diff options
Diffstat (limited to 'lib/Target/X86')
41 files changed, 6635 insertions, 5009 deletions
diff --git a/lib/Target/X86/AsmParser/X86AsmLexer.cpp b/lib/Target/X86/AsmParser/X86AsmLexer.cpp index a58f58e..26797ab 100644 --- a/lib/Target/X86/AsmParser/X86AsmLexer.cpp +++ b/lib/Target/X86/AsmParser/X86AsmLexer.cpp @@ -33,13 +33,11 @@ class X86AsmLexer : public TargetAsmLexer { } const AsmToken &lexDefinite() { - if(tentativeIsValid) { + if (tentativeIsValid) { tentativeIsValid = false; return tentativeToken; } - else { - return getLexer()->Lex(); - } + return getLexer()->Lex(); } AsmToken LexTokenATT(); @@ -72,38 +70,65 @@ public: static unsigned MatchRegisterName(StringRef Name); AsmToken X86AsmLexer::LexTokenATT() { - const AsmToken lexedToken = lexDefinite(); + AsmToken lexedToken = lexDefinite(); switch (lexedToken.getKind()) { default: - return AsmToken(lexedToken); + return lexedToken; case AsmToken::Error: SetError(Lexer->getErrLoc(), Lexer->getErr()); - return AsmToken(lexedToken); - case AsmToken::Percent: - { + return lexedToken; + + case AsmToken::Percent: { const AsmToken &nextToken = lexTentative(); - if (nextToken.getKind() == AsmToken::Identifier) { - unsigned regID = MatchRegisterName(nextToken.getString()); + if (nextToken.getKind() != AsmToken::Identifier) + return lexedToken; + - if (regID) { - lexDefinite(); + if (unsigned regID = MatchRegisterName(nextToken.getString())) { + lexDefinite(); + // FIXME: This is completely wrong when there is a space or other + // punctuation between the % and the register name. + StringRef regStr(lexedToken.getString().data(), + lexedToken.getString().size() + + nextToken.getString().size()); + + return AsmToken(AsmToken::Register, regStr, + static_cast<int64_t>(regID)); + } + + // Match register name failed. If this is "db[0-7]", match it as an alias + // for dr[0-7]. + if (nextToken.getString().size() == 3 && + nextToken.getString().startswith("db")) { + int RegNo = -1; + switch (nextToken.getString()[2]) { + case '0': RegNo = X86::DR0; break; + case '1': RegNo = X86::DR1; break; + case '2': RegNo = X86::DR2; break; + case '3': RegNo = X86::DR3; break; + case '4': RegNo = X86::DR4; break; + case '5': RegNo = X86::DR5; break; + case '6': RegNo = X86::DR6; break; + case '7': RegNo = X86::DR7; break; + } + + if (RegNo != -1) { + lexDefinite(); + + // FIXME: This is completely wrong when there is a space or other + // punctuation between the % and the register name. StringRef regStr(lexedToken.getString().data(), lexedToken.getString().size() + nextToken.getString().size()); - - return AsmToken(AsmToken::Register, - regStr, - static_cast<int64_t>(regID)); - } - else { - return AsmToken(lexedToken); + return AsmToken(AsmToken::Register, regStr, + static_cast<int64_t>(RegNo)); } } - else { - return AsmToken(lexedToken); - } + + + return lexedToken; } } } @@ -113,26 +138,22 @@ AsmToken X86AsmLexer::LexTokenIntel() { switch(lexedToken.getKind()) { default: - return AsmToken(lexedToken); + return lexedToken; case AsmToken::Error: SetError(Lexer->getErrLoc(), Lexer->getErr()); - return AsmToken(lexedToken); - case AsmToken::Identifier: - { + return lexedToken; + case AsmToken::Identifier: { std::string upperCase = lexedToken.getString().str(); std::string lowerCase = LowercaseString(upperCase); StringRef lowerRef(lowerCase); unsigned regID = MatchRegisterName(lowerRef); - if (regID) { + if (regID) return AsmToken(AsmToken::Register, lexedToken.getString(), static_cast<int64_t>(regID)); - } - else { - return AsmToken(lexedToken); - } + return lexedToken; } } } diff --git a/lib/Target/X86/AsmParser/X86AsmParser.cpp b/lib/Target/X86/AsmParser/X86AsmParser.cpp index 40a6a7b..a856e9c 100644 --- a/lib/Target/X86/AsmParser/X86AsmParser.cpp +++ b/lib/Target/X86/AsmParser/X86AsmParser.cpp @@ -412,6 +412,28 @@ bool X86ATTAsmParser::ParseRegister(unsigned &RegNo, return false; } + // If this is "db[0-7]", match it as an alias + // for dr[0-7]. + if (RegNo == 0 && Tok.getString().size() == 3 && + Tok.getString().startswith("db")) { + switch (Tok.getString()[2]) { + case '0': RegNo = X86::DR0; break; + case '1': RegNo = X86::DR1; break; + case '2': RegNo = X86::DR2; break; + case '3': RegNo = X86::DR3; break; + case '4': RegNo = X86::DR4; break; + case '5': RegNo = X86::DR5; break; + case '6': RegNo = X86::DR6; break; + case '7': RegNo = X86::DR7; break; + } + + if (RegNo != 0) { + EndLoc = Tok.getLoc(); + Parser.Lex(); // Eat it. + return false; + } + } + if (RegNo == 0) return Error(Tok.getLoc(), "invalid register name"); @@ -597,6 +619,16 @@ ParseInstruction(const StringRef &Name, SMLoc NameLoc, return Error(NameLoc, "pushfq cannot be encoded in 32-bit mode"); } + // The "Jump if rCX Zero" form jcxz is not allowed in 64-bit mode and + // the form jrcxz is not allowed in 32-bit mode. + if (Is64Bit) { + if (Name == "jcxz") + return Error(NameLoc, "jcxz cannot be encoded in 64-bit mode"); + } else { + if (Name == "jrcxz") + return Error(NameLoc, "jrcxz cannot be encoded in 32-bit mode"); + } + // FIXME: Hack to recognize "sal..." and "rep..." for now. We need a way to // represent alternative syntaxes in the .td file, without requiring // instruction duplication. @@ -617,6 +649,23 @@ ParseInstruction(const StringRef &Name, SMLoc NameLoc, .Case("setnz", "setne") .Case("jz", "je") .Case("jnz", "jne") + .Case("jc", "jb") + // FIXME: in 32-bit mode jcxz requires an AdSize prefix. In 64-bit mode + // jecxz requires an AdSize prefix but jecxz does not have a prefix in + // 32-bit mode. + .Case("jecxz", "jcxz") + .Case("jrcxz", "jcxz") + .Case("jna", "jbe") + .Case("jnae", "jb") + .Case("jnb", "jae") + .Case("jnbe", "ja") + .Case("jnc", "jae") + .Case("jng", "jle") + .Case("jnge", "jl") + .Case("jnl", "jge") + .Case("jnle", "jg") + .Case("jpe", "jp") + .Case("jpo", "jnp") .Case("cmovcl", "cmovbl") .Case("cmovcl", "cmovbl") .Case("cmovnal", "cmovbel") @@ -631,36 +680,64 @@ ParseInstruction(const StringRef &Name, SMLoc NameLoc, .Case("cmovnlel", "cmovgl") .Case("cmovnzl", "cmovnel") .Case("cmovzl", "cmovel") + .Case("fwait", "wait") + .Case("movzx", "movzb") .Default(Name); // FIXME: Hack to recognize cmp<comparison code>{ss,sd,ps,pd}. const MCExpr *ExtraImmOp = 0; - if (PatchedName.startswith("cmp") && + if ((PatchedName.startswith("cmp") || PatchedName.startswith("vcmp")) && (PatchedName.endswith("ss") || PatchedName.endswith("sd") || PatchedName.endswith("ps") || PatchedName.endswith("pd"))) { + bool IsVCMP = PatchedName.startswith("vcmp"); + unsigned SSECCIdx = IsVCMP ? 4 : 3; unsigned SSEComparisonCode = StringSwitch<unsigned>( - PatchedName.slice(3, PatchedName.size() - 2)) - .Case("eq", 0) - .Case("lt", 1) - .Case("le", 2) - .Case("unord", 3) - .Case("neq", 4) - .Case("nlt", 5) - .Case("nle", 6) - .Case("ord", 7) + PatchedName.slice(SSECCIdx, PatchedName.size() - 2)) + .Case("eq", 0) + .Case("lt", 1) + .Case("le", 2) + .Case("unord", 3) + .Case("neq", 4) + .Case("nlt", 5) + .Case("nle", 6) + .Case("ord", 7) + .Case("eq_uq", 8) + .Case("nge", 9) + .Case("ngt", 0x0A) + .Case("false", 0x0B) + .Case("neq_oq", 0x0C) + .Case("ge", 0x0D) + .Case("gt", 0x0E) + .Case("true", 0x0F) + .Case("eq_os", 0x10) + .Case("lt_oq", 0x11) + .Case("le_oq", 0x12) + .Case("unord_s", 0x13) + .Case("neq_us", 0x14) + .Case("nlt_uq", 0x15) + .Case("nle_uq", 0x16) + .Case("ord_s", 0x17) + .Case("eq_us", 0x18) + .Case("nge_uq", 0x19) + .Case("ngt_uq", 0x1A) + .Case("false_os", 0x1B) + .Case("neq_os", 0x1C) + .Case("ge_oq", 0x1D) + .Case("gt_oq", 0x1E) + .Case("true_us", 0x1F) .Default(~0U); if (SSEComparisonCode != ~0U) { ExtraImmOp = MCConstantExpr::Create(SSEComparisonCode, getParser().getContext()); if (PatchedName.endswith("ss")) { - PatchedName = "cmpss"; + PatchedName = IsVCMP ? "vcmpss" : "cmpss"; } else if (PatchedName.endswith("sd")) { - PatchedName = "cmpsd"; + PatchedName = IsVCMP ? "vcmpsd" : "cmpsd"; } else if (PatchedName.endswith("ps")) { - PatchedName = "cmpps"; + PatchedName = IsVCMP ? "vcmpps" : "cmpps"; } else { assert(PatchedName.endswith("pd") && "Unexpected mnemonic!"); - PatchedName = "cmppd"; + PatchedName = IsVCMP ? "vcmppd" : "cmppd"; } } } diff --git a/lib/Target/X86/AsmPrinter/X86ATTInstPrinter.cpp b/lib/Target/X86/AsmPrinter/X86ATTInstPrinter.cpp index 0b64cb4..f2cdb5b 100644 --- a/lib/Target/X86/AsmPrinter/X86ATTInstPrinter.cpp +++ b/lib/Target/X86/AsmPrinter/X86ATTInstPrinter.cpp @@ -85,11 +85,18 @@ void X86ATTInstPrinter::printOperand(const MCInst *MI, unsigned OpNo, } } -void X86ATTInstPrinter::printLeaMemReference(const MCInst *MI, unsigned Op, - raw_ostream &O) { +void X86ATTInstPrinter::printMemReference(const MCInst *MI, unsigned Op, + raw_ostream &O) { const MCOperand &BaseReg = MI->getOperand(Op); const MCOperand &IndexReg = MI->getOperand(Op+2); const MCOperand &DispSpec = MI->getOperand(Op+3); + const MCOperand &SegReg = MI->getOperand(Op+4); + + // If this has a segment register, print it. + if (SegReg.getReg()) { + printOperand(MI, Op+4, O); + O << ':'; + } if (DispSpec.isImm()) { int64_t DispVal = DispSpec.getImm(); @@ -115,13 +122,3 @@ void X86ATTInstPrinter::printLeaMemReference(const MCInst *MI, unsigned Op, O << ')'; } } - -void X86ATTInstPrinter::printMemReference(const MCInst *MI, unsigned Op, - raw_ostream &O) { - // If this has a segment register, print it. - if (MI->getOperand(Op+4).getReg()) { - printOperand(MI, Op+4, O); - O << ':'; - } - printLeaMemReference(MI, Op, O); -} diff --git a/lib/Target/X86/AsmPrinter/X86ATTInstPrinter.h b/lib/Target/X86/AsmPrinter/X86ATTInstPrinter.h index 8d5d508..3be4bae 100644 --- a/lib/Target/X86/AsmPrinter/X86ATTInstPrinter.h +++ b/lib/Target/X86/AsmPrinter/X86ATTInstPrinter.h @@ -34,7 +34,6 @@ public: void printOperand(const MCInst *MI, unsigned OpNo, raw_ostream &OS); void printMemReference(const MCInst *MI, unsigned Op, raw_ostream &OS); - void printLeaMemReference(const MCInst *MI, unsigned Op, raw_ostream &OS); void printSSECC(const MCInst *MI, unsigned Op, raw_ostream &OS); void print_pcrel_imm(const MCInst *MI, unsigned OpNo, raw_ostream &OS); @@ -69,14 +68,8 @@ public: void printf128mem(const MCInst *MI, unsigned OpNo, raw_ostream &O) { printMemReference(MI, OpNo, O); } - void printlea32mem(const MCInst *MI, unsigned OpNo, raw_ostream &O) { - printLeaMemReference(MI, OpNo, O); - } - void printlea64mem(const MCInst *MI, unsigned OpNo, raw_ostream &O) { - printLeaMemReference(MI, OpNo, O); - } - void printlea64_32mem(const MCInst *MI, unsigned OpNo, raw_ostream &O) { - printLeaMemReference(MI, OpNo, O); + void printf256mem(const MCInst *MI, unsigned OpNo, raw_ostream &O) { + printMemReference(MI, OpNo, O); } }; diff --git a/lib/Target/X86/AsmPrinter/X86AsmPrinter.cpp b/lib/Target/X86/AsmPrinter/X86AsmPrinter.cpp index 183213d..73bc603 100644 --- a/lib/Target/X86/AsmPrinter/X86AsmPrinter.cpp +++ b/lib/Target/X86/AsmPrinter/X86AsmPrinter.cpp @@ -200,6 +200,11 @@ void X86AsmPrinter::printSymbolOperand(const MachineOperand &MO, case X86II::MO_GOT: O << "@GOT"; break; case X86II::MO_GOTOFF: O << "@GOTOFF"; break; case X86II::MO_PLT: O << "@PLT"; break; + case X86II::MO_TLVP: O << "@TLVP"; break; + case X86II::MO_TLVP_PIC_BASE: + O << "@TLVP" << '-'; + PrintPICBaseSymbol(O); + break; } } @@ -383,6 +388,8 @@ bool X86AsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNo, } if (MO.isGlobal() || MO.isCPI() || MO.isJTI() || MO.isSymbol()) { printSymbolOperand(MO, O); + if (Subtarget->isPICStyleRIPRel()) + O << "(%rip)"; return false; } if (MO.isReg()) { diff --git a/lib/Target/X86/AsmPrinter/X86IntelInstPrinter.cpp b/lib/Target/X86/AsmPrinter/X86IntelInstPrinter.cpp index 7e0a9bb..a632047 100644 --- a/lib/Target/X86/AsmPrinter/X86IntelInstPrinter.cpp +++ b/lib/Target/X86/AsmPrinter/X86IntelInstPrinter.cpp @@ -81,12 +81,19 @@ void X86IntelInstPrinter::printOperand(const MCInst *MI, unsigned OpNo, } } -void X86IntelInstPrinter::printLeaMemReference(const MCInst *MI, unsigned Op, - raw_ostream &O) { +void X86IntelInstPrinter::printMemReference(const MCInst *MI, unsigned Op, + raw_ostream &O) { const MCOperand &BaseReg = MI->getOperand(Op); unsigned ScaleVal = MI->getOperand(Op+1).getImm(); const MCOperand &IndexReg = MI->getOperand(Op+2); const MCOperand &DispSpec = MI->getOperand(Op+3); + const MCOperand &SegReg = MI->getOperand(Op+4); + + // If this has a segment register, print it. + if (SegReg.getReg()) { + printOperand(MI, Op+4, O); + O << ':'; + } O << '['; @@ -104,7 +111,7 @@ void X86IntelInstPrinter::printLeaMemReference(const MCInst *MI, unsigned Op, NeedPlus = true; } - + if (!DispSpec.isImm()) { if (NeedPlus) O << " + "; assert(DispSpec.isExpr() && "non-immediate displacement for LEA?"); @@ -126,13 +133,3 @@ void X86IntelInstPrinter::printLeaMemReference(const MCInst *MI, unsigned Op, O << ']'; } - -void X86IntelInstPrinter::printMemReference(const MCInst *MI, unsigned Op, - raw_ostream &O) { - // If this has a segment register, print it. - if (MI->getOperand(Op+4).getReg()) { - printOperand(MI, Op+4, O); - O << ':'; - } - printLeaMemReference(MI, Op, O); -} diff --git a/lib/Target/X86/AsmPrinter/X86IntelInstPrinter.h b/lib/Target/X86/AsmPrinter/X86IntelInstPrinter.h index a0beeb2..4d68074 100644 --- a/lib/Target/X86/AsmPrinter/X86IntelInstPrinter.h +++ b/lib/Target/X86/AsmPrinter/X86IntelInstPrinter.h @@ -36,7 +36,6 @@ public: void printOperand(const MCInst *MI, unsigned OpNo, raw_ostream &O); void printMemReference(const MCInst *MI, unsigned Op, raw_ostream &O); - void printLeaMemReference(const MCInst *MI, unsigned Op, raw_ostream &O); void printSSECC(const MCInst *MI, unsigned Op, raw_ostream &O); void print_pcrel_imm(const MCInst *MI, unsigned OpNo, raw_ostream &O); @@ -81,17 +80,9 @@ public: O << "XMMWORD PTR "; printMemReference(MI, OpNo, O); } - void printlea32mem(const MCInst *MI, unsigned OpNo, raw_ostream &O) { - O << "DWORD PTR "; - printLeaMemReference(MI, OpNo, O); - } - void printlea64mem(const MCInst *MI, unsigned OpNo, raw_ostream &O) { - O << "QWORD PTR "; - printLeaMemReference(MI, OpNo, O); - } - void printlea64_32mem(const MCInst *MI, unsigned OpNo, raw_ostream &O) { - O << "QWORD PTR "; - printLeaMemReference(MI, OpNo, O); + void printf256mem(const MCInst *MI, unsigned OpNo, raw_ostream &O) { + O << "YMMWORD PTR "; + printMemReference(MI, OpNo, O); } }; diff --git a/lib/Target/X86/AsmPrinter/X86MCInstLower.cpp b/lib/Target/X86/AsmPrinter/X86MCInstLower.cpp index 4edeca9..09f150b 100644 --- a/lib/Target/X86/AsmPrinter/X86MCInstLower.cpp +++ b/lib/Target/X86/AsmPrinter/X86MCInstLower.cpp @@ -152,6 +152,17 @@ MCOperand X86MCInstLower::LowerSymbolOperand(const MachineOperand &MO, case X86II::MO_DARWIN_STUB: break; + case X86II::MO_TLVP: RefKind = MCSymbolRefExpr::VK_TLVP; break; + case X86II::MO_TLVP_PIC_BASE: + Expr = MCSymbolRefExpr::Create(Sym, MCSymbolRefExpr::VK_TLVP, Ctx); + // Subtract the pic base. + Expr + = MCBinaryExpr::CreateSub(Expr, + MCSymbolRefExpr::Create(GetPICBaseSymbol(), + Ctx), + Ctx); + + break; case X86II::MO_TLSGD: RefKind = MCSymbolRefExpr::VK_TLSGD; break; case X86II::MO_GOTTPOFF: RefKind = MCSymbolRefExpr::VK_GOTTPOFF; break; case X86II::MO_INDNTPOFF: RefKind = MCSymbolRefExpr::VK_INDNTPOFF; break; @@ -266,10 +277,21 @@ static void SimplifyShortMoveForm(MCInst &Inst, unsigned Opcode) { return; // Check whether this is an absolute address. - if (Inst.getOperand(AddrBase + 0).getReg() != 0 || - Inst.getOperand(AddrBase + 2).getReg() != 0 || - Inst.getOperand(AddrBase + 4).getReg() != 0 || - Inst.getOperand(AddrBase + 1).getImm() != 1) + // FIXME: We know TLVP symbol refs aren't, but there should be a better way + // to do this here. + bool Absolute = true; + if (Inst.getOperand(AddrOp).isExpr()) { + const MCExpr *MCE = Inst.getOperand(AddrOp).getExpr(); + if (const MCSymbolRefExpr *SRE = dyn_cast<MCSymbolRefExpr>(MCE)) + if (SRE->getKind() == MCSymbolRefExpr::VK_TLVP) + Absolute = false; + } + + if (Absolute && + (Inst.getOperand(AddrBase + 0).getReg() != 0 || + Inst.getOperand(AddrBase + 2).getReg() != 0 || + Inst.getOperand(AddrBase + 4).getReg() != 0 || + Inst.getOperand(AddrBase + 1).getImm() != 1)) return; // If so, rewrite the instruction. @@ -327,6 +349,15 @@ void X86MCInstLower::Lower(const MachineInstr *MI, MCInst &OutMI) const { switch (OutMI.getOpcode()) { case X86::LEA64_32r: // Handle 'subreg rewriting' for the lea64_32mem operand. lower_lea64_32mem(&OutMI, 1); + // FALL THROUGH. + case X86::LEA64r: + case X86::LEA16r: + case X86::LEA32r: + // LEA should have a segment register, but it must be empty. + assert(OutMI.getNumOperands() == 1+X86::AddrNumOperands && + "Unexpected # of LEA operands"); + assert(OutMI.getOperand(1+X86::AddrSegmentReg).getReg() == 0 && + "LEA has segment specified!"); break; case X86::MOVZX16rr8: LowerSubReg32_Op0(OutMI, X86::MOVZX32rr8); break; case X86::MOVZX16rm8: LowerSubReg32_Op0(OutMI, X86::MOVZX32rm8); break; @@ -364,10 +395,9 @@ void X86MCInstLower::Lower(const MachineInstr *MI, MCInst &OutMI) const { LowerUnaryToTwoAddr(OutMI, X86::XOR32rr); // MOV32r0 -> XOR32rr break; - // TAILJMPr, TAILJMPr64, CALL64r, CALL64pcrel32 - These instructions have + // TAILJMPr64, CALL64r, CALL64pcrel32 - These instructions have // register inputs modeled as normal uses instead of implicit uses. As such, // truncate off all but the first operand (the callee). FIXME: Change isel. - case X86::TAILJMPr: case X86::TAILJMPr64: case X86::CALL64r: case X86::CALL64pcrel32: { @@ -380,11 +410,20 @@ void X86MCInstLower::Lower(const MachineInstr *MI, MCInst &OutMI) const { } // TAILJMPd, TAILJMPd64 - Lower to the correct jump instructions. + case X86::TAILJMPr: case X86::TAILJMPd: case X86::TAILJMPd64: { + unsigned Opcode; + switch (OutMI.getOpcode()) { + default: assert(0 && "Invalid opcode"); + case X86::TAILJMPr: Opcode = X86::JMP32r; break; + case X86::TAILJMPd: + case X86::TAILJMPd64: Opcode = X86::JMP_1; break; + } + MCOperand Saved = OutMI.getOperand(0); OutMI = MCInst(); - OutMI.setOpcode(X86::TAILJMP_1); + OutMI.setOpcode(Opcode); OutMI.addOperand(Saved); break; } @@ -483,8 +522,12 @@ void X86AsmPrinter::PrintDebugValueComment(const MachineInstr *MI, O << V.getName(); O << " <- "; // Frame address. Currently handles register +- offset only. - assert(MI->getOperand(0).isReg() && MI->getOperand(3).isImm()); - O << '['; printOperand(MI, 0, O); O << '+'; printOperand(MI, 3, O); + O << '['; + if (MI->getOperand(0).isReg() && MI->getOperand(0).getReg()) + printOperand(MI, 0, O); + else + O << "undef"; + O << '+'; printOperand(MI, 3, O); O << ']'; O << "+"; printOperand(MI, NOps-2, O); @@ -495,8 +538,9 @@ X86AsmPrinter::getDebugValueLocation(const MachineInstr *MI) const { MachineLocation Location; assert (MI->getNumOperands() == 7 && "Invalid no. of machine operands!"); // Frame address. Currently handles register +- offset only. - assert(MI->getOperand(0).isReg() && MI->getOperand(3).isImm()); - Location.set(MI->getOperand(0).getReg(), MI->getOperand(3).getImm()); + + if (MI->getOperand(0).isReg() && MI->getOperand(3).isImm()) + Location.set(MI->getOperand(0).getReg(), MI->getOperand(3).getImm()); return Location; } @@ -513,6 +557,13 @@ void X86AsmPrinter::EmitInstruction(const MachineInstr *MI) { } return; + case X86::TAILJMPr: + case X86::TAILJMPd: + case X86::TAILJMPd64: + // Lower these as normal, but add some comments. + OutStreamer.AddComment("TAILCALL"); + break; + case X86::MOVPC32r: { MCInst TmpInst; // This is a pseudo op for a two instruction sequence with a label, which @@ -578,7 +629,6 @@ void X86AsmPrinter::EmitInstruction(const MachineInstr *MI) { MCInst TmpInst; MCInstLowering.Lower(MI, TmpInst); - OutStreamer.EmitInstruction(TmpInst); } diff --git a/lib/Target/X86/Disassembler/CMakeLists.txt b/lib/Target/X86/Disassembler/CMakeLists.txt index 9f91060..97589c0 100644 --- a/lib/Target/X86/Disassembler/CMakeLists.txt +++ b/lib/Target/X86/Disassembler/CMakeLists.txt @@ -4,8 +4,8 @@ add_llvm_library(LLVMX86Disassembler X86Disassembler.cpp X86DisassemblerDecoder.c ) -# workaround for hanging compilation on MSVC9 -if( MSVC_VERSION EQUAL 1500 ) +# workaround for hanging compilation on MSVC9 and 10 +if( MSVC_VERSION EQUAL 1500 OR MSVC_VERSION EQUAL 1600 ) set_property( SOURCE X86Disassembler.cpp PROPERTY COMPILE_FLAGS "/Od" diff --git a/lib/Target/X86/Disassembler/X86Disassembler.cpp b/lib/Target/X86/Disassembler/X86Disassembler.cpp index 8a5a630..09f1584 100644 --- a/lib/Target/X86/Disassembler/X86Disassembler.cpp +++ b/lib/Target/X86/Disassembler/X86Disassembler.cpp @@ -252,13 +252,8 @@ static bool translateRMRegister(MCInst &mcInst, /// @param mcInst - The MCInst to append to. /// @param insn - The instruction to extract Mod, R/M, and SIB fields /// from. -/// @param sr - Whether or not to emit the segment register. The -/// LEA instruction does not expect a segment-register -/// operand. /// @return - 0 on success; nonzero otherwise -static bool translateRMMemory(MCInst &mcInst, - InternalInstruction &insn, - bool sr) { +static bool translateRMMemory(MCInst &mcInst, InternalInstruction &insn) { // Addresses in an MCInst are represented as five operands: // 1. basereg (register) The R/M base, or (if there is a SIB) the // SIB base @@ -385,10 +380,7 @@ static bool translateRMMemory(MCInst &mcInst, mcInst.addOperand(scaleAmount); mcInst.addOperand(indexReg); mcInst.addOperand(displacement); - - if (sr) - mcInst.addOperand(segmentReg); - + mcInst.addOperand(segmentReg); return false; } @@ -439,9 +431,8 @@ static bool translateRM(MCInst &mcInst, case TYPE_M1616: case TYPE_M1632: case TYPE_M1664: - return translateRMMemory(mcInst, insn, true); case TYPE_LEA: - return translateRMMemory(mcInst, insn, false); + return translateRMMemory(mcInst, insn); } } diff --git a/lib/Target/X86/README-SSE.txt b/lib/Target/X86/README-SSE.txt index e5f84e8..b6aba93 100644 --- a/lib/Target/X86/README-SSE.txt +++ b/lib/Target/X86/README-SSE.txt @@ -36,62 +36,6 @@ The pattern isel got this one right. //===---------------------------------------------------------------------===// -SSE doesn't have [mem] op= reg instructions. If we have an SSE instruction -like this: - - X += y - -and the register allocator decides to spill X, it is cheaper to emit this as: - -Y += [xslot] -store Y -> [xslot] - -than as: - -tmp = [xslot] -tmp += y -store tmp -> [xslot] - -..and this uses one fewer register (so this should be done at load folding -time, not at spiller time). *Note* however that this can only be done -if Y is dead. Here's a testcase: - -@.str_3 = external global [15 x i8] -declare void @printf(i32, ...) -define void @main() { -build_tree.exit: - br label %no_exit.i7 - -no_exit.i7: ; preds = %no_exit.i7, %build_tree.exit - %tmp.0.1.0.i9 = phi double [ 0.000000e+00, %build_tree.exit ], - [ %tmp.34.i18, %no_exit.i7 ] - %tmp.0.0.0.i10 = phi double [ 0.000000e+00, %build_tree.exit ], - [ %tmp.28.i16, %no_exit.i7 ] - %tmp.28.i16 = fadd double %tmp.0.0.0.i10, 0.000000e+00 - %tmp.34.i18 = fadd double %tmp.0.1.0.i9, 0.000000e+00 - br i1 false, label %Compute_Tree.exit23, label %no_exit.i7 - -Compute_Tree.exit23: ; preds = %no_exit.i7 - tail call void (i32, ...)* @printf( i32 0 ) - store double %tmp.34.i18, double* null - ret void -} - -We currently emit: - -.BBmain_1: - xorpd %XMM1, %XMM1 - addsd %XMM0, %XMM1 -*** movsd %XMM2, QWORD PTR [%ESP + 8] -*** addsd %XMM2, %XMM1 -*** movsd QWORD PTR [%ESP + 8], %XMM2 - jmp .BBmain_1 # no_exit.i7 - -This is a bugpoint reduced testcase, which is why the testcase doesn't make -much sense (e.g. its an infinite loop). :) - -//===---------------------------------------------------------------------===// - SSE should implement 'select_cc' using 'emulated conditional moves' that use pcmp/pand/pandn/por to do a selection instead of a conditional branch: @@ -122,12 +66,6 @@ LBB_X_2: //===---------------------------------------------------------------------===// -It's not clear whether we should use pxor or xorps / xorpd to clear XMM -registers. The choice may depend on subtarget information. We should do some -more experiments on different x86 machines. - -//===---------------------------------------------------------------------===// - Lower memcpy / memset to a series of SSE 128 bit move instructions when it's feasible. @@ -151,45 +89,6 @@ Perhaps use pxor / xorp* to clear a XMM register first? //===---------------------------------------------------------------------===// -How to decide when to use the "floating point version" of logical ops? Here are -some code fragments: - - movaps LCPI5_5, %xmm2 - divps %xmm1, %xmm2 - mulps %xmm2, %xmm3 - mulps 8656(%ecx), %xmm3 - addps 8672(%ecx), %xmm3 - andps LCPI5_6, %xmm2 - andps LCPI5_1, %xmm3 - por %xmm2, %xmm3 - movdqa %xmm3, (%edi) - - movaps LCPI5_5, %xmm1 - divps %xmm0, %xmm1 - mulps %xmm1, %xmm3 - mulps 8656(%ecx), %xmm3 - addps 8672(%ecx), %xmm3 - andps LCPI5_6, %xmm1 - andps LCPI5_1, %xmm3 - orps %xmm1, %xmm3 - movaps %xmm3, 112(%esp) - movaps %xmm3, (%ebx) - -Due to some minor source change, the later case ended up using orps and movaps -instead of por and movdqa. Does it matter? - -//===---------------------------------------------------------------------===// - -X86RegisterInfo::copyRegToReg() returns X86::MOVAPSrr for VR128. Is it possible -to choose between movaps, movapd, and movdqa based on types of source and -destination? - -How about andps, andpd, and pand? Do we really care about the type of the packed -elements? If not, why not always use the "ps" variants which are likely to be -shorter. - -//===---------------------------------------------------------------------===// - External test Nurbs exposed some problems. Look for __ZN15Nurbs_SSE_Cubic17TessellateSurfaceE, bb cond_next140. This is what icc emits: @@ -278,41 +177,6 @@ It also exposes some other problems. See MOV32ri -3 and the spills. //===---------------------------------------------------------------------===// -http://gcc.gnu.org/bugzilla/show_bug.cgi?id=25500 - -LLVM is producing bad code. - -LBB_main_4: # cond_true44 - addps %xmm1, %xmm2 - subps %xmm3, %xmm2 - movaps (%ecx), %xmm4 - movaps %xmm2, %xmm1 - addps %xmm4, %xmm1 - addl $16, %ecx - incl %edx - cmpl $262144, %edx - movaps %xmm3, %xmm2 - movaps %xmm4, %xmm3 - jne LBB_main_4 # cond_true44 - -There are two problems. 1) No need to two loop induction variables. We can -compare against 262144 * 16. 2) Known register coalescer issue. We should -be able eliminate one of the movaps: - - addps %xmm2, %xmm1 <=== Commute! - subps %xmm3, %xmm1 - movaps (%ecx), %xmm4 - movaps %xmm1, %xmm1 <=== Eliminate! - addps %xmm4, %xmm1 - addl $16, %ecx - incl %edx - cmpl $262144, %edx - movaps %xmm3, %xmm2 - movaps %xmm4, %xmm3 - jne LBB_main_4 # cond_true44 - -//===---------------------------------------------------------------------===// - Consider: __m128 test(float a) { @@ -382,22 +246,6 @@ elements are fixed zeros. //===---------------------------------------------------------------------===// -__m128d test1( __m128d A, __m128d B) { - return _mm_shuffle_pd(A, B, 0x3); -} - -compiles to - -shufpd $3, %xmm1, %xmm0 - -Perhaps it's better to use unpckhpd instead? - -unpckhpd %xmm1, %xmm0 - -Don't know if unpckhpd is faster. But it is shorter. - -//===---------------------------------------------------------------------===// - This code generates ugly code, probably due to costs being off or something: define void @test(float* %P, <4 x float>* %P2 ) { @@ -549,6 +397,7 @@ entry: %tmp20 = tail call i64 @ccoshf( float %tmp6, float %z.0 ) nounwind readonly ret i64 %tmp20 } +declare i64 @ccoshf(float %z.0, float %z.1) nounwind readonly This currently compiles to: @@ -987,3 +836,34 @@ This would be better kept in the SSE unit by treating XMM0 as a 4xfloat and doing a shuffle from v[1] to v[0] then a float store. //===---------------------------------------------------------------------===// + +On SSE4 machines, we compile this code: + +define <2 x float> @test2(<2 x float> %Q, <2 x float> %R, + <2 x float> *%P) nounwind { + %Z = fadd <2 x float> %Q, %R + + store <2 x float> %Z, <2 x float> *%P + ret <2 x float> %Z +} + +into: + +_test2: ## @test2 +## BB#0: + insertps $0, %xmm2, %xmm2 + insertps $16, %xmm3, %xmm2 + insertps $0, %xmm0, %xmm3 + insertps $16, %xmm1, %xmm3 + addps %xmm2, %xmm3 + movq %xmm3, (%rdi) + movaps %xmm3, %xmm0 + pshufd $1, %xmm3, %xmm1 + ## kill: XMM1<def> XMM1<kill> + ret + +The insertps's of $0 are pointless complex copies. + +//===---------------------------------------------------------------------===// + + diff --git a/lib/Target/X86/README-X86-64.txt b/lib/Target/X86/README-X86-64.txt index e8f7c5d..78c4dc0 100644 --- a/lib/Target/X86/README-X86-64.txt +++ b/lib/Target/X86/README-X86-64.txt @@ -1,27 +1,5 @@ //===- README_X86_64.txt - Notes for X86-64 code gen ----------------------===// -Implement different PIC models? Right now we only support Mac OS X with small -PIC code model. - -//===---------------------------------------------------------------------===// - -For this: - -extern void xx(void); -void bar(void) { - xx(); -} - -gcc compiles to: - -.globl _bar -_bar: - jmp _xx - -We need to do the tailcall optimization as well. - -//===---------------------------------------------------------------------===// - AMD64 Optimization Manual 8.2 has some nice information about optimizing integer multiplication by a constant. How much of it applies to Intel's X86-64 implementation? There are definite trade-offs to consider: latency vs. register @@ -96,123 +74,14 @@ gcc: movq %rax, (%rdx) ret -//===---------------------------------------------------------------------===// - -Vararg function prologue can be further optimized. Currently all XMM registers -are stored into register save area. Most of them can be eliminated since the -upper bound of the number of XMM registers used are passed in %al. gcc produces -something like the following: - - movzbl %al, %edx - leaq 0(,%rdx,4), %rax - leaq 4+L2(%rip), %rdx - leaq 239(%rsp), %rax - jmp *%rdx - movaps %xmm7, -15(%rax) - movaps %xmm6, -31(%rax) - movaps %xmm5, -47(%rax) - movaps %xmm4, -63(%rax) - movaps %xmm3, -79(%rax) - movaps %xmm2, -95(%rax) - movaps %xmm1, -111(%rax) - movaps %xmm0, -127(%rax) -L2: - -It jumps over the movaps that do not need to be stored. Hard to see this being -significant as it added 5 instruciton (including a indirect branch) to avoid -executing 0 to 8 stores in the function prologue. - -Perhaps we can optimize for the common case where no XMM registers are used for -parameter passing. i.e. is %al == 0 jump over all stores. Or in the case of a -leaf function where we can determine that no XMM input parameter is need, avoid -emitting the stores at all. - -//===---------------------------------------------------------------------===// +And the codegen is even worse for the following +(from http://gcc.gnu.org/bugzilla/show_bug.cgi?id=33103): + void fill1(char *s, int a) + { + __builtin_memset(s, a, 15); + } -AMD64 has a complex calling convention for aggregate passing by value: - -1. If the size of an object is larger than two eightbytes, or in C++, is a non- - POD structure or union type, or contains unaligned fields, it has class - MEMORY. -2. Both eightbytes get initialized to class NO_CLASS. -3. Each