diff options
Diffstat (limited to 'lib/Transforms/IPO/MergeFunctions.cpp')
-rw-r--r-- | lib/Transforms/IPO/MergeFunctions.cpp | 658 |
1 files changed, 278 insertions, 380 deletions
diff --git a/lib/Transforms/IPO/MergeFunctions.cpp b/lib/Transforms/IPO/MergeFunctions.cpp index aeeafe7..5d838f9 100644 --- a/lib/Transforms/IPO/MergeFunctions.cpp +++ b/lib/Transforms/IPO/MergeFunctions.cpp @@ -29,44 +29,27 @@ // // Many functions have their address taken by the virtual function table for // the object they belong to. However, as long as it's only used for a lookup -// and call, this is irrelevant, and we'd like to fold such implementations. +// and call, this is irrelevant, and we'd like to fold such functions. // -// * use SCC to cut down on pair-wise comparisons and solve larger cycles. +// * switch from n^2 pair-wise comparisons to an n-way comparison for each +// bucket. // -// The current implementation loops over a pair-wise comparison of all -// functions in the program where the two functions in the pair are treated as -// assumed to be equal until proven otherwise. We could both use fewer -// comparisons and optimize more complex cases if we used strongly connected -// components of the call graph. -// -// * be smarter about bitcast. +// * be smarter about bitcasts. // // In order to fold functions, we will sometimes add either bitcast instructions // or bitcast constant expressions. Unfortunately, this can confound further // analysis since the two functions differ where one has a bitcast and the -// other doesn't. We should learn to peer through bitcasts without imposing bad -// performance properties. -// -// * don't emit aliases for Mach-O. -// -// Mach-O doesn't support aliases which means that we must avoid introducing -// them in the bitcode on architectures which don't support them, such as -// Mac OSX. There's a few approaches to this problem; -// a) teach codegen to lower global aliases to thunks on platforms which don't -// support them. -// b) always emit thunks, and create a separate thunk-to-alias pass which -// runs on ELF systems. This has the added benefit of transforming other -// thunks such as those produced by a C++ frontend into aliases when legal -// to do so. +// other doesn't. We should learn to look through bitcasts. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "mergefunc" #include "llvm/Transforms/IPO.h" -#include "llvm/ADT/DenseMap.h" +#include "llvm/ADT/DenseSet.h" #include "llvm/ADT/FoldingSet.h" #include "llvm/ADT/SmallSet.h" #include "llvm/ADT/Statistic.h" +#include "llvm/ADT/STLExtras.h" #include "llvm/Constants.h" #include "llvm/InlineAsm.h" #include "llvm/Instructions.h" @@ -76,68 +59,103 @@ #include "llvm/Support/CallSite.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/IRBuilder.h" +#include "llvm/Support/ValueHandle.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Target/TargetData.h" -#include <map> #include <vector> using namespace llvm; STATISTIC(NumFunctionsMerged, "Number of functions merged"); namespace { + /// MergeFunctions finds functions which will generate identical machine code, + /// by considering all pointer types to be equivalent. Once identified, + /// MergeFunctions will fold them by replacing a call to one to a call to a + /// bitcast of the other. + /// class MergeFunctions : public ModulePass { public: - static char ID; // Pass identification, replacement for typeid - MergeFunctions() : ModulePass(&ID) {} + static char ID; + MergeFunctions() : ModulePass(ID) {} bool runOnModule(Module &M); private: - bool isEquivalentGEP(const GetElementPtrInst *GEP1, - const GetElementPtrInst *GEP2); - - bool equals(const BasicBlock *BB1, const BasicBlock *BB2); - bool equals(const Function *F, const Function *G); + /// MergeTwoFunctions - Merge two equivalent functions. Upon completion, G + /// may