisUsage &AU) const { Value *InstCombiner::EmitGEPOffset(User *GEP) { - return llvm::EmitGEPOffset(Builder, *getTargetData(), GEP); + return llvm::EmitGEPOffset(Builder, *getDataLayout(), GEP); } /// ShouldChangeType - Return true if it is desirable to convert a computation @@ -805,6 +805,244 @@ static bool shouldMergeGEPs(GEPOperator &GEP, GEPOperator &Src) { return true; } +/// Descale - Return a value X such that Val = X * Scale, or null if none. If +/// the multiplication is known not to overflow then NoSignedWrap is set. +Value *InstCombiner::Descale(Value *Val, APInt Scale, bool &NoSignedWrap) { + assert(isa<IntegerType>(Val->getType()) && "Can only descale integers!"); + assert(cast<IntegerType>(Val->getType())->getBitWidth() == + Scale.getBitWidth() && "Scale not compatible with value!"); + + // If Val is zero or Scale is one then Val = Val * Scale. + if (match(Val, m_Zero()) || Scale == 1) { + NoSignedWrap = true; + return Val; + } + + // If Scale is zero then it does not divide Val. + if (Scale.isMinValue()) + return 0; + + // Look through chains of multiplications, searching for a constant that is + // divisible by Scale. For example, descaling X*(Y*(Z*4)) by a factor of 4 + // will find the constant factor 4 and produce X*(Y*Z). Descaling X*(Y*8) by + // a factor of 4 will produce X*(Y*2). The principle of operation is to bore + // down from Val: + // + // Val = M1 * X || Analysis starts here and works down + // M1 = M2 * Y || Doesn't descend into terms with more + // M2 = Z * 4 \/ than one use + // + // Then to modify a term at the bottom: + // + // Val = M1 * X + // M1 = Z * Y || Replaced M2 with Z + // + // Then to work back up correcting nsw flags. + + // Op - the term we are currently analyzing. Starts at Val then drills down. + // Replaced with its descaled value before exiting from the drill down loop. + Value *Op = Val; + + // Parent - initially null, but after drilling down notes where Op came from. + // In the example above, Parent is (Val, 0) when Op is M1, because M1 is the + // 0'th operand of Val. + std::pair<Instruction*, unsigned> Parent; + + // RequireNoSignedWrap - Set if the transform requires a descaling at deeper + // levels that doesn't overflow. + bool RequireNoSignedWrap = false; + + // logScale - log base 2 of the scale. Negative if not a power of 2. + int32_t logScale = Scale.exactLogBase2(); + + for (;; Op = Parent.first->getOperand(Parent.second)) { // Drill down + + if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) { + // If Op is a constant divisible by Scale then descale to the quotient. + APInt Quotient(Scale), Remainder(Scale); // Init ensures right bitwidth. + APInt::sdivrem(CI->getValue(), Scale, Quotient, Remainder); + if (!Remainder.isMinValue()) + // Not divisible by Scale. + return 0; + // Replace with the quotient in the parent. + Op = ConstantInt::get(CI->getType(), Quotient); + NoSignedWrap = true; + break; + } + + if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op)) { + + if (BO->getOpcode() == Instruction::Mul) { + // Multiplication. + NoSignedWrap = BO->hasNoSignedWrap(); + if (RequireNoSignedWrap && !NoSignedWrap) + return 0; + + // There are three cases for multiplication: multiplication by exactly + // the scale, multiplication by a constant different to the scale, and + // multiplication by something else. + Value *LHS = BO->getOperand(0); + Value *RHS = BO->getOperand(1); + + if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { + // Multiplication by a constant. + if (CI->getValue() == Scale) { + // Multiplication by exactly the scale, replace the multiplication + // by its left-hand side in the parent. + Op = LHS; + break; + } + + // Otherwise drill down into the constant. + if (!Op->hasOneUse()) + return 0; + + Parent = std::make_pair(BO, 1); + continue; + } + + // Multiplication by something else. Drill down into the left-hand side + // since that's where the reassociate