field of an object is classified recursively so that always two fields - are considered. The resulting class is calculated according to the classes - of the fields in the eightbyte: - (a) If both classes are equal, this is the resulting class. - (b) If one of the classes is NO_CLASS, the resulting class is the other - class. - (c) If one of the classes is MEMORY, the result is the MEMORY class. - (d) If one of the classes is INTEGER, the result is the INTEGER. - (e) If one of the classes is X87, X87UP, COMPLEX_X87 class, MEMORY is used as - class. - (f) Otherwise class SSE is used. -4. Then a post merger cleanup is done: - (a) If one of the classes is MEMORY, the whole argument is passed in memory. - (b) If SSEUP is not preceeded by SSE, it is converted to SSE. - -Currently llvm frontend does not handle this correctly. - -Problem 1: - typedef struct { int i; double d; } QuadWordS; -It is currently passed in two i64 integer registers. However, gcc compiled -callee expects the second element 'd' to be passed in XMM0. - -Problem 2: - typedef struct { int32_t i; float j; double d; } QuadWordS; -The size of the first two fields == i64 so they will be combined and passed in -a integer register RDI. The third field is still passed in XMM0. - -Problem 3: - typedef struct { int64_t i; int8_t j; int64_t d; } S; - void test(S s) -The size of this aggregate is greater than two i64 so it should be passed in -memory. Currently llvm breaks this down and passed it in three integer -registers. - -Problem 4: -Taking problem 3 one step ahead where a function expects a aggregate value -in memory followed by more parameter(s) passed in register(s). - void test(S s, int b) - -LLVM IR does not allow parameter passing by aggregates, therefore it must break -the aggregates value (in problem 3 and 4) into a number of scalar values: - void %test(long %s.i, byte %s.j, long %s.d); - -However, if the backend were to lower this code literally it would pass the 3 -values in integer registers. To force it be passed in memory, the frontend -should change the function signiture to: - void %test(long %undef1, long %undef2, long %undef3, long %undef4, - long %undef5, long %undef6, - long %s.i, byte %s.j, long %s.d); -And the callee would look something like this: - call void %test( undef, undef, undef, undef, undef, undef, - %tmp.s.i, %tmp.s.j, %tmp.s.d ); -The first 6 undef parameters would exhaust the 6 integer registers used for -parameter passing. The following three integer values would then be forced into -memory. - -For problem 4, the parameter 'd' would be moved to the front of the parameter -list so it will be passed in register: - void %test(int %d, - long %undef1, long %undef2, long %undef3, long %undef4, - long %undef5, long %undef6, - long %s.i, byte %s.j, long %s.d); - -//===---------------------------------------------------------------------===// - -Right now the asm printer assumes GlobalAddress are accessed via RIP relative -addressing. Therefore, it is not possible to generate this: - movabsq $__ZTV10polynomialIdE+16, %rax - -That is ok for now since we currently only support small model. So the above -is selected as - leaq __ZTV10polynomialIdE+16(%rip), %rax - -This is probably slightly slower but is much shorter than movabsq. However, if -we were to support medium or larger code models, we need to use the movabs -instruction. We should probably introduce something like AbsoluteAddress to -distinguish it from GlobalAddress so the asm printer and JIT code emitter can -do the right thing. +For this version, we duplicate the computation of the constant to store. //===---------------------------------------------------------------------===// @@ -298,3 +167,107 @@ be able to recognize the zero extend. This could also presumably be implemented if we have whole-function selectiondags. //===---------------------------------------------------------------------===// + +Take the following C code +(from http://gcc.gnu.org/bugzilla/show_bug.cgi?id=43640): + +struct u1 +{ + float x; + float y; +}; + +float foo(struct u1 u) +{ + return u.x + u.y; +} + +Optimizes to the following IR: +define float @foo(double %u.0) nounwind readnone { +entry: + %tmp8 = bitcast double %u.0 to i64 ; <i64> [#uses=2] + %tmp6 = trunc i64 %tmp8 to i32 ; <i32> [#uses=1] + %tmp7 = bitcast i32 %tmp6 to float ; <float> [#uses=1] + %tmp2 = lshr i64 %tmp8, 32 ; <i64> [#uses=1] + %tmp3 = trunc i64 %tmp2 to i32 ; <i32> [#uses=1] + %tmp4 = bitcast i32 %tmp3 to float ; <float> [#uses=1] + %0 = fadd float %tmp7, %tmp4 ; <float> [#uses=1] + ret float %0 +} + +And current llvm-gcc/clang output: + movd %xmm0, %rax + movd %eax, %xmm1 + shrq $32, %rax + movd %eax, %xmm0 + addss %xmm1, %xmm0 + ret + +We really shouldn't move the floats to RAX, only to immediately move them +straight back to the XMM registers. + +There really isn't any good way to handle this purely in IR optimizers; it +could possibly be handled by changing the output of the fronted, though. It +would also be feasible to add a x86-specific DAGCombine to optimize the +bitcast+trunc+(lshr+)bitcast combination. + +//===---------------------------------------------------------------------===// + +Take the following code +(from http://gcc.gnu.org/bugzilla/show_bug.cgi?id=34653): +extern unsigned long table[]; +unsigned long foo(unsigned char *p) { + unsigned long tag = *p; + return table[tag >> 4] + table[tag & 0xf]; +} + +Current code generated: + movzbl (%rdi), %eax + movq %rax, %rcx + andq $240, %rcx + shrq %rcx + andq $15, %rax + movq table(,%rax,8), %rax + addq table(%rcx), %rax + ret + +Issues: +1. First movq should be movl; saves a byte. +2. Both andq's should be andl; saves another two bytes. I think this was + implemented at one point, but subsequently regressed. +3. shrq should be shrl; saves another byte. +4. The first andq can be completely eliminated by using a slightly more + expensive addressing mode. + +//===---------------------------------------------------------------------===// + +Consider the following (contrived testcase, but contains common factors): + +#include <stdarg.h> +int test(int x, ...) { + int sum, i; + va_list l; + va_start(l, x); + for (i = 0; i < x; i++) + sum += va_arg(l, int); + va_end(l); + return sum; +} + +Testcase given in C because fixing it will likely involve changing the IR +generated for it. The primary issue with the result is that it doesn't do any +of the optimizations which are possible if we know the address of a va_list +in the current function is never taken: +1. We shouldn't spill the XMM registers because we only call va_arg with "int". +2. It would be nice if we could scalarrepl the va_list. +3. Probably overkill, but it'd be cool if we could peel off the first five +iterations of the loop. + +Other optimizations involving functions which use va_arg on floats which don't +have the address of a va_list taken: +1. Conversely to the above, we shouldn't spill general registers if we only + call va_arg on "double". +2. If we know nothing more than 64 bits wide is read from the XMM registers, + we can change the spilling code to reduce the amount of stack used by half. + +//===---------------------------------------------------------------------===// diff --git a/lib/Target/X86/README.txt b/lib/Target/X86/README.txt index d4545a6..efc0cd8 100644 --- a/lib/Target/X86/README.txt +++ b/lib/Target/X86/README.txt @@ -1103,57 +1103,6 @@ be folded into: shl [mem], 1 //===---------------------------------------------------------------------===// -This testcase misses a read/modify/write opportunity (from PR1425): - -void vertical_decompose97iH1(int *b0, int *b1, int *b2, int width){ - int i; - for(i=0; i<width; i++) - b1[i] += (1*(b0[i] + b2[i])+0)>>0; -} - -We compile it down to: - -LBB1_2: # bb - movl (%esi,%edi,4), %ebx - addl (%ecx,%edi,4), %ebx - addl (%edx,%edi,4), %ebx - movl %ebx, (%ecx,%edi,4) - incl %edi - cmpl %eax, %edi - jne LBB1_2 # bb - -the inner loop should add to the memory location (%ecx,%edi,4), saving -a mov. Something like: - - movl (%esi,%edi,4), %ebx - addl (%edx,%edi,4), %ebx - addl %ebx, (%ecx,%edi,4) - -Here is another interesting example: - -void vertical_compose97iH1(int *b0, int *b1, int *b2, int width){ - int i; - for(i=0; i<width; i++) - b1[i] -= (1*(b0[i] + b2[i])+0)>>0; -} - -We miss the r/m/w opportunity here by using 2 subs instead of an add+sub[mem]: - -LBB9_2: # bb - movl (%ecx,%edi,4), %ebx - subl (%esi,%edi,4), %ebx - subl (%edx,%edi,4), %ebx - movl %ebx, (%ecx,%edi,4) - incl %edi - cmpl %eax, %edi - jne LBB9_2 # bb - -Additionally, LSR should rewrite the exit condition of these loops to use -a stride-4 IV, would would allow all the scales in the loop to go away. -This would result in smaller code and more efficient microops. - -//===---------------------------------------------------------------------===// - In SSE mode, we turn abs and neg into a load from the constant pool plus a xor or and instruction, for example: @@ -1301,15 +1250,8 @@ FirstOnet: xorl %eax, %eax ret -There are a few possible improvements here: -1. We should be able to eliminate the dead load into %ecx -2. We could change the "movl 8(%esp), %eax" into - "movzwl 10(%esp), %eax"; this lets us change the cmpl - into a testl, which is shorter, and eliminate the shift. - -We could also in theory eliminate the branch by using a conditional -for the address of the load, but that seems unlikely to be worthwhile -in general. +We could change the "movl 8(%esp), %eax" into "movzwl 10(%esp), %eax"; this +lets us change the cmpl into a testl, which is shorter, and eliminate the shift. //===---------------------------------------------------------------------===// @@ -1331,22 +1273,23 @@ bb7: ; preds = %entry to: -_foo: +foo: # @foo +# BB#0: # %entry + movl 4(%esp), %ecx cmpb $0, 16(%esp) - movl 12(%esp), %ecx + je .LBB0_2 +# BB#1: # %bb movl 8(%esp), %eax - movl 4(%esp), %edx - je LBB1_2 # bb7 -LBB1_1: # bb - addl %edx, %eax + addl %ecx, %eax ret -LBB1_2: # bb7 - movl %edx, %eax - subl %ecx, %eax +.LBB0_2: # %bb7 + movl 12(%esp), %edx + movl %ecx, %eax + subl %edx, %eax ret -The coalescer could coalesce "edx" with "eax" to avoid the movl in LBB1_2 -if it commuted the addl in LBB1_1. +There's an obviously unnecessary movl in .LBB0_2, and we could eliminate a +couple more movls by putting 4(%esp) into %eax instead of %ecx. //===---------------------------------------------------------------------===// @@ -1396,8 +1339,7 @@ Also check why xmm7 is not used at all in the function. //===---------------------------------------------------------------------===// -Legalize loses track of the fact that bools are always zero extended when in -memory. This causes us to compile abort_gzip (from 164.gzip) from: +Take the following: target datalayout = "e-p:32:32:32-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:32:64-f32:32:32-f64:32:64-v64:64:64-v128:128:128-a0:0:64-f80:128:128" target triple = "i386-apple-darwin8" @@ -1416,16 +1358,15 @@ bb4.i: ; preds = %entry } declare void @exit(i32) noreturn nounwind -into: - -_abort_gzip: +This compiles into: +_abort_gzip: ## @abort_gzip +## BB#0: ## %entry subl $12, %esp movb _in_exit.4870.b, %al - notb %al - testb $1, %al - jne LBB1_2 ## bb4.i -LBB1_1: ## bb.i - ... + cmpb $1, %al + jne LBB0_2 + +We somehow miss folding the movb into the cmpb. //===---------------------------------------------------------------------===// diff --git a/lib/Target/X86/X86.h b/lib/Target/X86/X86.h index 22e89a5..677781d 100644 --- a/lib/Target/X86/X86.h +++ b/lib/Target/X86/X86.h @@ -35,6 +35,10 @@ class formatted_raw_ostream; FunctionPass *createX86ISelDag(X86TargetMachine &TM, CodeGenOpt::Level OptLevel); +/// createGlobalBaseRegPass - This pass initializes a global base +/// register for PIC on x86-32. +FunctionPass* createGlobalBaseRegPass(); + /// createX86FloatingPointStackifierPass - This function returns a pass which /// converts floating point register references and pseudo instructions into /// floating point stack references and physical instructions. diff --git a/lib/Target/X86/X86AsmBackend.cpp b/lib/Target/X86/X86AsmBackend.cpp index 151087f..2cf65c1 100644 --- a/lib/Target/X86/X86AsmBackend.cpp +++ b/lib/Target/X86/X86AsmBackend.cpp @@ -23,13 +23,13 @@ #include "llvm/Target/TargetAsmBackend.h" using namespace llvm; -namespace { static unsigned getFixupKindLog2Size(unsigned Kind) { switch (Kind) { default: assert(0 && "invalid fixup kind!"); case X86::reloc_pcrel_1byte: case FK_Data_1: return 0; + case X86::reloc_pcrel_2byte: case FK_Data_2: return 1; case X86::reloc_pcrel_4byte: case X86::reloc_riprel_4byte: @@ -39,6 +39,7 @@ static unsigned getFixupKindLog2Size(unsigned Kind) { } } +namespace { class X86AsmBackend : public TargetAsmBackend { public: X86AsmBackend(const Target &T) @@ -60,6 +61,7 @@ public: bool WriteNopData(uint64_t Count, MCObjectWriter *OW) const; }; +} // end anonymous namespace static unsigned getRelaxedOpcode(unsigned Op) { switch (Op) { @@ -75,7 +77,6 @@ static unsigned getRelaxedOpcode(unsigned Op) { case X86::JG_1: return X86::JG_4; case X86::JLE_1: return X86::JLE_4; case X86::JL_1: return X86::JL_4; - case X86::TAILJMP_1: case X86::JMP_1: return X86::JMP_4; case X86::JNE_1: return X86::JNE_4; case X86::JNO_1: return X86::JNO_4; @@ -180,6 +181,7 @@ bool X86AsmBackend::WriteNopData(uint64_t Count, MCObjectWriter *OW) const { /* *** */ +namespace { class ELFX86AsmBackend : public X86AsmBackend { public: ELFX86AsmBackend(const Target &T) @@ -281,7 +283,7 @@ public: } }; -} +} // end anonymous namespace TargetAsmBackend *llvm::createX86_32AsmBackend(const Target &T, const std::string &TT) { diff --git a/lib/Target/X86/X86CallingConv.td b/lib/Target/X86/X86CallingConv.td index a5774e1..a6a1e4e 100644 --- a/lib/Target/X86/X86CallingConv.td +++ b/lib/Target/X86/X86CallingConv.td @@ -42,7 +42,7 @@ def RetCC_X86Common : CallingConv<[ // MMX vector types are always returned in MM0. If the target doesn't have // MM0, it doesn't support these vector types. - CCIfType<[v8i8, v4i16, v2i32, v1i64, v2f32], CCAssignToReg<[MM0]>>, + CCIfType<[v8i8, v4i16, v2i32, v1i64], CCAssignToReg<[MM0]>>, // Long double types are always returned in ST0 (even with SSE). CCIfType<[f80], CCAssignToReg<[ST0, ST1]>> @@ -89,7 +89,7 @@ def RetCC_X86_64_C : CallingConv<[ // returned in RAX. This disagrees with ABI documentation but is bug // compatible with gcc. CCIfType<[v1i64], CCAssignToReg<[RAX]>>, - CCIfType<[v8i8, v4i16, v2i32, v2f32], CCAssignToReg<[XMM0, XMM1]>>, + CCIfType<[v8i8, v4i16, v2i32], CCAssignToReg<[XMM0, XMM1]>>, CCDelegateTo<RetCC_X86Common> ]>; @@ -155,7 +155,7 @@ def CC_X86_64_C : CallingConv<[ // The first 8 MMX (except for v1i64) vector arguments are passed in XMM // registers on Darwin. - CCIfType<[v8i8, v4i16, v2i32, v2f32], + CCIfType<[v8i8, v4i16, v2i32], CCIfSubtarget<"isTargetDarwin()", CCIfSubtarget<"hasSSE2()", CCPromoteToType<v2i64>>>>, @@ -177,7 +177,7 @@ def CC_X86_64_C : CallingConv<[ CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], CCAssignToStack<16, 16>>, // __m64 vectors get 8-byte stack slots that are 8-byte aligned. - CCIfType<[v8i8, v4i16, v2i32, v1i64, v2f32], CCAssignToStack<8, 8>> + CCIfType<[v8i8, v4i16, v2i32, v1i64], CCAssignToStack<8, 8>> ]>; // Calling convention used on Win64 @@ -195,7 +195,7 @@ def CC_X86_Win64_C : CallingConv<[ CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], CCPassIndirect<i64>>, // The first 4 MMX vector arguments are passed in GPRs. - CCIfType<[v8i8, v4i16, v2i32, v1i64, v2f32], + CCIfType<[v8i8, v4i16, v2i32, v1i64], CCBitConvertToType<i64>>, // The first 4 integer arguments are passed in integer registers. @@ -254,7 +254,7 @@ def CC_X86_32_Common : CallingConv<[ // The first 3 __m64 (except for v1i64) vector arguments are passed in mmx // registers if the call is not a vararg call. - CCIfNotVarArg<CCIfType<[v8i8, v4i16, v2i32, v2f32], + CCIfNotVarArg<CCIfType<[v8i8, v4i16, v2i32], CCAssignToReg<[MM0, MM1, MM2]>>>, // Integer/Float values get stored in stack slots that are 4 bytes in diff --git a/lib/Target/X86/X86CodeEmitter.cpp b/lib/Target/X86/X86CodeEmitter.cpp index 8f02604..f13669b 100644 --- a/lib/Target/X86/X86CodeEmitter.cpp +++ b/lib/Target/X86/X86CodeEmitter.cpp @@ -138,7 +138,7 @@ bool Emitter<CodeEmitter>::runOnMachineFunction(MachineFunction &MF) { // MOVPC32r is basically a call plus a pop instruction. if (Desc.getOpcode() == X86::MOVPC32r) emitInstruction(*I, &II->get(X86::POP32r)); - NumEmitted++; // Keep track of the # of mi's emitted + ++NumEmitted; // Keep track of the # of mi's emitted } } } while (MCE.finishFunction(MF)); @@ -730,9 +730,9 @@ void Emitter<CodeEmitter>::emitInstruction(const MachineInstr &MI, case X86II::MRMDestMem: { MCE.emitByte(BaseOpcode); emitMemModRMByte(MI, CurOp, - getX86RegNum(MI.getOperand(CurOp + X86AddrNumOperands) + getX86RegNum(MI.getOperand(CurOp + X86::AddrNumOperands) .getReg())); - CurOp += X86AddrNumOperands + 1; + CurOp += X86::AddrNumOperands + 1; if (CurOp != NumOps) emitConstant(MI.getOperand(CurOp++).getImm(), X86II::getSizeOfImm(Desc->TSFlags)); @@ -750,13 +750,7 @@ void Emitter<CodeEmitter>::emitInstruction(const MachineInstr &MI, break; case X86II::MRMSrcMem: { - // FIXME: Maybe lea should have its own form? - int AddrOperands; - if (Opcode == X86::LEA64r || Opcode == X86::LEA64_32r || - Opcode == X86::LEA16r || Opcode == X86::LEA32r) - AddrOperands = X86AddrNumOperands - 1; // No segment register - else - AddrOperands = X86AddrNumOperands; + int AddrOperands = X86::AddrNumOperands; intptr_t PCAdj = (CurOp + AddrOperands + 1 != NumOps) ? X86II::getSizeOfImm(Desc->TSFlags) : 0; @@ -810,14 +804,14 @@ void Emitter<CodeEmitter>::emitInstruction(const MachineInstr &MI, case X86II::MRM2m: case X86II::MRM3m: case X86II::MRM4m: case X86II::MRM5m: case X86II::MRM6m: case X86II::MRM7m: { - intptr_t PCAdj = (CurOp + X86AddrNumOperands != NumOps) ? - (MI.getOperand(CurOp+X86AddrNumOperands).isImm() ? + intptr_t PCAdj = (CurOp + X86::AddrNumOperands != NumOps) ? + (MI.getOperand(CurOp+X86::AddrNumOperands).isImm() ? X86II::getSizeOfImm(Desc->TSFlags) : 4) : 0; MCE.emitByte(BaseOpcode); emitMemModRMByte(MI, CurOp, (Desc->TSFlags & X86II::FormMask)-X86II::MRM0m, PCAdj); - CurOp += X86AddrNumOperands; + CurOp += X86::AddrNumOperands; if (CurOp == NumOps) break; diff --git a/lib/Target/X86/X86FastISel.cpp b/lib/Target/X86/X86FastISel.cpp index 1bc5eb7..cdde24a 100644 --- a/lib/Target/X86/X86FastISel.cpp +++ b/lib/Target/X86/X86FastISel.cpp @@ -23,7 +23,9 @@ #include "llvm/GlobalVariable.h" #include "llvm/Instructions.h" #include "llvm/IntrinsicInst.h" +#include "llvm/CodeGen/Analysis.h" #include "llvm/CodeGen/FastISel.h" +#include "llvm/CodeGen/FunctionLoweringInfo.h" #include "llvm/CodeGen/MachineConstantPool.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineRegisterInfo.h" @@ -52,20 +54,7 @@ class X86FastISel : public FastISel { bool X86ScalarSSEf32; public: - explicit X86FastISel(MachineFunction &mf, - DenseMap<const Value *, unsigned> &vm, - DenseMap<const BasicBlock *, MachineBasicBlock *> &bm, - DenseMap<const AllocaInst *, int> &am, - std::vector<std::pair<MachineInstr*, unsigned> > &pn -#ifndef NDEBUG - , SmallSet<const Instruction *, 8> &cil -#endif - ) - : FastISel(mf, vm, bm, am, pn -#ifndef NDEBUG - , cil -#endif - ) { + explicit X86FastISel(FunctionLoweringInfo &funcInfo) : FastISel(funcInfo) { Subtarget = &TM.getSubtarget<X86Subtarget>(); StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP; X86ScalarSSEf64 = Subtarget->hasSSE2(); @@ -96,6 +85,8 @@ private: bool X86SelectStore(const Instruction *I); + bool X86SelectRet(const Instruction *I); + bool X86SelectCmp(const Instruction *I); bool X86SelectZExt(const Instruction *I); @@ -117,6 +108,7 @@ private: bool X86SelectCall(const Instruction *I); CCAssignFn *CCAssignFnForCall(CallingConv::ID CC, bool isTailCall = false); + CCAssignFn *CCAssignFnForRet(CallingConv::ID CC, bool isTailCall = false); const X86InstrInfo *getInstrInfo() const { return getTargetMachine()->getInstrInfo(); @@ -190,6 +182,20 @@ CCAssignFn *X86FastISel::CCAssignFnForCall(CallingConv::ID CC, return CC_X86_32_C; } +/// CCAssignFnForRet - Selects the correct CCAssignFn for a given calling +/// convention. +CCAssignFn *X86FastISel::CCAssignFnForRet(CallingConv::ID CC, + bool isTaillCall) { + if (Subtarget->is64Bit()) { + if (Subtarget->isTargetWin64()) + return RetCC_X86_Win64_C; + else + return RetCC_X86_64_C; + } + + return RetCC_X86_32_C; +} + /// X86FastEmitLoad - Emit a machine instruction to load a value of type VT. /// The address is either pre-computed, i.e. Ptr, or a GlobalAddress, i.e. GV. /// Return true and the result register by reference if it is possible. @@ -242,7 +248,8 @@ bool X86FastISel::X86FastEmitLoad(EVT VT, const X86AddressMode &AM, } ResultReg = createResultReg(RC); - addFullAddress(BuildMI(MBB, DL, TII.get(Opc), ResultReg), AM); + addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, + DL, TII.get(Opc), ResultReg), AM); return true; } @@ -261,7 +268,7 @@ X86FastISel::X86FastEmitStore(EVT VT, unsigned Val, case MVT::i1: { // Mask out all but lowest bit. unsigned AndResult = createResultReg(X86::GR8RegisterClass); - BuildMI(MBB, DL, + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(X86::AND8ri), AndResult).addReg(Val).addImm(1); Val = AndResult; } @@ -278,7 +285,8 @@ X86FastISel::X86FastEmitStore(EVT VT, unsigned Val, break; } - addFullAddress(BuildMI(MBB, DL, TII.get(Opc)), AM).addReg(Val); + addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, + DL, TII.get(Opc)), AM).addReg(Val); return true; } @@ -306,7 +314,8 @@ bool X86FastISel::X86FastEmitStore(EVT VT, const Value *Val, } if (Opc) { - addFullAddress(BuildMI(MBB, DL, TII.get(Opc)), AM) + addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, + DL, TII.get(Opc)), AM) .addImm(Signed ? (uint64_t) CI->getSExtValue() : CI->getZExtValue()); return true; @@ -342,6 +351,12 @@ bool X86FastISel::X86SelectAddress(const Value *V, X86AddressMode &AM) { const User *U = NULL; unsigned Opcode = Instruction::UserOp1; if (const Instruction *I = dyn_cast<Instruction>(V)) { + // Don't walk into other basic blocks; it's possible we haven't + // visited them yet, so the instructions may not yet be assigned + // virtual registers. + if (FuncInfo.MBBMap[I->getParent()] != FuncInfo.MBB) + return false; + Opcode = I->getOpcode(); U = I; } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(V)) { @@ -349,6 +364,12 @@ bool X86FastISel::X86SelectAddress(const Value *V, X86AddressMode &AM) { U = C; } + if (const PointerType *Ty = dyn_cast<PointerType>(V->getType())) + if (Ty->getAddressSpace() > 255) + // Fast instruction selection doesn't support the special + // address spaces. + return false; + switch (Opcode) { default: break; case Instruction::BitCast: @@ -370,8 +391,9 @@ bool X86FastISel::X86SelectAddress(const Value *V, X86AddressMode &AM) { case Instruction::Alloca: { // Do static allocas. const AllocaInst *A = cast<AllocaInst>(V); - DenseMap<const AllocaInst*, int>::iterator SI = StaticAllocaMap.find(A); - if (SI != StaticAllocaMap.end()) { + DenseMap<const AllocaInst*, int>::iterator SI = + FuncInfo.StaticAllocaMap.find(A); + if (SI != FuncInfo.StaticAllocaMap.end()) { AM.BaseType = X86AddressMode::FrameIndexBase; AM.Base.FrameIndex = SI->second; return true; @@ -411,20 +433,33 @@ bool X86FastISel::X86SelectAddress(const Value *V, X86AddressMode &AM) { Disp += SL->getElementOffset(Idx); } else { uint64_t S = TD.getTypeAllocSize(GTI.getIndexedType()); - if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) { - // Constant-offset addressing. - Disp += CI->getSExtValue() * S; - } else if (IndexReg == 0 && - (!AM.GV || !Subtarget->isPICStyleRIPRel()) && - (S == 1 || S == 2 || S == 4 || S == 8)) { - // Scaled-index addressing. - Scale = S; - IndexReg = getRegForGEPIndex(Op).first; - if (IndexReg == 0) - return false; - } else - // Unsupported. - goto unsupported_gep; + SmallVector<const Value *, 4> Worklist; + Worklist.push_back(Op); + do { + Op = Worklist.pop_back_val(); + if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) { + // Constant-offset addressing. + Disp += CI->getSExtValue() * S; + } else if (isa<AddOperator>(Op) && + isa<ConstantInt>(cast<AddOperator>(Op)->getOperand(1))) { + // An add with a constant operand. Fold the constant. + ConstantInt *CI = + cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1)); + Disp += CI->getSExtValue() * S; + // Add the other operand back to the work list. + Worklist.push_back(cast<AddOperator>(Op)->getOperand(0)); + } else if (IndexReg == 0 && + (!AM.GV || !Subtarget->isPICStyleRIPRel()) && + (S == 1 || S == 2 || S == 4 || S == 8)) { + // Scaled-index addressing. + Scale = S; + IndexReg = getRegForGEPIndex(Op).first; + if (IndexReg == 0) + return false; + } else + // Unsupported. + goto unsupported_gep; + } while (!Worklist.empty()); } } // Check for displacement overflow. @@ -473,7 +508,7 @@ bool X86FastISel::X86SelectAddress(const Value *V, X86AddressMode &AM) { // If this reference is relative to the pic base, set it now. if (isGlobalRelativeToPICBase(GVFlags)) { // FIXME: How do we know Base.Reg is free?? - AM.Base.Reg = getInstrInfo()->getGlobalBaseReg(&MF); + AM.Base.Reg = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF); } // Unless the ABI requires an extra load, return a direct reference to @@ -504,6 +539,9 @@ bool X86FastISel::X86SelectAddress(const Value *V, X86AddressMode &AM) { StubAM.GV = GV; StubAM.GVOpFlags = GVFlags; + // Prepare for inserting code in the local-value area. + MachineBasicBlock::iterator SaveInsertPt = enterLocalValueArea(); + if (TLI.getPointerTy() == MVT::i64) { Opc = X86::MOV64rm; RC = X86::GR64RegisterClass; @@ -516,8 +554,13 @@ bool X86FastISel::X86SelectAddress(const Value *V, X86AddressMode &AM) { } LoadReg = createResultReg(RC); - addFullAddress(BuildMI(MBB, DL, TII.get(Opc), LoadReg), StubAM); - + MachineInstrBuilder LoadMI = + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), LoadReg); + addFullAddress(LoadMI, StubAM); + + // Ok, back to normal mode. + leaveLocalValueArea(SaveInsertPt); + // Prevent loading GV stub multiple times in same MBB. LocalValueMap[V] = LoadReg; } @@ -642,6 +685,93 @@ bool X86FastISel::X86SelectStore(const Instruction *I) { return X86FastEmitStore(VT, I->getOperand(0), AM); } +/// X86SelectRet - Select and emit code to implement ret instructions. +bool X86FastISel::X86SelectRet(const Instruction *I) { + const ReturnInst *Ret = cast<ReturnInst>(I); + const Function &F = *I->getParent()->getParent(); + + if (!FuncInfo.CanLowerReturn) + return false; + + CallingConv::ID CC = F.getCallingConv(); + if (CC != CallingConv::C && + CC != CallingConv::Fast && + CC != CallingConv::X86_FastCall) + return false; + + if (Subtarget->isTargetWin64()) + return false; + + // Don't handle popping bytes on return for now. + if (FuncInfo.MF->getInfo<X86MachineFunctionInfo>() + ->getBytesToPopOnReturn() != 0) + return 0; + + // fastcc with -tailcallopt is intended to provide a guaranteed + // tail call optimization. Fastisel doesn't know how to do that. + if (CC == CallingConv::Fast && GuaranteedTailCallOpt) + return false; + + // Let SDISel handle vararg functions. + if (F.isVarArg()) + return false; + + if (Ret->getNumOperands() > 0) { + SmallVector<ISD::OutputArg, 4> Outs; + GetReturnInfo(F.getReturnType(), F.getAttributes().getRetAttributes(), + Outs, TLI); + + // Analyze operands of the call, assigning locations to each operand. + SmallVector<CCValAssign, 16> ValLocs; + CCState CCInfo(CC, F.isVarArg(), TM, ValLocs, I->getContext()); + CCInfo.AnalyzeReturn(Outs, CCAssignFnForRet(CC)); + + const Value *RV = Ret->getOperand(0); + unsigned Reg = getRegForValue(RV); + if (Reg == 0) + return false; + + // Only handle a single return value for now. + if (ValLocs.size() != 1) + return false; + + CCValAssign &VA = ValLocs[0]; + + // Don't bother handling odd stuff for now. + if (VA.getLocInfo() != CCValAssign::Full) + return false; + // Only handle register returns for now. + if (!VA.isRegLoc()) + return false; + // TODO: For now, don't try to handle cases where getLocInfo() + // says Full but the types don't match. + if (VA.getValVT() != TLI.getValueType(RV->getType())) + return false; + + // The calling-convention tables for x87 returns don't tell + // the whole story. + if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1) + return false; + + // Make the copy. + unsigned SrcReg = Reg + VA.getValNo(); + unsigned DstReg = VA.getLocReg(); + const TargetRegisterClass* SrcRC = MRI.getRegClass(SrcReg); + // Avoid a cross-class copy. This is very unlikely. + if (!SrcRC->contains(DstReg)) + return false; + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY), + DstReg).addReg(SrcReg); + + // Mark the register as live out of the function. + MRI.addLiveOut(VA.getLocReg()); + } + + // Now emit the RET. + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(X86::RET)); + return true; +} + /// X86SelectLoad - Select and emit code to implement load instructions. /// bool X86FastISel::X86SelectLoad(const Instruction *I) { @@ -661,15 +791,15 @@ bool X86FastISel::X86SelectLoad(const Instruction *I) { return false; } -static unsigned X86ChooseCmpOpcode(EVT VT) { +static unsigned X86ChooseCmpOpcode(EVT VT, const X86Subtarget *Subtarget) { switch (VT.getSimpleVT().SimpleTy) { default: return 0; case MVT::i8: return X86::CMP8rr; case MVT::i16: return X86::CMP16rr; case MVT::i32: return X86::CMP32rr; case MVT::i64: return X86::CMP64rr; - case MVT::f32: return X86::UCOMISSrr; - case MVT::f64: return X86::UCOMISDrr; + case MVT::f32: return Subtarget->hasSSE1() ? X86::UCOMISSrr : 0; + case MVT::f64: return Subtarget->hasSSE2() ? X86::UCOMISDrr : 0; } } @@ -706,18 +836,21 @@ bool X86FastISel::X86FastEmitCompare(const Value *Op0, const Value *Op1, // CMPri, otherwise use CMPrr. if (const ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) { if (unsigned CompareImmOpc = X86ChooseCmpImmediateOpcode(VT, Op1C)) { - BuildMI(MBB, DL, TII.get(CompareImmOpc)).addReg(Op0Reg) - .addImm(Op1C->getSExtValue()); + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(CompareImmOpc)) + .addReg(Op0Reg) + .addImm(Op1C->getSExtValue()); return true; } } - unsigned CompareOpc = X86ChooseCmpOpcode(VT); + unsigned CompareOpc = X86ChooseCmpOpcode(VT, Subtarget); if (CompareOpc == 0) return false; unsigned Op1Reg = getRegForValue(Op1); if (Op1Reg == 0) return false; - BuildMI(MBB, DL, TII.get(CompareOpc)).addReg(Op0Reg).addReg(Op1Reg); + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(CompareOpc)) + .addReg(Op0Reg) + .addReg(Op1Reg); return true; } @@ -739,9 +872,10 @@ bool X86FastISel::X86SelectCmp(const Instruction *I) { unsigned EReg = createResultReg(&X86::GR8RegClass); unsigned NPReg = createResultReg(&X86::GR8RegClass); - BuildMI(MBB, DL, TII.get(X86::SETEr), EReg); - BuildMI(MBB, DL, TII.get(X86::SETNPr), NPReg); - BuildMI(MBB, DL, + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(X86::SETEr), EReg); + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, + TII.get(X86::SETNPr), NPReg); + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(X86::AND8rr), ResultReg).addReg(NPReg).addReg(EReg); UpdateValueMap(I, ResultReg); return