be deleted, or may be converted into a thunk. In either case, it + /// should never be visited again. + void MergeTwoFunctions(Function *F, Function *G) const; - bool compare(const Value *V1, const Value *V2); + /// WriteThunk - Replace G with a simple tail call to bitcast(F). Also + /// replace direct uses of G with bitcast(F). + void WriteThunk(Function *F, Function *G) const; - const Function *LHS, *RHS; - typedef DenseMap<const Value *, unsigned long> IDMap; - IDMap Map; - DenseMap<const Function *, IDMap> Domains; - DenseMap<const Function *, unsigned long> DomainCount; TargetData *TD; }; } char MergeFunctions::ID = 0; -static RegisterPass<MergeFunctions> X("mergefunc", "Merge Functions"); +INITIALIZE_PASS(MergeFunctions, "mergefunc", "Merge Functions", false, false); ModulePass *llvm::createMergeFunctionsPass() { return new MergeFunctions(); } -// ===----------------------------------------------------------------------=== -// Comparison of functions -// ===----------------------------------------------------------------------=== +namespace { +/// FunctionComparator - Compares two functions to determine whether or not +/// they will generate machine code with the same behaviour. TargetData is +/// used if available. The comparator always fails conservatively (erring on the +/// side of claiming that two functions are different). +class FunctionComparator { +public: + FunctionComparator(const TargetData *TD, const Function *F1, + const Function *F2) + : F1(F1), F2(F2), TD(TD), IDMap1Count(0), IDMap2Count(0) {} + + /// Compare - test whether the two functions have equivalent behaviour. + bool Compare(); + +private: + /// Compare - test whether two basic blocks have equivalent behaviour. + bool Compare(const BasicBlock *BB1, const BasicBlock *BB2); + + /// Enumerate - Assign or look up previously assigned numbers for the two + /// values, and return whether the numbers are equal. Numbers are assigned in + /// the order visited. + bool Enumerate(const Value *V1, const Value *V2); + + /// isEquivalentOperation - Compare two Instructions for equivalence, similar + /// to Instruction::isSameOperationAs but with modifications to the type + /// comparison. + bool isEquivalentOperation(const Instruction *I1, + const Instruction *I2) const; + + /// isEquivalentGEP - Compare two GEPs for equivalent pointer arithmetic. + bool isEquivalentGEP(const GEPOperator *GEP1, const GEPOperator *GEP2); + bool isEquivalentGEP(const GetElementPtrInst *GEP1, + const GetElementPtrInst *GEP2) { + return isEquivalentGEP(cast<GEPOperator>(GEP1), cast<GEPOperator>(GEP2)); + } -static unsigned long hash(const Function *F) { - const FunctionType *FTy = F->getFunctionType(); + /// isEquivalentType - Compare two Types, treating all pointer types as equal. + bool isEquivalentType(const Type *Ty1, const Type *Ty2) const; - FoldingSetNodeID ID; - ID.AddInteger(F->size()); - ID.AddInteger(F->getCallingConv()); - ID.AddBoolean(F->hasGC()); - ID.AddBoolean(FTy->isVarArg()); - ID.AddInteger(FTy->getReturnType()->getTypeID()); - for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) - ID.AddInteger(FTy->getParamType(i)->getTypeID()); - return ID.ComputeHash(); + // The two functions undergoing comparison. + const Function *F1, *F2; + + const TargetData *TD; + + typedef DenseMap<const Value *, unsigned long> IDMap; + IDMap Map1, Map2; + unsigned long IDMap1Count, IDMap2Count; +}; } -/// isEquivalentType - any two pointers are equivalent. Otherwise, standard -/// type equivalence rules apply. -static bool isEquivalentType(const Type *Ty1, const Type *Ty2) { +/// isEquivalentType - any two pointers in the same address space are +/// equivalent. Otherwise, standard type equivalence rules apply. +bool FunctionComparator::isEquivalentType(const Type *Ty1, + const Type *Ty2) const { if (Ty1 == Ty2) return