pass puts the good stuff. + if (!Op->hasOneUse()) + return 0; + + Parent = std::make_pair(BO, 0); + continue; + } + + if (logScale > 0 && BO->getOpcode() == Instruction::Shl && + isa<ConstantInt>(BO->getOperand(1))) { + // Multiplication by a power of 2. + NoSignedWrap = BO->hasNoSignedWrap(); + if (RequireNoSignedWrap && !NoSignedWrap) + return 0; + + Value *LHS = BO->getOperand(0); + int32_t Amt = cast<ConstantInt>(BO->getOperand(1))-> + getLimitedValue(Scale.getBitWidth()); + // Op = LHS << Amt. + + if (Amt == logScale) { + // Multiplication by exactly the scale, replace the multiplication + // by its left-hand side in the parent. + Op = LHS; + break; + } + if (Amt < logScale || !Op->hasOneUse()) + return 0; + + // Multiplication by more than the scale. Reduce the multiplying amount + // by the scale in the parent. + Parent = std::make_pair(BO, 1); + Op = ConstantInt::get(BO->getType(), Amt - logScale); + break; + } + } + + if (!Op->hasOneUse()) + return 0; + + if (CastInst *Cast = dyn_cast<CastInst>(Op)) { + if (Cast->getOpcode() == Instruction::SExt) { + // Op is sign-extended from a smaller type, descale in the smaller type. + unsigned SmallSize = Cast->getSrcTy()->getPrimitiveSizeInBits(); + APInt SmallScale = Scale.trunc(SmallSize); + // Suppose Op = sext X, and we descale X as Y * SmallScale. We want to + // descale Op as (sext Y) * Scale. In order to have + // sext (Y * SmallScale) = (sext Y) * Scale + // some conditions need to hold however: SmallScale must sign-extend to + // Scale and the multiplication Y * SmallScale should not overflow. + if (SmallScale.sext(Scale.getBitWidth()) != Scale) + // SmallScale does not sign-extend to Scale. + return 0; + assert(SmallScale.exactLogBase2() == logScale); + // Require that Y * SmallScale must not overflow. + RequireNoSignedWrap = true; + + // Drill down through the cast. + Parent = std::make_pair(Cast, 0); + Scale = SmallScale; + continue; + } + + if (Cast->getOpcode() == Instruction::Trunc) { + // Op is truncated from a larger type, descale in the larger type. + // Suppose Op = trunc X, and we descale X as Y * sext Scale. Then + // trunc (Y * sext Scale) = (trunc Y) * Scale + // always holds. However (trunc Y) * Scale may overflow even if + // trunc (Y * sext Scale) does not, so nsw flags need to be cleared + // from this point up in the expression (see later). + if (RequireNoSignedWrap) + return 0; + + // Drill down through the cast. + unsigned LargeSize = Cast->getSrcTy()->getPrimitiveSizeInBits(); + Parent = std::make_pair(Cast, 0); + Scale = Scale.sext(LargeSize); + if (logScale + 1 == (int32_t)Cast->getType()->getPrimitiveSizeInBits()) + logScale = -1; + assert(Scale.exactLogBase2() == logScale); + continue; + } + } + + // Unsupported expression, bail out. + return 0; + } + + // We know that we can successfully descale, so from here on we can safely + // modify the IR. Op holds the descaled version of the deepest term in the + // expression. NoSignedWrap is 'true' if multiplying Op by Scale is known + // not to overflow. + + if (!Parent.first) + // The expression only had one term. + return Op; + + // Rewrite the parent using the descaled version of its operand. + assert(Parent.first->hasOneUse() && "Drilled down when more than one use!"); + assert(Op != Parent.first->getOperand(Parent.second) && + "Descaling was a no-op?"); + Parent.first->setOperand(Parent.second, Op); + Worklist.Add(Parent.first); + + // Now work back up the expression correcting nsw flags. The logic is based + // on the following observation: if X * Y is known not to overflow as a signed + // multiplication, and Y is replaced by a value Z with smaller absolute value, + // then X * Z will not overflow as a signed multiplication either. As we work + // our way up, having NoSignedWrap 'true' means that the descaled value at the + // current level has strictly smaller absolute value than the original. + Instruction *Ancestor = Parent.first; + do { + if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Ancestor)) { + // If the multiplication wasn't nsw then we can't say anything about the + // value of the descaled multiplication, and we have to clear nsw flags + // from this point on up. + bool OpNoSignedWrap = BO->hasNoSignedWrap(); + NoSignedWrap &= OpNoSignedWrap; + if (NoSignedWrap != OpNoSignedWrap) { + BO->setHasNoSignedWrap(NoSignedWrap); + Worklist.Add(Ancestor); + } + } else if (Ancestor->getOpcode() == Instruction::Trunc) { + // The fact that the descaled input to the trunc has smaller absolute + // value than the original input doesn't tell us anything useful about + // the absolute values of the truncations. + NoSignedWrap = false; + } + assert((Ancestor->getOpcode() != Instruction::SExt || NoSignedWrap) && + "Failed to keep proper track of nsw flags while drilling down?"); + + if (Ancestor == Val) + // Got to the top, all done! + return Val; + + // Move up one level in the expression. + assert(Ancestor->hasOneUse() && "Drilled down when more than one use!"); + Ancestor = Ancestor->use_back(); + } while (1); +} + Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) { SmallVector<Value*, 8> Ops(GEP.op_begin(), GEP.op_end()); @@ -817,7 +1055,7 @@ Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) { // by multiples of a zero size type with zero. if (TD) { bool MadeChange = false; - Type *IntPtrTy = TD->getIntPtrType(GEP.getContext()); + Type *IntPtrTy = TD->getIntPtrType(GEP.getPointerOperandType()); gep_type_iterator GTI = gep_type_begin(GEP); for (User::op_iterator I = GEP.op_begin() + 1, E = GEP.op_end(); @@ -836,7 +1074,7 @@ Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) { } Type *IndexTy = (*I)->getType(); - if (IndexTy != IntPtrTy && !IndexTy->isVectorTy()) { + if (IndexTy != IntPtrTy) { // If we are using a wider index than needed for this platform, shrink // it to what we need. If narrower, sign-extend it to what we need. // This explicit cast can make subsequent optimizations more obvious. @@ -855,7 +1093,7 @@ Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) { if (!shouldMergeGEPs(*cast<GEPOperator>(&GEP), *Src)) return 0; - // Note that if our source is a gep chain itself that we wait for that + // Note that if our source is a gep chain itself then we wait for that // chain to be resolved before we perform this transformation. This // avoids us creating a TON of code in some cases. if (GEPOperator *SrcGEP = @@ -987,63 +1225,74 @@ Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) { } // Transform things like: + // %V = mul i64 %N, 4 + // %t = getelementptr i8* bitcast (i32* %arr to i8*), i32 %V + // into: %t1 = getelementptr i32* %arr, i32 %N; bitcast + if (TD && ResElTy->isSized() && SrcElTy->isSized()) { + // Check that changing the type amounts to dividing the index by a scale + // factor. + uint64_t ResSize = TD->getTypeAllocSize(ResElTy); + uint64_t SrcSize = TD->getTypeAllocSize(SrcElTy); + if (ResSize && SrcSize % ResSize == 0) { + Value *Idx = GEP.getOperand(1); + unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits(); + uint64_t Scale = SrcSize / ResSize; + + // Earlier transforms ensure that the index has type IntPtrType, which + // considerably simplifies the logic by eliminating implicit casts. + assert(Idx->getType() == TD->getIntPtrType(GEP.getContext()) && + "Index not cast to pointer width?"); + + bool NSW; + if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) { + // Successfully decomposed Idx as NewIdx * Scale, form a new GEP. + // If the multiplication NewIdx * Scale may overflow then the new + // GEP may not be "inbounds". + Value *NewGEP = GEP.isInBounds() && NSW ? + Builder->CreateInBoundsGEP(StrippedPtr, NewIdx, GEP.getName()) : + Builder->CreateGEP(StrippedPtr, NewIdx, GEP.getName()); + // The NewGEP must be pointer typed, so must the old one -> BitCast + return new