true; @@ -752,9 +886,13 @@ bool X86FastISel::X86SelectCmp(const Instruction *I) { unsigned NEReg = createResultReg(&X86::GR8RegClass); unsigned PReg = createResultReg(&X86::GR8RegClass); - BuildMI(MBB, DL, TII.get(X86::SETNEr), NEReg); - BuildMI(MBB, DL, TII.get(X86::SETPr), PReg); - BuildMI(MBB, DL, TII.get(X86::OR8rr), ResultReg).addReg(PReg).addReg(NEReg); + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, + TII.get(X86::SETNEr), NEReg); + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, + TII.get(X86::SETPr), PReg); + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, + TII.get(X86::OR8rr), ResultReg) + .addReg(PReg).addReg(NEReg); UpdateValueMap(I, ResultReg); return true; } @@ -793,7 +931,7 @@ bool X86FastISel::X86SelectCmp(const Instruction *I) { if (!X86FastEmitCompare(Op0, Op1, VT)) return false; - BuildMI(MBB, DL, TII.get(SetCCOpc), ResultReg); + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(SetCCOpc), ResultReg); UpdateValueMap(I, ResultReg); return true; } @@ -819,8 +957,8 @@ bool X86FastISel::X86SelectBranch(const Instruction *I) { // Unconditional branches are selected by tablegen-generated code. // Handle a conditional branch. const BranchInst *BI = cast<BranchInst>(I); - MachineBasicBlock *TrueMBB = MBBMap[BI->getSuccessor(0)]; - MachineBasicBlock *FalseMBB = MBBMap[BI->getSuccessor(1)]; + MachineBasicBlock *TrueMBB = FuncInfo.MBBMap[BI->getSuccessor(0)]; + MachineBasicBlock *FalseMBB = FuncInfo.MBBMap[BI->getSuccessor(1)]; // Fold the common case of a conditional branch with a comparison. if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) { @@ -829,7 +967,7 @@ bool X86FastISel::X86SelectBranch(const Instruction *I) { // Try to take advantage of fallthrough opportunities. CmpInst::Predicate Predicate = CI->getPredicate(); - if (MBB->isLayoutSuccessor(TrueMBB)) { + if (FuncInfo.MBB->isLayoutSuccessor(TrueMBB)) { std::swap(TrueMBB, FalseMBB); Predicate = CmpInst::getInversePredicate(Predicate); } @@ -878,16 +1016,18 @@ bool X86FastISel::X86SelectBranch(const Instruction *I) { if (!X86FastEmitCompare(Op0, Op1, VT)) return false; - BuildMI(MBB, DL, TII.get(BranchOpc)).addMBB(TrueMBB); + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(BranchOpc)) + .addMBB(TrueMBB); if (Predicate == CmpInst::FCMP_UNE) { // X86 requires a second branch to handle UNE (and OEQ, // which is mapped to UNE above). - BuildMI(MBB, DL, TII.get(X86::JP_4)).addMBB(TrueMBB); + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(X86::JP_4)) + .addMBB(TrueMBB); } - FastEmitBranch(FalseMBB); - MBB->addSuccessor(TrueMBB); + FastEmitBranch(FalseMBB, DL); + FuncInfo.MBB->addSuccessor(TrueMBB); return true; } } else if (ExtractValueInst *EI = @@ -910,10 +1050,11 @@ bool X86FastISel::X86SelectBranch(const Instruction *I) { if (CI->getIntrinsicID() == Intrinsic::sadd_with_overflow || CI->getIntrinsicID() == Intrinsic::uadd_with_overflow) { const MachineInstr *SetMI = 0; - unsigned Reg = lookUpRegForValue(EI); + unsigned Reg = getRegForValue(EI); for (MachineBasicBlock::const_reverse_iterator - RI = MBB->rbegin(), RE = MBB->rend(); RI != RE; ++RI) { + RI = FuncInfo.MBB->rbegin(), RE = FuncInfo.MBB->rend(); + RI != RE; ++RI) { const MachineInstr &MI = *RI; if (MI.definesRegister(Reg)) { @@ -938,11 +1079,11 @@ bool X86FastISel::X86SelectBranch(const Instruction *I) { unsigned OpCode = SetMI->getOpcode(); if (OpCode == X86::SETOr || OpCode == X86::SETBr) { - BuildMI(MBB, DL, TII.get(OpCode == X86::SETOr ? - X86::JO_4 : X86::JB_4)) + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, + TII.get(OpCode == X86::SETOr ? X86::JO_4 : X86::JB_4)) .addMBB(TrueMBB); - FastEmitBranch(FalseMBB); - MBB->addSuccessor(TrueMBB); + FastEmitBranch(FalseMBB, DL); + FuncInfo.MBB->addSuccessor(TrueMBB); return true; } } @@ -954,10 +1095,12 @@ bool X86FastISel::X86SelectBranch(const Instruction *I) { unsigned OpReg = getRegForValue(BI->getCondition()); if (OpReg == 0) return false; - BuildMI(MBB, DL, TII.get(X86::TEST8rr)).addReg(OpReg).addReg(OpReg); - BuildMI(MBB, DL, TII.get(X86::JNE_4)).addMBB(TrueMBB); - FastEmitBranch(FalseMBB); - MBB->addSuccessor(TrueMBB); + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(X86::TEST8rr)) + .addReg(OpReg).addReg(OpReg); + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(X86::JNE_4)) + .addMBB(TrueMBB); + FastEmitBranch(FalseMBB, DL); + FuncInfo.MBB->addSuccessor(TrueMBB); return true; } @@ -1014,7 +1157,7 @@ bool X86FastISel::X86SelectShift(const Instruction *I) { // Fold immediate in shl(x,3). if (const ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) { unsigned ResultReg = createResultReg(RC); - BuildMI(MBB, DL, TII.get(OpImm), + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(OpImm), ResultReg).addReg(Op0Reg).addImm(CI->getZExtValue() & 0xff); UpdateValueMap(I, ResultReg); return true; @@ -1022,17 +1165,19 @@ bool X86FastISel::X86SelectShift(const Instruction *I) { unsigned Op1Reg = getRegForValue(I->getOperand(1)); if (Op1Reg == 0) return false; - TII.copyRegToReg(*MBB, MBB->end(), CReg, Op1Reg, RC, RC, DL); + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY), + CReg).addReg(Op1Reg); // The shift instruction uses X86::CL. If we defined a super-register - // of X86::CL, emit an EXTRACT_SUBREG to precisely describe what - // we're doing here. + // of X86::CL, emit a subreg KILL to precisely describe what we're doing here. if (CReg != X86::CL) - BuildMI(MBB, DL, TII.get(TargetOpcode::EXTRACT_SUBREG), X86::CL) - .addReg(CReg).addImm(X86::sub_8bit); + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, + TII.get(TargetOpcode::KILL), X86::CL) + .addReg(CReg, RegState::Kill); unsigned ResultReg = createResultReg(RC); - BuildMI(MBB, DL, TII.get(OpReg), ResultReg).addReg(Op0Reg); + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(OpReg), ResultReg) + .addReg(Op0Reg); UpdateValueMap(I, ResultReg); return true; } @@ -1064,9 +1209,11 @@ bool X86FastISel::X86SelectSelect(const Instruction *I) { unsigned Op2Reg = getRegForValue(I->getOperand(2)); if (Op2Reg == 0) return false; - BuildMI(MBB, DL, TII.get(X86::TEST8rr)).addReg(Op0Reg).addReg(Op0Reg); + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(X86::TEST8rr)) + .addReg(Op0Reg).addReg(Op0Reg); unsigned ResultReg = createResultReg(RC); - BuildMI(MBB, DL, TII.get(Opc), ResultReg).addReg(Op1Reg).addReg(Op2Reg); + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), ResultReg) + .addReg(Op1Reg).addReg(Op2Reg); UpdateValueMap(I, ResultReg); return true; } @@ -1080,7 +1227,9 @@ bool X86FastISel::X86SelectFPExt(const Instruction *I) { unsigned OpReg = getRegForValue(V); if (OpReg == 0) return false; unsigned ResultReg = createResultReg(X86::FR64RegisterClass); - BuildMI(MBB, DL, TII.get(X86::CVTSS2SDrr), ResultReg).addReg(OpReg); + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, + TII.get(X86::CVTSS2SDrr), ResultReg) + .addReg(OpReg); UpdateValueMap(I, ResultReg); return true; } @@ -1097,7 +1246,9 @@ bool X86FastISel::X86SelectFPTrunc(const Instruction *I) { unsigned OpReg = getRegForValue(V); if (OpReg == 0) return false; unsigned ResultReg = createResultReg(X86::FR32RegisterClass); - BuildMI(MBB, DL, TII.get(X86::CVTSD2SSrr), ResultReg).addReg(OpReg); + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, + TII.get(X86::CVTSD2SSrr), ResultReg) + .addReg(OpReg); UpdateValueMap(I, ResultReg); return true; } @@ -1132,7 +1283,8 @@ bool X86FastISel::X86SelectTrunc(const Instruction *I) { const TargetRegisterClass *CopyRC = (SrcVT == MVT::i16) ? X86::GR16_ABCDRegisterClass : X86::GR32_ABCDRegisterClass; unsigned CopyReg = createResultReg(CopyRC); - BuildMI(MBB, DL, TII.get(CopyOpc), CopyReg).addReg(InputReg); + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(CopyOpc), CopyReg) + .addReg(InputReg); // Then issue an extract_subreg. unsigned ResultReg = FastEmitInst_extractsubreg(MVT::i8, @@ -1153,14 +1305,18 @@ bool X86FastISel::X86SelectExtractValue(const Instruction *I) { switch (CI->getIntrinsicID()) { default: break; case Intrinsic::sadd_with_overflow: - case Intrinsic::uadd_with_overflow: + case Intrinsic::uadd_with_overflow: { // Cheat a little. We know that the registers for "add" and "seto" are // allocated sequentially. However, we only keep track of the register // for "add" in the value map. Use extractvalue's index to get the // correct register for "seto". - UpdateValueMap(I, lookUpRegForValue(Agg) + *EI->idx_begin()); + unsigned OpReg = getRegForValue(Agg); + if (OpReg == 0) + return false; + UpdateValueMap(I, OpReg + *EI->idx_begin()); return true; } + } } return false; @@ -1174,8 +1330,8 @@ bool X86FastISel::X86VisitIntrinsicCall(const IntrinsicInst &I) { // Emit code inline code to store the stack guard onto the stack. EVT PtrTy = TLI.getPointerTy(); - const Value *Op1 = I.getOperand(1); // The guard's value. - const AllocaInst *Slot = cast<AllocaInst>(I.getOperand(2)); + const Value *Op1 = I.getArgOperand(0); // The guard's value. + const AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); // Grab the frame index. X86AddressMode AM; @@ -1186,7 +1342,7 @@ bool X86FastISel::X86VisitIntrinsicCall(const IntrinsicInst &I) { return true; } case Intrinsic::objectsize: { - ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(2)); + ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); const Type *Ty = I.getCalledFunction()->getReturnType(); assert(CI && "Non-constant type in Intrinsic::objectsize?"); @@ -1204,8 +1360,8 @@ bool X86FastISel::X86VisitIntrinsicCall(const IntrinsicInst &I) { return false; unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT)); - BuildMI(MBB, DL, TII.get(OpC), ResultReg). - addImm(CI->getZExtValue() == 0 ? -1ULL : 0); + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(OpC), ResultReg). + addImm(CI->isZero() ? -1ULL : 0); UpdateValueMap(&I, ResultReg); return true; } @@ -1218,12 +1374,12 @@ bool X86FastISel::X86VisitIntrinsicCall(const IntrinsicInst &I) { const TargetInstrDesc &II = TII.get(TargetOpcode::DBG_VALUE); // FIXME may need to add RegState::Debug to any registers produced, // although ESP/EBP should be the only ones at the moment. - addFullAddress(BuildMI(MBB, DL, II), AM).addImm(0). - addMetadata(DI->getVariable()); + addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II), AM). + addImm(0).addMetadata(DI->getVariable()); return true; } case Intrinsic::trap: { - BuildMI(MBB, DL, TII.get(X86::TRAP)); + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(X86::TRAP)); return true; } case Intrinsic::sadd_with_overflow: @@ -1241,8 +1397,8 @@ bool X86FastISel::X86VisitIntrinsicCall(const IntrinsicInst &I) { if (!isTypeLegal(RetTy, VT)) return false; - const Value *Op1 = I.getOperand(1); - const Value *Op2 = I.getOperand(2); + const Value *Op1 = I.getArgOperand(0); + const Value *Op2 = I.getArgOperand(1); unsigned Reg1 = getRegForValue(Op1); unsigned Reg2 = getRegForValue(Op2); @@ -1259,7 +1415,8 @@ bool X86FastISel::X86VisitIntrinsicCall(const IntrinsicInst &I) { return false; unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT)); - BuildMI(MBB, DL, TII.get(OpC), ResultReg).addReg(Reg1).addReg(Reg2); + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(OpC), ResultReg) + .addReg(Reg1).addReg(Reg2); unsigned DestReg1 = UpdateValueMap(&I, ResultReg); // If the add with overflow is an intra-block value then we just want to @@ -1277,7 +1434,7 @@ bool X86FastISel::X86VisitIntrinsicCall(const IntrinsicInst &I) { unsigned Opc = X86::SETBr; if (I.getIntrinsicID() == Intrinsic::sadd_with_overflow) Opc = X86::SETOr; - BuildMI(MBB, DL, TII.get(Opc), ResultReg); + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), ResultReg); return true; } } @@ -1285,7 +1442,7 @@ bool X86FastISel::X86VisitIntrinsicCall(const IntrinsicInst &I) { bool X86FastISel::X86SelectCall(const Instruction *I) { const CallInst *CI = cast<CallInst>(I); - const Value *Callee = I->getOperand(0); + const Value *Callee = CI->getCalledValue(); // Can't handle inline asm yet. if (isa<InlineAsm>(Callee)) @@ -1314,6 +1471,10 @@ bool X86FastISel::X86SelectCall(const Instruction *I) { if (FTy->isVarArg()) return false; + // Fast-isel doesn't know about callee-pop yet. + if (Subtarget->IsCalleePop(FTy->isVarArg(), CC)) + return false; + // Handle *simple* calls for now. const Type *RetTy = CS.getType(); EVT RetVT; @@ -1387,6 +1548,12 @@ bool X86FastISel::X86SelectCall(const Instruction *I) { // Analyze operands of the call, assigning locations to each operand. SmallVector<CCValAssign, 16> ArgLocs; CCState CCInfo(CC, false, TM, ArgLocs, I->getParent()->getContext()); + + // Allocate shadow area for Win64 + if (Subtarget->isTargetWin64()) { + CCInfo.AllocateStack(32, 8); + } + CCInfo.AnalyzeCallOperands(ArgVTs, ArgFlags, CCAssignFnForCall(CC)); // Get a count of how many bytes are to be pushed on the stack. @@ -1394,7 +1561,8 @@ bool X86FastISel::X86SelectCall(const Instruction *I) { // Issue CALLSEQ_START unsigned AdjStackDown = TM.getRegisterInfo()->getCallFrameSetupOpcode(); - BuildMI(MBB, DL, TII.get(AdjStackDown)).addImm(NumBytes); + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(AdjStackDown)) + .addImm(NumBytes); // Process argument: walk the register/memloc assignments, inserting // copies / loads. @@ -1449,11 +1617,8 @@ bool X86FastISel::X86SelectCall(const Instruction *I) { } if (VA.isRegLoc()) { - TargetRegisterClass* RC = TLI.getRegClassFor(ArgVT); - bool Emitted = TII.copyRegToReg(*MBB, MBB->end(), VA.getLocReg(), - Arg, RC, RC, DL); - assert(Emitted && "Failed to emit a copy instruction!"); Emitted=Emitted; - Emitted = true; + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY), + VA.getLocReg()).addReg(Arg); RegArgs.push_back(VA.getLocReg()); } else { unsigned LocMemOffset = VA.getLocMemOffset(); @@ -1475,12 +1640,9 @@ bool X86FastISel::X86SelectCall(const Instruction *I) { // ELF / PIC requires GOT in the EBX register before function calls via PLT // GOT pointer. if (Subtarget->isPICStyleGOT()) { - TargetRegisterClass *RC = X86::GR32RegisterClass; - unsigned Base = getInstrInfo()->getGlobalBaseReg(&MF); - bool Emitted = TII.copyRegToReg(*MBB, MBB->end(), X86::EBX, Base, RC, RC, - DL); - assert(Emitted && "Failed to emit a copy instruction!"); Emitted=Emitted; - Emitted = true; + unsigned Base = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF); + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY), + X86::EBX).addReg(Base); } // Issue the call. @@ -1488,7 +1650,8 @@ bool X86FastISel::X86SelectCall(const Instruction *I) { if (CalleeOp) { // Register-indirect call. unsigned CallOpc = Subtarget->is64Bit() ? X86::CALL64r : X86::CALL32r; - MIB = BuildMI(MBB, DL, TII.get(CallOpc)).addReg(CalleeOp); + MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(CallOpc)) + .addReg(CalleeOp); } else { // Direct call. @@ -1517,7 +1680,8 @@ bool X86FastISel::X86SelectCall(const Instruction *I) { } - MIB = BuildMI(MBB, DL, TII.get(CallOpc)).addGlobalAddress(GV, 0, OpFlags); + MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(CallOpc)) + .addGlobalAddress(GV, 0, OpFlags); } // Add an implicit use GOT pointer in EBX. @@ -1530,9 +1694,11 @@ bool X86FastISel::X86SelectCall(const Instruction *I) { // Issue CALLSEQ_END unsigned AdjStackUp = TM.getRegisterInfo()->getCallFrameDestroyOpcode(); - BuildMI(MBB, DL, TII.get(AdjStackUp)).addImm(NumBytes).addImm(0); + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(AdjStackUp)) + .addImm(NumBytes).addImm(0); // Now handle call return value (if any). + SmallVector<unsigned, 4> UsedRegs; if (RetVT.getSimpleVT().SimpleTy != MVT::isVoid) { SmallVector<CCValAssign, 16> RVLocs; CCState CCInfo(CC, false, TM, RVLocs, I->getParent()->getContext()); @@ -1542,7 +1708,6 @@ bool X86FastISel::X86SelectCall(const Instruction *I) { assert(RVLocs.size() == 1 && "Can't handle multi-value calls!"); EVT CopyVT = RVLocs[0].getValVT(); TargetRegisterClass* DstRC = TLI.getRegClassFor(CopyVT); - TargetRegisterClass *SrcRC = DstRC; // If this is a call to a function that returns an fp value on the x87 fp // stack, but where we prefer to use the value in xmm registers, copy it @@ -1551,15 +1716,14 @@ bool X86FastISel::X86SelectCall(const Instruction *I) { RVLocs[0].getLocReg() == X86::ST1) && isScalarFPTypeInSSEReg(RVLocs[0].getValVT())) { CopyVT = MVT::f80; - SrcRC = X86::RSTRegisterClass; DstRC = X86::RFP80RegisterClass; } unsigned ResultReg = createResultReg(DstRC); - bool Emitted = TII.copyRegToReg(*MBB, MBB->end(), ResultReg, - RVLocs[0].getLocReg(), DstRC, SrcRC, DL); - assert(Emitted && "Failed to emit a copy instruction!"); Emitted=Emitted; - Emitted = true; + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY), + ResultReg).addReg(RVLocs[0].getLocReg()); + UsedRegs.push_back(RVLocs[0].getLocReg()); + if (CopyVT != RVLocs[0].getValVT()) { // Round the F80 the right size, which also moves to the appropriate xmm // register. This is accomplished by storing the F80 value in memory and @@ -1568,18 +1732,21 @@ bool X86FastISel::X86SelectCall(const Instruction *I) { unsigned Opc = ResVT == MVT::f32 ? X86::ST_Fp80m32 : X86::ST_Fp80m64; unsigned MemSize = ResVT.getSizeInBits()/8; int FI = MFI.CreateStackObject(MemSize, MemSize, false); - addFrameReference(BuildMI(MBB, DL, TII.get(Opc)), FI).addReg(ResultReg); + addFrameReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, + TII.get(Opc)), FI) + .addReg(ResultReg); DstRC = ResVT == MVT::f32 ? X86::FR32RegisterClass : X86::FR64RegisterClass; Opc = ResVT == MVT::f32 ? X86::MOVSSrm : X86::MOVSDrm; ResultReg = createResultReg(DstRC); - addFrameReference(BuildMI(MBB, DL, TII.get(Opc), ResultReg), FI); + addFrameReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, + TII.get(Opc), ResultReg), FI); } if (AndToI1) { // Mask out all but lowest bit for some call which produces an i1. unsigned AndResult = createResultReg(X86::GR8RegisterClass); - BuildMI(MBB, DL, + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(X86::AND8ri), AndResult).addReg(ResultReg).addImm(1); ResultReg = AndResult; } @@ -1587,6 +1754,9 @@ bool X86FastISel::X86SelectCall(const Instruction *I) { UpdateValueMap(I, ResultReg); } + // Set all unused physreg defs as dead. + static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI); + return true; } @@ -1599,6 +1769,8 @@ X86FastISel::TargetSelectInstruction(const Instruction *I) { return X86SelectLoad(I); case Instruction::Store: return X86SelectStore(I); + case Instruction::Ret: + return X86SelectRet(I); case Instruction::ICmp: case Instruction::FCmp: return X86SelectCmp(I); @@ -1699,7 +1871,8 @@ unsigned X86FastISel::TargetMaterializeConstant(const Constant *C) { else Opc = X86::LEA64r; unsigned ResultReg = createResultReg(RC); - addLeaAddress(BuildMI(MBB, DL, TII.get(Opc), ResultReg), AM); + addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, + TII.get(Opc), ResultReg), AM); return ResultReg; } return 0; @@ -1717,10 +1890,10 @@ unsigned X86FastISel::TargetMaterializeConstant(const Constant *C) { unsigned char OpFlag = 0; if (Subtarget->isPICStyleStubPIC()) { // Not dynamic-no-pic OpFlag = X86II::MO_PIC_BASE_OFFSET; - PICBase = getInstrInfo()->getGlobalBaseReg(&MF); + PICBase = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF); } else if (Subtarget->isPICStyleGOT()) { OpFlag = X86II::MO_GOTOFF; - PICBase = getInstrInfo()->getGlobalBaseReg(&MF); + PICBase = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF); } else if (Subtarget->isPICStyleRIPRel() && TM.getCodeModel() == CodeModel::Small) { PICBase = X86::RIP; @@ -1729,7 +1902,8 @@ unsigned X86FastISel::TargetMaterializeConstant(const Constant *C) { // Create the load from the constant pool. unsigned MCPOffset = MCP.getConstantPoolIndex(C, Align); unsigned ResultReg = createResultReg(RC); - addConstantPoolReference(BuildMI(MBB, DL, TII.get(Opc), ResultReg), + addConstantPoolReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, + TII.get(Opc), ResultReg), MCPOffset, PICBase, OpFlag); return ResultReg; @@ -1743,7 +1917,7 @@ unsigned X86FastISel::TargetMaterializeAlloca(const AllocaInst *C) { // various places, but TargetMaterializeAlloca also needs a check // in order to avoid recursion between getRegForValue, // X86SelectAddrss, and TargetMaterializeAlloca. - if (!StaticAllocaMap.count(C)) + if (!FuncInfo.StaticAllocaMap.count(C)) return 0; X86AddressMode AM; @@ -1752,24 +1926,13 @@ unsigned X86FastISel::TargetMaterializeAlloca(const AllocaInst *C) { unsigned Opc = Subtarget->is64Bit() ? X86::LEA64r : X86::LEA32r; TargetRegisterClass* RC = TLI.getRegClassFor(TLI.getPointerTy()); unsigned ResultReg = createResultReg(RC); - addLeaAddress(BuildMI(MBB, DL, TII.get(Opc), ResultReg), AM); + addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, + TII.get(Opc), ResultReg), AM); return ResultReg; } namespace llvm { - llvm::FastISel *X86::createFastISel(MachineFunction &mf, - DenseMap<const Value *, unsigned> &vm, - DenseMap<const BasicBlock *, MachineBasicBlock *> &bm, - DenseMap<const AllocaInst *, int> &am, - std::vector<std::pair<MachineInstr*, unsigned> > &pn -#ifndef NDEBUG - , SmallSet<const Instruction *, 8> &cil -#endif - ) { - return new X86FastISel(mf, vm, bm, am, pn -#ifndef NDEBUG - , cil -#endif - ); + llvm::FastISel *X86::createFastISel(FunctionLoweringInfo &funcInfo) { + return new X86FastISel(funcInfo); } } diff --git a/lib/Target/X86/X86FixupKinds.h b/lib/Target/X86/X86FixupKinds.h index a8117d4..96e0aae 100644 --- a/lib/Target/X86/X86FixupKinds.h +++ b/lib/Target/X86/X86FixupKinds.h @@ -17,6 +17,7 @@ namespace X86 { enum Fixups { reloc_pcrel_4byte = FirstTargetFixupKind, // 32-bit pcrel, e.g. a branch. reloc_pcrel_1byte, // 8-bit pcrel, e.g. branch_1 + reloc_pcrel_2byte, // 16-bit pcrel, e.g. callw reloc_riprel_4byte, // 32-bit rip-relative reloc_riprel_4byte_movq_load // 32-bit rip-relative in movq }; diff --git a/lib/Target/X86/X86FloatingPoint.cpp b/lib/Target/X86/X86FloatingPoint.cpp index 93460ef..cee4ad7 100644 --- a/lib/Target/X86/X86FloatingPoint.cpp +++ b/lib/Target/X86/X86FloatingPoint.cpp @@ -133,7 +133,7 @@ namespace { // Emit an fxch to update the runtime processors version of the state. BuildMI(*MBB, I, dl, TII->get(X86::XCH_F)).addReg(STReg); - NumFXCH++; + ++NumFXCH; } void duplicateToTop(unsigned RegNo, unsigned AsReg, MachineInstr *I) { @@ -164,6 +164,8 @@ namespace { void handleCompareFP(MachineBasicBlock::iterator &I); void handleCondMovFP(MachineBasicBlock::iterator &I); void handleSpecialFP(MachineBasicBlock::iterator &I); + + bool translateCopy(MachineInstr*); }; char FPS::ID = 0; } @@ -232,12 +234,15 @@ bool FPS::processBasicBlock(MachineFunction &MF, MachineBasicBlock &BB) { for (MachineBasicBlock::iterator I = BB.begin(); I != BB.end(); ++I) { MachineInstr *MI = I; - unsigned Flags = MI->getDesc().TSFlags; + uint64_t Flags = MI->getDesc().TSFlags; unsigned FPInstClass = Flags & X86II::FPTypeMask; if (MI->isInlineAsm()) FPInstClass = X86II::SpecialFP; - + + if (MI->isCopy() && translateCopy(MI)) + FPInstClass = X86II::SpecialFP; + if (FPInstClass == X86II::NotFP) continue; // Efficiently ignore non-fp insts! @@ -628,7 +633,7 @@ void FPS::handleZeroArgFP(MachineBasicBlock::iterator &I) { void FPS::handleOneArgFP(MachineBasicBlock::iterator &I) { MachineInstr *MI = I; unsigned NumOps = MI->getDesc().getNumOperands(); - assert((NumOps == X86AddrNumOperands + 1 || NumOps == 1) && + assert((NumOps == X86::AddrNumOperands + 1 || NumOps == 1) && "Can only handle fst* & ftst instructions!"); // Is this the last use of the source register? @@ -1001,15 +1006,17 @@ void FPS::handleSpecialFP(MachineBasicBlock::iterator &I) { case X86::FpSET_ST0_32: case X86::FpSET_ST0_64: case X86::FpSET_ST0_80: { + // FpSET_ST0_80 is generated by copyRegToReg for setting up inline asm + // arguments that use an st constraint. We expect a sequence of + // instructions: Fp_SET_ST0 Fp_SET_ST1? INLINEASM unsigned Op0 = getFPReg(MI->getOperand(0)); - // FpSET_ST0_80 is generated by copyRegToReg for both function return - // and inline assembly with the "st" constrain. In the latter case, - // it is possible for ST(0) to be alive after this instruction. if (!MI->killsRegister(X86::FP0 + Op0)) { - // Duplicate Op0 - duplicateToTop(0, 7 /*temp register*/, I); + // Duplicate Op0 into a temporary on the stack top. + // This actually assumes that FP7 is dead. + duplicateToTop(Op0, 7, I); } else { + // Op0 is killed, so just swap it into position. moveToTop(Op0, I); } --StackTop; // "Forget" we have something on the top of stack! @@ -1017,17 +1024,29 @@ void FPS::handleSpecialFP(MachineBasicBlock::iterator &I) { } case X86::FpSET_ST1_32: case X86::FpSET_ST1_64: - case X86::FpSET_ST1_80: - // StackTop can be 1 if a FpSET_ST0_* was before this. Exchange them. - if (StackTop == 1) { - BuildMI(*MBB, I, dl, TII->get(X86::XCH_F)).addReg(X86::ST1); - NumFXCH++; - StackTop = 0; - break; + case X86::FpSET_ST1_80: { + // Set up st(1) for inline asm. We are assuming that st(0) has already been + // set up by FpSET_ST0, and our StackTop is off by one because of it. + unsigned Op0 = getFPReg(MI->getOperand(0)); + // Restore the actual StackTop from before Fp_SET_ST0. + // Note we can't handle Fp_SET_ST1 without a preceeding Fp_SET_ST0, and we + // are not enforcing the constraint. + ++StackTop; + unsigned RegOnTop = getStackEntry(0); // This reg must remain in st(0). + if (!MI->killsRegister(X86::FP0 + Op0)) { + // Assume FP6 is not live, use it as a scratch register. + duplicateToTop(Op0, 6, I); + moveToTop(RegOnTop, I); + } else if (getSTReg(Op0) != X86::ST1) { + // We have the wrong value at st(1). Shuffle! Untested! + moveToTop(getStackEntry(1), I); + moveToTop(Op0, I); + moveToTop(RegOnTop, I); } - assert(StackTop == 2 && "Stack should have two element on it to return!"); - --StackTop; // "Forget" we have something on the top of stack! + assert(StackTop >= 2 && "Too few live registers"); + StackTop -= 2; // "Forget" both st(0) and st(1). break; + } case X86::MOV_Fp3232: case X86::MOV_Fp3264: case X86::MOV_Fp6432: @@ -1041,32 +1060,6 @@ void FPS::handleSpecialFP(MachineBasicBlock::iterator &I) { unsigned SrcReg = getFPReg(MO1); const MachineOperand &MO0 = MI->getOperand(0); - // These can be created due to inline asm. Two address pass can introduce - // copies from RFP registers to virtual registers. - if (MO0.getReg() == X86::ST0 && SrcReg == 0) { - assert(MO1.isKill()); - // Treat %ST0<def> = MOV_Fp8080 %FP0<kill> - // like FpSET_ST0_80 %FP0<kill>, %ST0<imp-def> - assert((StackTop == 1 || StackTop == 2) - && "Stack should have one or two element on it to return!"); - --StackTop; // "Forget" we have something on the top of stack! - break; - } else if (MO0.getReg() == X86::ST1 && SrcReg == 1) { - assert(MO1.isKill()); - // Treat %ST1<def> = MOV_Fp8080 %FP1<kill> - // like FpSET_ST1_80 %FP0<kill>, %ST1<imp-def> - // StackTop can be 1 if a FpSET_ST0_* was before this. Exchange them. - if (StackTop == 1) { - BuildMI(*MBB, I, dl, TII->get(X86::XCH_F)).addReg(X86::ST1); - NumFXCH++; - StackTop = 0; - break; - } - assert(StackTop == 2 && "Stack should have two element on it to return!"); - --StackTop; // "Forget" we have something on the top of stack! - break; - } - unsigned DestReg = getFPReg(MO0); if (MI->killsRegister(X86::FP0+SrcReg)) { // If the input operand is killed, we can just change the owner of the @@ -1206,3 +1199,33 @@ void FPS::handleSpecialFP(MachineBasicBlock::iterator &I) { I = MBB->erase(I); // Remove the pseudo instruction --I; } + +// Translate a COPY instruction to a pseudo-op that handleSpecialFP understands. +bool FPS::translateCopy(MachineInstr *MI) { + unsigned DstReg = MI->getOperand(0).getReg(); + unsigned SrcReg = MI->getOperand(1).getReg(); + + if (DstReg == X86::ST0) { + MI->setDesc(TII->get(X86::FpSET_ST0_80)); + MI->RemoveOperand(0); + return true; + } + if (DstReg == X86::ST1) { + MI->setDesc(TII->get(X86::FpSET_ST1_80)); + MI->RemoveOperand(0); + return true; + } + if (SrcReg == X86::ST0) { + MI->setDesc(TII->get(X86::FpGET_ST0_80)); + return true; + } + if (SrcReg == X86::ST1) { + MI->setDesc(TII->get(X86::FpGET_ST1_80)); + return true; + } + if (X86::RFP80RegClass.contains(DstReg, SrcReg)) { + MI->setDesc(TII->get(X86::MOV_Fp8080)); + return true; + } + return false; +} diff --git a/lib/Target/X86/X86FloatingPointRegKill.cpp b/lib/Target/X86/X86FloatingPointRegKill.cpp index 747683d..2c98b96 100644 --- a/lib/Target/X86/X86FloatingPointRegKill.cpp +++ b/lib/Target/X86/X86FloatingPointRegKill.cpp @@ -72,18 +72,15 @@ static bool isFPStackVReg(unsigned RegNo, const MachineRegisterInfo &MRI) { /// stack code, and thus needs an FP_REG_KILL. static bool ContainsFPStackCode(MachineBasicBlock *MBB, const MachineRegisterInfo &MRI) { - // Scan the block, looking for instructions that define fp stack vregs. + // Scan the block, looking for instructions that define or use fp stack vregs. for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E; ++I) { - if (I->getNumOperands() == 0 || !I->getOperand(0).isReg()) - continue; - for (unsigned op = 0, e = I->getNumOperands(); op != e; ++op) { - if (!I->getOperand(op).isReg() || !I->getOperand(op).isDef()) + if (!I->getOperand(op).isReg()) continue; - - if (isFPStackVReg(I->getOperand(op).getReg(), MRI)) - return true; + if (unsigned Reg = I->getOperand(op).getReg()) + if (isFPStackVReg(Reg, MRI)) + return true; } } @@ -108,8 +105,8 @@ static bool ContainsFPStackCode(MachineBasicBlock *MBB, bool FPRegKiller::runOnMachineFunction(MachineFunction &MF) { // If we are emitting FP stack code, scan the basic block to determine if this - // block defines any FP values. If so, put an FP_REG_KILL instruction before - // the terminator of the block. + // block defines or uses any FP values. If so, put an FP_REG_KILL instruction + // before the terminator of the block. // Note that FP stack instructions are used in all modes for long double, // so we always need to do this check. diff --git a/lib/Target/X86/X86ISelDAGToDAG.cpp b/lib/Target/X86/X86ISelDAGToDAG.cpp index 0f64383..72f2bc1 100644 --- a/lib/Target/X86/X86ISelDAGToDAG.cpp +++ b/lib/Target/X86/X86ISelDAGToDAG.cpp @@ -137,21 +137,6 @@ namespace { } namespace { - class X86ISelListener : public SelectionDAG::DAGUpdateListener { - SmallSet<SDNode*, 4> Deletes; - public: - explicit X86ISelListener() {} - virtual void NodeDeleted(SDNode *N, SDNode *E) { - Deletes.insert(N); - } - virtual void NodeUpdated(SDNode *N) { - // Ignore updates. - } - bool IsDeleted(SDNode *N) { - return Deletes.count(N); - } - }; - //===--------------------------------------------------------------------===// /// ISel - X86 specific code to select X86 machine instructions for /// SelectionDAG operations. @@ -199,16 +184,17 @@ namespace { bool MatchWrapper(SDValue N, X86ISelAddressMode &AM); bool MatchAddress(SDValue N, X86ISelAddressMode &AM); bool MatchAddressRecursively(SDValue N, X86ISelAddressMode &AM, - X86ISelListener &DeadNodes, unsigned Depth); bool MatchAddressBase(SDValue N, X86ISelAddressMode &AM); bool SelectAddr(SDNode *Op, SDValue N, SDValue &Base, SDValue &Scale, SDValue &Index, SDValue &Disp, SDValue &Segment); bool