true; if (Ty1->getTypeID() != Ty2->getTypeID()) @@ -184,21 +202,6 @@ static bool isEquivalentType(const Type *Ty1, const Type *Ty2) { return true; } - case Type::UnionTyID: { - const UnionType *UTy1 = cast<UnionType>(Ty1); - const UnionType *UTy2 = cast<UnionType>(Ty2); - - // TODO: we could be fancy with union(A, union(A, B)) === union(A, B), etc. - if (UTy1->getNumElements() != UTy2->getNumElements()) - return false; - - for (unsigned i = 0, e = UTy1->getNumElements(); i != e; ++i) { - if (!isEquivalentType(UTy1->getElementType(i), UTy2->getElementType(i))) - return false; - } - return true; - } - case Type::FunctionTyID: { const FunctionType *FTy1 = cast<FunctionType>(Ty1); const FunctionType *FTy2 = cast<FunctionType>(Ty2); @@ -216,11 +219,18 @@ static bool isEquivalentType(const Type *Ty1, const Type *Ty2) { return true; } - case Type::ArrayTyID: + case Type::ArrayTyID: { + const ArrayType *ATy1 = cast<ArrayType>(Ty1); + const ArrayType *ATy2 = cast<ArrayType>(Ty2); + return ATy1->getNumElements() == ATy2->getNumElements() && + isEquivalentType(ATy1->getElementType(), ATy2->getElementType()); + } + case Type::VectorTyID: { - const SequentialType *STy1 = cast<SequentialType>(Ty1); - const SequentialType *STy2 = cast<SequentialType>(Ty2); - return isEquivalentType(STy1->getElementType(), STy2->getElementType()); + const VectorType *VTy1 = cast<VectorType>(Ty1); + const VectorType *VTy2 = cast<VectorType>(Ty2); + return VTy1->getNumElements() == VTy2->getNumElements() && + isEquivalentType(VTy1->getElementType(), VTy2->getElementType()); } } } @@ -228,8 +238,8 @@ static bool isEquivalentType(const Type *Ty1, const Type *Ty2) { /// isEquivalentOperation - determine whether the two operations are the same /// except that pointer-to-A and pointer-to-B are equivalent. This should be /// kept in sync with Instruction::isSameOperationAs. -static bool -isEquivalentOperation(const Instruction *I1, const Instruction *I2) { +bool FunctionComparator::isEquivalentOperation(const Instruction *I1, + const Instruction *I2) const { if (I1->getOpcode() != I2->getOpcode() || I1->getNumOperands() != I2->getNumOperands() || !isEquivalentType(I1->getType(), I2->getType()) || @@ -281,18 +291,15 @@ isEquivalentOperation(const Instruction *I1, const Instruction *I2) { return true; } -bool MergeFunctions::isEquivalentGEP(const GetElementPtrInst *GEP1, - const GetElementPtrInst *GEP2) { +/// isEquivalentGEP - determine whether two GEP operations perform the same +/// underlying arithmetic. +bool FunctionComparator::isEquivalentGEP(const GEPOperator *GEP1, + const GEPOperator *GEP2) { + // When we have target data, we can reduce the GEP down to the value in bytes + // added to the address. if (TD && GEP1->hasAllConstantIndices() && GEP2->hasAllConstantIndices()) { - SmallVector<Value *, 8> Indices1, Indices2; - for (GetElementPtrInst::const_op_iterator I = GEP1->idx_begin(), - E = GEP1->idx_end(); I != E; ++I) { - Indices1.push_back(*I); - } - for (GetElementPtrInst::const_op_iterator I = GEP2->idx_begin(), - E = GEP2->idx_end(); I != E; ++I) { - Indices2.push_back(*I); - } + SmallVector<Value *, 8> Indices1(GEP1->idx_begin(), GEP1->idx_end()); + SmallVector<Value *, 8> Indices2(GEP2->idx_begin(), GEP2->idx_end()); uint64_t Offset1 = TD->getIndexedOffset(GEP1->getPointerOperandType(), Indices1.data(), Indices1.size()); uint64_t Offset2 = TD->getIndexedOffset(GEP2->getPointerOperandType(), @@ -300,7 +307,6 @@ bool MergeFunctions::isEquivalentGEP(const GetElementPtrInst *GEP1, return Offset1 == Offset2; } - // Equivalent types aren't enough. if (GEP1->getPointerOperand()->getType() != GEP2->getPointerOperand()->getType()) return false; @@ -309,19 +315,26 @@ bool MergeFunctions::isEquivalentGEP(const GetElementPtrInst *GEP1, return false; for (unsigned i = 0, e = GEP1->getNumOperands(); i != e; ++i) { - if (!compare(GEP1->getOperand(i), GEP2->getOperand(i))) + if (!Enumerate(GEP1->getOperand(i), GEP2->getOperand(i))) return false; } return true; } -bool MergeFunctions::compare(const Value *V1, const Value *V2) { - if (V1 == LHS || V1 == RHS) - if (V2 == LHS || V2 == RHS) - return true; +/// Enumerate - Compare two values used by the two functions under pair-wise +/// comparison. If this is the first time the values are seen, they're added to +/// the mapping so that we will detect mismatches on next use. +bool FunctionComparator::Enumerate(const Value *V1, const Value *V2) { + // Check for function @f1 referring to itself and function @f2 referring to + // itself, or referring to each other, or both referring to either of them. + // They're all equivalent if the two functions are otherwise equivalent. + if (V1 == F1 && V2 == F2) + return true; + if (V1 == F2 && V2 == F1) + return true; - // TODO: constant expressions in terms of LHS and RHS + // TODO: constant expressions with GEP or references to F1 or F2. if (isa<Constant>(V1)) return V1 == V2; @@ -332,228 +345,138 @@ bool MergeFunctions::compare(const Value *V1, const Value *V2) { IA1->getConstraintString() == IA2->getConstraintString(); } - // We enumerate constants globally and arguments, basic blocks or - // instructions within the function they belong to. - const Function *Domain1 = NULL; - if (const Argument *A = dyn_cast<Argument>(V1)) { - Domain1 = A->getParent(); - } else if (const BasicBlock *BB = dyn_cast<BasicBlock>(V1)) { - Domain1 = BB->getParent(); - } else if (const Instruction *I = dyn_cast<Instruction>(V1)) { - Domain1 = I->getParent()->getParent(); - } - - const Function *Domain2 = NULL; - if (const Argument *A = dyn_cast<Argument>(V2)) { - Domain2 = A->getParent(); - } else if (const BasicBlock *BB = dyn_cast<BasicBlock>(V2)) { - Domain2 = BB->getParent(); - } else if (const Instruction *I = dyn_cast<Instruction>(V2)) { - Domain2 = I->getParent()->getParent(); - } - - if (Domain1 != Domain2) - if (Domain1 != LHS && Domain1 != RHS) - if (Domain2 != LHS && Domain2 != RHS) - return false; - - IDMap &Map1 = Domains[Domain1]; unsigned long &ID1 = Map1[V1]; if (!ID1) - ID1 = ++DomainCount[Domain1]; + ID1 = ++IDMap1Count; - IDMap &Map2 = Domains[Domain2]; unsigned long &ID2 = Map2[V2]; if (!ID2) - ID2 = ++DomainCount[Domain2]; + ID2 = ++IDMap2Count; return ID1 == ID2; } -bool MergeFunctions::equals(const BasicBlock *BB1, const BasicBlock *BB2) { - BasicBlock::const_iterator FI = BB1->begin(), FE = BB1->end(); - BasicBlock::const_iterator GI = BB2->begin(), GE = BB2->end(); +/// Compare - test whether two basic blocks have equivalent behaviour. +bool FunctionComparator::Compare(const BasicBlock *BB1, const BasicBlock *BB2) { + BasicBlock::const_iterator F1I = BB1->begin(), F1E = BB1->end(); + BasicBlock::const_iterator F2I = BB2->begin(), F2E = BB2->end(); do { - if (!compare(FI, GI)) + if (!Enumerate(F1I, F2I)) return false; - if (isa<GetElementPtrInst>(FI) && isa<GetElementPtrInst>(GI)) { - const GetElementPtrInst *GEP1 = cast<GetElementPtrInst>(FI); - const GetElementPtrInst *GEP2 = cast<GetElementPtrInst>(GI); + if (const GetElementPtrInst *GEP1 = dyn_cast<GetElementPtrInst>(F1I)) { + const GetElementPtrInst *GEP2 = dyn_cast<GetElementPtrInst>(F2I); + if (!GEP2) + return false; - if (!compare(GEP1->getPointerOperand(), GEP2->getPointerOperand())) + if (!Enumerate(GEP1->getPointerOperand(), GEP2->getPointerOperand())) return false; if (!isEquivalentGEP(GEP1, GEP2)) return false; } else { - if (!isEquivalentOperation(FI, GI)) + if (!isEquivalentOperation(F1I, F2I)) return false; - for (unsigned i = 0, e = FI->getNumOperands(); i != e; ++i) { - Value *OpF = FI->getOperand(i); - Value *OpG = GI->getOperand(i); + assert(F1I->getNumOperands() == F2I->getNumOperands()); + for (unsigned i = 0, e = F1I->getNumOperands(); i != e; ++i) { + Value *OpF1 = F1I->getOperand(i); + Value *OpF2 = F2I->getOperand(i); - if (!compare(OpF, OpG)) + if (!Enumerate(OpF1, OpF2)) return false; - if (OpF->getValueID() != OpG->getValueID() || - !isEquivalentType(OpF->getType(), OpG->getType())) + if (OpF1->getValueID() != OpF2->getValueID() || + !isEquivalentType(OpF1->getType(), OpF2->getType())) return false; } } - ++FI, ++GI; - } while (FI != FE && GI != GE); + ++F1I, ++F2I; + } while (F1I != F1E && F2I != F2E); - return FI == FE && GI == GE; + return F1I == F1E && F2I == F2E; } -bool MergeFunctions::equals(const Function *F, const Function *G) { +/// Compare - test whether the two functions have equivalent behaviour. +bool FunctionComparator::Compare() { // We need to recheck everything, but check the things that weren't included // in the hash first. - if (F->getAttributes() != G->getAttributes()) + if (F1->getAttributes() != F2->getAttributes()) return false; - if (F->hasGC() != G->hasGC()) + if (F1->hasGC() != F2->hasGC()) return false; - if (F->hasGC() && F->getGC() != G->getGC()) + if (F1->hasGC() && F1->getGC() != F2->getGC()) return false; - if (F->hasSection() != G->hasSection()) + if (F1->hasSection() != F2->hasSection()) return false; - if (F->hasSection() && F->getSection() != G->getSection()) + if (F1->hasSection() && F1->getSection() != F2->getSection()) return false; - if (F->isVarArg() != G->isVarArg()) + if (F1->isVarArg() != F2->isVarArg()) return false; // TODO: if it's internal and only used in direct calls, we could handle this // case too. - if (F->getCallingConv() != G->getCallingConv()) + if (F1->getCallingConv() != F2->getCallingConv()) return false; - if (!isEquivalentType(F->getFunctionType(), G->getFunctionType())) + if (!isEquivalentType(F1->getFunctionType(), F2->getFunctionType())) return false; - assert(F->arg_size() == G->arg_size() && + assert(F1->arg_size() == F2->arg_size() && "Identical functions have a different number of args."); - LHS = F; - RHS = G; - // Visit the arguments so that they get enumerated in the order they're // passed in. - for (Function::const_arg_iterator fi = F->arg_begin(), gi = G->arg_begin(), - fe = F->arg_end(); fi != fe; ++fi, ++gi) { - if (!compare(fi, gi)) + for (Function::const_arg_iterator f1i = F1->arg_begin(), + f2i = F2->arg_begin(), f1e = F1->arg_end(); f1i != f1e; ++f1i, ++f2i) { + if (!Enumerate(f1i, f2i)) llvm_unreachable("Arguments repeat"); } - SmallVector<const BasicBlock *, 8> FBBs, GBBs; - SmallSet<const BasicBlock *, 128> VisitedBBs; // in terms of F. - FBBs.push_back(&F->getEntryBlock()); - GBBs.push_back(&G->getEntryBlock()); - VisitedBBs.insert(FBBs[0]); - while (!FBBs.empty()) { - const BasicBlock *FBB = FBBs.pop_back_val(); - const BasicBlock *GBB = GBBs.pop_back_val(); - if (!compare(FBB, GBB) || !equals(FBB, GBB)) { - Domains.clear(); - DomainCount.clear(); - return false; - } - const TerminatorInst *FTI = FBB->getTerminator(); - const TerminatorInst *GTI = GBB->getTerminator(); - assert(FTI->getNumSuccessors() == GTI->getNumSuccessors()); - for (unsigned i = 0, e = FTI->getNumSuccessors(); i != e; ++i) { - if (!VisitedBBs.insert(FTI->getSuccessor(i))) - continue; - FBBs.push_back(FTI->getSuccessor(i)); - GBBs.push_back(GTI->getSuccessor(i)); - } - } + // We do a CFG-ordered walk since the actual ordering of the blocks in the + // linked list is immaterial. Our walk starts at the entry block for both + // functions, then takes each block from each terminator in order. As an + // artifact, this also means that unreachable blocks are ignored. + SmallVector<const BasicBlock *, 8> F1BBs, F2BBs; + SmallSet<const BasicBlock *, 128> VisitedBBs; // in terms of F1. - Domains.clear(); - DomainCount.clear(); - return