BitCastInst(NewGEP, GEP.getType()); + } + } + } + + // Similarly, transform things like: // getelementptr i8* bitcast ([100 x double]* X to i8*), i32 %tmp // (where tmp = 8*tmp2) into: // getelementptr [100 x double]* %arr, i32 0, i32 %tmp2; bitcast - - if (TD && SrcElTy->isArrayTy() && ResElTy->isIntegerTy(8)) { + if (TD && ResElTy->isSized() && SrcElTy->isSized() && + SrcElTy->isArrayTy()) { + // Check that changing to the array element type amounts to dividing the + // index by a scale factor. + uint64_t ResSize = TD->getTypeAllocSize(ResElTy); uint64_t ArrayEltSize = - TD->getTypeAllocSize(cast<ArrayType>(SrcElTy)->getElementType()); - - // Check to see if "tmp" is a scale by a multiple of ArrayEltSize. We - // allow either a mul, shift, or constant here. - Value *NewIdx = 0; - ConstantInt *Scale = 0; - if (ArrayEltSize == 1) { - NewIdx = GEP.getOperand(1); - Scale = ConstantInt::get(cast<IntegerType>(NewIdx->getType()), 1); - } else if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP.getOperand(1))) { - NewIdx = ConstantInt::get(CI->getType(), 1); - Scale = CI; - } else if (Instruction *Inst =dyn_cast<Instruction>(GEP.getOperand(1))){ - if (Inst->getOpcode() == Instruction::Shl && - isa<ConstantInt>(Inst->getOperand(1))) { - ConstantInt *ShAmt = cast<ConstantInt>(Inst->getOperand(1)); - uint32_t ShAmtVal = ShAmt->getLimitedValue(64); - Scale = ConstantInt::get(cast<IntegerType>(Inst->getType()), - 1ULL << ShAmtVal); - NewIdx = Inst->getOperand(0); - } else if (Inst->getOpcode() == Instruction::Mul && - isa<ConstantInt>(Inst->getOperand(1))) { - Scale = cast<ConstantInt>(Inst->getOperand(1)); - NewIdx = Inst->getOperand(0); + TD->getTypeAllocSize(cast<ArrayType>(SrcElTy)->getElementType()); + if (ResSize && ArrayEltSize % ResSize == 0) { + Value *Idx = GEP.getOperand(1); + unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits(); + uint64_t Scale = ArrayEltSize / ResSize; + + // Earlier transforms ensure that the index has type IntPtrType, which + // considerably simplifies the logic by eliminating implicit casts. + assert(Idx->getType() == TD->getIntPtrType(GEP.getContext()) && + "Index not cast to pointer width?"); + + bool NSW; + if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) { + // Successfully decomposed Idx as NewIdx * Scale, form a new GEP. + // If the multiplication NewIdx * Scale may overflow then the new + // GEP may not be "inbounds". + Value *Off[2]; + Off[0] = Constant::getNullValue(Type::getInt32Ty(GEP.getContext())); + Off[1] = NewIdx; + Value *NewGEP = GEP.isInBounds() && NSW ? + Builder->CreateInBoundsGEP(StrippedPtr, Off, GEP.getName()) : + Builder->CreateGEP(StrippedPtr, Off, GEP.getName()); + // The NewGEP must be pointer typed, so must the old one -> BitCast + return new BitCastInst(NewGEP, GEP.getType()); } } - - // If the index will be to exactly the right offset with the scale taken - // out, perform the transformation. Note, we don't know whether Scale is - // signed or not. We'll use unsigned version of division/modulo - // operation after making sure Scale doesn't have the sign bit set. - if (ArrayEltSize && Scale && Scale->getSExtValue() >= 0LL && - Scale->getZExtValue() % ArrayEltSize == 0) { - Scale = ConstantInt::get(Scale->getType(), - Scale->getZExtValue() / ArrayEltSize); - if (Scale->getZExtValue() != 1) { - Constant *C = ConstantExpr::getIntegerCast(Scale, NewIdx->getType(), - false /*ZExt*/); - NewIdx = Builder->CreateMul(NewIdx, C, "idxscale"); - } - - // Insert the new GEP instruction. - Value *Idx[2]; - Idx[0] = Constant::getNullValue(Type::getInt32Ty(GEP.getContext())); - Idx[1] = NewIdx; - Value *NewGEP = GEP.isInBounds() ? - Builder->CreateInBoundsGEP(StrippedPtr, Idx, GEP.getName()): - Builder->CreateGEP(StrippedPtr, Idx, GEP.getName()); - // The NewGEP must be pointer typed, so must the old one -> BitCast - return new BitCastInst(NewGEP, GEP.getType()); - } } } } @@ -1068,7 +1317,7 @@ Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) { // If the bitcast is of an allocation, and the allocation will be // converted to match the type of the cast, don't touch this. if (isa<AllocaInst>(BCI->getOperand(0)) || - isAllocationFn(BCI->getOperand(0))) { + isAllocationFn(BCI->getOperand(0), TLI)) { // See if the bitcast simplifies, if so, don't nuke this GEP yet. if (Instruction *I = visitBitCast(*BCI)) { if (I != BCI) { @@ -1107,7 +1356,8 @@ Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) { static bool -isAllocSiteRemovable(Instruction *AI, SmallVectorImpl<WeakVH> &Users) { +isAllocSiteRemovable(Instruction *AI, SmallVectorImpl<WeakVH> &Users, + const TargetLibraryInfo *TLI) { SmallVector<Instruction*, 4> Worklist; Worklist.push_back(AI); @@ -1163,7 +1413,7 @@ isAllocSiteRemovable(Instruction *AI, SmallVectorImpl<WeakVH> &Users) { } } - if (isFreeCall(I)) { + if (isFreeCall(I, TLI)) { Users.push_back(I); continue; } @@ -1188,7 +1438,7 @@ Instruction *InstCombiner::visitAllocSite(Instruction &MI) { // to null and free calls, delete the calls and replace the comparisons with // true or false as appropriate. SmallVector<WeakVH, 64> Users; - if (isAllocSiteRemovable(&MI, Users)) { + if (isAllocSiteRemovable(&MI, Users, TLI)) { for (unsigned i = 0, e = Users.size(); i != e; ++i) { Instruction *I = cast_or_null<Instruction>(&*Users[i]); if (!I) continue; @@ -1853,7 +2103,7 @@ static bool TryToSinkInstruction(Instruction *I, BasicBlock *DestBlock) { static bool AddReachableCodeToWorklist(BasicBlock *BB, SmallPtrSet<BasicBlock*, 64> &Visited, InstCombiner &IC, - const TargetData *TD, + const DataLayout *TD, const TargetLibraryInfo *TLI) { bool MadeIRChange = false; SmallVector<BasicBlock*, 256> Worklist; @@ -1872,7 +2122,7 @@ static bool AddReachableCodeToWorklist(BasicBlock *BB, Instruction *Inst = BBI++; // DCE instruction if trivially dead. - if (isInstructionTriviallyDead(Inst)) { + if (isInstructionTriviallyDead(Inst, TLI)) { ++NumDeadInst; DEBUG(errs() << "IC: DCE: " << *Inst << '\n'); Inst->eraseFromParent(); @@ -2002,7 +2252,7 @@ bool InstCombiner::DoOneIteration(Function &F, unsigned Iteration) { if (I == 0) continue; // skip null values. // Check to see if we can DCE the instruction. - if (isInstructionTriviallyDead(I)) { + if (isInstructionTriviallyDead(I, TLI)) { DEBUG(errs() << "IC: DCE: " << *I << '\n'); EraseInstFromFunction(*I); ++NumDeadInst; @@ -2102,7 +2352,7 @@ bool InstCombiner::DoOneIteration(Function &F, unsigned Iteration) { // If the instruction was modified, it's possible that it is now dead. // if so, remove it. - if (isInstructionTriviallyDead(I)) { + if (isInstructionTriviallyDead(I, TLI)) { EraseInstFromFunction(*I); } else { Worklist.Add(I); @@ -2117,9 +2367,27 @@ bool InstCombiner::DoOneIteration(Function &F, unsigned Iteration) { return MadeIRChange; } +namespace { +class InstCombinerLibCallSimplifier : public LibCallSimplifier { + InstCombiner *IC; +public: + InstCombinerLibCallSimplifier(const DataLayout *TD, + const TargetLibraryInfo *TLI, + InstCombiner *IC) + : LibCallSimplifier(TD, TLI) { + this->IC = IC; + } + + /// replaceAllUsesWith - override so that instruction replacement + /// can be defined in terms of the instruction combiner framework. + virtual void replaceAllUsesWith(Instruction *I, Value *With) const { + IC->ReplaceInstUsesWith(*I, With); + } +}; +} bool InstCombiner::runOnFunction(Function &F) { - TD = getAnalysisIfAvailable<TargetData>(); + TD = getAnalysisIfAvailable<DataLayout>(); TLI = &getAnalysis<TargetLibraryInfo>(); /// Builder - This is an IRBuilder that automatically inserts new @@ -2129,6 +2397,9 @@ bool InstCombiner::runOnFunction(Function &F) { InstCombineIRInserter(Worklist)); Builder = &TheBuilder; + InstCombinerLibCallSimplifier TheSimplifier(TD, TLI, this); + Simplifier = &TheSimplifier; + bool EverMadeChange = false; // Lower dbg.declare intrinsics otherwise their value may be clobbered |