SelectLEAAddr(SDNode *Op, SDValue N, SDValue &Base, - SDValue &Scale, SDValue &Index, SDValue &Disp); + SDValue &Scale, SDValue &Index, SDValue &Disp, + SDValue &Segment); bool SelectTLSADDRAddr(SDNode *Op, SDValue N, SDValue &Base, - SDValue &Scale, SDValue &Index, SDValue &Disp); + SDValue &Scale, SDValue &Index, SDValue &Disp, + SDValue &Segment); bool SelectScalarSSELoad(SDNode *Root, SDValue N, SDValue &Base, SDValue &Scale, SDValue &Index, SDValue &Disp, @@ -239,7 +225,8 @@ namespace { // These are 32-bit even in 64-bit mode since RIP relative offset // is 32-bit. if (AM.GV) - Disp = CurDAG->getTargetGlobalAddress(AM.GV, MVT::i32, AM.Disp, + Disp = CurDAG->getTargetGlobalAddress(AM.GV, DebugLoc(), + MVT::i32, AM.Disp, AM.SymbolFlags); else if (AM.CP) Disp = CurDAG->getTargetConstantPool(AM.CP, MVT::i32, @@ -386,14 +373,14 @@ static void MoveBelowOrigChain(SelectionDAG *CurDAG, SDValue Load, } for (unsigned i = 1, e = OrigChain.getNumOperands(); i != e; ++i) Ops.push_back(OrigChain.getOperand(i)); - CurDAG->UpdateNodeOperands(OrigChain, &Ops[0], Ops.size()); - CurDAG->UpdateNodeOperands(Load, Call.getOperand(0), + CurDAG->UpdateNodeOperands(OrigChain.getNode(), &Ops[0], Ops.size()); + CurDAG->UpdateNodeOperands(Load.getNode(), Call.getOperand(0), Load.getOperand(1), Load.getOperand(2)); Ops.clear(); Ops.push_back(SDValue(Load.getNode(), 1)); for (unsigned i = 1, e = Call.getNode()->getNumOperands(); i != e; ++i) Ops.push_back(Call.getOperand(i)); - CurDAG->UpdateNodeOperands(Call, &Ops[0], Ops.size()); + CurDAG->UpdateNodeOperands(Call.getNode(), &Ops[0], Ops.size()); } /// isCalleeLoad - Return true if call address is a load and it can be @@ -515,7 +502,7 @@ void X86DAGToDAGISel::PreprocessISelDAG() { N->getOperand(0), MemTmp, NULL, 0, MemVT, false, false, 0); - SDValue Result = CurDAG->getExtLoad(ISD::EXTLOAD, dl, DstVT, Store, MemTmp, + SDValue Result = CurDAG->getExtLoad(ISD::EXTLOAD, DstVT, dl, Store, MemTmp, NULL, 0, MemVT, false, false, 0); // We're about to replace all uses of the FP_ROUND/FP_EXTEND with the @@ -664,8 +651,7 @@ bool X86DAGToDAGISel::MatchWrapper(SDValue N, X86ISelAddressMode &AM) { /// returning true if it cannot be done. This just pattern matches for the /// addressing mode. bool X86DAGToDAGISel::MatchAddress(SDValue N, X86ISelAddressMode &AM) { - X86ISelListener DeadNodes; - if (MatchAddressRecursively(N, AM, DeadNodes, 0)) + if (MatchAddressRecursively(N, AM, 0)) return true; // Post-processing: Convert lea(,%reg,2) to lea(%reg,%reg), which has @@ -713,7 +699,6 @@ static bool isLogicallyAddWithConstant(SDValue V, SelectionDAG *CurDAG) { } bool X86DAGToDAGISel::MatchAddressRecursively(SDValue N, X86ISelAddressMode &AM, - X86ISelListener &DeadNodes, unsigned Depth) { bool is64Bit = Subtarget->is64Bit(); DebugLoc dl = N.getDebugLoc(); @@ -876,13 +861,13 @@ bool X86DAGToDAGISel::MatchAddressRecursively(SDValue N, X86ISelAddressMode &AM, // other uses, since it avoids a two-address sub instruction, however // it costs an additional mov if the index register has other uses. + // Add an artificial use to this node so that we can keep track of + // it if it gets CSE'd with a different node. + HandleSDNode Handle(N); + // Test if the LHS of the sub can be folded. X86ISelAddressMode Backup = AM; - if (MatchAddressRecursively(N.getNode()->getOperand(0), AM, - DeadNodes, Depth+1) || - // If it is successful but the recursive update causes N to be deleted, - // then it's not safe to continue. - DeadNodes.IsDeleted(N.getNode())) { + if (MatchAddressRecursively(N.getNode()->getOperand(0), AM, Depth+1)) { AM = Backup; break; } @@ -893,7 +878,7 @@ bool X86DAGToDAGISel::MatchAddressRecursively(SDValue N, X86ISelAddressMode &AM, } int Cost = 0; - SDValue RHS = N.getNode()->getOperand(1); + SDValue RHS = Handle.getValue().getNode()->getOperand(1); // If the RHS involves a register with multiple uses, this // transformation incurs an extra mov, due to the neg instruction // clobbering its operand. @@ -944,35 +929,27 @@ bool X86DAGToDAGISel::MatchAddressRecursively(SDValue N, X86ISelAddressMode &AM, } case ISD::ADD: { + // Add an artificial use to this node so that we can keep track of + // it if it gets CSE'd with a different node. + HandleSDNode Handle(N); + SDValue LHS = Handle.getValue().getNode()->getOperand(0); + SDValue RHS = Handle.getValue().getNode()->getOperand(1); + X86ISelAddressMode Backup = AM; - if (!MatchAddressRecursively(N.getNode()->getOperand(0), AM, - DeadNodes, Depth+1)) { - if (DeadNodes.IsDeleted(N.getNode())) - // If it is successful but the recursive update causes N to be deleted, - // then it's not safe to continue. - return true; - if (!MatchAddressRecursively(N.getNode()->getOperand(1), AM, - DeadNodes, Depth+1)) - // If it is successful but the recursive update causes N to be deleted, - // then it's not safe to continue. - return DeadNodes.IsDeleted(N.getNode()); - } + if (!MatchAddressRecursively(LHS, AM, Depth+1) && + !MatchAddressRecursively(RHS, AM, Depth+1)) + return false; + AM = Backup; + LHS = Handle.getValue().getNode()->getOperand(0); + RHS = Handle.getValue().getNode()->getOperand(1); // Try again after commuting the operands. + if (!MatchAddressRecursively(RHS, AM, Depth+1) && + !MatchAddressRecursively(LHS, AM, Depth+1)) + return false; AM = Backup; - if (!MatchAddressRecursively(N.getNode()->getOperand(1), AM, - DeadNodes, Depth+1)) { - if (DeadNodes.IsDeleted(N.getNode())) - // If it is successful but the recursive update causes N to be deleted, - // then it's not safe to continue. - return true; - if (!MatchAddressRecursively(N.getNode()->getOperand(0), AM, - DeadNodes, Depth+1)) - // If it is successful but the recursive update causes N to be deleted, - // then it's not safe to continue. - return DeadNodes.IsDeleted(N.getNode()); - } - AM = Backup; + LHS = Handle.getValue().getNode()->getOperand(0); + RHS = Handle.getValue().getNode()->getOperand(1); // If we couldn't fold both operands into the address at the same time, // see if we can just put each operand into a register and fold at least @@ -980,8 +957,8 @@ bool X86DAGToDAGISel::MatchAddressRecursively(SDValue N, X86ISelAddressMode &AM, if (AM.BaseType == X86ISelAddressMode::RegBase && !AM.Base_Reg.getNode() && !AM.IndexReg.getNode()) { - AM.Base_Reg = N.getNode()->getOperand(0); - AM.IndexReg = N.getNode()->getOperand(1); + AM.Base_Reg = LHS; + AM.IndexReg = RHS; AM.Scale = 1; return false; } @@ -996,7 +973,7 @@ bool X86DAGToDAGISel::MatchAddressRecursively(SDValue N, X86ISelAddressMode &AM, uint64_t Offset = CN->getSExtValue(); // Start with the LHS as an addr mode. - if (!MatchAddressRecursively(N.getOperand(0), AM, DeadNodes, Depth+1) && + if (!MatchAddressRecursively(N.getOperand(0), AM, Depth+1) && // Address could not have picked a GV address for the displacement. AM.GV == NULL && // On x86-64, the resultant disp must fit in 32-bits. @@ -1073,7 +1050,7 @@ bool X86DAGToDAGISel::MatchAddressRecursively(SDValue N, X86ISelAddressMode &AM, CurDAG->RepositionNode(N.getNode(), Shl.getNode()); Shl.getNode()->setNodeId(N.getNode()->getNodeId()); } - CurDAG->ReplaceAllUsesWith(N, Shl, &DeadNodes); + CurDAG->ReplaceAllUsesWith(N, Shl); AM.IndexReg = And; AM.Scale = (1 << ScaleLog); return false; @@ -1124,7 +1101,7 @@ bool X86DAGToDAGISel::MatchAddressRecursively(SDValue N, X86ISelAddressMode &AM, NewSHIFT.getNode()->setNodeId(N.getNode()->getNodeId()); } - CurDAG->ReplaceAllUsesWith(N, NewSHIFT, &DeadNodes); + CurDAG->ReplaceAllUsesWith(N, NewSHIFT); AM.Scale = 1 << ShiftCst; AM.IndexReg = NewAND; @@ -1230,7 +1207,8 @@ bool X86DAGToDAGISel::SelectScalarSSELoad(SDNode *Root, /// mode it matches can be cost effectively emitted as an LEA instruction. bool X86DAGToDAGISel::SelectLEAAddr(SDNode *Op, SDValue N, SDValue &Base, SDValue &Scale, - SDValue &Index, SDValue &Disp) { + SDValue &Index, SDValue &Disp, + SDValue &Segment) { X86ISelAddressMode AM; // Set AM.Segment to prevent MatchAddress from using one. LEA doesn't support @@ -1284,7 +1262,6 @@ bool X86DAGToDAGISel::SelectLEAAddr(SDNode *Op, SDValue N, if (Complexity <= 2) return false; - SDValue Segment; getAddressOperands(AM, Base, Scale, Index, Disp, Segment); return true; } @@ -1292,10 +1269,10 @@ bool X86DAGToDAGISel::SelectLEAAddr(SDNode *Op, SDValue N, /// SelectTLSADDRAddr - This is only run on TargetGlobalTLSAddress nodes. bool X86DAGToDAGISel::SelectTLSADDRAddr(SDNode *Op, SDValue N, SDValue &Base, SDValue &Scale, SDValue &Index, - SDValue &Disp) { + SDValue &Disp, SDValue &Segment) { assert(N.getOpcode() == ISD::TargetGlobalTLSAddress); const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N); - + X86ISelAddressMode AM; AM.GV = GA->getGlobal(); AM.Disp += GA->getOffset(); @@ -1309,7 +1286,6 @@ bool X86DAGToDAGISel::SelectTLSADDRAddr(SDNode *Op, SDValue N, SDValue &Base, AM.IndexReg = CurDAG->getRegister(0, MVT::i64); } - SDValue Segment; getAddressOperands(AM, Base, Scale, Index, Disp, Segment); return true; } @@ -1672,6 +1648,26 @@ SDNode *X86DAGToDAGISel::Select(SDNode *Node) { SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Flag, N1, InFlag), 0); } + // Prevent use of AH in a REX instruction by referencing AX instead. + if (HiReg == X86::AH && Subtarget->is64Bit() && + !SDValue(Node, 1).use_empty()) { + SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl, + X86::AX, MVT::i16, InFlag); + InFlag = Result.getValue(2); + // Get the low part if needed. Don't use getCopyFromReg for aliasing + // registers. + if (!SDValue(Node, 0).use_empty()) + ReplaceUses(SDValue(Node, 1), + CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result)); + + // Shift AX down 8 bits. + Result = SDValue(CurDAG->getMachineNode(X86::SHR16ri, dl, MVT::i16, + Result, + CurDAG->getTargetConstant(8, MVT::i8)), 0); + // Then truncate it down to i8. + ReplaceUses(SDValue(Node, 1), + CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result)); + } // Copy the low half of the result, if it is needed. if (!SDValue(Node, 0).use_empty()) { SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl, @@ -1682,24 +1678,9 @@ SDNode *X86DAGToDAGISel::Select(SDNode *Node) { } // Copy the high half of the result, if it is needed. if (!SDValue(Node, 1).use_empty()) { - SDValue Result; - if (HiReg == X86::AH && Subtarget->is64Bit()) { - // Prevent use of AH in a REX instruction by referencing AX instead. - // Shift it down 8 bits. - Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl, - X86::AX, MVT::i16, InFlag); - InFlag = Result.getValue(2); - Result = SDValue(CurDAG->getMachineNode(X86::SHR16ri, dl, MVT::i16, - Result, - CurDAG->getTargetConstant(8, MVT::i8)), 0); - // Then truncate it down to i8. - Result = CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, - MVT::i8, Result); - } else { - Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl, - HiReg, NVT, InFlag); - InFlag = Result.getValue(2); - } + SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl, + HiReg, NVT, InFlag); + InFlag = Result.getValue(2); ReplaceUses(SDValue(Node, 1), Result); DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG); dbgs() << '\n'); } @@ -1812,6 +1793,29 @@ SDNode *X86DAGToDAGISel::Select(SDNode *Node) { SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Flag, N1, InFlag), 0); } + // Prevent use of AH in a REX instruction by referencing AX instead. + // Shift it down 8 bits. + if (HiReg == X86::AH && Subtarget->is64Bit() && + !SDValue(Node, 1).use_empty()) { + SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl, + X86::AX, MVT::i16, InFlag); + InFlag = Result.getValue(2); + + // If we also need AL (the quotient), get it by extracting a subreg from + // Result. The fast register allocator does not like multiple CopyFromReg + // nodes using aliasing registers. + if (!SDValue(Node, 0).use_empty()) + ReplaceUses(SDValue(Node, 0), + CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result)); + + // Shift AX right by 8 bits instead of using AH. + Result = SDValue(CurDAG->getMachineNode(X86::SHR16ri, dl, MVT::i16, + Result, + CurDAG->getTargetConstant(8, MVT::i8)), + 0); + ReplaceUses(SDValue(Node, 1), + CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result)); + } // Copy the division (low) result, if it is needed. if (!SDValue(Node, 0).use_empty()) { SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl, @@ -1822,25 +1826,9 @@ SDNode *X86DAGToDAGISel::Select(SDNode *Node) { } // Copy the remainder (high) result, if it is needed. if (!SDValue(Node, 1).use_empty()) { - SDValue Result; - if (HiReg == X86::AH && Subtarget->is64Bit()) { - // Prevent use of AH in a REX instruction by referencing AX instead. - // Shift it down 8 bits. - Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl, - X86::AX, MVT::i16, InFlag); - InFlag = Result.getValue(2); - Result = SDValue(CurDAG->getMachineNode(X86::SHR16ri, dl, MVT::i16, - Result, - CurDAG->getTargetConstant(8, MVT::i8)), - 0); - // Then truncate it down to i8. - Result = CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, - MVT::i8, Result); - } else { - Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl, - HiReg, NVT, InFlag); - InFlag = Result.getValue(2); - } + SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl, + HiReg, NVT, InFlag); + InFlag = Result.getValue(2); ReplaceUses(SDValue(Node, 1), Result); DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG); dbgs() << '\n'); } diff --git a/lib/Target/X86/X86ISelLowering.cpp b/lib/Target/X86/X86ISelLowering.cpp index b02c33d..1a63474 100644 --- a/lib/Target/X86/X86ISelLowering.cpp +++ b/lib/Target/X86/X86ISelLowering.cpp @@ -62,21 +62,19 @@ static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1, SDValue V2); static TargetLoweringObjectFile *createTLOF(X86TargetMachine &TM) { - switch (TM.getSubtarget<X86Subtarget>().TargetType) { - default: llvm_unreachable("unknown subtarget type"); - case X86Subtarget::isDarwin: - if (TM.getSubtarget<X86Subtarget>().is64Bit()) - return new X8664_MachoTargetObjectFile(); + + bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit(); + + if (TM.getSubtarget<X86Subtarget>().isTargetDarwin()) { + if (is64Bit) return new X8664_MachoTargetObjectFile(); return new TargetLoweringObjectFileMachO(); - case X86Subtarget::isELF: - if (TM.getSubtarget<X86Subtarget>().is64Bit()) - return new X8664_ELFTargetObjectFile(TM); + } else if (TM.getSubtarget<X86Subtarget>().isTargetELF() ){ + if (is64Bit) return new X8664_ELFTargetObjectFile(TM); return new X8632_ELFTargetObjectFile(TM); - case X86Subtarget::isMingw: - case X86Subtarget::isCygwin: - case X86Subtarget::isWindows: + } else if (TM.getSubtarget<X86Subtarget>().isTargetCOFF()) { return new TargetLoweringObjectFileCOFF(); - } + } + llvm_unreachable("unknown subtarget type"); } X86TargetLowering::X86TargetLowering(X86TargetMachine &TM) @@ -347,6 +345,12 @@ X86TargetLowering::X86TargetLowering(X86TargetMachine &TM) if (!Subtarget->hasSSE2()) setOperationAction(ISD::MEMBARRIER , MVT::Other, Expand); + // On X86 and X86-64, atomic operations are lowered to locked instructions. + // Locked instructions, in turn, have implicit fence semantics (all memory + // operations are flushed before issuing the locked instruction, and they + // are not buffered), so we can fold away the common pattern of + // fence-atomic-fence. + setShouldFoldAtomicFences(true); // Expand certain atomics setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i8, Custom); @@ -611,7 +615,7 @@ X86TargetLowering::X86TargetLowering(X86TargetMachine &TM) addRegisterClass(MVT::v8i8, X86::VR64RegisterClass, false); addRegisterClass(MVT::v4i16, X86::VR64RegisterClass, false); addRegisterClass(MVT::v2i32, X86::VR64RegisterClass, false); - addRegisterClass(MVT::v2f32, X86::VR64RegisterClass, false); + addRegisterClass(MVT::v1i64, X86::VR64RegisterClass, false); setOperationAction(ISD::ADD, MVT::v8i8, Legal); @@ -657,14 +661,11 @@ X86TargetLowering::X86TargetLowering(X86TargetMachine &TM) AddPromotedToType (ISD::LOAD, MVT::v4i16, MVT::v1i64); setOperationAction(ISD::LOAD, MVT::v2i32, Promote); AddPromotedToType (ISD::LOAD, MVT::v2i32, MVT::v1i64); - setOperationAction(ISD::LOAD, MVT::v2f32, Promote); - AddPromotedToType (ISD::LOAD, MVT::v2f32, MVT::v1i64); setOperationAction(ISD::LOAD, MVT::v1i64, Legal); setOperationAction(ISD::BUILD_VECTOR, MVT::v8i8, Custom); setOperationAction(ISD::BUILD_VECTOR, MVT::v4i16, Custom); setOperationAction(ISD::BUILD_VECTOR, MVT::v2i32, Custom); - setOperationAction(ISD::BUILD_VECTOR, MVT::v2f32, Custom); setOperationAction(ISD::BUILD_VECTOR, MVT::v1i64, Custom); setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8i8, Custom); @@ -672,7 +673,6 @@ X86TargetLowering::X86TargetLowering(X86TargetMachine &TM) setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i32, Custom); setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v1i64, Custom); - setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f32, Custom); setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i8, Custom); setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i16, Custom); setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v1i64, Custom); @@ -691,7 +691,6 @@ X86TargetLowering::X86TargetLowering(X86TargetMachine &TM) setOperationAction(ISD::BIT_CONVERT, MVT::v8i8, Custom); setOperationAction(ISD::BIT_CONVERT, MVT::v4i16, Custom); setOperationAction(ISD::BIT_CONVERT, MVT::v2i32, Custom); - setOperationAction(ISD::BIT_CONVERT, MVT::v2f32, Custom); setOperationAction(ISD::BIT_CONVERT, MVT::v1i64, Custom); } } @@ -792,9 +791,8 @@ X86TargetLowering::X86TargetLowering(X86TargetMachine &TM) EVT VT = SVT; // Do not attempt to promote non-128-bit vectors - if (!VT.is128BitVector()) { + if (!VT.is128BitVector()) continue; - } setOperationAction(ISD::AND, SVT, Promote); AddPromotedToType (ISD::AND, SVT, MVT::v2i64); @@ -825,6 +823,17 @@ X86TargetLowering::X86TargetLowering(X86TargetMachine &TM) } if (Subtarget->hasSSE41()) { + setOperationAction(ISD::FFLOOR, MVT::f32, Legal); + setOperationAction(ISD::FCEIL, MVT::f32, Legal); + setOperationAction(ISD::FTRUNC, MVT::f32, Legal); + setOperationAction(ISD::FRINT, MVT::f32, Legal); + setOperationAction(ISD::FNEARBYINT, MVT::f32, Legal); + setOperationAction(ISD::FFLOOR, MVT::f64, Legal); + setOperationAction(ISD::FCEIL, MVT::f64, Legal); + setOperationAction(ISD::FTRUNC, MVT::f64, Legal); + setOperationAction(ISD::FRINT, MVT::f64, Legal); + setOperationAction(ISD::FNEARBYINT, MVT::f64, Legal); + // FIXME: Do we need to handle scalar-to-vector here? setOperationAction(ISD::MUL, MVT::v4i32, Legal); @@ -965,15 +974,24 @@ X86TargetLowering::X86TargetLowering(X86TargetMachine &TM) // Add/Sub/Mul with overflow operations are custom lowered. setOperationAction(ISD::SADDO, MVT::i32, Custom); - setOperationAction(ISD::SADDO, MVT::i64, Custom); setOperationAction(ISD::UADDO, MVT::i32, Custom); - setOperationAction(ISD::UADDO, MVT::i64, Custom); setOperationAction(ISD::SSUBO, MVT::i32, Custom); - setOperationAction(ISD::SSUBO, MVT::i64, Custom); setOperationAction(ISD::USUBO, MVT::i32, Custom); - setOperationAction(ISD::USUBO, MVT::i64, Custom); setOperationAction(ISD::SMULO, MVT::i32, Custom); - setOperationAction(ISD::SMULO, MVT::i64, Custom); + + // Only custom-lower 64-bit SADDO and friends on 64-bit because we don't + // handle type legalization for these operations here. + // + // FIXME: We really should do custom legalization for addition and + // subtraction on x86-32 once PR3203 is fixed. We really can't do much better + // than generic legalization for 64-bit multiplication-with-overflow, though. + if (Subtarget->is64Bit()) { + setOperationAction(ISD::SADDO, MVT::i64, Custom); + setOperationAction(ISD::UADDO, MVT::i64, Custom); + setOperationAction(ISD::SSUBO, MVT::i64, Custom); + setOperationAction(ISD::USUBO, MVT::i64, Custom); + setOperationAction(ISD::SMULO, MVT::i64, Custom); + } if (!Subtarget->is64Bit()) { // These libcalls are not available in 32-bit. @@ -992,7 +1010,6 @@ X86TargetLowering::X86TargetLowering(X86TargetMachine &TM) setTargetDAGCombine(ISD::SRL); setTargetDAGCombine(ISD::OR); setTargetDAGCombine(ISD::STORE); - setTargetDAGCombine(ISD::MEMBARRIER); setTargetDAGCombine(ISD::ZERO_EXTEND); if (Subtarget->is64Bit()) setTargetDAGCombine(ISD::MUL); @@ -1172,6 +1189,27 @@ unsigned X86TargetLowering::getFunctionAlignment(const Function *F) const { return F->hasFnAttr(Attribute::OptimizeForSize) ? 0 : 4; } +bool X86TargetLowering::getStackCookieLocation(unsigned &AddressSpace, + unsigned &Offset) const { + if (!Subtarget->isTargetLinux()) + return false; + + if (Subtarget->is64Bit()) { + // %fs:0x28, unless we're using a Kernel code model, in which case it's %gs: + Offset = 0x28; + if (getTargetMachine().getCodeModel() == CodeModel::Kernel) + AddressSpace = 256; + else + AddressSpace = 257; + } else { + // %gs:0x14 on i386 + Offset = 0x14; + AddressSpace = 256; + } + return true; +} + + //===----------------------------------------------------------------------===// // Return Value Calling Convention Implementation //===----------------------------------------------------------------------===// @@ -1180,19 +1218,19 @@ unsigned X86TargetLowering::getFunctionAlignment(const Function *F) const { bool X86TargetLowering::CanLowerReturn(CallingConv::ID CallConv, bool isVarArg, - const SmallVectorImpl<EVT> &OutTys, - const SmallVectorImpl<ISD::ArgFlagsTy> &ArgsFlags, - SelectionDAG &DAG) const { + const SmallVectorImpl<ISD::OutputArg> &Outs, + LLVMContext &Context) const { SmallVector<CCValAssign, 16> RVLocs; CCState CCInfo(CallConv, isVarArg, getTargetMachine(), - RVLocs, *DAG.getContext()); - return CCInfo.CheckReturn(OutTys, ArgsFlags, RetCC_X86); + RVLocs, Context); + return CCInfo.CheckReturn(Outs, RetCC_X86); } SDValue X86TargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, bool isVarArg, const SmallVectorImpl<ISD::OutputArg> &Outs, + const SmallVectorImpl<SDValue> &OutVals, DebugLoc dl, SelectionDAG &DAG) const { MachineFunction &MF = DAG.getMachineFunction(); X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>(); @@ -1220,7 +1258,7 @@ X86TargetLowering::LowerReturn(SDValue Chain, for (unsigned i = 0; i != RVLocs.size(); ++i) { CCValAssign &VA = RVLocs[i]; assert(VA.isRegLoc() && "Can only return in registers!"); - SDValue ValToCopy = Outs[i].Val; + SDValue ValToCopy = OutVals[i]; // Returns in ST0/ST1 are handled specially: these are pushed as operands to // the RET instruction and handled by the FP Stackifier. @@ -1308,17 +1346,34 @@ X86TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag, report_fatal_error("SSE register return with SSE disabled"); } + SDValue Val; + // If this is a call to a function that returns an fp value on the floating - // point stack, but where we prefer to use the value in xmm registers, copy - // it out as F80 and use a truncate to move it from fp stack reg to xmm reg. - if ((VA.getLocReg() == X86::ST0 || - VA.getLocReg() == X86::ST1) && - isScalarFPTypeInSSEReg(VA.getValVT())) { - CopyVT = MVT::f80; - } + // point stack, we must guarantee the the value is popped from the stack, so + // a CopyFromReg is not good enough - the copy instruction may be eliminated + // if the return value is not used. We use the FpGET_ST0 instructions + // instead. + if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1) { + // If we prefer to use the value in xmm registers, copy it out as f80 and + // use a truncate to move it from fp stack reg to xmm reg. + if (isScalarFPTypeInSSEReg(VA.getValVT())) CopyVT = MVT::f80; + bool isST0 = VA.getLocReg() == X86::ST0; + unsigned Opc = 0; + if (CopyVT == MVT::f32) Opc = isST0 ? X86::FpGET_ST0_32:X86::FpGET_ST1_32; + if (CopyVT == MVT::f64) Opc = isST0 ? X86::FpGET_ST0_64:X86::FpGET_ST1_64; + if (CopyVT == MVT::f80) Opc = isST0 ? X86::FpGET_ST0_80:X86::FpGET_ST1_80; + SDValue Ops[] = { Chain, InFlag }; + Chain = SDValue(DAG.getMachineNode(Opc, dl, CopyVT, MVT::Other, MVT::Flag, + Ops, 2), 1); + Val = Chain.getValue(0); - SDValue Val; - if (Is64Bit && CopyVT.isVector() && CopyVT.getSizeInBits() == 64) { + // Round the f80 to the right size, which also moves it to the appropriate + // xmm register. + if (CopyVT != VA.getValVT()) + Val = DAG.getNode(ISD::FP_ROUND, dl, VA.getValVT(), Val, + // This truncation won't change the value. + DAG.getIntPtrConstant(1)); + } else if (Is64Bit && CopyVT.isVector() && CopyVT.getSizeInBits() == 64) { // For x86-64, MMX values are returned in XMM0 / XMM1 except for v1i64. if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) { Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), @@ -1338,15 +1393,6 @@ X86TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag, Val = Chain.getValue(0); } InFlag = Chain.getValue(2); - - if (CopyVT != VA.getValVT()) { - // Round the F80 the right size, which also moves to the appropriate xmm - // register. - Val = DAG.getNode(ISD::FP_ROUND, dl, VA.getValVT(), Val, - // This truncation won't change the value. - DAG.getIntPtrConstant(1)); - } - InVals.push_back(Val); } @@ -1383,29 +1429,6 @@ ArgsAreStructReturn(const SmallVectorImpl<ISD::InputArg> &Ins) { return Ins[0].Flags.isSRet(); } -/// IsCalleePop - Determines whether the callee is required to pop its -/// own arguments. Callee pop is necessary to support tail calls. -bool X86TargetLowering::IsCalleePop(bool IsVarArg, - CallingConv::ID CallingConv) const { - if (IsVarArg) - return false; - - switch (CallingConv) { - default: - return false; - case CallingConv::X86_StdCall: - return !Subtarget->is64Bit(); - case CallingConv::X86_FastCall: - return !Subtarget->is64Bit(); - case CallingConv::X86_ThisCall: - return !Subtarget->is64Bit(); - case CallingConv::Fast: - return GuaranteedTailCallOpt; - case CallingConv::GHC: - return GuaranteedTailCallOpt; - } -} - /// CCAssignFnForNode - Selects the correct CCAssignFn for a the /// given CallingConvention value. CCAssignFn *X86TargetLowering::CCAssignFnForNode(CallingConv::ID CC) const { @@ -1483,11 +1506,11 @@ X86TargetLowering::LowerMemArgument(SDValue Chain, // could be overwritten by lowering of arguments in case of a tail call. if (Flags.isByVal()) { int FI = MFI->CreateFixedObject(Flags.getByValSize(), - VA.getLocMemOffset(), isImmutable, false); + VA.getLocMemOffset(), isImmutable); return DAG.getFrameIndex(FI, getPointerTy()); } else { int FI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8, - VA.getLocMemOffset(), isImmutable, false); + VA.getLocMemOffset(), isImmutable); SDValue FIN = DAG.getFrameIndex(FI, getPointerTy()); return DAG.getLoad(ValVT, dl, Chain, FIN, PseudoSourceValue::getFixedStack(FI), 0, @@ -1615,8 +1638,7 @@ X86TargetLowering::LowerFormalArguments(SDValue Chain, if (isVarArg) { if (Is64Bit || (CallConv != CallingConv::X86_FastCall && CallConv != CallingConv::X86_ThisCall)) { - FuncInfo->setVarArgsFrameIndex(MFI->CreateFixedObject(1, StackSize, - true, false)); + FuncInfo->setVarArgsFrameIndex(MFI->CreateFixedObject(1, StackSize,true)); } if (Is64Bit) { unsigned TotalNumIntRegs = 0, TotalNumXMMRegs = 0; @@ -1722,7 +1744,7 @@ X86TargetLowering::LowerFormalArguments(SDValue Chain, } // Some CCs need callee pop. - if (IsCalleePop(isVarArg, CallConv)) { + if (Subtarget->IsCalleePop(isVarArg, CallConv)) { FuncInfo->setBytesToPopOnReturn(StackSize); // Callee pops everything. } else { FuncInfo->setBytesToPopOnReturn(0); // Callee pops nothing. @@ -1788,7 +1810,7 @@ EmitTailCallStoreRetAddr(SelectionDAG & DAG, MachineFunction &MF, // Calculate the new stack slot for the return address. int SlotSize = Is64Bit ? 8 : 4; int NewReturnAddrFI = - MF.getFrameInfo()->CreateFixedObject(SlotSize, FPDiff-SlotSize, false, false); + MF.getFrameInfo()->CreateFixedObject(SlotSize, FPDiff-SlotSize, false); EVT VT = Is64Bit ? MVT::i64 : MVT::i32; SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, VT); Chain = DAG.getStore(Chain, dl, RetAddrFrIdx, NewRetAddrFrIdx, @@ -1802,6 +1824,7 @@ X86TargetLowering::LowerCall(SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg, bool &isTailCall, const SmallVectorImpl<ISD::OutputArg> &Outs, + const SmallVectorImpl<SDValue> &OutVals, const SmallVectorImpl<ISD::InputArg> &Ins, DebugLoc dl, SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { @@ -1814,7 +1837,7 @@ X86TargetLowering::LowerCall(SDValue Chain, SDValue Callee, // Check if it's really possible to do a tail call. isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg, IsStructRet, MF.getFunction()->hasStructRetAttr(), - Outs, Ins, DAG); + Outs, OutVals, Ins, DAG); // Sibcalls are automatically detected tailcalls which do not require // ABI changes. @@ -1874,7 +1897,7 @@ X86TargetLowering::LowerCall(SDValue Chain, SDValue Callee, for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { CCValAssign &VA = ArgLocs[i]; EVT RegVT = VA.getLocVT(); - SDValue Arg = Outs[i].Val; + SDValue Arg = OutVals[i]; ISD::ArgFlagsTy Flags = Outs[i].Flags; bool isByVal = Flags.isByVal(); @@ -2013,12 +2036,12 @@ X86TargetLowering::LowerCall(SDValue Chain, SDValue Callee, if (VA.isRegLoc()) continue; assert(VA.isMemLoc()); - SDValue Arg = Outs[i].Val; + SDValue Arg = OutVals[i]; ISD::ArgFlagsTy Flags = Outs[i].Flags; // Create frame index. int32_t Offset = VA.getLocMemOffset()+FPDiff; uint32_t OpSize = (VA.getLocVT().getSizeInBits()+7)/8; - FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true, false); + FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true); FIN = DAG.getFrameIndex(FI, getPointerTy()); if (Flags.isByVal()) { @@ -2059,7 +2082,6 @@ X86TargetLowering::LowerCall(SDValue Chain, SDValue Callee, FPDiff, dl); } - bool WasGlobalOrExternal = false; if (getTargetMachine().getCodeModel() == CodeModel::Large) { assert(Is64Bit && "Large code model is only legal in 64-bit mode."); // In the 64-bit large code model, we have to make all calls @@ -2067,7 +2089,6 @@ X86TargetLowering::LowerCall(SDValue Chain, SDValue Callee, // pc-relative offset may not be large enough to hold the whole // address. } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { - WasGlobalOrExternal = true; // If the callee is a GlobalAddress node (quite common, every direct call // is) turn it into a TargetGlobalAddress node so that legalize doesn't hack // it. @@ -2095,11 +2116,10 @@ X86TargetLowering::LowerCall(SDValue Chain, SDValue Callee, OpFlags = X86II::MO_DARWIN_STUB; } - Callee = DAG.getTargetGlobalAddress(GV, getPointerTy(), + Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), G->getOffset(), OpFlags); } } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { - WasGlobalOrExternal = true; unsigned char OpFlags = 0; // On ELF targets, in either X86-64 or X86-32 mode, direct calls to external @@ -2153,17 +2173,12 @@ X86TargetLowering::LowerCall(SDValue Chain, SDValue Callee, Ops.push_back(InFlag); if (isTailCall) { - // If this is the first return lowered for this function, add the regs - // to the liveout set for the function. - if (MF.getRegInfo().liveout_empty()) { - SmallVector<CCValAssign, 16> RVLocs; - CCState CCInfo(CallConv, isVarArg, getTargetMachine(), RVLocs, - *DAG.getContext()); - CCInfo.AnalyzeCallResult(Ins, RetCC_X86); - for (unsigned i = 0; i != RVLocs.size(); ++i) - if (RVLocs[i].isRegLoc()) - MF.getRegInfo().addLiveOut(RVLocs[i].getLocReg()); - } + // We used to do: + //// If this is the first return lowered for this function, add the regs + //// to the liveout set for the function. + // This isn't right, although it's probably harmless on x86; liveouts + // should be computed from returns not tail calls. Consider a void + // function making a tail call to a function returning int. return DAG.getNode(X86ISD::TC_RETURN, dl, NodeTys, &Ops[0], Ops.size()); } @@ -2173,7 +2188,7 @@ X86TargetLowering::LowerCall(SDValue Chain, SDValue Callee, // Create the CALLSEQ_END node. unsigned NumBytesForCalleeToPush; - if (IsCalleePop(isVarArg, CallConv)) + if (Subtarget->IsCalleePop(isVarArg, CallConv)) NumBytesForCalleeToPush = NumBytes; // Callee pops everything else if (!Is64Bit && !IsTailCallConvention(CallConv) && IsStructRet) // If this is a call to a struct-return function, the callee @@ -2314,6 +2329,7 @@ X86TargetLowering::IsEligibleForTailCallOptimization(SDValue Callee, bool isCalleeStructRet, bool isCallerStructRet, const SmallVectorImpl<ISD::OutputArg> &Outs, + const SmallVectorImpl<SDValue> &OutVals, const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG& DAG) const { if (!IsTailCallConvention(CalleeCC) && @@ -2332,8 +2348,8 @@ X86TargetLowering::IsEligibleForTailCallOptimization(SDValue Callee, return false; } - // Look for obvious safe cases to perform tail call optimization that does not - // requite ABI changes. This is what gcc calls sibcall. + // Look for obvious safe cases to perform tail call optimization that do not + // require ABI changes. This is what gcc calls sibcall. // Can't do sibcall if stack needs to be dynamically re-aligned. PEI needs to // emit a special epilogue. @@ -2427,8 +2443,7 @@ X86TargetLowering::IsEligibleForTailCallOptimization(SDValue Callee, ((X86TargetMachine&)getTargetMachine()).getInstrInfo(); for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { CCValAssign &VA = ArgLocs[i]; - EVT RegVT = VA.getLocVT(); - SDValue Arg = Outs[i].Val; + SDValue Arg = OutVals[i]; ISD::ArgFlagsTy Flags = Outs[i].Flags; if (VA.getLocInfo() == CCValAssign::Indirect) return false; @@ -2439,26 +2454,32 @@ X86TargetLowering::IsEligibleForTailCallOptimization(SDValue Callee, } } } + + // If the tailcall address may be in a register, then make sure it's + // possible to register allocate for it. In 32-bit, the call address can + // only target EAX, EDX, or ECX since the tail call must be scheduled after + // callee-saved registers are restored. In 64-bit, it's RAX, RCX, RDX, RSI, + // RDI, R8, R9, R11. + if (!isa<GlobalAddressSDNode>(Callee) && + !isa<ExternalSymbolSDNode>(Callee)) { + unsigned Limit = Subtarget->is64Bit() ? 