true; -} + F1BBs.push_back(&F1->getEntryBlock()); + F2BBs.push_back(&F2->getEntryBlock()); -// ===----------------------------------------------------------------------=== -// Folding of functions -// ===----------------------------------------------------------------------=== - -// Cases: -// * F is external strong, G is external strong: -// turn G into a thunk to F (1) -// * F is external strong, G is external weak: -// turn G into a thunk to F (1) -// * F is external weak, G is external weak: -// unfoldable -// * F is external strong, G is internal: -// address of G taken: -// turn G into a thunk to F (1) -// address of G not taken: -// make G an alias to F (2) -// * F is internal, G is external weak -// address of F is taken: -// turn G into a thunk to F (1) -// address of F is not taken: -// make G an alias of F (2) -// * F is internal, G is internal: -// address of F and G are taken: -// turn G into a thunk to F (1) -// address of G is not taken: -// make G an alias to F (2) -// -// alias requires linkage == (external,local,weak) fallback to creating a thunk -// external means 'externally visible' linkage != (internal,private) -// internal means linkage == (internal,private) -// weak means linkage mayBeOverridable -// being external implies that the address is taken -// -// 1. turn G into a thunk to F -// 2. make G an alias to F + VisitedBBs.insert(F1BBs[0]); + while (!F1BBs.empty()) { + const BasicBlock *F1BB = F1BBs.pop_back_val(); + const BasicBlock *F2BB = F2BBs.pop_back_val(); -enum LinkageCategory { - ExternalStrong, - ExternalWeak, - Internal -}; + if (!Enumerate(F1BB, F2BB) || !Compare(F1BB, F2BB)) + return false; -static LinkageCategory categorize(const Function *F) { - switch (F->getLinkage()) { - case GlobalValue::InternalLinkage: - case GlobalValue::PrivateLinkage: - case GlobalValue::LinkerPrivateLinkage: - return Internal; - - case GlobalValue::WeakAnyLinkage: - case GlobalValue::WeakODRLinkage: - case GlobalValue::ExternalWeakLinkage: - case GlobalValue::LinkerPrivateWeakLinkage: - return ExternalWeak; - - case GlobalValue::ExternalLinkage: - case GlobalValue::AvailableExternallyLinkage: - case GlobalValue::LinkOnceAnyLinkage: - case GlobalValue::LinkOnceODRLinkage: - case GlobalValue::AppendingLinkage: - case GlobalValue::DLLImportLinkage: - case GlobalValue::DLLExportLinkage: - case GlobalValue::CommonLinkage: - return ExternalStrong; - } + const TerminatorInst *F1TI = F1BB->getTerminator(); + const TerminatorInst *F2TI = F2BB->getTerminator(); - llvm_unreachable("Unknown LinkageType."); - return ExternalWeak; + assert(F1TI->getNumSuccessors() == F2TI->getNumSuccessors()); + for (unsigned i = 0, e = F1TI->getNumSuccessors(); i != e; ++i) { + if (!VisitedBBs.insert(F1TI->getSuccessor(i))) + continue; + + F1BBs.push_back(F1TI->getSuccessor(i)); + F2BBs.push_back(F2TI->getSuccessor(i)); + } + } + return true; } -static void ThunkGToF(Function *F, Function *G) { +/// WriteThunk - Replace G with a simple tail call to bitcast(F). Also replace +/// direct uses of G with bitcast(F). +void MergeFunctions::WriteThunk(Function *F, Function *G) const { if (!G->mayBeOverridden()) { // Redirect direct callers of G to F. Constant *BitcastF = ConstantExpr::getBitCast(F, G->getType()); @@ -567,33 +490,34 @@ static void ThunkGToF(Function *F, Function *G) { } } + // If G was internal then we may have replaced all uses if G with F. If so, + // stop here and delete G. There's no need for a thunk. + if (G->hasLocalLinkage() && G->use_empty()) { + G->eraseFromParent(); + return; + } + Function *NewG = Function::Create(G->getFunctionType(), G->getLinkage(), "", G->getParent()); BasicBlock *BB = BasicBlock::Create(F->getContext(), "", NewG); + IRBuilder<false> Builder(BB); SmallVector<Value *, 16> Args; unsigned i = 0; const FunctionType *FFTy = F->getFunctionType(); for (Function::arg_iterator AI = NewG->arg_begin(), AE = NewG->arg_end(); AI != AE; ++AI) { - if (FFTy->getParamType(i) == AI->getType()) { - Args.push_back(AI); - } else { - Args.push_back(new BitCastInst(AI, FFTy->getParamType(i), "", BB)); - } + Args.push_back(Builder.CreateBitCast(AI, FFTy->getParamType(i))); ++i; } - CallInst *CI = CallInst::Create(F, Args.begin(), Args.end(), "", BB); + CallInst *CI = Builder.CreateCall(F, Args.begin(), Args.end()); CI->setTailCall(); CI->setCallingConv(F->getCallingConv()); if (NewG->getReturnType()->isVoidTy()) { - ReturnInst::Create(F->getContext(), BB); - } else if (CI->getType() != NewG->getReturnType()) { - Value *BCI = new BitCastInst(CI, NewG->getReturnType(), "", BB); - ReturnInst::Create(F->getContext(), BCI, BB); + Builder.CreateRetVoid(); } else { - ReturnInst::Create(F->getContext(), CI, BB); + Builder.CreateRet(Builder.CreateBitCast(CI, NewG->getReturnType())); } NewG->copyAttributesFrom(G); @@ -602,152 +526,126 @@ static void ThunkGToF(Function *F, Function *G) { G->eraseFromParent(); } -static void AliasGToF(Function *F, Function *G) { - // Darwin will trigger llvm_unreachable if asked to codegen an alias. - return ThunkGToF(F, G); - -#if 0 - if (!G->hasExternalLinkage() && !G->hasLocalLinkage() && !G->hasWeakLinkage()) - return ThunkGToF(F, G); - - GlobalAlias *GA = new GlobalAlias( - G->getType(), G->getLinkage(), "", - ConstantExpr::getBitCast(F, G->getType()), G->getParent()); - F->setAlignment(std::max(F->getAlignment(), G->getAlignment())); - GA->takeName(G); - GA->setVisibility(G->getVisibility()); - G->replaceAllUsesWith(GA); - G->eraseFromParent(); -#endif -} - -static bool fold(std::vector<Function *> &FnVec, unsigned i, unsigned j) { - Function *F = FnVec[i]; - Function *G = FnVec[j]; - - LinkageCategory catF = categorize(F); - LinkageCategory catG = categorize(G); - - if (catF == ExternalWeak || (catF == Internal && catG == ExternalStrong)) { - std::swap(FnVec[i], FnVec[j]); - std::swap(F, G); - std::swap(catF, catG); - } - - switch (catF) { - case ExternalStrong: - switch (catG) { - case ExternalStrong: - case ExternalWeak: - ThunkGToF(F, G); - break; - case Internal: - if (G->hasAddressTaken()) - ThunkGToF(F, G); - else - AliasGToF(F, G); - break; - } - break; - - case ExternalWeak: { - assert(catG == ExternalWeak); +/// MergeTwoFunctions - Merge two equivalent functions. Upon completion, +/// Function G is deleted. +void MergeFunctions::MergeTwoFunctions(Function *F, Function *G) const { + if (F->isWeakForLinker()) { + assert(G->isWeakForLinker()); // Make them both thunks to the same internal function. - F->setAlignment(std::max(F->getAlignment(), G->getAlignment())); Function *H = Function::Create(F->getFunctionType(), F->getLinkage(), "", F->getParent()); H->copyAttributesFrom(F); H->takeName(F); F->replaceAllUsesWith(H); - ThunkGToF(F, G); - ThunkGToF(F, H); + unsigned MaxAlignment = std::max(G->getAlignment(), H->getAlignment()); - F->setLinkage(GlobalValue::InternalLinkage); - } break; - - case Internal: - switch (catG) { - case ExternalStrong: - llvm_unreachable(0); - // fall-through - case ExternalWeak: - if (F->hasAddressTaken()) - ThunkGToF(F, G); - else - AliasGToF(F, G); - break; - case Internal: { - bool addrTakenF = F->hasAddressTaken(); - bool addrTakenG = G->hasAddressTaken(); - if (!addrTakenF && addrTakenG) { - std::swap(FnVec[i], FnVec[j]); - std::swap(F, G); - std::swap(addrTakenF, addrTakenG); - } + WriteThunk(F, G); + WriteThunk(F, H); - if (addrTakenF && addrTakenG) { - ThunkGToF(F, G); - } else { - assert(!addrTakenG); - AliasGToF(F, G); - } - } break; - } break; + F->setAlignment(MaxAlignment); + F->setLinkage(GlobalValue::InternalLinkage); + } else { + WriteThunk(F, G); } ++NumFunctionsMerged; - return true; } -// ===----------------------------------------------------------------------=== -// Pass definition -// ===----------------------------------------------------------------------=== +static unsigned ProfileFunction(const Function *F) { + const FunctionType *FTy = F->getFunctionType(); -bool MergeFunctions::runOnModule(Module &M) { - bool Changed = false; + FoldingSetNodeID ID; + ID.AddInteger(F->size()); + ID.AddInteger(F->getCallingConv()); + ID.AddBoolean(F->hasGC()); + ID.AddBoolean(FTy->isVarArg()); + ID.AddInteger(FTy->getReturnType()->getTypeID()); + for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) + ID.AddInteger(FTy->getParamType(i)->getTypeID()); + return ID.ComputeHash(); +} - std::map<unsigned long, std::vector<Function *> > FnMap; +class ComparableFunction { +public: + ComparableFunction(Function *Func, TargetData *TD) + : Func(Func), Hash(ProfileFunction(Func)), TD(TD) {} - for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) { - if (F->isDeclaration()) - continue; + AssertingVH<Function> const Func; + const unsigned Hash; + TargetData * const TD; +}; - FnMap[hash(F)].push_back(F); +struct MergeFunctionsEqualityInfo { + static ComparableFunction *getEmptyKey() { + return reinterpret_cast<ComparableFunction*>(0); + } + static ComparableFunction *getTombstoneKey() { + return reinterpret_cast<ComparableFunction*>(-1); } + static unsigned getHashValue(const ComparableFunction *CF) { + return CF->Hash; + } + static bool isEqual(const ComparableFunction *LHS, + const ComparableFunction *RHS) { + if (LHS == RHS) + return true; + if (LHS == getEmptyKey() || LHS == getTombstoneKey() || + RHS == getEmptyKey() || RHS == getTombstoneKey()) + return false; + assert(LHS->TD == RHS->TD && "Comparing functions for different targets"); + return FunctionComparator(LHS->TD, LHS->Func, RHS->Func).Compare(); + } +}; +bool MergeFunctions::runOnModule(Module &M) { + typedef DenseSet<ComparableFunction *, MergeFunctionsEqualityInfo> FnSetType; + + bool Changed = false; TD = getAnalysisIfAvailable<TargetData>(); + std::vector<Function *> Funcs; + for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) { + if (!F->isDeclaration() && !F->hasAvailableExternallyLinkage()) + Funcs.push_back(F); + } + bool LocalChanged; do { LocalChanged = false; - DEBUG(dbgs() << "size: " << FnMap.size() << "\n"); - for (std::map<unsigned long, std::vector<Function *> >::iterator - I = FnMap.begin(), E = FnMap.end(); I != E; ++I) { - std::vector<Function *> &FnVec = I->second; - DEBUG(dbgs() << "hash (" << I->first << "): " << FnVec.size() << "\n"); - - for (int i = 0, e = FnVec.size(); i != e; ++i) { - for (int j = i + 1; j != e; ++j) { - bool isEqual = equals(FnVec[i], FnVec[j]); - - DEBUG(dbgs() << " " << FnVec[i]->getName() - << (isEqual ? " == " : " != ") - << FnVec[j]->getName() << "\n"); - - if (isEqual) { - if (fold(FnVec, i, j)) { - LocalChanged = true; - FnVec.erase(FnVec.begin() + j); - --j, --e; - } - } - } - } + FnSetType FnSet; + for (unsigned i = 0, e = Funcs.size(); i != e;) { + Function *F = Funcs[i]; + ComparableFunction *NewF = new ComparableFunction(F, TD); + std::pair<FnSetType::iterator, bool> Result = FnSet.insert(NewF); + if (!Result.second) { + ComparableFunction *&OldF = *Result.first; + assert(OldF && "Expected a hash collision"); + + // NewF will be deleted in favour of OldF unless NewF is strong and + // OldF is weak in which case swap them to keep the strong definition. + + if (OldF->Func->isWeakForLinker() && !NewF->Func->isWeakForLinker()) + std::swap(OldF, NewF); + + DEBUG(dbgs() << " " << OldF->Func->getName() << " == " + << NewF->Func->getName() << '\n'); + + Funcs.erase(Funcs.begin() + i); + --e; + + Function *DeleteF = NewF->Func; + delete NewF; + MergeTwoFunctions(OldF->Func, DeleteF); + LocalChanged = true; + Changed = true; + } else { + ++i; + } } - Changed |= LocalChanged; + DeleteContainerPointers(FnSet); } while (LocalChanged); return Changed; |