8 : 3; + unsigned NumInRegs = 0; + for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { + CCValAssign &VA = ArgLocs[i]; + if (VA.isRegLoc()) { + if (++NumInRegs == Limit) + return false; + } + } + } } return true; } FastISel * -X86TargetLowering::createFastISel(MachineFunction &mf, - DenseMap<const Value *, unsigned> &vm, - DenseMap<const BasicBlock*, MachineBasicBlock*> &bm, - DenseMap<const AllocaInst *, int> &am, - std::vector<std::pair<MachineInstr*, unsigned> > &pn -#ifndef NDEBUG - , SmallSet<const Instruction *, 8> &cil -#endif - ) const { - return X86::createFastISel(mf, vm, bm, am, pn -#ifndef NDEBUG - , cil -#endif - ); +X86TargetLowering::createFastISel(FunctionLoweringInfo &funcInfo) const { + return X86::createFastISel(funcInfo); } @@ -2476,7 +2497,7 @@ SDValue X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) const { // Set up a frame object for the return address. uint64_t SlotSize = TD->getPointerSize(); ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(SlotSize, -SlotSize, - false, false); + false); FuncInfo->setRAIndex(ReturnAddrIndex); } @@ -3175,7 +3196,7 @@ unsigned X86::getShufflePALIGNRImmediate(SDNode *N) { /// constant +0.0. bool X86::isZeroNode(SDValue Elt) { return ((isa<ConstantSDNode>(Elt) && - cast<ConstantSDNode>(Elt)->getZExtValue() == 0) || + cast<ConstantSDNode>(Elt)->isNullValue()) || (isa<ConstantFPSDNode>(Elt) && cast<ConstantFPSDNode>(Elt)->getValueAPF().isPosZero())); } @@ -4433,7 +4454,7 @@ SDValue LowerVECTOR_SHUFFLEv16i8(ShuffleVectorSDNode *SVOp, } /// RewriteAsNarrowerShuffle - Try rewriting v8i16 and v16i8 shuffles as 4 wide -/// ones, or rewriting v4i32 / v2f32 as 2 wide ones if possible. This can be +/// ones, or rewriting v4i32 / v2i32 as 2 wide ones if possible. This can be /// done when every pair / quad of shuffle mask elements point to elements in /// the right sequence. e.g. /// vector_shuffle <>, <>, < 3, 4, | 10, 11, | 0, 1, | 14, 15> @@ -4447,7 +4468,6 @@ SDValue RewriteAsNarrowerShuffle(ShuffleVectorSDNode *SVOp, unsigned NumElems = VT.getVectorNumElements(); unsigned NewWidth = (NumElems == 4) ? 2 : 4; EVT MaskVT = MVT::getIntVectorWithNumElements(NewWidth); - EVT MaskEltVT = MaskVT.getVectorElementType(); EVT NewVT = MaskVT; switch (VT.getSimpleVT().SimpleTy) { default: assert(false && "Unexpected!"); @@ -5059,13 +5079,9 @@ X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const { SDValue X86TargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) const { DebugLoc dl = Op.getDebugLoc(); - if (Op.getValueType() == MVT::v2f32) - return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f32, - DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i32, - DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, - Op.getOperand(0)))); - - if (Op.getValueType() == MVT::v1i64 && Op.getOperand(0).getValueType() == MVT::i64) + + if (Op.getValueType() == MVT::v1i64 && + Op.getOperand(0).getValueType() == MVT::i64) return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v1i64, Op.getOperand(0)); SDValue AnyExt = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Op.getOperand(0)); @@ -5230,10 +5246,10 @@ X86TargetLowering::LowerGlobalAddress(const GlobalValue *GV, DebugLoc dl, if (OpFlags == X86II::MO_NO_FLAG && X86::isOffsetSuitableForCodeModel(Offset, M)) { // A direct static reference to a global. - Result = DAG.getTargetGlobalAddress(GV, getPointerTy(), Offset); + Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), Offset); Offset = 0; } else { - Result = DAG.getTargetGlobalAddress(GV, getPointerTy(), 0, OpFlags); + Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), 0, OpFlags); } if (Subtarget->isPICStyleRIPRel() && @@ -5278,7 +5294,7 @@ GetTLSADDR(SelectionDAG &DAG, SDValue Chain, GlobalAddressSDNode *GA, MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag); DebugLoc dl = GA->getDebugLoc(); - SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), + SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl, GA->getValueType(0), GA->getOffset(), OperandFlags); @@ -5351,7 +5367,8 @@ static SDValue LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG, // emit "addl x@ntpoff,%eax" (local exec) or "addl x@indntpoff,%eax" (initial // exec) - SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), GA->getValueType(0), + SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl, + GA->getValueType(0), GA->getOffset(), OperandFlags); SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA); @@ -5366,33 +5383,78 @@ static SDValue LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG, SDValue X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const { - // TODO: implement the "local dynamic" model - // TODO: implement the "initial exec"model for pic executables - assert(Subtarget->isTargetELF() && - "TLS not implemented for non-ELF targets"); + GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op); const GlobalValue *GV = GA->getGlobal(); - // If GV is an alias then use the aliasee for determining - // thread-localness. - if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV)) - GV = GA->resolveAliasedGlobal(false); - - TLSModel::Model model = getTLSModel(GV, - getTargetMachine().getRelocationModel()); - - switch (model) { - case TLSModel::GeneralDynamic: - case TLSModel::LocalDynamic: // not implemented - if (Subtarget->is64Bit()) - return LowerToTLSGeneralDynamicModel64(GA, DAG, getPointerTy()); - return LowerToTLSGeneralDynamicModel32(GA, DAG, getPointerTy()); + if (Subtarget->isTargetELF()) { + // TODO: implement the "local dynamic" model + // TODO: implement the "initial exec"model for pic executables + + // If GV is an alias then use the aliasee for determining + // thread-localness. + if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV)) + GV = GA->resolveAliasedGlobal(false); + + TLSModel::Model model + = getTLSModel(GV, getTargetMachine().getRelocationModel()); + + switch (model) { + case TLSModel::GeneralDynamic: + case TLSModel::LocalDynamic: // not implemented + if (Subtarget->is64Bit()) + return LowerToTLSGeneralDynamicModel64(GA, DAG, getPointerTy()); + return LowerToTLSGeneralDynamicModel32(GA, DAG, getPointerTy()); + + case TLSModel::InitialExec: + case TLSModel::LocalExec: + return LowerToTLSExecModel(GA, DAG, getPointerTy(), model, + Subtarget->is64Bit()); + } + } else if (Subtarget->isTargetDarwin()) { + // Darwin only has one model of TLS. Lower to that. + unsigned char OpFlag = 0; + unsigned WrapperKind = Subtarget->isPICStyleRIPRel() ? + X86ISD::WrapperRIP : X86ISD::Wrapper; + + // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the + // global base reg. + bool PIC32 = (getTargetMachine().getRelocationModel() == Reloc::PIC_) && + !Subtarget->is64Bit(); + if (PIC32) + OpFlag = X86II::MO_TLVP_PIC_BASE; + else + OpFlag = X86II::MO_TLVP; + DebugLoc DL = Op.getDebugLoc(); + SDValue Result = DAG.getTargetGlobalAddress(GA->getGlobal(), DL, + getPointerTy(), + GA->getOffset(), OpFlag); + SDValue Offset = DAG.getNode(WrapperKind, DL, getPointerTy(), Result); + + // With PIC32, the address is actually $g + Offset. + if (PIC32) + Offset = DAG.getNode(ISD::ADD, DL, getPointerTy(), + DAG.getNode(X86ISD::GlobalBaseReg, + DebugLoc(), getPointerTy()), + Offset); + + // Lowering the machine isd will make sure everything is in the right + // location. + SDValue Args[] = { Offset }; + SDValue Chain = DAG.getNode(X86ISD::TLSCALL, DL, MVT::Other, Args, 1); + + // TLSCALL will be codegen'ed as call. Inform MFI that function has calls. + MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); + MFI->setAdjustsStack(true); - case TLSModel::InitialExec: - case TLSModel::LocalExec: - return LowerToTLSExecModel(GA, DAG, getPointerTy(), model, - Subtarget->is64Bit()); + // And our return value (tls address) is in the standard call return value + // location. + unsigned Reg = Subtarget->is64Bit() ? X86::RAX : X86::EAX; + return DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy()); } + + assert(false && + "TLS not implemented for this target."); llvm_unreachable("Unreachable"); return SDValue(); @@ -5715,7 +5777,7 @@ SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op, // Load the value out, extending it from f32 to f80. // FIXME: Avoid the extend by constructing the right constant pool? - SDValue Fudge = DAG.getExtLoad(ISD::EXTLOAD, dl, MVT::f80, DAG.getEntryNode(), + SDValue Fudge = DAG.getExtLoad(ISD::EXTLOAD, MVT::f80, dl, DAG.getEntryNode(), FudgePtr, PseudoSourceValue::getConstantPool(), 0, MVT::f32, false, false, 4); // Extend everything to 80 bits to force it to be done on x87. @@ -5964,6 +6026,7 @@ SDValue X86TargetLowering::EmitTest(SDValue Op, unsigned X86CC, bool NeedCF = false; bool NeedOF = false; switch (X86CC) { + default: break; case X86::COND_A: case X86::COND_AE: case X86::COND_B: case X86::COND_BE: NeedCF = true; @@ -5973,120 +6036,129 @@ SDValue X86TargetLowering::EmitTest(SDValue Op, unsigned X86CC, case X86::COND_O: case X86::COND_NO: NeedOF = true; break; - default: break; } // See if we can use the EFLAGS value from the operand instead of // doing a separate TEST. TEST always sets OF and CF to 0, so unless // we prove that the arithmetic won't overflow, we can't use OF or CF. - if (Op.getResNo() == 0 && !NeedOF && !NeedCF) { - unsigned Opcode = 0; - unsigned NumOperands = 0; - switch (Op.getNode()->getOpcode()) { - case ISD::ADD: - // Due to an isel shortcoming, be conservative if this add is - // likely to be selected as part of a load-modify-store - // instruction. When the root node in a match is a store, isel - // doesn't know how to remap non-chain non-flag uses of other - // nodes in the match, such as the ADD in this case. This leads - // to the ADD being left around and reselected, with the result - // being two adds in the output. Alas, even if none our users - // are stores, that doesn't prove we're O.K. Ergo, if we have - // any parents that aren't CopyToReg or SETCC, eschew INC/DEC. - // A better fix seems to require climbing the DAG back to the - // root, and it doesn't seem to be worth the effort. - for (SDNode::use_iterator UI = Op.getNode()->use_begin(), - UE = Op.getNode()->use_end(); UI != UE; ++UI) - if (UI->getOpcode() != ISD::CopyToReg && UI->getOpcode() != ISD::SETCC) - goto default_case; - if (ConstantSDNode *C = - dyn_cast<ConstantSDNode>(Op.getNode()->getOperand(1))) { - // An add of one will be selected as an INC. - if (C->getAPIntValue() == 1) { - Opcode = X86ISD::INC; - NumOperands = 1; - break; - } - // An add of negative one (subtract of one) will be selected as a DEC. - if (C->getAPIntValue().isAllOnesValue()) { - Opcode = X86ISD::DEC; - NumOperands = 1; - break; - } + if (Op.getResNo() != 0 || NeedOF || NeedCF) + // Emit a CMP with 0, which is the TEST pattern. + return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op, + DAG.getConstant(0, Op.getValueType())); + + unsigned Opcode = 0; + unsigned NumOperands = 0; + switch (Op.getNode()->getOpcode()) { + case ISD::ADD: + // Due to an isel shortcoming, be conservative if this add is likely to be + // selected as part of a load-modify-store instruction. When the root node + // in a match is a store, isel doesn't know how to remap non-chain non-flag + // uses of other nodes in the match, such as the ADD in this case. This + // leads to the ADD being left around and reselected, with the result being + // two adds in the output. Alas, even if none our users are stores, that + // doesn't prove we're O.K. Ergo, if we have any parents that aren't + // CopyToReg or SETCC, eschew INC/DEC. A better fix seems to require + // climbing the DAG back to the root, and it doesn't seem to be worth the + // effort. + for (SDNode::use_iterator UI = Op.getNode()->use_begin(), + UE = Op.getNode()->use_end(); UI != UE; ++UI) + if (UI->getOpcode() != ISD::CopyToReg && UI->getOpcode() != ISD::SETCC) + goto default_case; + + if (ConstantSDNode *C = + dyn_cast<ConstantSDNode>(Op.getNode()->getOperand(1))) { + // An add of one will be selected as an INC. + if (C->getAPIntValue() == 1) { + Opcode = X86ISD::INC; + NumOperands = 1; + break; } - // Otherwise use a regular EFLAGS-setting add. - Opcode = X86ISD::ADD; - NumOperands = 2; - break; - case ISD::AND: { - // If the primary and result isn't used, don't bother using X86ISD::AND, - // because a TEST instruction will be better. - bool NonFlagUse = false; - for (SDNode::use_iterator UI = Op.getNode()->use_begin(), - UE = Op.getNode()->use_end(); UI != UE; ++UI) { - SDNode *User = *UI; - unsigned UOpNo = UI.getOperandNo(); - if (User->getOpcode() == ISD::TRUNCATE && User->hasOneUse()) { - // Look pass truncate. - UOpNo = User->use_begin().getOperandNo(); - User = *User->use_begin(); - } - if (User->getOpcode() != ISD::BRCOND && - User->getOpcode() != ISD::SETCC && - (User->getOpcode() != ISD::SELECT || UOpNo != 0)) { - NonFlagUse = true; - break; - } + + // An add of negative one (subtract of one) will be selected as a DEC. + if (C->getAPIntValue().isAllOnesValue()) { + Opcode = X86ISD::DEC; + NumOperands = 1; + break; } - if (!NonFlagUse) + } + + // Otherwise use a regular EFLAGS-setting add. + Opcode = X86ISD::ADD; + NumOperands = 2; + break; + case ISD::AND: { + // If the primary and result isn't used, don't bother using X86ISD::AND, + // because a TEST instruction will be better. + bool NonFlagUse = false; + for (SDNode::use_iterator UI = Op.getNode()->use_begin(), + UE = Op.getNode()->use_end(); UI != UE; ++UI) { + SDNode *User = *UI; + unsigned UOpNo = UI.getOperandNo(); + if (User->getOpcode() == ISD::TRUNCATE && User->hasOneUse()) { + // Look pass truncate. + UOpNo = User->use_begin().getOperandNo(); + User = *User->use_begin(); + } + + if (User->getOpcode() != ISD::BRCOND && + User->getOpcode() != ISD::SETCC && + (User->getOpcode() != ISD::SELECT || UOpNo != 0)) { + NonFlagUse = true; break; + } } + + if (!NonFlagUse) + break; + } // FALL THROUGH - case ISD::SUB: - case ISD::OR: - case ISD::XOR: - // Due to the ISEL shortcoming noted above, be conservative if this op is - // likely to be selected as part of a load-modify-store instruction. - for (SDNode::use_iterator UI = Op.getNode()->use_begin(), + case ISD::SUB: + case ISD::OR: + case ISD::XOR: + // Due to the ISEL shortcoming noted above, be conservative if this op is + // likely to be selected as part of a load-modify-store instruction. + for (SDNode::use_iterator UI = Op.getNode()->use_begin(), UE = Op.getNode()->use_end(); UI != UE; ++UI) - if (UI->getOpcode() == ISD::STORE) - goto default_case; - // Otherwise use a regular EFLAGS-setting instruction. - switch (Op.getNode()->getOpcode()) { - case ISD::SUB: Opcode = X86ISD::SUB; break; - case ISD::OR: Opcode = X86ISD::OR; break; - case ISD::XOR: Opcode = X86ISD::XOR; break; - case ISD::AND: Opcode = X86ISD::AND; break; - default: llvm_unreachable("unexpected operator!"); - } - NumOperands = 2; - break; - case X86ISD::ADD: - case X86ISD::SUB: - case X86ISD::INC: - case X86ISD::DEC: - case X86ISD::OR: - case X86ISD::XOR: - case X86ISD::AND: - return SDValue(Op.getNode(), 1); - default: - default_case: - break; - } - if (Opcode != 0) { - SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32); - SmallVector<SDValue, 4> Ops; - for (unsigned i = 0; i != NumOperands; ++i) - Ops.push_back(Op.getOperand(i)); - SDValue New = DAG.getNode(Opcode, dl, VTs, &Ops[0], NumOperands); - DAG.ReplaceAllUsesWith(Op, New); - return SDValue(New.getNode(), 1); + if (UI->getOpcode() == ISD::STORE) + goto default_case; + + // Otherwise use a regular EFLAGS-setting instruction. + switch (Op.getNode()->getOpcode()) { + default: llvm_unreachable("unexpected operator!"); + case ISD::SUB: Opcode = X86ISD::SUB; break; + case ISD::OR: Opcode = X86ISD::OR; break; + case ISD::XOR: Opcode = X86ISD::XOR; break; + case ISD::AND: Opcode = X86ISD::AND; break; } + + NumOperands = 2; + break; + case X86ISD::ADD: + case X86ISD::SUB: + case X86ISD::INC: + case X86ISD::DEC: + case X86ISD::OR: + case X86ISD::XOR: + case X86ISD::AND: + return SDValue(Op.getNode(), 1); + default: + default_case: + break; } - // Otherwise just emit a CMP with 0, which is the TEST pattern. - return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op, - DAG.getConstant(0, Op.getValueType())); + if (Opcode == 0) + // Emit a CMP with 0, which is the TEST pattern. + return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op, + DAG.getConstant(0, Op.getValueType())); + + SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32); + SmallVector<SDValue, 4> Ops; + for (unsigned i = 0; i != NumOperands; ++i) + Ops.push_back(Op.getOperand(i)); + + SDValue New = DAG.getNode(Opcode, dl, VTs, &Ops[0], NumOperands); + DAG.ReplaceAllUsesWith(Op, New); + return SDValue(New.getNode(), 1); } /// Emit nodes that will be selected as "cmp Op0,Op1", or something @@ -6113,15 +6185,21 @@ SDValue X86TargetLowering::LowerToBT(SDValue And, ISD::CondCode CC, Op1 = Op1.getOperand(0); SDValue LHS, RHS; - if (Op1.getOpcode() == ISD::SHL) { - if (ConstantSDNode *And10C = dyn_cast<ConstantSDNode>(Op1.getOperand(0))) - if (And10C->getZExtValue() == 1) { - LHS = Op0; - RHS = Op1.getOperand(1); - } - } else if (Op0.getOpcode() == ISD::SHL) { + if (Op1.getOpcode() == ISD::SHL) + std::swap(Op0, Op1); + if (Op0.getOpcode() == ISD::SHL) { if (ConstantSDNode *And00C = dyn_cast<ConstantSDNode>(Op0.getOperand(0))) if (And00C->getZExtValue() == 1) { + // If we looked past a truncate, check that it's only truncating away + // known zeros. + unsigned BitWidth = Op0.getValueSizeInBits(); + unsigned AndBitWidth = And.getValueSizeInBits(); + if (BitWidth > AndBitWidth) { + APInt Mask = APInt::getAllOnesValue(BitWidth), Zeros, Ones; + DAG.ComputeMaskedBits(Op0, Mask, Zeros, Ones); + if (Zeros.countLeadingOnes() < BitWidth - AndBitWidth) + return SDValue(); + } LHS = Op1; RHS = Op0.getOperand(1); } @@ -6172,7 +6250,7 @@ SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const { if (Op0.getOpcode() == ISD::AND && Op0.hasOneUse() && Op1.getOpcode() == ISD::Constant && - cast<ConstantSDNode>(Op1)->getZExtValue() == 0 && + cast<ConstantSDNode>(Op1)->isNullValue() && (CC == ISD::SETEQ || CC == ISD::SETNE)) { SDValue NewSetCC = LowerToBT(Op0, CC, dl, DAG); if (NewSetCC.getNode()) @@ -6552,15 +6630,16 @@ SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const { (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0); CCode = X86::GetOppositeBranchCondition(CCode); CC = DAG.getConstant(CCode, MVT::i8); - SDValue User = SDValue(*Op.getNode()->use_begin(), 0); + SDNode *User = *Op.getNode()->use_begin(); // Look for an unconditional branch following this conditional branch. // We need this because we need to reverse the successors in order // to implement FCMP_OEQ. - if (User.getOpcode() == ISD::BR) { - SDValue FalseBB = User.getOperand(1); - SDValue NewBR = - DAG.UpdateNodeOperands(User, User.getOperand(0), Dest); + if (User->getOpcode() == ISD::BR) { + SDValue FalseBB = User->getOperand(1); + SDNode *NewBR = + DAG.UpdateNodeOperands(User, User->getOperand(0), Dest); assert(NewBR == User); + (void)NewBR; Dest = FalseBB; Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(), @@ -6632,7 +6711,6 @@ X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, SDValue Flag; - EVT IntPtr = getPointerTy(); EVT SPTy = Subtarget->is64Bit() ? MVT::i64 : MVT::i32; Chain = DAG.getCopyToReg(Chain, dl, X86::EAX, Size, Flag); @@ -6685,7 +6763,7 @@ SDValue X86TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const { Store = DAG.getStore(Op.getOperand(0), dl, DAG.getConstant(FuncInfo->getVarArgsFPOffset(), MVT::i32), - FIN, SV, 0, false, false, 0); + FIN, SV, 4, false, false, 0); MemOps.push_back(Store); // Store ptr to overflow_arg_area @@ -6693,7 +6771,7 @@ SDValue X86TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const { FIN, DAG.getIntPtrConstant(4)); SDValue OVFIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), getPointerTy()); - Store = DAG.getStore(Op.getOperand(0), dl, OVFIN, FIN, SV, 0, + Store = DAG.getStore(Op.getOperand(0), dl, OVFIN, FIN, SV, 8, false, false, 0); MemOps.push_back(Store); @@ -6702,7 +6780,7 @@ SDValue X86TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const { FIN, DAG.getIntPtrConstant(8)); SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(), getPointerTy()); - Store = DAG.getStore(Op.getOperand(0), dl, RSFIN, FIN, SV, 0, + Store = DAG.getStore(Op.getOperand(0), dl, RSFIN, FIN, SV, 16, false, false, 0); MemOps.push_back(Store); return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, @@ -6712,9 +6790,6 @@ SDValue X86TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const { SDValue X86TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const { // X86-64 va_list is a struct { i32, i32, i8*, i8* }. assert(Subtarget->is64Bit() && "This code only handles 64-bit va_arg!"); - SDValue Chain = Op.getOperand(0); - SDValue SrcPtr = Op.getOperand(1); - SDValue SrcSV = Op.getOperand(2); report_fatal_error("VAArgInst is not yet implemented for x86-64!"); return SDValue(); @@ -7733,6 +7808,7 @@ const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const { case X86ISD::FRSQRT: return "X86ISD::FRSQRT"; case X86ISD::FRCP: return "X86ISD::FRCP"; case X86ISD::TLSADDR: return "X86ISD::TLSADDR"; + case X86ISD::TLSCALL: return "X86ISD::TLSCALL"; case X86ISD::SegmentBaseAddress: return "X86ISD::SegmentBaseAddress"; case X86ISD::EH_RETURN: return "X86ISD::EH_RETURN"; case X86ISD::TC_RETURN: return "X86ISD::TC_RETURN"; @@ -7944,8 +8020,11 @@ X86TargetLowering::EmitAtomicBitwiseWithCustomInserter(MachineInstr *bInstr, F->insert(MBBIter, newMBB); F->insert(MBBIter, nextMBB); - // Move all successors to thisMBB to nextMBB - nextMBB->transferSuccessors(thisMBB); + // Transfer the remainder of thisMBB and its successor edges to nextMBB. + nextMBB->splice(nextMBB->begin(), thisMBB, + llvm::next(MachineBasicBlock::iterator(bInstr)), + thisMBB->end()); + nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB); // Update thisMBB to fall through to newMBB thisMBB->addSuccessor(newMBB); @@ -7955,17 +8034,17 @@ X86TargetLowering::EmitAtomicBitwiseWithCustomInserter(MachineInstr *bInstr, newMBB->addSuccessor(newMBB); // Insert instructions into newMBB based on incoming instruction - assert(bInstr->getNumOperands() < X86AddrNumOperands + 4 && + assert(bInstr->getNumOperands() < X86::AddrNumOperands + 4 && "unexpected number of operands"); DebugLoc dl = bInstr->getDebugLoc(); MachineOperand& destOper = bInstr->getOperand(0); - MachineOperand* argOpers[2 + X86AddrNumOperands]; + MachineOperand* argOpers[2 + X86::AddrNumOperands]; int numArgs = bInstr->getNumOperands() - 1; for (int i=0; i < numArgs; ++i) argOpers[i] = &bInstr->getOperand(i+1); // x86 address has 4 operands: base, index, scale, and displacement - int lastAddrIndx = X86AddrNumOperands - 1; // [0,3] + int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3] int valArgIndx = lastAddrIndx + 1; unsigned t1 = F->getRegInfo().createVirtualRegister(RC); @@ -8008,7 +8087,7 @@ X86TargetLowering::EmitAtomicBitwiseWithCustomInserter(MachineInstr *bInstr, // insert branch BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB); - F->DeleteMachineInstr(bInstr); // The pseudo instruction is gone now. + bInstr->eraseFromParent(); // The pseudo instruction is gone now. return nextMBB; } @@ -8053,8 +8132,11 @@ X86TargetLowering::EmitAtomicBit6432WithCustomInserter(MachineInstr *bInstr, F->insert(MBBIter, newMBB); F->insert(MBBIter, nextMBB); - // Move all successors to thisMBB to nextMBB - nextMBB->transferSuccessors(thisMBB); + // Transfer the remainder of thisMBB and its successor edges to nextMBB. + nextMBB->splice(nextMBB->begin(), thisMBB, + llvm::next(MachineBasicBlock::iterator(bInstr)), + thisMBB->end()); + nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB); // Update thisMBB to fall through to newMBB thisMBB->addSuccessor(newMBB); @@ -8066,12 +8148,12 @@ X86TargetLowering::EmitAtomicBit6432WithCustomInserter(MachineInstr *bInstr, DebugLoc dl = bInstr->getDebugLoc(); // Insert instructions into newMBB based on incoming instruction // There are 8 "real" operands plus 9 implicit def/uses, ignored here. - assert(bInstr->getNumOperands() < X86AddrNumOperands + 14 && + assert(bInstr->getNumOperands() < X86::AddrNumOperands + 14 && "unexpected number of operands"); MachineOperand& dest1Oper = bInstr->getOperand(0); MachineOperand& dest2Oper = bInstr->getOperand(1); - MachineOperand* argOpers[2 + X86AddrNumOperands]; - for (int i=0; i < 2 + X86AddrNumOperands; ++i) { + MachineOperand* argOpers[2 + X86::AddrNumOperands]; + for (int i=0; i < 2 + X86::AddrNumOperands; ++i) { argOpers[i] = &bInstr->getOperand(i+2); // We use some of the operands multiple times, so conservatively just @@ -8081,7 +8163,7 @@ X86TargetLowering::EmitAtomicBit6432WithCustomInserter(MachineInstr *bInstr, } // x86 address has 5 operands: base, index, scale, displacement, and segment. - int lastAddrIndx = X86AddrNumOperands - 1; // [0,3] + int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3] unsigned t1 = F->getRegInfo().createVirtualRegister(RC); MachineInstrBuilder MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t1); @@ -8171,7 +8253,7 @@ X86TargetLowering::EmitAtomicBit6432WithCustomInserter(MachineInstr *bInstr, // insert branch BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB); - F->DeleteMachineInstr(bInstr); // The pseudo instruction is gone now. + bInstr->eraseFromParent(); // The pseudo instruction is gone now. return nextMBB; } @@ -8205,8 +8287,11 @@ X86TargetLowering::EmitAtomicMinMaxWithCustomInserter(MachineInstr *mInstr, F->insert(MBBIter, newMBB); F->insert(MBBIter, nextMBB); - // Move all successors of thisMBB to nextMBB - nextMBB->transferSuccessors(thisMBB); + // Transfer the remainder of thisMBB and its successor edges to nextMBB. + nextMBB->splice(nextMBB->begin(), thisMBB, + llvm::next(MachineBasicBlock::iterator(mInstr)), + thisMBB->end()); + nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB); // Update thisMBB to fall through to newMBB thisMBB->addSuccessor(newMBB); @@ -8217,16 +8302,16 @@ X86TargetLowering::EmitAtomicMinMaxWithCustomInserter(MachineInstr *mInstr, DebugLoc dl = mInstr->getDebugLoc(); // Insert instructions into newMBB based on incoming instruction - assert(mInstr->getNumOperands() < X86AddrNumOperands + 4 && + assert(mInstr->getNumOperands() < X86::AddrNumOperands + 4 && "unexpected number of operands"); MachineOperand& destOper = mInstr->getOperand(0); - MachineOperand* argOpers[2 + X86AddrNumOperands]; + MachineOperand* argOpers[2 + X86::AddrNumOperands]; int numArgs = mInstr->getNumOperands() - 1; for (int i=0; i < numArgs; ++i) argOpers[i] = &mInstr->getOperand(i+1); // x86 address has 4 operands: base, index, scale, and displacement - int lastAddrIndx = X86AddrNumOperands - 1; // [0,3] + int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3] int valArgIndx = lastAddrIndx + 1; unsigned t1 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass); @@ -8274,7 +8359,7 @@ X86TargetLowering::EmitAtomicMinMaxWithCustomInserter(MachineInstr *mInstr, // insert branch BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB); - F->DeleteMachineInstr(mInstr); // The pseudo instruction is gone now. + mInstr->eraseFromParent(); // The pseudo instruction is gone now. return nextMBB; } @@ -8284,7 +8369,6 @@ MachineBasicBlock * X86TargetLowering::EmitPCMP(MachineInstr *MI, MachineBasicBlock *BB, unsigned numArgs, bool memArg) const { - MachineFunction *F = BB->getParent(); DebugLoc dl = MI->getDebugLoc(); const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); @@ -8306,7 +8390,7 @@ X86TargetLowering::EmitPCMP(MachineInstr *MI, MachineBasicBlock *BB, BuildMI(BB, dl, TII->get(X86::MOVAPSrr), MI->getOperand(0).getReg()) .addReg(X86::XMM0); - F->DeleteMachineInstr(MI); + MI->eraseFromParent(); return BB; } @@ -8335,9 +8419,12 @@ X86TargetLowering::EmitVAStartSaveXMMRegsWithCustomInserter( F->insert(MBBIter, XMMSaveMBB); F->insert(MBBIter, EndMBB); - // Set up the CFG. - // Move any original successors of MBB to the end block. - EndMBB->transferSuccessors(MBB); + // Transfer the remainder of MBB and its successor edges to EndMBB. + EndMBB->splice(EndMBB->begin(), MBB, + llvm::next(MachineBasicBlock::iterator(MI)), + MBB->end()); + EndMBB->transferSuccessorsAndUpdatePHIs(MBB); + // The original block will now fall through to the XMM save block. MBB->addSuccessor(XMMSaveMBB); // The XMMSaveMBB will fall through to the end block. @@ -8376,7 +8463,7 @@ X86TargetLowering::EmitVAStartSaveXMMRegsWithCustomInserter( .addMemOperand(MMO); } - F->DeleteMachineInstr(MI); // The pseudo instruction is gone now. + MI->eraseFromParent(); // The pseudo instruction is gone now. return EndMBB; } @@ -8405,24 +8492,39 @@ X86TargetLowering::EmitLoweredSelect(MachineInstr *MI, MachineFunction *F = BB->getParent(); MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB); MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); - unsigned Opc = - X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm()); - BuildMI(BB, DL, TII->get(Opc)).addMBB(sinkMBB); F->insert(It, copy0MBB); F->insert(It, sinkMBB); - // Update machine-CFG edges by first adding all successors of the current - // block to the new block which will contain the Phi node for the select. - for (MachineBasicBlock::succ_iterator I = BB->succ_begin(), - E = BB->succ_end(); I != E; ++I) - sinkMBB->addSuccessor(*I); - // Next, remove all successors of the current block, and add the true - // and fallthrough blocks as its successors. - while (!BB->succ_empty()) - BB->removeSuccessor(BB->succ_begin()); + + // If the EFLAGS register isn't dead in the terminator, then claim that it's + // live into the sink and copy blocks. + const MachineFunction *MF = BB->getParent(); + const TargetRegisterInfo *TRI = MF->getTarget().getRegisterInfo(); + BitVector ReservedRegs = TRI->getReservedRegs(*MF); + + for (unsigned I = 0, E = MI->getNumOperands(); I != E; ++I) { + const MachineOperand &MO = MI->getOperand(I); + if (!MO.isReg() || !MO.isUse() || MO.isKill()) continue; + unsigned Reg = MO.getReg(); + if (Reg != X86::EFLAGS) continue; + copy0MBB->addLiveIn(Reg); + sinkMBB->addLiveIn(Reg); + } + + // Transfer the remainder of BB and its successor edges to sinkMBB. + sinkMBB->splice(sinkMBB->begin(), BB, + llvm::next(MachineBasicBlock::iterator(MI)), + BB->end()); + sinkMBB->transferSuccessorsAndUpdatePHIs(BB); + // Add the true and fallthrough blocks as its successors. BB->addSuccessor(copy0MBB); BB->addSuccessor(sinkMBB); + // Create the conditional branch instruction. + unsigned Opc = + X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm()); + BuildMI(BB, DL, TII->get(Opc)).addMBB(sinkMBB); + // copy0MBB: // %FalseValue = ... // # fallthrough to sinkMBB @@ -8431,11 +8533,12 @@ X86TargetLowering::EmitLoweredSelect(MachineInstr *MI, // sinkMBB: // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ] // ... - BuildMI(sinkMBB, DL, TII->get(X86::PHI), MI->getOperand(0).getReg()) + BuildMI(*sinkMBB, sinkMBB->begin(), DL, + TII->get(X86::PHI), MI->getOperand(0).getReg()) .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB) .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB); - F->DeleteMachineInstr(MI); // The pseudo instruction is gone now. + MI->eraseFromParent(); // The pseudo instruction is gone now. return sinkMBB; } @@ -8444,21 +8547,70 @@ X86TargetLowering::EmitLoweredMingwAlloca(MachineInstr *MI, MachineBasicBlock *BB) const { const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); DebugLoc DL = MI->getDebugLoc(); - MachineFunction *F = BB->getParent(); // The lowering is pretty easy: we're just emitting the call to _alloca. The // non-trivial part is impdef of ESP. // FIXME: The code should be tweaked as soon as we'll try to do codegen for // mingw-w64. - BuildMI(BB, DL, TII->get(X86::CALLpcrel32)) + BuildMI(*BB, MI, DL, TII->get(X86::CALLpcrel32)) .addExternalSymbol("_alloca") .addReg(X86::EAX, RegState::Implicit) .addReg(X86::ESP, RegState::Implicit) .addReg(X86::EAX, RegState::Define | RegState::Implicit) .addReg(X86::ESP, RegState::Define | RegState::Implicit); - F->DeleteMachineInstr(MI); // The pseudo instruction is gone now. + MI->eraseFromParent(); // The pseudo instruction is gone now. + return BB; +} + +MachineBasicBlock * +X86TargetLowering::EmitLoweredTLSCall(MachineInstr *MI, + MachineBasicBlock *BB) const { + // This is pretty easy. We're taking the value that we received from + // our load from the relocation, sticking it in either RDI (x86-64) + // or EAX and doing an indirect call. The return value will then + // be in the normal return register. + const X86InstrInfo *TII + = static_cast<const X86InstrInfo*>(getTargetMachine().getInstrInfo()); + DebugLoc DL = MI->getDebugLoc(); + MachineFunction *F = BB->getParent(); + + assert(MI->getOperand(3).isGlobal() && "This should be a global"); + + if (Subtarget->is64Bit()) { + MachineInstrBuilder MIB = BuildMI(*BB, MI, DL, + TII->get(X86::MOV64rm), X86::RDI) + .addReg(X86::RIP) + .addImm(0).addReg(0) + .addGlobalAddress(MI->getOperand(3).getGlobal(), 0, + MI->getOperand(3).getTargetFlags()) + .addReg(0); + MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL64m)); + addDirectMem(MIB, X86::RDI); + } else if (getTargetMachine().getRelocationModel() != Reloc::PIC_) { + MachineInstrBuilder MIB = BuildMI(*BB, MI, DL, + TII->get(X86::MOV32rm), X86::EAX) + .addReg(0) + .addImm(0).addReg(0) + .addGlobalAddress(MI->getOperand(3).getGlobal(), 0, + MI->getOperand(3).getTargetFlags()) + .addReg(0); + MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m)); + addDirectMem(MIB, X86::EAX); + } else { + MachineInstrBuilder MIB = BuildMI(*BB, MI, DL, + TII->get(X86::MOV32rm), X86::EAX) + .addReg(TII->getGlobalBaseReg(F)) + .addImm(0).addReg(0) + .addGlobalAddress(MI->getOperand(3).getGlobal(), 0, + MI->getOperand(3).getTargetFlags()) + .addReg(0); + MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m)); + addDirectMem(MIB, X86::EAX); + } + + MI->eraseFromParent(); // The pseudo instruction is gone now. return BB; } @@ -8469,6 +8621,9 @@ X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI, default: assert(false && "Unexpected instr type to insert"); case X86::MINGW_ALLOCA: return EmitLoweredMingwAlloca(MI, BB); + case X86::TLSCall_32: + case X86::TLSCall_64: + return EmitLoweredTLSCall(MI, BB); case X86::CMOV_GR8: case X86::CMOV_V1I64: case X86::CMOV_FR32: @@ -8499,23 +8654,25 @@ X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI, // mode when truncating to an integer value. MachineFunction *F = BB->getParent(); int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2, false); - addFrameReference(BuildMI(BB, DL, TII->get(X86::FNSTCW16m)), CWFrameIdx); + addFrameReference(BuildMI(*BB, MI, DL, + TII->get(X86::FNSTCW16m)), CWFrameIdx); // Load the old value of the high byte of the control word... unsigned OldCW = F->getRegInfo().createVirtualRegister(X86::GR16RegisterClass); - addFrameReference(BuildMI(BB, DL, TII->get(X86::MOV16rm), OldCW), + addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16rm), OldCW), CWFrameIdx); // Set the high part to be round to zero... - addFrameReference(BuildMI(BB, DL, TII->get(X86::MOV16mi)), CWFrameIdx) + addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mi)), CWFrameIdx) .addImm(0xC7F); // Reload the modified control word now... - addFrameReference(BuildMI(BB, DL, TII->get(X86::FLDCW16m)), CWFrameIdx); + addFrameReference(BuildMI(*BB, MI, DL, + TII->get(X86::FLDCW16m)), CWFrameIdx); // Restore the memory image of control word to original value - addFrameReference(BuildMI(BB, DL, TII->get(X86::MOV16mr)), CWFrameIdx) + addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mr)), CWFrameIdx) .addReg(OldCW); // Get the X86 opcode to use. @@ -8554,13 +8711,14 @@ X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI, } else { AM.Disp = Op.getImm(); } - addFullAddress(BuildMI(BB, DL, TII->get(Opc)), AM) - .addReg(MI->getOperand(X86AddrNumOperands).getReg()); + addFullAddress(BuildMI(*BB, MI, DL, TII->get(Opc)), AM) + .addReg(MI->getOperand(X86::AddrNumOperands).getReg()); // Reload the original control word now. - addFrameReference(BuildMI(BB, DL, TII->get(X86::FLDCW16m)), CWFrameIdx); + addFrameReference(BuildMI(*BB, MI, DL, + TII->get(X86::FLDCW16m)), CWFrameIdx); - F->DeleteMachineInstr(MI); // The pseudo instruction is gone now. + MI->eraseFromParent(); // The pseudo instruction is gone now. return BB; } // String/text processing lowering. @@ -9513,8 +9671,10 @@ static SDValue PerformOrCombine(SDNode *N, SelectionDAG &DAG, if (ShAmt1.getOpcode() == ISD::SUB) { SDValue Sum = ShAmt1.getOperand(0); if (ConstantSDNode *SumC = dyn_cast<ConstantSDNode>(Sum)) { - if (SumC->getSExtValue() == Bits && - ShAmt1.getOperand(1) == ShAmt0) + SDValue ShAmt1Op1 = ShAmt1.getOperand(1); + if (ShAmt1Op1.getNode()->getOpcode() == ISD::TRUNCATE) + ShAmt1Op1 = ShAmt1Op1.getOperand(0); + if (SumC->getSExtValue() == Bits && ShAmt1Op1 == ShAmt0) return DAG.getNode(Opc, DL, VT, Op0, Op1, DAG.getNode(ISD::TRUNCATE, DL, @@ -9710,58 +9870,6 @@ static SDValue PerformVZEXT_MOVLCombine(SDNode *N, SelectionDAG &DAG) { return SDValue(); } -// On X86 and X86-64, atomic operations are lowered to locked instructions. -// Locked instructions, in turn, have implicit fence semantics (all memory -// operations are flushed before issuing the locked instruction, and the -// are not buffered), so we can fold away the common pattern of -// fence-atomic-fence. -static SDValue PerformMEMBARRIERCombine(SDNode* N, SelectionDAG &DAG) { - SDValue atomic = N->getOperand(0); - switch (atomic.getOpcode()) { - case ISD::ATOMIC_CMP_SWAP: - case ISD::ATOMIC_SWAP: - case ISD::ATOMIC_LOAD_ADD: - case ISD::ATOMIC_LOAD_SUB: - case ISD::ATOMIC_LOAD_AND: - case ISD::ATOMIC_LOAD_OR: - case ISD::ATOMIC_LOAD_XOR: - case ISD::ATOMIC_LOAD_NAND: - case ISD::ATOMIC_LOAD_MIN: - case ISD::ATOMIC_LOAD_MAX: - case ISD::ATOMIC_LOAD_UMIN: - case ISD::ATOMIC_LOAD_UMAX: - break; - default: - return SDValue(); - } - - SDValue fence = atomic.getOperand(0); - if (fence.getOpcode() != ISD::MEMBARRIER) - return SDValue(); - - switch (atomic.getOpcode()) { - case ISD::ATOMIC_CMP_SWAP: - return DAG.UpdateNodeOperands(atomic, fence.getOperand(0), - atomic.getOperand(1), atomic.getOperand(2), - atomic.getOperand(3)); - case ISD::ATOMIC_SWAP: - case ISD::ATOMIC_LOAD_ADD: - case ISD::ATOMIC_LOAD_SUB: - case ISD::ATOMIC_LOAD_AND: - case ISD::ATOMIC_LOAD_OR: - case ISD::ATOMIC_LOAD_XOR: - case ISD::ATOMIC_LOAD_NAND: - case ISD::ATOMIC_LOAD_MIN: - case ISD::ATOMIC_LOAD_MAX: - case ISD::ATOMIC_LOAD_UMIN: - case ISD::ATOMIC_LOAD_UMAX: - return DAG.UpdateNodeOperands(atomic, fence.getOperand(0), - atomic.getOperand(1), atomic.getOperand(2)); - default: - return SDValue(); - } -} - static SDValue PerformZExtCombine(SDNode *N, SelectionDAG &DAG) { // (i32 zext (and (i8 x86isd::setcc_carry), 1)) -> // (and (i32 x86isd::setcc_carry), 1) @@ -9809,7 +9917,6 @@ SDValue X86TargetLowering::PerformDAGCombine(SDNode *N, case X86ISD::FAND: return PerformFANDCombine(N, DAG); case X86ISD::BT: return PerformBTCombine(N, DAG, DCI); case X86ISD::VZEXT_MOVL: return PerformVZEXT_MOVLCombine(N, DAG); - case ISD::MEMBARRIER: return PerformMEMBARRIERCombine(N, DAG); case ISD::ZERO_EXTEND: return PerformZExtCombine(N, DAG); } @@ -9932,8 +10039,8 @@ static bool LowerToBSwap(CallInst *CI) { // so don't worry about this. // Verify this is a simple bswap. - if (CI->getNumOperands() != 2 || - CI->getType() != CI->getOperand(1)->getType() || + if (CI->getNumArgOperands() != 1 || + CI->getType() != CI->getArgOperand(0)->getType() || !CI->getType()->isIntegerTy()) return false; @@ -9946,7 +10053,7 @@ static bool LowerToBSwap(CallInst *CI) { Module *M = CI->getParent()->getParent()->getParent(); Constant *Int = Intrinsic::getDeclaration(M, Intrinsic::bswap, Tys, 1); - Value *Op = CI->getOperand(1); + Value *Op = CI->getArgOperand(0); Op = CallInst::Create(Int, Op, CI->getName(), CI); CI->replaceAllUsesWith(Op); @@ -10079,7 +10186,6 @@ LowerXConstraint(EVT ConstraintVT) const { /// vector. If it is invalid, don't add anything to Ops. void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op, char Constraint, - bool hasMemory, std::vector<SDValue>&Ops, SelectionDAG &DAG) const { SDValue Result(0, 0); @@ -10121,9 +10227,8 @@ void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op, case 'e': { // 32-bit signed value if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { - const ConstantInt *CI = C->getConstantIntValue(); - if (CI->isValueValidForType(Type::getInt32Ty(*DAG.getContext()), - C->getSExtValue())) { + if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()), + C->getSExtValue())) { // Widen to 64 bits here to get it sign extended. Result = DAG.getTargetConstant(C->getSExtValue(), MVT::i64); break; @@ -10136,9 +10241,8 @@ void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op, case 'Z': { // 32-bit unsigned value if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { - const ConstantInt *CI = C->getConstantIntValue(); - if (CI->isValueValidForType(Type::getInt32Ty(*DAG.getContext()), - C->getZExtValue())) { + if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()), + C->getZExtValue())) { Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType()); break; } @@ -10155,6 +10259,12 @@ void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op, break; } + // In any sort of PIC mode addresses need to be computed at runtime by + // adding in a register or some sort of table lookup. These can't + // be used as immediates. + if (Subtarget->isPICStyleGOT() || Subtarget->isPICStyleStubPIC()) + return; + // If we are in non-pic codegen mode, we allow the address of a global (with // an optional displacement) to be used with 'i'. GlobalAddressSDNode *GA = 0; @@ -10190,11 +10300,8 @@ void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op, getTargetMachine()))) return; - if (hasMemory) - Op = LowerGlobalAddress(GV, Op.getDebugLoc(), Offset, DAG); - else - Op = DAG.getTargetGlobalAddress(GV, GA->getValueType(0), Offset); - Result = Op; + Result = DAG.getTargetGlobalAddress(GV, Op.getDebugLoc(), + GA->getValueType(0), Offset); break; } } @@ -10203,8 +10310,7 @@ void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op, Ops.push_back(Result); return; } - return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, hasMemory, - Ops, DAG); + return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); } std::vector<unsigned> X86TargetLowering:: diff --git a/lib/Target/X86/X86ISelLowering.h b/lib/Target/X86/X86ISelLowering.h index 1ef1a7b..2d28e5c 100644 --- a/lib/Target/X86/X86ISelLowering.h +++ b/lib/Target/X86/X86ISelLowering.h @@ -196,6 +196,10 @@ namespace llvm { // TLSADDR - Thread Local Storage. TLSADDR, + + // TLSCALL - Thread Local Storage. When calling to an OS provided + // thunk at the address from an earlier relocation. + TLSCALL, // SegmentBaseAddress - The address segment:0 SegmentBaseAddress, @@ -496,7 +500,6 @@ namespace llvm { /// being processed is 'm'. virtual void LowerAsmOperandForConstraint(SDValue Op, char ConstraintLetter, - bool hasMemory, std::vector<SDValue> &Ops, SelectionDAG &DAG) const; @@ -576,20 +579,17 @@ namespace llvm { /// createFastISel - This method returns a target specific FastISel object, /// or null if the target does not support "fast" ISel. - virtual FastISel * - createFastISel(MachineFunction &mf, - DenseMap<const Value *, unsigned> &, - DenseMap<const BasicBlock *, MachineBasicBlock *> &, - DenseMap<const AllocaInst *, int> &, - std::vector<std::pair<MachineInstr*, unsigned> > & -#ifndef NDEBUG - , SmallSet<const Instruction *, 8> & -#endif - ) const; + virtual FastISel *createFastISel(FunctionLoweringInfo &funcInfo) const; /// getFunctionAlignment - Return the Log2 alignment of this function. virtual unsigned getFunctionAlignment(const Function *F) const; + /// getStackCookieLocation - Return true if the target stores stack + /// protector cookies at a fixed offset in some non-standard address + /// space, and populates the address space and offset as + /// appropriate. + virtual bool getStackCookieLocation(unsigned &AddressSpace, unsigned &Offset) const; + private: /// Subtarget - Keep a pointer to the X86Subtarget around so that we can /// make the right decision when generating code for different targets. @@ -643,6 +643,7 @@ namespace llvm { bool isCalleeStructRet, bool isCallerStructRet, const SmallVectorImpl<ISD::OutputArg> &Outs, + const SmallVectorImpl<SDValue> &OutVals, const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG& DAG) const; bool IsCalleePop(bool isVarArg, CallingConv::ID CallConv) const; @@ -725,6 +726,7 @@ namespace llvm { LowerCall(SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg, bool &isTailCall, const SmallVectorImpl<ISD::OutputArg> &Outs, + const SmallVectorImpl<SDValue> &OutVals, const SmallVectorImpl<ISD::InputArg> &Ins, DebugLoc dl, SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const; @@ -733,13 +735,13 @@ namespace llvm { LowerReturn(SDValue Chain, CallingConv::ID CallConv, bool isVarArg, const SmallVectorImpl<ISD::OutputArg> &Outs, + const SmallVectorImpl<SDValue> &OutVals, DebugLoc dl, SelectionDAG &DAG) const; virtual bool CanLowerReturn(CallingConv::ID CallConv, bool isVarArg, - const SmallVectorImpl<EVT> &OutTys, - const SmallVectorImpl<ISD::ArgFlagsTy> &ArgsFlags, - SelectionDAG &DAG) const; + const SmallVectorImpl<ISD::OutputArg> &Outs, + LLVMContext &Context) const; void ReplaceATOMIC_BINARY_64(SDNode *N, SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG, unsigned NewOp) const; @@ -794,6 +796,9 @@ namespace llvm { MachineBasicBlock *EmitLoweredMingwAlloca(MachineInstr *MI, MachineBasicBlock *BB) const; + + MachineBasicBlock *EmitLoweredTLSCall(MachineInstr *MI, + MachineBasicBlock *BB) const; /// Emit nodes that will be selected as "test Op0,Op0", or something /// equivalent, for use with the given x86 condition code. @@ -806,15 +811,7 @@ namespace llvm { }; namespace X86 { - FastISel *createFastISel(MachineFunction &mf, - DenseMap<const Value *, unsigned> &, - DenseMap<const BasicBlock *, MachineBasicBlock *> &, - DenseMap<const AllocaInst *, int> &, - std::vector<std::pair<MachineInstr*, unsigned> > & -#ifndef NDEBUG - , SmallSet<const Instruction*, 8> & -#endif - ); + FastISel *createFastISel(FunctionLoweringInfo &funcInfo); } } diff --git a/lib/Target/X86/X86Instr64bit.td b/lib/Target/X86/X86Instr64bit.td index 97eb17c..42d0e7f 100644 --- a/lib/Target/X86/X86Instr64bit.td +++ b/lib/Target/X86/X86Instr64bit.td @@ -35,6 +35,14 @@ def i64i8imm : Operand<i64> { let ParserMatchClass = ImmSExti64i8AsmOperand; } +def lea64_32mem : Operand<i32> { + let PrintMethod = "printi32mem"; + let AsmOperandLowerMethod = "lower_lea64_32mem"; + let MIOperandInfo = (ops GR32, i8imm, GR32_NOSP, i32imm, i8imm); + let ParserMatchClass = X86MemAsmOperand; +} + + // Special i64mem for addresses of load folding tail calls. These are not // allowed to use callee-saved registers since they must be scheduled // after callee-saved register are popped. @@ -44,29 +52,16 @@ def i64mem_TC : Operand<i64> { let ParserMatchClass = X86MemAsmOperand; } -def lea64mem : Operand<i64> { - let PrintMethod = "printlea64mem"; - let MIOperandInfo = (ops GR64, i8imm, GR64_NOSP, i32imm); - let ParserMatchClass = X86NoSegMemAsmOperand; -} - -def lea64_32mem : Operand<i32> { - let PrintMethod = "printlea64_32mem"; - let AsmOperandLowerMethod = "lower_lea64_32mem"; - let MIOperandInfo = (ops GR32, i8imm, GR32_NOSP, i32imm); - let ParserMatchClass = X86NoSegMemAsmOperand; -} - //===----------------------------------------------------------------------===// // Complex Pattern Definitions. // -def lea64addr : ComplexPattern<i64, 4, "SelectLEAAddr", +def lea64addr : ComplexPattern<i64, 5, "SelectLEAAddr", [add, sub, mul, X86mul_imm, shl, or, frameindex, X86WrapperRIP], []>; -def tls64addr : ComplexPattern<i64, 4, "SelectTLSADDRAddr", +def tls64addr : ComplexPattern<i64, 5, "SelectTLSADDRAddr", [tglobaltlsaddr], []>; - + //===----------------------------------------------------------------------===// // Pattern fragments. // @@ -289,11 +284,11 @@ def LEA64_32r : I<0x8D, MRMSrcMem, [(set GR32:$dst, lea32addr:$src)]>, Requires<[In64BitMode]>; let isReMaterializable = 1 in -def LEA64r : RI<0x8D, MRMSrcMem, (outs GR64:$dst), (ins lea64mem:$src), +def LEA64r : RI<0x8D, MRMSrcMem, (outs GR64:$dst), (ins i64mem:$src), "lea{q}\t{$src|$dst}, {$dst|$src}", [(set GR64:$dst, lea64addr:$src)]>; -let isTwoAddress = 1 in +let Constraints = "$src = $dst" in def BSWAP64r : RI<0xC8, AddRegFrm, (outs GR64:$dst), (ins GR64:$src), "bswap{q}\t$dst", [(set GR64:$dst, (bswap GR64:$src))]>, TB; @@ -521,7 +516,7 @@ let Defs = [EFLAGS] in { def ADD64i32 : RIi32<0x05, RawFrm, (outs), (ins i64i32imm:$src), "add{q}\t{$src, %rax|%rax, $src}", []>; -let isTwoAddress = 1 in { +let Constraints = "$src1 = $dst" in { let isConvertibleToThreeAddress = 1 in { let isCommutable = 1 in // Register-Register Addition @@ -559,7 +554,7 @@ def ADD64rm : RI<0x03, MRMSrcMem, (outs GR64:$dst), [(set GR64:$dst, EFLAGS, (X86add_flag GR64:$src1, (load addr:$src2)))]>; -} // isTwoAddress +} // Constraints = "$src1 = $dst" // Memory-Register Addition def ADD64mr : RI<0x01, MRMDestMem, (outs), (ins i64mem:$dst, GR64:$src2), @@ -580,7 +575,7 @@ let Uses = [EFLAGS] in { def ADC64i32 : RIi32<0x15, RawFrm, (outs), (ins i64i32imm:$src), "adc{q}\t{$src, %rax|%rax, $src}", []>; -let isTwoAddress = 1 in { +let Constraints = "$src1 = $dst" in { let isCommutable = 1 in def ADC64rr : RI<0x11, MRMDestReg, (outs GR64:$dst), (ins GR64:$src1, GR64:$src2), @@ -606,7 +601,7 @@ def ADC64ri32 : RIi32<0x81, MRM2r, (outs GR64:$dst), (ins GR64:$src1, i64i32imm:$src2), "adc{q}\t{$src2, $dst|$dst, $src2}", [(set GR64:$dst, (adde GR64:$src1, i64immSExt32:$src2))]>; -} // isTwoAddress +} // Constraints = "$src1 = $dst" def ADC64mr : RI<0x11, MRMDestMem, (outs), (ins i64mem:$dst, GR64:$src2), "adc{q}\t{$src2, $dst|$dst, $src2}", @@ -621,7 +616,7 @@ def ADC64mi32 : RIi32<0x81, MRM2m, (outs), (ins i64mem:$dst, i64i32imm:$src2), addr:$dst)]>; } // Uses = [EFLAGS] -let isTwoAddress = 1 in { +let Constraints = "$src1 = $dst" in { // Register-Register Subtraction def SUB64rr : RI<0x29, MRMDestReg, (outs GR64:$dst), (ins GR64:$src1, GR64:$src2), @@ -653,7 +648,7 @@ def SUB64ri32 : RIi32<0x81, MRM5r, (outs GR64:$dst), "sub{q}\t{$src2, $dst|$dst, $src2}", [(set GR64:$dst, EFLAGS, (X86sub_flag GR64:$src1, i64immSExt32:$src2))]>; -} // isTwoAddress +} // Constraints = "$src1 = $dst" def SUB64i32 : RIi32<0x2D, RawFrm, (outs), (ins i64i32imm:$src), "sub{q}\t{$src, %rax|%rax, $src}", []>; @@ -677,7 +672,7 @@ def SUB64mi32 : RIi32<0x81, MRM5m, (outs), (ins i64mem:$dst, i64i32imm:$src2), (implicit EFLAGS)]>; let Uses = [EFLAGS] in { -let isTwoAddress = 1 in { +let Constraints = "$src1 = $dst" in { def SBB64rr : RI<0x19, MRMDestReg, (outs GR64:$dst), (ins GR64:$src1, GR64:$src2), "sbb{q}\t{$src2, $dst|$dst, $src2}", @@ -702,7 +697,7 @@ def SBB64ri32 : RIi32<0x81, MRM3r, (outs GR64:$dst), (ins GR64:$src1, i64i32imm:$src2), "sbb{q}\t{$src2, $dst|$dst, $src2}", [(set GR64:$dst, (sube GR64:$src1, i64immSExt32:$src2))]>; -} // isTwoAddress +} // Constraints = "$src1 = $dst" def SBB64i32 : RIi32<0x1D, RawFrm, (outs), (ins i64i32imm:$src), "sbb{q}\t{$src, %rax|%rax, $src}", []>; @@ -736,7 +731,7 @@ def IMUL64m : RI<0xF7, MRM5m, (outs), (ins i64mem:$src), } let Defs = [EFLAGS] in { -let isTwoAddress = 1 in { +let Constraints = "$src1 = $dst" in { let isCommutable = 1 in // Register-Register Signed Integer Multiplication def IMUL64rr : RI<0xAF, MRMSrcReg, (outs GR64:$dst), @@ -751,7 +746,7 @@ def IMUL64rm : RI<0xAF, MRMSrcMem, (outs GR64:$dst), "imul{q}\t{$src2, $dst|$dst, $src2}", [(set GR64:$dst, EFLAGS, (X86smul_flag GR64:$src1, (load addr:$src2)))]>, TB; -} // isTwoAddress +} // Constraints = "$src1 = $dst" // Suprisingly enough, these are not two address instructions! @@ -803,7 +798,7 @@ def IDIV64m: RI<0xF7, MRM7m, (outs), (ins i64mem:$src), // Unary instructions let Defs = [EFLAGS], CodeSize = 2 in { -let isTwoAddress = 1 in +let Constraints = "$src = $dst" in def NEG64r : RI<0xF7, MRM3r, (outs GR64:$dst), (ins GR64:$src), "neg{q}\t$dst", [(set GR64:$dst, (ineg GR64:$src)), (implicit EFLAGS)]>; @@ -811,14 +806,14 @@ def NEG64m : RI<0xF7, MRM3m, (outs), (ins i64mem:$dst), "neg{q}\t$dst", [(store (ineg (loadi64 addr:$dst)), addr:$dst), (implicit EFLAGS)]>; -let isTwoAddress = 1, isConvertibleToThreeAddress = 1 in +let Constraints = "$src = $dst", isConvertibleToThreeAddress = 1 in def INC64r : RI<0xFF, MRM0r, (outs GR64:$dst), (ins GR64:$src), "inc{q}\t$dst", [(set GR64:$dst, EFLAGS, (X86inc_flag GR64:$src))]>; def INC64m : RI<0xFF, MRM0m, (outs), (ins i64mem:$dst), "inc{q}\t$dst", [(store (add (loadi64 addr:$dst), 1), addr:$dst), (implicit EFLAGS)]>; -let isTwoAddress = 1, isConvertibleToThreeAddress = 1 in +let Constraints = "$src = $dst", isConvertibleToThreeAddress = 1 in def DEC64r : RI<0xFF, MRM1r, (outs GR64:$dst), (ins GR64:$src), "dec{q}\t$dst", [(set GR64:$dst, EFLAGS, (X86dec_flag GR64:$src))]>; def DEC64m : RI<0xFF, MRM1m, (outs), (ins i64mem:$dst), "dec{q}\t$dst", @@ -826,7 +821,7 @@ def DEC64m : RI<0xFF, MRM1m, (outs), (ins i64mem:$dst), "dec{q}\t$dst", (implicit EFLAGS)]>; // In 64-bit mode, single byte INC and DEC cannot be encoded. -let isTwoAddress = 1, isConvertibleToThreeAddress = 1 in { +let Constraints = "$src = $dst", isConvertibleToThreeAddress = 1 in { // Can transform into LEA. def INC64_16r : I<0xFF, MRM0r, (outs GR16:$dst), (ins GR16:$src), "inc{w}\t$dst", @@ -844,38 +839,36 @@ def DEC64_32r : I<0xFF, MRM1r, (outs GR32:$dst), (ins GR32:$src), "dec{l}\t$dst", [(set GR32:$dst, EFLAGS, (X86dec_flag GR32:$src))]>, Requires<[In64BitMode]>; -} // isConvertibleToThreeAddress +} // Constraints = "$src = $dst", isConvertibleToThreeAddress // These are duplicates of their 32-bit counterparts. Only needed so X86 knows // how to unfold them. -let isTwoAddress = 0, CodeSize = 2 in { - def INC64_16m : I<0xFF, MRM0m, (outs), (ins i16mem:$dst), "inc{w}\t$dst", - [(store (add (loadi16 addr:$dst), 1), addr:$dst), - (implicit EFLAGS)]>, - OpSize, Requires<[In64BitMode]>; - def INC64_32m : I<0xFF, MRM0m, (outs), (ins i32mem:$dst), "inc{l}\t$dst", - [(store (add (loadi32 addr:$dst), 1), addr:$dst), - (implicit EFLAGS)]>, - Requires<[In64BitMode]>; - def DEC64_16m : I<0xFF, MRM1m, (outs), (ins i16mem:$dst), "dec{w}\t$dst", - [(store (add (loadi16 addr:$dst), -1), addr:$dst), - (implicit EFLAGS)]>, - OpSize, Requires<[In64BitMode]>; - def DEC64_32m : I<0xFF, MRM1m, (outs), (ins i32mem:$dst), "dec{l}\t$dst", - [(store (add (loadi32 addr:$dst), -1), addr:$dst), - (implicit EFLAGS)]>, - Requires<[In64BitMode]>; -} +def INC64_16m : I<0xFF, MRM0m, (outs), (ins i16mem:$dst), "inc{w}\t$dst", + [(store (add (loadi16 addr:$dst), 1), addr:$dst), + (implicit EFLAGS)]>, + OpSize, Requires<[In64BitMode]>; +def INC64_32m : I<0xFF, MRM0m, (outs), (ins i32mem:$dst), "inc{l}\t$dst", + [(store (add (loadi32 addr:$dst), 1), addr:$dst), + (implicit EFLAGS)]>, + Requires<[In64BitMode]>; +def DEC64_16m : I<0xFF, MRM1m, (outs), (ins i16mem:$dst), "dec{w}\t$dst", + [(store (add (loadi16 addr:$dst), -1), addr:$dst), + (implicit EFLAGS)]>, + OpSize, Requires<[In64BitMode]>; +def DEC64_32m : I<0xFF, MRM1m, (outs), (ins i32mem:$dst), "dec{l}\t$dst", + [(store (add (loadi32 addr:$dst), -1), addr:$dst), + (implicit EFLAGS)]>, + Requires<[In64BitMode]>; } // Defs = [EFLAGS], CodeSize let Defs = [EFLAGS] in { // Shift instructions -let isTwoAddress = 1 in { +let Constraints = "$src1 = $dst" in { let Uses = [CL] in -def SHL64rCL : RI<0xD3, MRM4r, (outs GR64:$dst), (ins GR64:$src), +def SHL64rCL : RI<0xD3, MRM4r, (outs GR64:$dst), (ins GR64:$src1), "shl{q}\t{%cl, $dst|$dst, %CL}", - [(set GR64:$dst, (shl GR64:$src, CL))]>; + [(set GR64:$dst, (shl GR64:$src1, CL))]>; let isConvertibleToThreeAddress = 1 in // Can transform into LEA. def SHL64ri : RIi8<0xC1, MRM4r, (outs GR64:$dst), (ins GR64:$src1, i8imm:$src2), @@ -885,7 +878,7 @@ def SHL64ri : RIi8<0xC1, MRM4r, (outs GR64:$dst), // 'add reg,reg' is cheaper. def SHL64r1 : RI<0xD1, MRM4r, (outs GR64:$dst), (ins GR64:$src1), "shl{q}\t$dst", []>; -} // isTwoAddress +} // Constraints = "$src1 = $dst" let Uses = [CL] in def SHL64mCL : RI<0xD3, MRM4m, (outs), (ins i64mem:$dst), @@ -898,18 +891,18 @@ def SHL64m1 : RI<0xD1, MRM4m, (outs), (ins i64mem:$dst), "shl{q}\t$dst", [(store (shl (loadi64 addr:$dst), (i8 1)), addr:$dst)]>; -let isTwoAddress = 1 in { +let Constraints = "$src1 = $dst" in { let Uses = [CL] in -def SHR64rCL : RI<0xD3, MRM5r, (outs GR64:$dst), (ins GR64:$src), +def SHR64rCL : RI<0xD3, MRM5r, (outs GR64:$dst), (ins GR64:$src1), "shr{q}\t{%cl, $dst|$dst, %CL}", - [(set GR64:$dst, (srl GR64:$src, CL))]>; + [(set GR64:$dst, (srl GR64:$src1, CL))]>; def SHR64ri : RIi8<0xC1, MRM5r, (outs GR64:$dst), (ins GR64:$src1, i8imm:$src2), "shr{q}\t{$src2, $dst|$dst, $src2}", [(set GR64:$dst, (srl GR64:$src1, (i8 imm:$src2)))]>; def SHR64r1 : RI<0xD1, MRM5r, (outs GR64:$dst), (ins GR64:$src1), "shr{q}\t$dst", [(set GR64:$dst, (srl GR64:$src1, (i8 1)))]>; -} // isTwoAddress +} // Constraints = "$src1 = $dst" let Uses = [CL] in def SHR64mCL : RI<0xD3, MRM5m, (outs), (ins i64mem:$dst), @@ -922,11 +915,11 @@ def SHR64m1 : RI<0xD1, MRM5m, (outs), (ins i64mem:$dst), "shr{q}\t$dst", [(store (srl (loadi64 addr:$dst), (i8 1)), addr:$dst)]>; -let isTwoAddress = 1 in { +let Constraints = "$src1 = $dst" in { let Uses = [CL] in -def SAR64rCL : RI<0xD3, MRM7r, (outs GR64:$dst), (ins GR64:$src), +def SAR64rCL : RI<0xD3, MRM7r, (outs GR64:$dst), (ins GR64:$src1), "sar{q}\t{%cl, $dst|$dst, %CL}", - [(set GR64:$dst, (sra GR64:$src, CL))]>; + [(set GR64:$dst, (sra GR64:$src1, CL))]>; def SAR64ri : RIi8<0xC1, MRM7r, (outs GR64:$dst), (ins GR64:$src1, i8imm:$src2), "sar{q}\t{$src2, $dst|$dst, $src2}", @@ -934,7 +927,7 @@ def SAR64ri : RIi8<0xC1, MRM7r, (outs GR64:$dst), def SAR64r1 : RI<0xD1, MRM7r, (outs GR64:$dst), (ins GR64:$src1), "sar{q}\t$dst", [(set GR64:$dst, (sra GR64:$src1, (i8 1)))]>; -} // isTwoAddress +} // Constraints = "$src = $dst" let Uses = [CL] in def SAR64mCL : RI<0xD3, MRM7m, (outs), (ins i64mem:$dst), @@ -949,7 +942,7 @@ def SAR64m1 : RI<0xD1, MRM7m, (outs), (ins i64mem:$dst), // Rotate instructions -let isTwoAddress = 1 in { +let Constraints = "$src = $dst" in { def RCL64r1 : RI<0xD1, MRM2r, (outs GR64:$dst), (ins GR64:$src), "rcl{q}\t{1, $dst|$dst, 1}", []>; def RCL64ri : RIi8<0xC1, MRM2r, (outs GR64:$dst), (ins GR64:$src, i8imm:$cnt), @@ -966,9 +959,8 @@ def RCL64rCL : RI<0xD3, MRM2r, (outs GR64:$dst), (ins GR64:$src), def RCR64rCL : RI<0xD3, MRM3r, (outs GR64:$dst), (ins GR64:$src), "rcr{q}\t{%cl, $dst|$dst, CL}", []>; } -} +} // Constraints = "$src = $dst" -let isTwoAddress = 0 in { def RCL64m1 : RI<0xD1, MRM2m, (outs), (ins i64mem:$dst), "rcl{q}\t{1, $dst|$dst, 1}", []>; def RCL64mi : RIi8<0xC1, MRM2m, (outs), (ins i64mem:$dst, i8imm:$cnt), @@ -984,13 +976,12 @@ def RCL64mCL : RI<0xD3, MRM2m, (outs), (ins i64mem:$dst), def RCR64mCL : RI<0xD3, MRM3m, (outs), (ins i64mem:$dst), "rcr{q}\t{%cl, $dst|$dst, CL}", []>; } -} -let isTwoAddress = 1 in { +let Constraints = "$src1 = $dst" in { let Uses = [CL] in -def ROL64rCL : RI<0xD3, MRM0r, (outs GR64:$dst), (ins GR64:$src), +def ROL64rCL : RI<0xD3, MRM0r, (outs GR64:$dst), (ins GR64:$src1), "rol{q}\t{%cl, $dst|$dst, %CL}", - [(set GR64:$dst, (rotl GR64:$src, CL))]>; + [(set GR64:$dst, (rotl GR64:$src1, CL))]>; def ROL64ri : RIi8<0xC1, MRM0r, (outs GR64:$dst), (ins GR64:$src1, i8imm:$src2), "rol{q}\t{$src2, $dst|$dst, $src2}", @@ -998,7 +989,7 @@ def ROL64ri : RIi8<0xC1, MRM0r, (outs GR64:$dst), def ROL64r1 : RI<0xD1, MRM0r, (outs GR64:$dst), (ins GR64:$src1), "rol{q}\t$dst", [(set GR64:$dst, (rotl GR64:$src1, (i8 1)))]>; -} // isTwoAddress +} // Constraints = "$src1 = $dst" let Uses = [CL] in def ROL64mCL : RI<0xD3, MRM0m, (outs), (ins i64mem:$dst), @@ -1011,11 +1002,11 @@ def ROL64m1 : RI<0xD1, MRM0m, (outs), (ins i64mem:$dst), "rol{q}\t$dst", [(store (rotl (loadi64 addr:$dst), (i8 1)), addr:$dst)]>; -let isTwoAddress = 1 in { +let Constraints = "$src1 = $dst" in { let Uses = [CL] in -def ROR64rCL : RI<0xD3, MRM1r, (outs GR64:$dst), (ins GR64:$src), +def ROR64rCL : RI<0xD3, MRM1r, (outs GR64:$dst), (ins GR64:$src1), "ror{q}\t{%cl, $dst|$dst, %CL}", - [(set GR64:$dst, (rotr GR64:$src, CL))]>; + [(set GR64:$dst, (rotr GR64:$src1, CL))]>; def ROR64ri : RIi8<0xC1, MRM1r, (outs GR64:$dst), (ins GR64:$src1, i8imm:$src2), "ror{q}\t{$src2, $dst|$dst, $src2}", @@ -1023,7 +1014,7 @@ def ROR64ri : RIi8<0xC1, MRM1r, (outs GR64:$dst), def ROR64r1 : RI<0xD1, MRM1r, (outs GR64:$dst), (ins GR64:$src1), "ror{q}\t$dst", [(set GR64:$dst, (rotr GR64:$src1, (i8 1)))]>; -} // isTwoAddress +} // Constraints = "$src1 = $dst" let Uses = [CL] in def ROR64mCL : RI<0xD3, MRM1m, (outs), (ins i64mem:$dst), @@ -1037,7 +1028,7 @@ def ROR64m1 : RI<0xD1, MRM1m, (outs), (ins i64mem:$dst), [(store (rotr (loadi64 addr:$dst), (i8 1)), addr:$dst)]>; // Double shift instructions (generalizations of rotate) -let isTwoAddress = 1 in { +let Constraints = "$src1 = $dst" in { let Uses = [CL] in { def SHLD64rrCL : RI<0xA5, MRMDestReg, (outs GR64:$dst), (ins GR64:$src1, GR64:$src2), @@ -1067,7 +1058,7 @@ def SHRD64rri8 : RIi8<0xAC, MRMDestReg, (i8 imm:$src3)))]>, TB; } // isCommutable -} // isTwoAddress +} // Constraints = "$src1 = $dst" let Uses = [CL] in { def SHLD64mrCL : RI<0xA5, MRMDestMem, (outs), (ins i64mem:$dst, GR64:$src2), @@ -1097,7 +1088,7 @@ def SHRD64mri8 : RIi8<0xAC, MRMDestMem, // Logical Instructions... // -let isTwoAddress = 1 , AddedComplexity = 15 in +let Constraints = "$src = $dst" , AddedComplexity = 15 in def NOT64r : RI<0xF7, MRM2r, (outs GR64:$dst), (ins GR64:$src), "not{q}\t$dst", [(set GR64:$dst, (not GR64:$src))]>; def NOT64m : RI<0xF7, MRM2m, (outs), (ins i64mem:$dst), "not{q}\t$dst", @@ -1107,7 +1098,7 @@ let Defs = [EFLAGS] in { def AND64i32 : RIi32<0x25, RawFrm, (outs), (ins i64i32imm:$src), "and{q}\t{$src, %rax|%rax, $src}", []>; -let isTwoAddress = 1 in { +let Constraints = "$src1 = $dst" in { let isCommutable = 1 in def AND64rr : RI<0x21, MRMDestReg, (outs GR64:$dst), (ins GR64:$src1, GR64:$src2), @@ -1134,7 +1125,7 @@ def AND64ri32 : RIi32<0x81, MRM4r, "and{q}\t{$src2, $dst|$dst, $src2}", [(set GR64:$dst, EFLAGS, (X86and_flag GR64:$src1, i64immSExt32:$src2))]>; -} // isTwoAddress +} // Constraints = "$src1 = $dst" def AND64mr : RI<0x21, MRMDestMem, (outs), (ins i64mem:$dst, GR64:$src), @@ -1152,7 +1143,7 @@ def AND64mi32 : RIi32<0x81, MRM4m, [(store (and (loadi64 addr:$dst), i64immSExt32:$src), addr:$dst), (implicit EFLAGS)]>; -let isTwoAddress = 1 in { +let Constraints = "$src1 = $dst" in { let isCommutable = 1 in def OR64rr : RI<0x09, MRMDestReg, (outs GR64:$dst), (ins GR64:$src1, GR64:$src2), @@ -1179,7 +1170,7 @@ def OR64ri32 : RIi32<0x81, MRM1r, (outs GR64:$dst), "or{q}\t{$src2, $dst|$dst, $src2}", [(set GR64:$dst, EFLAGS, (X86or_flag GR64:$src1, i64immSExt32:$src2))]>; -} // isTwoAddress +} // Constraints = "$src1 = $dst" def OR64mr : RI<0x09, MRMDestMem, (outs), (ins i64mem:$dst, GR64:$src), "or{q}\t{$src, $dst|$dst, $src}", @@ -1197,7 +1188,7 @@ def OR64mi32 : RIi32<0x81, MRM1m, (outs), (ins i64mem:$dst, i64i32imm:$src), def OR64i32 : RIi32<0x0D, RawFrm, (outs), (ins i64i32imm:$src), "or{q}\t{$src, %rax|%rax, $src}", []>; -let isTwoAddress = 1 in { +let Constraints = "$src1 = $dst" in { let isCommutable = 1 in def XOR64rr : RI<0x31, MRMDestReg, (outs GR64:$dst), (ins GR64:$src1, GR64:$src2), @@ -1224,7 +1215,7 @@ def XOR64ri32 : RIi32<0x81, MRM6r, "xor{q}\t{$src2, $dst|$dst, $src2}", [(set GR64:$dst, EFLAGS, (X86xor_flag GR64:$src1, i64immSExt32:$src2))]>; -} // isTwoAddress +} // Constraints = "$src1 = $dst" def XOR64mr : RI<0x31, MRMDestMem, (outs), (ins i64mem:$dst, GR64:$src), "xor{q}\t{$src, $dst|$dst, $src}", @@ -1366,7 +1357,7 @@ def BTS64mi8 : RIi8<0xBA, MRM5m, (outs), (ins i64mem:$src1, i64i8imm:$src2), } // Defs = [EFLAGS] // Conditional moves -let Uses = [EFLAGS], isTwoAddress = 1 in { +let Uses = [EFLAGS], Constraints = "$src1 = $dst" in { let isCommutable = 1 in { def CMOVB64rr : RI<0x42, MRMSrcReg, // if <u, GR64 = GR64 (outs GR64:$dst), (ins GR64:$src1, GR64:$src2), @@ -1530,7 +1521,7 @@ def CMOVNO64rm : RI<0x41, MRMSrcMem, // if !overflow, GR64 = [mem64] "cmovno{q}\t{$src2, $dst|$dst, $src2}", [(set GR64:$dst, (X86cmov GR64:$src1, (loadi64 addr:$src2), X86_COND_NO, EFLAGS))]>, TB; -} // isTwoAddress +} // Constraints = "$src1 = $dst" // Use sbb to materialize carry flag into a GPR. // FIXME: This are pseudo ops that should be replaced with Pat<> patterns. @@ -1588,7 +1579,7 @@ def CVTSI2SD64rm: RSDI<0x2A, MRMSrcMem, (outs FR64:$dst), (ins i64mem:$src), "cvtsi2sd{q}\t{$src, $dst|$dst, $src}", [(set FR64:$dst, (sint_to_fp (loadi64 addr:$src)))]>; -let isTwoAddress = 1 in { +let Constraints = "$src1 = $dst" in { def Int_CVTSI2SD64rr: RSDI<0x2A, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src1, GR64:$src2), "cvtsi2sd{q}\t{$src2, $dst|$dst, $src2}", @@ -1601,7 +1592,7 @@ def Int_CVTSI2SD64rm: RSDI<0x2A, MRMSrcMem, [(set VR128:$dst, (int_x86_sse2_cvtsi642sd VR128:$src1, (loadi64 addr:$src2)))]>; -} // isTwoAddress +} // Constraints = "$src1 = $dst" // Signed i64 -> f32 def CVTSI2SS64rr: RSSI<0x2A, MRMSrcReg, (outs FR32:$dst), (ins GR64:$src), @@ -1611,7 +1602,7 @@ def CVTSI2SS64rm: RSSI<0x2A, MRMSrcMem, (outs FR32:$dst), (ins i64mem:$src), "cvtsi2ss{q}\t{$src, $dst|$dst, $src}", [(set FR32:$dst, (sint_to_fp (loadi64 addr:$src)))]>; -let isTwoAddress = 1 in { +let Constraints = "$src1 = $dst" in { def Int_CVTSI2SS64rr : RSSI<0x2A, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src1, GR64:$src2), "cvtsi2ss{q}\t{$src2, $dst|$dst, $src2}", @@ -1625,7 +1616,7 @@ let isTwoAddress = 1 in { [(set VR128:$dst, (int_x86_sse_cvtsi642ss VR128:$src1, (loadi64 addr:$src2)))]>; -} +} // Constraints = "$src1 = $dst" // f32 -> signed i64 def CVTSS2SI64rr: RSSI<0x2D, MRMSrcReg, (outs GR64:$dst), (ins FR32:$src), @@ -1691,6 +1682,7 @@ def MOV64ri64i32 : Ii32<0xB8, AddRegFrm, (outs GR64:$dst), (ins i64i32imm:$src), // Thread Local Storage Instructions //===----------------------------------------------------------------------===// +// ELF TLS Support // All calls clobber the non-callee saved registers. RSP is marked as // a use to prevent stack-pointer assignments that appear immediately // before calls from potentially appearing dead. @@ -1700,7 +1692,7 @@ let Defs = [RAX, RCX, RDX, RSI, RDI, R8, R9, R10, R11, XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7, XMM8, XMM9, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15, EFLAGS], Uses = [RSP] in -def TLS_addr64 : I<0, Pseudo, (outs), (ins lea64mem:$sym), +def TLS_addr64 : I<0, Pseudo, (outs), (ins i64mem:$sym), ".byte\t0x66; " "leaq\t$sym(%rip), %rdi; " ".word\t0x6666; " @@ -1709,6 +1701,17 @@ def TLS_addr64 : I<0, Pseudo, (outs), (ins lea64mem:$sym), [(X86tlsaddr tls64addr:$sym)]>, Requires<[In64BitMode]>; +// Darwin TLS Support +// For x86_64, the address of the thunk is passed in %rdi, on return +// the address of the variable is in %rax. All other registers are preserved. +let Defs = [RAX], + Uses = [RDI], + usesCustomInserter = 1 in +def TLSCall_64 : I<0, Pseudo, (outs), (ins i64mem:$sym), + "# TLSCall_64", + [(X86TLSCall addr:$sym)]>, + Requires<[In64BitMode]>; + let AddedComplexity = 5, isCodeGenOnly = 1 in def MOV64GSrm : RI<0x8B, MRMSrcMem, (outs GR64:$dst), (ins i64mem:$src), "movq\t%gs:$src, $dst", @@ -1964,6 +1967,17 @@ def : Pat<(X86tcret (i64 texternalsym:$dst), imm:$off), (TCRETURNdi64 texternalsym:$dst, imm:$off)>, Requires<[In64BitMode]>; +// tls has some funny stuff here... +// This corresponds to movabs $foo@tpoff, %rax +def : Pat<(i64 (X86Wrapper tglobaltlsaddr :$dst)), + (MOV64ri tglobaltlsaddr :$dst)>; +// This corresponds to add $foo@tpoff, %rax +def : Pat<(add GR64:$src1, (X86Wrapper tglobaltlsaddr :$dst)), + (ADD64ri32 GR64:$src1, tglobaltlsaddr :$dst)>; +// This corresponds to mov foo@tpoff(%rbx), %eax +def : Pat<(load (i64 (X86Wrapper tglobaltlsaddr :$dst))), + (MOV64rm tglobaltlsaddr :$dst)>; + // Comparisons. // TEST R,R is smaller than CMP R,0 @@ -2332,45 +2346,3 @@ def MOVSDto64mr : RPDI<0x7E, MRMDestMem, (outs), (ins i64mem:$dst, FR64:$src), "movq\t{$src, $dst|$dst, $src}", [(store (i64 (bitconvert FR64:$src)), addr:$dst)]>; -//===----------------------------------------------------------------------===// -// X86-64 SSE4.1 Instructions -//===----------------------------------------------------------------------===// - -/// SS41I_extract32 - SSE 4.1 extract 32 bits to int reg or memory destination -multiclass SS41I_extract64<bits<8> opc, string OpcodeStr> { - def rr : SS4AIi8<opc, MRMDestReg, (outs GR64:$dst), - (ins VR128:$src1, i32i8imm:$src2), - !strconcat(OpcodeStr, - "\t{$src2, $src1, $dst|$dst, $src1, $src2}"), - [(set GR64:$dst, - (extractelt (v2i64 VR128:$src1), imm:$src2))]>, OpSize, REX_W; - def mr : SS4AIi8<opc, MRMDestMem, (outs), - (ins i64mem:$dst, VR128:$src1, i32i8imm:$src2), - !strconcat(OpcodeStr, - "\t{$src2, $src1, $dst|$dst, $src1, $src2}"), - [(store (extractelt (v2i64 VR128:$src1), imm:$src2), - addr:$dst)]>, OpSize, REX_W; -} - -defm PEXTRQ : SS41I_extract64<0x16, "pextrq">; - -let isTwoAddress = 1 in { - multiclass SS41I_insert64<bits<8> opc, string OpcodeStr> { - def rr : SS4AIi8<opc, MRMSrcReg, (outs VR128:$dst), - (ins VR128:$src1, GR64:$src2, i32i8imm:$src3), - !strconcat(OpcodeStr, - "\t{$src3, $src2, $dst|$dst, $src2, $src3}"), - [(set VR128:$dst, - (v2i64 (insertelt VR128:$src1, GR64:$src2, imm:$src3)))]>, - OpSize, REX_W; - def rm : SS4AIi8<opc, MRMSrcMem, (outs VR128:$dst), - (ins VR128:$src1, i64mem:$src2, i32i8imm:$src3), - !strconcat(OpcodeStr, - "\t{$src3, $src2, $dst|$dst, $src2, $src3}"), - [(set VR128:$dst, - (v2i64 (insertelt VR128:$src1, (loadi64 addr:$src2), - imm:$src3)))]>, OpSize, REX_W; - } -} - -defm PINSRQ : SS41I_insert64<0x22, "pinsrq">; diff --git a/lib/Target/X86/X86InstrBuilder.h b/lib/Target/X86/X86InstrBuilder.h index 5a82a7b..2a6a71d 100644 --- a/lib/Target/X86/X86InstrBuilder.h +++ b/lib/Target/X86/X86InstrBuilder.h @@ -64,19 +64,15 @@ struct X86AddressMode { /// static inline const MachineInstrBuilder & addDirectMem(const MachineInstrBuilder &MIB, unsigned Reg) { - // Because memory references are always represented with four - // values, this adds: Reg, [1, NoReg, 0] to the instruction. - return MIB.addReg(Reg).addImm(1).addReg(0).addImm(0); + // Because memory references are always represented with five + // values, this adds: Reg, 1, NoReg, 0, NoReg to the instruction. + return MIB.addReg(Reg).addImm(1).addReg(0).addImm(0).addReg(0); } -static inline const MachineInstrBuilder & -addLeaOffset(const MachineInstrBuilder &MIB, int Offset) { - return MIB.addImm(1).addReg(0).addImm(Offset); -} static inline const MachineInstrBuilder & addOffset(const MachineInstrBuilder &MIB, int Offset) { - return addLeaOffset(MIB, Offset).addReg(0); + return MIB.addImm(1).addReg(0).addImm(Offset).addReg(0); } /// addRegOffset - This function is used to add a memory reference of the form @@ -89,25 +85,20 @@ addRegOffset(const MachineInstrBuilder &MIB, return addOffset(MIB.addReg(Reg, getKillRegState(isKill)), Offset); } -static inline const MachineInstrBuilder & -addLeaRegOffset(const MachineInstrBuilder &MIB, - unsigned Reg, bool isKill, int Offset) { - return addLeaOffset(MIB.addReg(Reg, getKillRegState(isKill)), Offset); -} - /// addRegReg - This function is used to add a memory reference of the form: /// [Reg + Reg]. static inline const MachineInstrBuilder &addRegReg(const MachineInstrBuilder &MIB, unsigned Reg1, bool isKill1, unsigned Reg2, bool isKill2) { return MIB.addReg(Reg1, getKillRegState(isKill1)).addImm(1) - .addReg(Reg2, getKillRegState(isKill2)).addImm(0); + .addReg(Reg2, getKillRegState(isKill2)).addImm(0).addReg(0); } static inline const MachineInstrBuilder & -addLeaAddress(const MachineInstrBuilder &MIB, const X86AddressMode &AM) { - assert (AM.Scale == 1 || AM.Scale == 2 || AM.Scale == 4 || AM.Scale == 8); - +addFullAddress(const MachineInstrBuilder &MIB, + const X86AddressMode &AM) { + assert(AM.Scale == 1 || AM.Scale == 2 || AM.Scale == 4 || AM.Scale == 8); + if (AM.BaseType == X86AddressMode::RegBase) MIB.addReg(AM.Base.Reg); else if (AM.BaseType == X86AddressMode::FrameIndexBase) @@ -116,15 +107,11 @@ addLeaAddress(const MachineInstrBuilder &MIB, const X86AddressMode &AM) { assert (0); MIB.addImm(AM.Scale).addReg(AM.IndexReg); if (AM.GV) - return MIB.addGlobalAddress(AM.GV, AM.Disp, AM.GVOpFlags); + MIB.addGlobalAddress(AM.GV, AM.Disp, AM.GVOpFlags); else - return MIB.addImm(AM.Disp); -} - -static inline const MachineInstrBuilder & -addFullAddress(const MachineInstrBuilder &MIB, - const X86AddressMode &AM) { - return addLeaAddress(MIB, AM).addReg(0); + MIB.addImm(AM.Disp); + + return MIB.addReg(0); } /// addFrameReference - This function is used to add a reference to the base of diff --git a/lib/Target/X86/X86InstrFPStack.td b/lib/Target/X86/X86InstrFPStack.td index 0aae4a8..da93de9 100644 --- a/lib/Target/X86/X86InstrFPStack.td +++ b/lib/Target/X86/X86InstrFPStack.td @@ -371,7 +371,7 @@ multiclass FPCMov<PatLeaf cc> { Requires<[HasCMov]>; } -let Uses = [EFLAGS], isTwoAddress = 1 in { +let Uses = [EFLAGS], Constraints = "$src1 = $dst" in { defm CMOVB : FPCMov<X86_COND_B>; defm CMOVBE : FPCMov<X86_COND_BE>; defm CMOVE : FPCMov<X86_COND_E>; @@ -380,7 +380,7 @@ defm CMOVNB : FPCMov<X86_COND_AE>; defm CMOVNBE: FPCMov<X86_COND_A>; defm CMOVNE : FPCMov<X86_COND_NE>; defm CMOVNP : FPCMov<X86_COND_NP>; -} +} // Uses = [EFLAGS], Constraints = "$src1 = $dst" let Predicates = [HasCMov] in { // These are not factored because there's no clean way to pass DA/DB. @@ -680,19 +680,19 @@ def : Pat<(X86fildflag addr:$src, i64), (ILD_Fp64m64 addr:$src)>; // FP extensions map onto simple pseudo-value conversions if they are to/from // the FP stack. -def : Pat<(f64 (fextend RFP32:$src)), (MOV_Fp3264 RFP32:$src)>, +def : Pat<(f64 (fextend RFP32:$src)), (COPY_TO_REGCLASS RFP32:$src, RFP64)>, Requires<[FPStackf32]>; -def : Pat<(f80 (fextend RFP32:$src)), (MOV_Fp3280 RFP32:$src)>, +def : Pat<(f80 (fextend RFP32:$src)), (COPY_TO_REGCLASS RFP32:$src, RFP80)>, Requires<[FPStackf32]>; -def : Pat<(f80 (fextend RFP64:$src)), (MOV_Fp6480 RFP64:$src)>, +def : Pat<(f80 (fextend RFP64:$src)), (COPY_TO_REGCLASS RFP64:$src, RFP80)>, Requires<[FPStackf64]>; // FP truncations map onto simple pseudo-value conversions if they are to/from // the FP stack. We have validated that only value-preserving truncations make // it through isel. -def : Pat<(f32 (fround RFP64:$src)), (MOV_Fp6432 RFP64:$src)>, +def : Pat<(f32 (fround RFP64:$src)), (COPY_TO_REGCLASS RFP64:$src, RFP32)>, Requires<[FPStackf32]>; -def : Pat<(f32 (fround RFP80:$src)), (MOV_Fp8032 RFP80:$src)>, +def : Pat<(f32 (fround RFP80:$src)), (COPY_TO_REGCLASS RFP80:$src, RFP32)>, Requires<[FPStackf32]>; -def : Pat<(f64 (fround RFP80:$src)), (MOV_Fp8064 RFP80:$src)>, +def : Pat<(f64 (fround RFP80:$src)), (COPY_TO_REGCLASS RFP80:$src, RFP64)>, Requires<[FPStackf64]>; diff --git a/lib/Target/X86/X86InstrFormats.td b/lib/Target/X86/X86InstrFormats.td index c4522f3..97578af 100644 --- a/lib/Target/X86/X86InstrFormats.td +++ b/lib/Target/X86/X86InstrFormats.td @@ -50,9 +50,10 @@ def NoImm : ImmType<0>; def Imm8 : ImmType<1>; def Imm8PCRel : ImmType<2>; def Imm16 : ImmType<3>; -def Imm32 : ImmType<4>; -def Imm32PCRel : ImmType<5>; -def Imm64 : ImmType<6>; +def Imm16PCRel : ImmType<4>; +def Imm32 : ImmType<5>; +def Imm32PCRel : ImmType<6>; +def Imm64 : ImmType<7>; // FPFormat - This specifies what form this FP instruction has. This is used by // the Floating-Point stackifier pass. @@ -101,6 +102,10 @@ class XS { bits<4> Prefix = 12; } class T8 { bits<4> Prefix = 13; } class TA { bits<4> Prefix = 14; } class TF { bits<4> Prefix = 15; } +class VEX { bit hasVEXPrefix = 1; } +class VEX_W { bit hasVEX_WPrefix = 1; } +class VEX_4V : VEX { bit hasVEX_4VPrefix = 1; } +class VEX_I8IMM { bit hasVEX_i8ImmReg = 1; } class X86Inst<bits<8> opcod, Format f, ImmType i, dag outs, dag ins, string AsmStr, Domain d = GenericDomain> @@ -128,6 +133,11 @@ class X86Inst<bits<8> opcod, Format f, ImmType i, dag outs, dag ins, bit hasLockPrefix = 0; // Does this inst have a 0xF0 prefix? bits<2> SegOvrBits = 0; // Segment override prefix. Domain ExeDomain = d; + bit hasVEXPrefix = 0; // Does this inst requires a VEX prefix? + bit hasVEX_WPrefix = 0; // Does this inst set the VEX_W field? + bit hasVEX_4VPrefix = 0; // Does this inst requires the VEX.VVVV field? + bit hasVEX_i8ImmReg = 0; // Does this inst requires the last source register + // to be encoded in a immediate field? // TSFlags layout should be kept in sync with X86InstrInfo.h. let TSFlags{5-0} = FormBits; @@ -141,6 +151,10 @@ class X86Inst<bits<8> opcod, Format f, ImmType i, dag outs, dag ins, let TSFlags{21-20} = SegOvrBits; let TSFlags{23-22} = ExeDomain.Value; let TSFlags{31-24} = Opcode; + let TSFlags{32} = hasVEXPrefix; + let TSFlags{33} = hasVEX_WPrefix; + let TSFlags{34} = hasVEX_4VPrefix; + let TSFlags{35} = hasVEX_i8ImmReg; } class I<bits<8> o, Format f, dag outs, dag ins, string asm, @@ -174,6 +188,13 @@ class Ii32<bits<8> o, Format f, dag outs, dag ins, string asm, let CodeSize = 3; } +class Ii16PCRel<bits<8> o, Format f, dag outs, dag ins, string asm, + list<dag> pattern> + : X86Inst<o, f, Imm16PCRel, outs, ins, asm> { + let Pattern = pattern; + let CodeSize = 3; +} + class Ii32PCRel<bits<8> o, Format f, dag outs, dag ins, string asm, list<dag> pattern> : X86Inst<o, f, Imm32PCRel, outs, ins, asm> { @@ -211,11 +232,56 @@ class Iseg32 <bits<8> o, Format f, dag outs, dag ins, string asm, let CodeSize = 3; } +// SI - SSE 1 & 2 scalar instructions +class SI<bits<8> o, Format F, dag outs, dag ins, string asm, list<dag> pattern> + : I<o, F, outs, ins, asm, pattern> { + let Predicates = !if(hasVEXPrefix /* VEX */, [HasAVX], + !if(!eq(Prefix, 12 /* XS */), [HasSSE1], [HasSSE2])); + + // AVX instructions have a 'v' prefix in the mnemonic + let AsmString = !if(hasVEXPrefix, !strconcat("v", asm), asm); +} + +// SIi8 - SSE 1 & 2 scalar instructions +class SIi8<bits<8> o, Format F, dag outs, dag ins, string asm, + list<dag> pattern> + : Ii8<o, F, outs, ins, asm, pattern> { + let Predicates = !if(hasVEXPrefix /* VEX */, [HasAVX], + !if(!eq(Prefix, 12 /* XS */), [HasSSE1], [HasSSE2])); + + // AVX instructions have a 'v' prefix in the mnemonic + let AsmString = !if(hasVEXPrefix, !strconcat("v", asm), asm); +} + +// PI - SSE 1 & 2 packed instructions +class PI<bits<8> o, Format F, dag outs, dag ins, string asm, list<dag> pattern, + Domain d> + : I<o, F, outs, ins, asm, pattern, d> { + let Predicates = !if(hasVEXPrefix /* VEX */, [HasAVX], + !if(hasOpSizePrefix /* OpSize */, [HasSSE2], [HasSSE1])); + + // AVX instructions have a 'v' prefix in the mnemonic + let AsmString = !if(hasVEXPrefix, !strconcat("v", asm), asm); +} + +// PIi8 - SSE 1 & 2 packed instructions with immediate +class PIi8<bits<8> o, Format F, dag outs, dag ins, string asm, + list<dag> pattern, Domain d> + : Ii8<o, F, outs, ins, asm, pattern, d> { + let Predicates = !if(hasVEX_4VPrefix /* VEX */, [HasAVX], + !if(hasOpSizePrefix /* OpSize */, [HasSSE2], [HasSSE1])); + + // AVX instructions have a 'v' prefix in the mnemonic + let AsmString = !if(hasVEX_4VPrefix, !strconcat("v", asm), asm); +} + // SSE1 Instruction Templates: // // SSI - SSE1 instructions with XS prefix. // PSI - SSE1 instructions with TB prefix. // PSIi8 - SSE1 instructions with ImmT == Imm8 and TB prefix. +// VSSI - SSE1 instructions with XS prefix in AVX form. +// VPSI - SSE1 instructions with TB prefix in AVX form. class SSI<bits<8> o, Format F, dag outs, dag ins, string asm, list<dag> pattern> : I<o, F, outs, ins, asm, pattern>, XS, Requires<[HasSSE1]>; @@ -229,6 +295,14 @@ class PSIi8<bits<8> o, Format F, dag outs, dag ins, string asm, list<dag> pattern> : Ii8<o, F, outs, ins, asm, pattern, SSEPackedSingle>, TB, Requires<[HasSSE1]>; +class VSSI<bits<8> o, Format F, dag outs, dag ins, string asm, + list<dag> pattern> + : I<o, F, outs, ins, !strconcat("v", asm), pattern>, XS, + Requires<[HasAVX]>; +class VPSI<bits<8> o, Format F, dag outs, dag ins, string asm, + list<dag> pattern> + : I<o, F, outs, ins, !strconcat("v", asm), pattern, SSEPackedSingle>, + Requires<[HasAVX]>; // SSE2 Instruction Templates: // @@ -237,6 +311,8 @@ class PSIi8<bits<8> o, Format F, dag outs, dag ins, string asm, // SSDIi8 - SSE2 instructions with ImmT == Imm8 and XS prefix. // PDI - SSE2 instructions with TB and OpSize prefixes. // PDIi8 - SSE2 instructions with ImmT == Imm8 and TB and OpSize prefixes. +// VSDI - SSE2 instructions with XD prefix in AVX form. +// VPDI - SSE2 instructions with TB and OpSize prefixes in AVX form. class SDI<bits<8> o, Format F, dag outs, dag ins, string asm, list<dag> pattern> : I<o, F, outs, ins, asm, pattern>, XD, Requires<[HasSSE2]>; @@ -253,6 +329,14 @@ class PDIi8<bits<8> o, Format F, dag outs, dag ins, string asm, list<dag> pattern> : Ii8<o, F, outs, ins, asm, pattern, SSEPackedDouble>, TB, OpSize, Requires<[HasSSE2]>; +class VSDI<bits<8> o, Format F, dag outs, dag ins, string asm, + list<dag> pattern> + : I<o, F, outs, ins, !strconcat("v", asm), pattern>, XD, + Requires<[HasAVX]>; +class VPDI<bits<8> o, Format F, dag outs, dag ins, string asm, + list<dag> pattern> + : I<o, F, outs, ins, !strconcat("v", asm), pattern, SSEPackedDouble>, + OpSize, Requires<[HasAVX]>; // SSE3 Instruction Templates: // diff --git a/lib/Target/X86/X86InstrFragmentsSIMD.td b/lib/Target/X86/X86InstrFragmentsSIMD.td index 6b9478d..71c4e8b 100644 --- a/lib/Target/X86/X86InstrFragmentsSIMD.td +++ b/lib/Target/X86/X86InstrFragmentsSIMD.td @@ -60,3 +60,339 @@ def mmx_pshufw : PatFrag<(ops node:$lhs, node:$rhs), (vector_shuffle node:$lhs, node:$rhs), [{ return X86::isPSHUFDMask(cast<ShuffleVectorSDNode>(N)); }], MMX_SHUFFLE_get_shuf_imm>; + +//===----------------------------------------------------------------------===// +// SSE specific DAG Nodes. +//===----------------------------------------------------------------------===// + +def SDTX86FPShiftOp : SDTypeProfile<1, 2, [ SDTCisSameAs<0, 1>, + SDTCisFP<0>, SDTCisInt<2> ]>; +def SDTX86VFCMP : SDTypeProfile<1, 3, [SDTCisInt<0>, SDTCisSameAs<1, 2>, + SDTCisFP<1>, SDTCisVT<3, i8>]>; + +def X86fmin : SDNode<"X86ISD::FMIN", SDTFPBinOp>; +def X86fmax : SDNode<"X86ISD::FMAX", SDTFPBinOp>; +def X86fand : SDNode<"X86ISD::FAND", SDTFPBinOp, + [SDNPCommutative, SDNPAssociative]>; +def X86for : SDNode<"X86ISD::FOR", SDTFPBinOp, + [SDNPCommutative, SDNPAssociative]>; +def X86fxor : SDNode<"X86ISD::FXOR", SDTFPBinOp, + [SDNPCommutative, SDNPAssociative]>; +def X86frsqrt : SDNode<"X86ISD::FRSQRT", SDTFPUnaryOp>; +def X86frcp : SDNode<"X86ISD::FRCP", SDTFPUnaryOp>; +def X86fsrl : SDNode<"X86ISD::FSRL", SDTX86FPShiftOp>; +def X86comi : SDNode<"X86ISD::COMI", SDTX86CmpTest>; +def X86ucomi : SDNode<"X86ISD::UCOMI", SDTX86CmpTest>; +def X86pshufb : SDNode<"X86ISD::PSHUFB", + SDTypeProfile<1, 2, [SDTCisVT<0, v16i8>, SDTCisSameAs<0,1>, + SDTCisSameAs<0,2>]>>; +def X86pextrb : SDNode<"X86ISD::PEXTRB", + SDTypeProfile<1, 2, [SDTCisVT<0, i32>, SDTCisPtrTy<2>]>>; +def X86pextrw : SDNode<"X86ISD::PEXTRW", + SDTypeProfile<1, 2, [SDTCisVT<0, i32>, SDTCisPtrTy<2>]>>; +def X86pinsrb : SDNode<"X86ISD::PINSRB", + SDTypeProfile<1, 3, [SDTCisVT<0, v16i8>, SDTCisSameAs<0,1>, + SDTCisVT<2, i32>, SDTCisPtrTy<3>]>>; +def X86pinsrw : SDNode<"X86ISD::PINSRW", + SDTypeProfile<1, 3, [SDTCisVT<0, v8i16>, SDTCisSameAs<0,1>, + SDTCisVT<2, i32>, SDTCisPtrTy<3>]>>; +def X86insrtps : SDNode<"X86ISD::INSERTPS", + SDTypeProfile<1, 3, [SDTCisVT<0, v4f32>, SDTCisSameAs<0,1>, + SDTCisVT<2, v4f32>, SDTCisPtrTy<3>]>>; +def X86vzmovl : SDNode<"X86ISD::VZEXT_MOVL", + SDTypeProfile<1, 1, [SDTCisSameAs<0,1>]>>; +def X86vzload : SDNode<"X86ISD::VZEXT_LOAD", SDTLoad, + [SDNPHasChain, SDNPMayLoad]>; +def X86vshl : SDNode<"X86ISD::VSHL", SDTIntShiftOp>; +def X86vshr : SDNode<"X86ISD::VSRL", SDTIntShiftOp>; +def X86cmpps : SDNode<"X86ISD::CMPPS", SDTX86VFCMP>; +def X86cmppd : SDNode<"X86ISD::CMPPD", SDTX86VFCMP>; +def X86pcmpeqb : SDNode<"X86ISD::PCMPEQB", SDTIntBinOp, [SDNPCommutative]>; +def X86pcmpeqw : SDNode<"X86ISD::PCMPEQW", SDTIntBinOp, [SDNPCommutative]>; +def X86pcmpeqd : SDNode<"X86ISD::PCMPEQD", SDTIntBinOp, [SDNPCommutative]>; +def X86pcmpeqq : SDNode<"X86ISD::PCMPEQQ", SDTIntBinOp, [SDNPCommutative]>; +def X86pcmpgtb : SDNode<"X86ISD::PCMPGTB", SDTIntBinOp>; +def X86pcmpgtw : SDNode<"X86ISD::PCMPGTW", SDTIntBinOp>; +def X86pcmpgtd : SDNode<"X86ISD::PCMPGTD", SDTIntBinOp>; +def X86pcmpgtq : SDNode<"X86ISD::PCMPGTQ", SDTIntBinOp>; + +def SDTX86CmpPTest : SDTypeProfile<1, 2, [SDTCisVT<0, i32>, + SDTCisVT<1, v4f32>, + SDTCisVT<2, v4f32>]>; +def X86ptest : SDNode<"X86ISD::PTEST", SDTX86CmpPTest>; + +//===----------------------------------------------------------------------===// +// SSE Complex Patterns +//===----------------------------------------------------------------------===// + +// These are 'extloads' from a scalar to the low element of a vector, zeroing +// the top elements. These are used for the SSE 'ss' and 'sd' instruction +// forms. +def sse_load_f32 : ComplexPattern<v4f32, 5, "SelectScalarSSELoad", [], + [SDNPHasChain, SDNPMayLoad]>; +def sse_load_f64 : ComplexPattern<v2f64, 5, "SelectScalarSSELoad", [], + [SDNPHasChain, SDNPMayLoad]>; + +def ssmem : Operand<v4f32> { + let PrintMethod = "printf32mem"; + let MIOperandInfo = (ops ptr_rc, i8imm, ptr_rc_nosp, i32imm, i8imm); + let ParserMatchClass = X86MemAsmOperand; +} +def sdmem : Operand<v2f64> { + let PrintMethod = "printf64mem"; + let MIOperandInfo = (ops ptr_rc, i8imm, ptr_rc_nosp, i32imm, i8imm); + let ParserMatchClass = X86MemAsmOperand; +} + +//===----------------------------------------------------------------------===// +// SSE pattern fragments +//===----------------------------------------------------------------------===// + +def loadv4f32 : PatFrag<(ops node:$ptr), (v4f32 (load node:$ptr))>; +def loadv2f64 : PatFrag<(ops node:$ptr), (v2f64 (load node:$ptr))>; +def loadv4i32 : PatFrag<(ops node:$ptr), (v4i32 (load node:$ptr))>; +def loadv2i64 : PatFrag<(ops node:$ptr), (v2i64 (load node:$ptr))>; + +// FIXME: move this to a more appropriate place after all AVX is done. +def loadv8f32 : PatFrag<(ops node:$ptr), (v8f32 (load node:$ptr))>; +def loadv4f64 : PatFrag<(ops node:$ptr), (v4f64 (load node:$ptr))>; +def loadv8i32 : PatFrag<(ops node:$ptr), (v8i32 (load node:$ptr))>; +def loadv4i64 : PatFrag<(ops node:$ptr), (v4i64 (load node:$ptr))>; + +// Like 'store', but always requires vector alignment. +def alignedstore : PatFrag<(ops node:$val, node:$ptr), + (store node:$val, node:$ptr), [{ + return cast<StoreSDNode>(N)->getAlignment() >= 16; +}]>; + +// Like 'load', but always requires vector alignment. +def alignedload : PatFrag<(ops node:$ptr), (load node:$ptr), [{ + return cast<LoadSDNode>(N)->getAlignment() >= 16; +}]>; + +def alignedloadfsf32 : PatFrag<(ops node:$ptr), + (f32 (alignedload node:$ptr))>; +def alignedloadfsf64 : PatFrag<(ops node:$ptr), + (f64 (alignedload node:$ptr))>; +def alignedloadv4f32 : PatFrag<(ops node:$ptr), + (v4f32 (alignedload node:$ptr))>; +def alignedloadv2f64 : PatFrag<(ops node:$ptr), + (v2f64 (alignedload node:$ptr))>; +def alignedloadv4i32 : PatFrag<(ops node:$ptr), + (v4i32 (alignedload node:$ptr))>; +def alignedloadv2i64 : PatFrag<(ops node:$ptr), + (v2i64 (alignedload node:$ptr))>; + +// FIXME: move this to a more appropriate place after all AVX is done. +def alignedloadv8f32 : PatFrag<(ops node:$ptr), + (v8f32 (alignedload node:$ptr))>; +def alignedloadv4f64 : PatFrag<(ops node:$ptr), + (v4f64 (alignedload node:$ptr))>; +def alignedloadv8i32 : PatFrag<(ops node:$ptr), + (v8i32 (alignedload node:$ptr))>; +def alignedloadv4i64 : PatFrag<(ops node:$ptr), + (v4i64 (alignedload node:$ptr))>; + +// Like 'load', but uses special alignment checks suitable for use in +// memory operands in most SSE instructions, which are required to +// be naturally aligned on some targets but not on others. If the subtarget +// allows unaligned accesses, match any load, though this may require +// setting a feature bit in the processor (on startup, for example). +// Opteron 10h and later implement such a feature. +def memop : PatFrag<(ops node:$ptr), (load node:$ptr), [{ + return Subtarget->hasVectorUAMem() + || cast<LoadSDNode>(N)->getAlignment() >= 16; +}]>; + +def memopfsf32 : PatFrag<(ops node:$ptr), (f32 (memop node:$ptr))>; +def memopfsf64 : PatFrag<(ops node:$ptr), (f64 (memop node:$ptr))>; +def memopv4f32 : PatFrag<(ops node:$ptr), (v4f32 (memop node:$ptr))>; +def memopv2f64 : PatFrag<(ops node:$ptr), (v2f64 (memop node:$ptr))>; +def memopv4i32 : PatFrag<(ops node:$ptr), (v4i32 (memop node:$ptr))>; +def memopv2i64 : PatFrag<(ops node:$ptr), (v2i64 (memop node:$ptr))>; +def memopv16i8 : PatFrag<(ops node:$ptr), (v16i8 (memop node:$ptr))>; + +// FIXME: move this to a more appropriate place after all AVX is done. +def memopv8f32 : PatFrag<(ops node:$ptr), (v8f32 (memop node:$ptr))>; +def memopv4f64 : PatFrag<(ops node:$ptr), (v4f64 (memop node:$ptr))>; + +// SSSE3 uses MMX registers for some instructions. They aren't aligned on a +// 16-byte boundary. +// FIXME: 8 byte alignment for mmx reads is not required +def memop64 : PatFrag<(ops node:$ptr), (load node:$ptr), [{ + return cast<LoadSDNode>(N)->getAlignment() >= 8; +}]>; + +def memopv8i8 : PatFrag<(ops node:$ptr), (v8i8 (memop64 node:$ptr))>; +def memopv4i16 : PatFrag<(ops node:$ptr), (v4i16 (memop64 node:$ptr))>; +def memopv8i16 : PatFrag<(ops node:$ptr), (v8i16 (memop64 node:$ptr))>; +def memopv2i32 : PatFrag<(ops node:$ptr), (v2i32 (memop64 node:$ptr))>; + +// MOVNT Support +// Like 'store', but requires the non-temporal bit to be set +def nontemporalstore : PatFrag<(ops node:$val, node:$ptr), + (st node:$val, node:$ptr), [{ + if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) + return ST->isNonTemporal(); + return false; +}]>; + +def alignednontemporalstore : PatFrag<(ops node:$val, node:$ptr), + (st node:$val, node:$ptr), [{ + if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) + return ST->isNonTemporal() && !ST->isTruncatingStore() && + ST->getAddressingMode() == ISD::UNINDEXED && + ST->getAlignment() >= 16; + return false; +}]>; + +def unalignednontemporalstore : PatFrag<(ops node:$val, node:$ptr), + (st node:$val, node:$ptr), [{ + if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) + return ST->isNonTemporal() && + ST->getAlignment() < 16; + return false; +}]>; + +def bc_v4f32 : PatFrag<(ops node:$in), (v4f32 (bitconvert node:$in))>; +def bc_v2f64 : PatFrag<(ops node:$in), (v2f64 (bitconvert node:$in))>; +def bc_v16i8 : PatFrag<(ops node:$in), (v16i8 (bitconvert node:$in))>; +def bc_v8i16 : PatFrag<(ops node:$in), (v8i16 (bitconvert node:$in))>; +def bc_v4i32 : PatFrag<(ops node:$in), (v4i32 (bitconvert node:$in))>; +def bc_v2i64 : PatFrag<(ops node:$in), (v2i64 (bitconvert node:$in))>; + +def vzmovl_v2i64 : PatFrag<(ops node:$src), + (bitconvert (v2i64 (X86vzmovl + (v2i64 (scalar_to_vector (loadi64 node:$src))))))>; +def vzmovl_v4i32 : PatFrag<(ops node:$src), + (bitconvert (v4i32 (X86vzmovl + (v4i32 (scalar_to_vector (loadi32 node:$src))))))>; + +def vzload_v2i64 : PatFrag<(ops node:$src), + (bitconvert (v2i64 (X86vzload node:$src)))>; + + +def fp32imm0 : PatLeaf<(f32 fpimm), [{ + return N->isExactlyValue(+0.0); +}]>; + +// BYTE_imm - Transform bit immediates into byte immediates. +def BYTE_imm : SDNodeXForm<imm, [{ + // Transformation function: imm >> 3 + return getI32Imm(N->getZExtValue() >> 3); +}]>; + +// SHUFFLE_get_shuf_imm xform function: convert vector_shuffle mask to PSHUF*, +// SHUFP* etc. imm. +def SHUFFLE_get_shuf_imm : SDNodeXForm<vector_shuffle, [{ + return getI8Imm(X86::getShuffleSHUFImmediate(N)); +}]>; + +// SHUFFLE_get_pshufhw_imm xform function: convert vector_shuffle mask to +// PSHUFHW imm. +def SHUFFLE_get_pshufhw_imm : SDNodeXForm<vector_shuffle, [{ + return getI8Imm(X86::getShufflePSHUFHWImmediate(N)); +}]>; + +// SHUFFLE_get_pshuflw_imm xform function: convert vector_shuffle mask to +// PSHUFLW imm. +def SHUFFLE_get_pshuflw_imm : SDNodeXForm<vector_shuffle, [{ + return getI8Imm(X86::getShufflePSHUFLWImmediate(N)); +}]>; + +// SHUFFLE_get_palign_imm xform function: convert vector_shuffle mask to +// a PALIGNR imm. +def SHUFFLE_get_palign_imm : SDNodeXForm<vector_shuffle, [{ + return getI8Imm(X86::getShufflePALIGNRImmediate(N)); +}]>; + +def splat_lo : PatFrag<(ops node:$lhs, node:$rhs), + (vector_shuffle node:$lhs, node:$rhs), [{ + ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); + return SVOp->isSplat() && SVOp->getSplatIndex() == 0; +}]>; + +def movddup : PatFrag<(ops node:$lhs, node:$rhs), + (vector_shuffle node:$lhs, node:$rhs), [{ + return X86::isMOVDDUPMask(cast<ShuffleVectorSDNode>(N)); +}]>; + +def movhlps : PatFrag<(ops node:$lhs, node:$rhs), + (vector_shuffle node:$lhs, node:$rhs), [{ + return X86::isMOVHLPSMask(cast<ShuffleVectorSDNode>(N)); +}]>; + +def movhlps_undef : PatFrag<(ops node:$lhs, node:$rhs), + (vector_shuffle node:$lhs, node:$rhs), [{ + return X86::isMOVHLPS_v_undef_Mask(cast<ShuffleVectorSDNode>(N)); +}]>; + +def movlhps : PatFrag<(ops node:$lhs, node:$rhs), + (vector_shuffle node:$lhs, node:$rhs), [{ + return X86::isMOVLHPSMask(cast<ShuffleVectorSDNode>(N)); +}]>; + +def movlp : PatFrag<(ops node:$lhs, node:$rhs), + (vector_shuffle node:$lhs, node:$rhs), [{ + return X86::isMOVLPMask(cast<ShuffleVectorSDNode>(N)); +}]>; + +def movl : PatFrag<(ops node:$lhs, node:$rhs), + (vector_shuffle node:$lhs, node:$rhs), [{ + return X86::isMOVLMask(cast<ShuffleVectorSDNode>(N)); +}]>; + +def movshdup : PatFrag<(ops node:$lhs, node:$rhs), + (vector_shuffle node:$lhs, node:$rhs), [{ + return X86::isMOVSHDUPMask(cast<ShuffleVectorSDNode>(N)); +}]>; + +def movsldup : PatFrag<(ops node:$lhs, node:$rhs), + (vector_shuffle node:$lhs, node:$rhs), [{ + return X86::isMOVSLDUPMask(cast<ShuffleVectorSDNode>(N)); +}]>; + +def unpckl : PatFrag<(ops node:$lhs, node:$rhs), + (vector_shuffle node:$lhs, node:$rhs), [{ + return X86::isUNPCKLMask(cast<ShuffleVectorSDNode>(N)); +}]>; + +def unpckh : PatFrag<(ops node:$lhs, node:$rhs), + (vector_shuffle node:$lhs, node:$rhs), [{ + return X86::isUNPCKHMask(cast<ShuffleVectorSDNode>(N)); +}]>; + +def unpckl_undef : PatFrag<(ops node:$lhs, node:$rhs), + (vector_shuffle node:$lhs, node:$rhs), [{ + return X86::isUNPCKL_v_undef_Mask(cast<ShuffleVectorSDNode>(N)); +}]>; + +def unpckh_undef : PatFrag<(ops node:$lhs, node:$rhs), + (vector_shuffle node:$lhs, node:$rhs), [{ + return X86::isUNPCKH_v_undef_Mask(cast<ShuffleVectorSDNode>(N)); +}]>; + +def pshufd : PatFrag<(ops node:$lhs, node:$rhs), + (vector_shuffle node:$lhs, node:$rhs), [{ + return X86::isPSHUFDMask(cast<ShuffleVectorSDNode>(N)); +}], SHUFFLE_get_shuf_imm>; + +def shufp : PatFrag<(ops node:$lhs, node:$rhs), + (vector_shuffle node:$lhs, node:$rhs), [{ + return X86::isSHUFPMask(cast<ShuffleVectorSDNode>(N)); +}], SHUFFLE_get_shuf_imm>; + +def pshufhw : PatFrag<(ops node:$lhs, node:$rhs), + (vector_shuffle node:$lhs, node:$rhs), [{ + return X86::isPSHUFHWMask(cast<ShuffleVectorSDNode>(N)); +}], SHUFFLE_get_pshufhw_imm>; + +def pshuflw : PatFrag<(ops node:$lhs, node:$rhs), + (vector_shuffle node:$lhs, node:$rhs), [{ + return X86::isPSHUFLWMask(cast<ShuffleVectorSDNode>(N)); +}], SHUFFLE_get_pshuflw_imm>; + +def palign : PatFrag<(ops node:$lhs, node:$rhs), + (vector_shuffle node:$lhs, node:$rhs), [{ + return X86::isPALIGNRMask(cast<ShuffleVectorSDNode>(N)); +}], SHUFFLE_get_palign_imm>; diff --git a/lib/Target/X86/X86InstrInfo.cpp b/lib/Target/X86/X86InstrInfo.cpp index 34e12ca..ce471ea 100644 --- a/lib/Target/X86/X86InstrInfo.cpp +++ b/lib/Target/X86/X86InstrInfo.cpp @@ -784,7 +784,9 @@ static bool isFrameLoadOpcode(int Opcode) { case X86::MOV8rm: case X86::MOV16rm: case X86::MOV32rm: + case X86::MOV32rm_TC: case X86::MOV64rm: + case X86::MOV64rm_TC: case X86::LD_Fp64m: case X86::MOVSSrm: case X86::MOVSDrm: @@ -805,7 +807,9 @@ static bool isFrameStoreOpcode(int Opcode) { case X86::MOV8mr: case X86::MOV16mr: case X86::MOV32mr: + case X86::MOV32mr_TC: case X86::MOV64mr: + case X86::MOV64mr_TC: case X86::ST_FpP64m: case X86::MOVSSmr: case X86::MOVSDmr: @@ -863,7 +867,7 @@ unsigned X86InstrInfo::isStoreToStackSlot(const MachineInstr *MI, int &FrameIndex) const { if (isFrameStoreOpcode(MI->getOpcode())) if (isFrameOperand(MI, 0, FrameIndex)) - return MI->getOperand(X86AddrNumOperands).getReg(); + return MI->getOperand(X86::AddrNumOperands).getReg(); return 0; } @@ -1064,14 +1068,9 @@ void X86InstrInfo::reMaterialize(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, unsigned DestReg, unsigned SubIdx, const MachineInstr *Orig, - const TargetRegisterInfo *TRI) const { + const TargetRegisterInfo &TRI) const { DebugLoc DL = Orig->getDebugLoc(); - if (SubIdx && TargetRegisterInfo::isPhysicalRegister(DestReg)) { - DestReg = TRI->getSubReg(DestReg, SubIdx); - SubIdx = 0; - } - // MOV32r0 etc. are implemented with xor which clobbers condition code. // Re-materialize them as movri instructions to avoid side effects. bool Clone = true; @@ -1098,14 +1097,13 @@ void X86InstrInfo::reMaterialize(MachineBasicBlock &MBB, if (Clone) { MachineInstr *MI = MBB.getParent()->CloneMachineInstr(Orig); - MI->getOperand(0).setReg(DestReg); MBB.insert(I, MI); } else { - BuildMI(MBB, I, DL, get(Opc), DestReg).addImm(0); + BuildMI(MBB, I, DL, get(Opc)).addOperand(Orig->getOperand(0)).addImm(0); } MachineInstr *NewMI = prior(I); - NewMI->getOperand(0).setSubReg(SubIdx); + NewMI->substituteRegister(Orig->getOperand(0).getReg(), DestReg, SubIdx, TRI); } /// hasLiveCondCodeDef - True if MI has a condition code def, e.g. EFLAGS, that @@ -1151,10 +1149,9 @@ X86InstrInfo::convertToThreeAddressWithLEA(unsigned MIOpc, // least on modern x86 machines). BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(X86::IMPLICIT_DEF), leaInReg); MachineInstr *InsMI = - BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(X86::INSERT_SUBREG),leaInReg) - .addReg(leaInReg) - .addReg(Src, getKillRegState(isKill)) - .addImm(X86::sub_16bit); + BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(TargetOpcode::COPY)) + .addReg(leaInReg, RegState::Define, X86::sub_16bit) + .addReg(Src, getKillRegState(isKill)); MachineInstrBuilder MIB = BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(Opc), leaOutReg); @@ -1165,20 +1162,20 @@ X86InstrInfo::convertToThreeAddressWithLEA(unsigned MIOpc, case X86::SHL16ri: { unsigned ShAmt = MI->getOperand(2).getImm(); MIB.addReg(0).addImm(1 << ShAmt) - .addReg(leaInReg, RegState::Kill).addImm(0); + .addReg(leaInReg, RegState::Kill).addImm(0).addReg(0); break; } case X86::INC16r: case X86::INC64_16r: - addLeaRegOffset(MIB, leaInReg, true, 1); + addRegOffset(MIB, leaInReg, true, 1); break; case X86::DEC16r: case X86::DEC64_16r: - addLeaRegOffset(MIB, leaInReg, true, -1); + addRegOffset(MIB, leaInReg, true, -1); break; case X86::ADD16ri: case X86::ADD16ri8: - addLeaRegOffset(MIB, leaInReg, true, MI->getOperand(2).getImm()); + addRegOffset(MIB, leaInReg, true, MI->getOperand(2).getImm()); break; case X86::ADD16rr: { unsigned Src2 = MI->getOperand(2).getReg(); @@ -1195,10 +1192,9 @@ X86InstrInfo::convertToThreeAddressWithLEA(unsigned MIOpc, // well be shifting and then extracting the lower 16-bits. BuildMI(*MFI, MIB, MI->getDebugLoc(), get(X86::IMPLICIT_DEF), leaInReg2); InsMI2 = - BuildMI(*MFI, MIB, MI->getDebugLoc(), get(X86::INSERT_SUBREG),leaInReg2) - .addReg(leaInReg2) - .addReg(Src2, getKillRegState(isKill2)) - .addImm(X86::sub_16bit); + BuildMI(*MFI, MIB, MI->getDebugLoc(), get(TargetOpcode::COPY)) + .addReg(leaInReg2, RegState::Define, X86::sub_16bit) + .addReg(Src2, getKillRegState(isKill2)); addRegReg(MIB, leaInReg, true, leaInReg2, true); } if (LV && isKill2 && InsMI2) @@ -1209,10 +1205,9 @@ X86InstrInfo::convertToThreeAddressWithLEA(unsigned MIOpc, MachineInstr *NewMI = MIB; MachineInstr *ExtMI = - BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(X86::EXTRACT_SUBREG)) + BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(TargetOpcode::COPY)) .addReg(Dest, RegState::Define | getDeadRegState(isDead)) - .addReg(leaOutReg, RegState::Kill) - .addImm(X86::sub_16bit); + .addReg(leaOutReg, RegState::Kill, X86::sub_16bit); if (LV) { // Update live variables @@ -1283,7 +1278,7 @@ X86InstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI, .addReg(Dest, RegState::Define | getDeadRegState(isDead)) .addReg(0).addImm(1 << ShAmt) .addReg(Src, getKillRegState(isKill)) - .addImm(0); + .addImm(0).addReg(0); break; } case X86::SHL32ri: { @@ -1297,7 +1292,7 @@ X86InstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI, NewMI = BuildMI(MF, MI->getDebugLoc(), get(Opc)) .addReg(Dest, RegState::Define | getDeadRegState(isDead)) .addReg(0).addImm(1 << ShAmt) - .addReg(Src, getKillRegState(isKill)).addImm(0); + .addReg(Src, getKillRegState(isKill)).addImm(0).addReg(0); break; } case X86::SHL16ri: { @@ -1313,7 +1308,7 @@ X86InstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI, .addReg(Dest, RegState::Define | getDeadRegState(isDead)) .addReg(0).addImm(1 << ShAmt) .addReg(Src, getKillRegState(isKill)) - .addImm(0); + .addImm(0).addReg(0); break; } default: { @@ -1331,7 +1326,7 @@ X86InstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI, assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!"); unsigned Opc = MIOpc == X86::INC64r ? X86::LEA64r : (is64Bit ? X86::LEA64_32r : X86::LEA32r); - NewMI = addLeaRegOffset(BuildMI(MF, MI->getDebugLoc(), get(Opc)) + NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(Opc)) .addReg(Dest, RegState::Define | getDeadRegState(isDead)), Src, isKill, 1); @@ -1353,7 +1348,7 @@ X86InstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI, assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!"); unsigned Opc = MIOpc == X86::DEC64r ? X86::LEA64r : (is64Bit ? X86::LEA64_32r : X86::LEA32r); - NewMI = addLeaRegOffset(BuildMI(MF, MI->getDebugLoc(), get(Opc)) + NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(Opc)) .addReg(Dest, RegState::Define | getDeadRegState(isDead)), Src, isKill, -1); @@ -1401,7 +1396,7 @@ X86InstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI, case X86::ADD64ri32: case X86::ADD64ri8: assert(MI->getNumOperands() >= 3 && "Unknown add instruction!"); - NewMI = addLeaRegOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA64r)) + NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA64r)) .addReg(Dest, RegState::Define | getDeadRegState(isDead)), Src, isKill, MI->getOperand(2).getImm()); @@ -1410,7 +1405,7 @@ X86InstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI, case X86::ADD32ri8: { assert(MI->getNumOperands() >= 3 && "Unknown add instruction!"); unsigned Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r; - NewMI = addLeaRegOffset(BuildMI(MF, MI->getDebugLoc(), get(Opc)) + NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(Opc)) .addReg(Dest, RegState::Define | getDeadRegState(isDead)), Src, isKill, MI->getOperand(2).getImm()); @@ -1421,7 +1416,7 @@ X86InstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI, if (DisableLEA16) return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0; assert(MI->getNumOperands() >= 3 && "Unknown add instruction!"); - NewMI = addLeaRegOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r)) + NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r)) .addReg(Dest, RegState::Define | getDeadRegState(isDead)), Src, isKill, MI->getOperand(2).getImm()); @@ -1845,9 +1840,8 @@ unsigned X86InstrInfo::RemoveBranch(MachineBasicBlock &MBB) const { unsigned X86InstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB, MachineBasicBlock *FBB, - const SmallVectorImpl<MachineOperand> &Cond) const { - // FIXME this should probably have a DebugLoc operand - DebugLoc dl; + const SmallVectorImpl<MachineOperand> &Cond, + DebugLoc DL) const { // Shouldn't be a fall through. assert(TBB && "InsertBranch must not be told to insert a fallthrough"); assert((Cond.size() == 1 || Cond.size() == 0) && @@ -1856,7 +1850,7 @@ X86InstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB, if (Cond.empty()) { // Unconditional branch? assert(!FBB && "Unconditional branch with multiple successors!"); - BuildMI(&MBB, dl, get(X86::JMP_4)).addMBB(TBB); + BuildMI(&MBB, DL, get(X86::JMP_4)).addMBB(TBB); return 1; } @@ -1866,27 +1860,27 @@ X86InstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB, switch (CC) { case X86::COND_NP_OR_E: // Synthesize NP_OR_E with two branches. - BuildMI(&MBB, dl, get(X86::JNP_4)).addMBB(TBB); + BuildMI(&MBB, DL, get(X86::JNP_4)).addMBB(TBB); ++Count; - BuildMI(&MBB, dl, get(X86::JE_4)).addMBB(TBB); + BuildMI(&MBB, DL, get(X86::JE_4)).addMBB(TBB); ++Count; break; case X86::COND_NE_OR_P: // Synthesize NE_OR_P with two branches. - BuildMI(&MBB, dl, get(X86::JNE_4)).addMBB(TBB); + BuildMI(&MBB, DL, get(X86::JNE_4)).addMBB(TBB); ++Count; - BuildMI(&MBB, dl, get(X86::JP_4)).addMBB(TBB); + BuildMI(&MBB, DL, get(X86::JP_4)).addMBB(TBB); ++Count; break; default: { unsigned Opc = GetCondBranchFromCond(CC); - BuildMI(&MBB, dl, get(Opc)).addMBB(TBB); + BuildMI(&MBB, DL, get(Opc)).addMBB(TBB); ++Count; } } if (FBB) { // Two-way Conditional branch. Insert the second branch. - BuildMI(&MBB, dl, get(X86::JMP_4)).addMBB(FBB); + BuildMI(&MBB, DL, get(X86::JMP_4)).addMBB(FBB); ++Count; } return Count; @@ -1897,237 +1891,153 @@ static bool isHReg(unsigned Reg) { return X86::GR8_ABCD_HRegClass.contains(Reg); } -bool X86InstrInfo::copyRegToReg(MachineBasicBlock &MBB, - MachineBasicBlock::iterator MI, - unsigned DestReg, unsigned SrcReg, - const TargetRegisterClass *DestRC, - const TargetRegisterClass *SrcRC, - DebugLoc DL) const { - - // Determine if DstRC and SrcRC have a common superclass in common. - const TargetRegisterClass *CommonRC = DestRC; - if (DestRC == SrcRC) - /* Source and destination have the same register class. */; - else if (CommonRC->hasSuperClass(SrcRC)) - CommonRC = SrcRC; - else if (!DestRC->hasSubClass(SrcRC)) { - // Neither of GR64_NOREX or GR64_NOSP is a superclass of the other, - // but we want to copy them as GR64. Similarly, for GR32_NOREX and - // GR32_NOSP, copy as GR32. - if (SrcRC->hasSuperClass(&X86::GR64RegClass) && - DestRC->hasSuperClass(&X86::GR64RegClass)) - CommonRC = &X86::GR64RegClass; - else if (SrcRC->hasSuperClass(&X86::GR32RegClass) && - DestRC->hasSuperClass(&X86::GR32RegClass)) - CommonRC = &X86::GR32RegClass; +void X86InstrInfo::copyPhysReg(MachineBasicBlock &MBB, + MachineBasicBlock::iterator MI, DebugLoc DL, + unsigned DestReg, unsigned SrcReg, + bool KillSrc) const { + // First deal with the normal symmetric copies. + unsigned Opc = 0; + if (X86::GR64RegClass.contains(DestReg, SrcReg)) + Opc = X86::MOV64rr; + else if (X86::GR32RegClass.contains(DestReg, SrcReg)) + Opc = X86::MOV32rr; + else if (X86::GR16RegClass.contains(DestReg, SrcReg)) + Opc = X86::MOV16rr; + else if (X86::GR8RegClass.contains(DestReg, SrcReg)) { + // Copying to or from a physical H register on x86-64 requires a NOREX + // move. Otherwise use a normal move. + if ((isHReg(DestReg) || isHReg(SrcReg)) && + TM.getSubtarget<X86Subtarget>().is64Bit()) + Opc = X86::MOV8rr_NOREX; else - CommonRC = 0; - } - - if (CommonRC) { - unsigned Opc; - if (CommonRC == &X86::GR64RegClass || CommonRC == &X86::GR64_NOSPRegClass) { - Opc = X86::MOV64rr; - } else if (CommonRC == &X86::GR32RegClass || - CommonRC == &X86::GR32_NOSPRegClass) { - Opc = X86::MOV32rr; - } else if (CommonRC == &X86::GR16RegClass) { - Opc = X86::MOV16rr; - } else if (CommonRC == &X86::GR8RegClass) { - // Copying to or from a physical H register on x86-64 requires a NOREX - // move. Otherwise use a normal move. - if ((isHReg(DestReg) || isHReg(SrcReg)) && - TM.getSubtarget<X86Subtarget>().is64Bit()) - Opc = X86::MOV8rr_NOREX; - else - Opc = X86::MOV8rr; - } else if (CommonRC == &X86::GR64_ABCDRegClass) { - Opc = X86::MOV64rr; - } else if (CommonRC == &X86::GR32_ABCDRegClass) { - Opc = X86::MOV32rr; - } else if (CommonRC == &X86::GR16_ABCDRegClass) { - Opc = X86::MOV16rr; - } else if (CommonRC == &X86::GR8_ABCD_LRegClass) { Opc = X86::MOV8rr; - } else if (CommonRC == &X86::GR8_ABCD_HRegClass) { - if (TM.getSubtarget<X86Subtarget>().is64Bit()) - Opc = X86::MOV8rr_NOREX; - else - Opc = X86::MOV8rr; - } else if (CommonRC == &X86::GR64_NOREXRegClass || - CommonRC == &X86::GR64_NOREX_NOSPRegClass) { - Opc = X86::MOV64rr; - } else if (CommonRC == &X86::GR32_NOREXRegClass) { - Opc = X86::MOV32rr; - } else if (CommonRC == &X86::GR16_NOREXRegClass) { - Opc = X86::MOV16rr; - } else if (CommonRC == &X86::GR8_NOREXRegClass) { - Opc = X86::MOV8rr; - } else if (CommonRC == &X86::GR64_TCRegClass) { - Opc = X86::MOV64rr_TC; - } else if (CommonRC == &X86::GR32_TCRegClass) { - Opc = X86::MOV32rr_TC; - } else if (CommonRC == &X86::RFP32RegClass) { - Opc = X86::MOV_Fp3232; - } else if (CommonRC == &X86::RFP64RegClass || CommonRC == &X86::RSTRegClass) { - Opc = X86::MOV_Fp6464; - } else if (CommonRC == &X86::RFP80RegClass) { - Opc = X86::MOV_Fp8080; - } else if (CommonRC == &X86::FR32RegClass) { - Opc = X86::FsMOVAPSrr; - } else if (CommonRC == &X86::FR64RegClass) { - Opc = X86::FsMOVAPDrr; - } else if (CommonRC == &X86::VR128RegClass) { - Opc = X86::MOVAPSrr; - } else if (CommonRC == &X86::VR64RegClass) { - Opc = X86::MMX_MOVQ64rr; - } else { - return false; - } - BuildMI(MBB, MI, DL, get(Opc), DestReg).addReg(SrcReg); - return true; + } else if (X86::VR128RegClass.contains(DestReg, SrcReg)) + Opc = X86::MOVAPSrr; + else if (X86::VR64RegClass.contains(DestReg, SrcReg)) + Opc = X86::MMX_MOVQ64rr; + + if (Opc) { + BuildMI(MBB, MI, DL, get(Opc), DestReg) + .addReg(SrcReg, getKillRegState(KillSrc)); + return; } // Moving EFLAGS to / from another register requires a push and a pop. - if (SrcRC == &X86::CCRRegClass) { - if (SrcReg != X86::EFLAGS) - return false; - if (DestRC == &X86::GR64RegClass || DestRC == &X86::GR64_NOSPRegClass) { + if (SrcReg == X86::EFLAGS) { + if (X86::GR64RegClass.contains(DestReg)) { BuildMI(MBB, MI, DL, get(X86::PUSHF64)); BuildMI(MBB, MI, DL, get(X86::POP64r), DestReg); - return true; - } else if (DestRC == &X86::GR32RegClass || - DestRC == &X86::GR32_NOSPRegClass) { + return; + } else if (X86::GR32RegClass.contains(DestReg)) { BuildMI(MBB, MI, DL, get(X86::PUSHF32)); BuildMI(MBB, MI, DL, get(X86::POP32r), DestReg); - return true; + return; } - } else if (DestRC == &X86::CCRRegClass) { - if (DestReg != X86::EFLAGS) - return false; - if (SrcRC == &X86::GR64RegClass || DestRC == &X86::GR64_NOSPRegClass) { - BuildMI(MBB, MI, DL, get(X86::PUSH64r)).addReg(SrcReg); + } + if (DestReg == X86::EFLAGS) { + if (X86::GR64RegClass.contains(SrcReg)) { + BuildMI(MBB, MI, DL, get(X86::PUSH64r)) + .addReg(SrcReg, getKillRegState(KillSrc)); BuildMI(MBB, MI, DL, get(X86::POPF64)); - return true; - } else if (SrcRC == &X86::GR32RegClass || - DestRC == &X86::GR32_NOSPRegClass) { - BuildMI(MBB, MI, DL, get(X86::PUSH32r)).addReg(SrcReg); + return; + } else if (X86::GR32RegClass.contains(SrcReg)) { + BuildMI(MBB, MI, DL, get(X86::PUSH32r)) + .addReg(SrcReg, getKillRegState(KillSrc)); BuildMI(MBB, MI, DL, get(X86::POPF32)); - return true; - } - } - - // Moving from ST(0) turns into FpGET_ST0_32 etc. - if (SrcRC == &X86::RSTRegClass) { - // Copying from ST(0)/ST(1). - if (SrcReg != X86::ST0 && SrcReg != X86::ST1) - // Can only copy from ST(0)/ST(1) right now - return false; - bool isST0 = SrcReg == X86::ST0; - unsigned Opc; - if (DestRC == &X86::RFP32RegClass) - Opc = isST0 ? X86::FpGET_ST0_32 : X86::FpGET_ST1_32; - else if (DestRC == &X86::RFP64RegClass) - Opc = isST0 ? X86::FpGET_ST0_64 : X86::FpGET_ST1_64; - else { - if (DestRC != &X86::RFP80RegClass) - return false; - Opc = isST0 ? X86::FpGET_ST0_80 : X86::FpGET_ST1_80; + return; } - BuildMI(MBB, MI, DL, get(Opc), DestReg); - return true; } - // Moving to ST(0) turns into FpSET_ST0_32 etc. - if (DestRC == &X86::RSTRegClass) { - // Copying to ST(0) / ST(1). - if (DestReg != X86::ST0 && DestReg != X86::ST1) - // Can only copy to TOS right now - return false; - bool isST0 = DestReg == X86::ST0; - unsigned Opc; - if (SrcRC == &X86::RFP32RegClass) - Opc = isST0 ? X86::FpSET_ST0_32 : X86::FpSET_ST1_32; - else if (SrcRC == &X86::RFP64RegClass) - Opc = isST0 ? X86::FpSET_ST0_64 : X86::FpSET_ST1_64; - else { - if (SrcRC != &X86::RFP80RegClass) - return false; - Opc = isST0 ? X86::FpSET_ST0_80 : X86::FpSET_ST1_80; - } - BuildMI(MBB, MI, DL, get(Opc)).addReg(SrcReg); - return true; - } - - // Not yet supported! - return false; + DEBUG(dbgs() << "Cannot copy " << RI.getName(SrcReg) + << " to " << RI.getName(DestReg) << '\n'); + llvm_unreachable("Cannot emit physreg copy instruction"); } -static unsigned getStoreRegOpcode(unsigned SrcReg, - const TargetRegisterClass *RC, - bool isStackAligned, - TargetMachine &TM) { - unsigned Opc = 0; - if (RC == &X86::GR64RegClass || RC == &X86::GR64_NOSPRegClass) { - Opc = X86::MOV64mr; - } else if (RC == &X86::GR32RegClass || RC == &X86::GR32_NOSPRegClass) { - Opc = X86::MOV32mr; - } else if (RC == &X86::GR16RegClass) { - Opc = X86::MOV16mr; - } else if (RC == &X86::GR8RegClass) { +static unsigned getLoadStoreRegOpcode(unsigned Reg, + const TargetRegisterClass *RC, + bool isStackAligned, + const TargetMachine &TM, + bool load) { + switch (RC->getID()) { + default: + llvm_unreachable("Unknown regclass"); + case X86::GR64RegClassID: + case X86::GR64_NOSPRegClassID: + return load ? X86::MOV64rm : X86::MOV64mr; + case X86::GR32RegClassID: + case X86::GR32_NOSPRegClassID: + case X86::GR32_ADRegClassID: + return load ? X86::MOV32rm : X86::MOV32mr; + case X86::GR16RegClassID: + return load ? X86::MOV16rm : X86::MOV16mr; + case X86::GR8RegClassID: // Copying to or from a physical H register on x86-64 requires a NOREX // move. Otherwise use a normal move. - if (isHReg(SrcReg) && + if (isHReg(Reg) && TM.getSubtarget<X86Subtarget>().is64Bit()) - Opc = X86::MOV8mr_NOREX; + return load ? X86::MOV8rm_NOREX : X86::MOV8mr_NOREX; else - Opc = X86::MOV8mr; - } else if (RC == &X86::GR64_ABCDRegClass) { - Opc = X86::MOV64mr; - } else if (RC == &X86::GR32_ABCDRegClass) { - Opc = X86::MOV32mr; - } else if (RC == &X86::GR16_ABCDRegClass) { - Opc = X86::MOV16mr; - } else if (RC == &X86::GR8_ABCD_LRegClass) { - Opc = X86::MOV8mr; - } else if (RC == &X86::GR8_ABCD_HRegClass) { + return load ? X86::MOV8rm : X86::MOV8mr; + case X86::GR64_ABCDRegClassID: + return load ? X86::MOV64rm : X86::MOV64mr; + case X86::GR32_ABCDRegClassID: + return load ? X86::MOV32rm : X86::MOV32mr; + case X86::GR16_ABCDRegClassID: + return load ? X86::MOV16rm : X86::MOV16mr; + case X86::GR8_ABCD_LRegClassID: + return load ? X86::MOV8rm :X86::MOV8mr; + case X86::GR8_ABCD_HRegClassID: if (TM.getSubtarget<X86Subtarget>().is64Bit()) - Opc = X86::MOV8mr_NOREX; + return load ? X86::MOV8rm_NOREX : X86::MOV8mr_NOREX; else - Opc = X86::MOV8mr; - } else if (RC == &X86::GR64_NOREXRegClass || - RC == &X86::GR64_NOREX_NOSPRegClass) { - Opc = X86::MOV64mr; - } else if (RC == &X86::GR32_NOREXRegClass) { - Opc = X86::MOV32mr; - } else if (RC == &X86::GR16_NOREXRegClass) { - Opc = X86::MOV16mr; - } else if (RC == &X86::GR8_NOREXRegClass) { - Opc = X86::MOV8mr; - } else if (RC == &X86::GR64_TCRegClass) { - Opc = X86::MOV64mr_TC; - } else if (RC == &X86::GR32_TCRegClass) { - Opc = X86::MOV32mr_TC; - } else if (RC == &X86::RFP80RegClass) { - Opc = X86::ST_FpP80m; // pops - } else if (RC == &X86::RFP64RegClass) { - Opc = X86::ST_Fp64m; - } else if (RC == &X86::RFP32RegClass) { - Opc = X86::ST_Fp32m; - } else if (RC == &X86::FR32RegClass) { - Opc = X86::MOVSSmr; - } else if (RC == &X86::FR64RegClass) { - Opc = X86::MOVSDmr; - } else if (RC == &X86::VR128RegClass) { + return load ? X86::MOV8rm : X86::MOV8mr; + case X86::GR64_NOREXRegClassID: + case X86::GR64_NOREX_NOSPRegClassID: + return load ? X86::MOV64rm : X86::MOV64mr; + case X86::GR32_NOREXRegClassID: + return load ? X86::MOV32rm : X86::MOV32mr; + case X86::GR16_NOREXRegClassID: + return load ? X86::MOV16rm : X86::MOV16mr; + case X86::GR8_NOREXRegClassID: + return load ? X86::MOV8rm : X86::MOV8mr; + case X86::GR64_TCRegClassID: + return load ? X86::MOV64rm_TC : X86::MOV64mr_TC; + case X86::GR32_TCRegClassID: + return load ? X86::MOV32rm_TC : X86::MOV32mr_TC; + case X86::RFP80RegClassID: + return load ? X86::LD_Fp80m : X86::ST_FpP80m; + case X86::RFP64RegClassID: + return load ? X86::LD_Fp64m : X86::ST_Fp64m; + case X86::RFP32RegClassID: + return load ? X86::LD_Fp32m : X86::ST_Fp32m; + case X86::FR32RegClassID: + return load ? X86::MOVSSrm : X86::MOVSSmr; + case X86::FR64RegClassID: + return load ? X86::MOVSDrm : X86::MOVSDmr; + case X86::VR128RegClassID: // If stack is realigned we can use aligned stores. - Opc = isStackAligned ? X86::MOVAPSmr : X86::MOVUPSmr; - } else if (RC == &X86::VR64RegClass) { - Opc = X86::MMX_MOVQ64mr; - } else { - llvm_unreachable("Unknown regclass"); + if (isStackAligned) + return load ? X86::MOVAPSrm : X86::MOVAPSmr; + else + return load ? X86::MOVUPSrm : X86::MOVUPSmr; + case X86::VR64RegClassID: + return load ? X86::MMX_MOVQ64rm : X86::MMX_MOVQ64mr; } +} + +static unsigned getStoreRegOpcode(unsigned SrcReg, + const TargetRegisterClass *RC, + bool isStackAligned, + TargetMachine &TM) { + return getLoadStoreRegOpcode(SrcReg, RC, isStackAligned, TM, false); +} - return Opc; + +static unsigned getLoadRegOpcode(unsigned DestReg, + const TargetRegisterClass *RC, + bool isStackAligned, + const TargetMachine &TM) { + return getLoadStoreRegOpcode(DestReg, RC, isStackAligned, TM, true); } void X86InstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB, @@ -2150,7 +2060,7 @@ void X86InstrInfo::storeRegToAddr(MachineFunction &MF, unsigned SrcReg, MachineInstr::mmo_iterator MMOBegin, MachineInstr::mmo_iterator MMOEnd, SmallVectorImpl<MachineInstr*> &NewMIs) const { - bool isAligned = (*MMOBegin)->getAlignment() >= 16; + bool isAligned = MMOBegin != MMOEnd && (*MMOBegin)->getAlignment() >= 16; unsigned Opc = getStoreRegOpcode(SrcReg, RC, isAligned, TM); DebugLoc DL; MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc)); @@ -2161,72 +2071,6 @@ void X86InstrInfo::storeRegToAddr(MachineFunction &MF, unsigned SrcReg, NewMIs.push_back(MIB); } -static unsigned getLoadRegOpcode(unsigned DestReg, - const TargetRegisterClass *RC, - bool isStackAligned, - const TargetMachine &TM) { - unsigned Opc = 0; - if (RC == &X86::GR64RegClass || RC == &X86::GR64_NOSPRegClass) { - Opc = X86::MOV64rm; - } else if (RC == &X86::GR32RegClass || RC == &X86::GR32_NOSPRegClass) { - Opc = X86::MOV32rm; - } else if (RC == &X86::GR16RegClass) { - Opc = X86::MOV16rm; - } else if (RC == &X86::GR8RegClass) { - // Copying to or from a physical H register on x86-64 requires a NOREX - // move. Otherwise use a normal move. - if (isHReg(DestReg) && - TM.getSubtarget<X86Subtarget>().is64Bit()) - Opc = X86::MOV8rm_NOREX; - else - Opc = X86::MOV8rm; - } else if (RC == &X86::GR64_ABCDRegClass) { - Opc = X86::MOV64rm; - } else if (RC == &X86::GR32_ABCDRegClass) { - Opc = X86::MOV32rm; - } else if (RC == &X86::GR16_ABCDRegClass) { - Opc = X86::MOV16rm; - } else if (RC == &X86::GR8_ABCD_LRegClass) { - Opc = X86::MOV8rm; - } else if (RC == &X86::GR8_ABCD_HRegClass) { - if (TM.getSubtarget<X86Subtarget>().is64Bit()) - Opc = X86::MOV8rm_NOREX; - else - Opc = X86::MOV8rm; - } else if (RC == &X86::GR64_NOREXRegClass || - RC == &X86::GR64_NOREX_NOSPRegClass) { - Opc = X86::MOV64rm; - } else if (RC == &X86::GR32_NOREXRegClass) { - Opc = X86::MOV32rm; - } else if (RC == &X86::GR16_NOREXRegClass) { - Opc = X86::MOV16rm; - } else if (RC == &X86::GR8_NOREXRegClass) { - Opc = X86::MOV8rm; - } else if (RC == &X86::GR64_TCRegClass) { - Opc = X86::MOV64rm_TC; - } else if (RC == &X86::GR32_TCRegClass) { - Opc = X86::MOV32rm_TC; - } else if (RC == &X86::RFP80RegClass) { - Opc = X86::LD_Fp80m; - } else if (RC == &X86::RFP64RegClass) { - Opc = X86::LD_Fp64m; - } else if (RC == &X86::RFP32RegClass) { - Opc = X86::LD_Fp32m; - } else if (RC == &X86::FR32RegClass) { - Opc = X86::MOVSSrm; - } else if (RC == &X86::FR64RegClass) { - Opc = X86::MOVSDrm; - } else if (RC == &X86::VR128RegClass) { - // If stack is realigned we can use aligned loads. - Opc = isStackAligned ? X86::MOVAPSrm : X86::MOVUPSrm; - } else if (RC == &X86::VR64RegClass) { - Opc = X86::MMX_MOVQ64rm; - } else { - llvm_unreachable("Unknown regclass"); - } - - return Opc; -} void X86InstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, @@ -2246,7 +2090,7 @@ void X86InstrInfo::loadRegFromAddr(MachineFunction &MF, unsigned DestReg, MachineInstr::mmo_iterator MMOBegin, MachineInstr::mmo_iterator MMOEnd, SmallVectorImpl<MachineInstr*> &NewMIs) const { - bool isAligned = (*MMOBegin)->getAlignment() >= 16; + bool isAligned = MMOBegin != MMOEnd && (*MMOBegin)->getAlignment() >= 16; unsigned Opc = getLoadRegOpcode(DestReg, RC, isAligned, TM); DebugLoc DL; MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc), DestReg); @@ -2277,18 +2121,17 @@ bool X86InstrInfo::spillCalleeSavedRegisters(MachineBasicBlock &MBB, unsigned Opc = is64Bit ? X86::PUSH64r : X86::PUSH32r; for (unsigned i = CSI.size(); i != 0; --i) { unsigned Reg = CSI[i-1].getReg(); - const TargetRegisterClass *RegClass = CSI[i-1].getRegClass(); // Add the callee-saved register as live-in. It's killed at the spill. MBB.addLiveIn(Reg); if (Reg == FPReg) // X86RegisterInfo::emitPrologue will handle spilling of frame register. continue; - if (RegClass != &X86::VR128RegClass && !isWin64) { + if (!X86::VR128RegClass.contains(Reg) && !isWin64) { CalleeFrameSize += SlotSize; BuildMI(MBB, MI, DL, get(Opc)).addReg(Reg, RegState::Kill); } else { - storeRegToStackSlot(MBB, MI, Reg, true, CSI[i-1].getFrameIdx(), RegClass, - &RI); + storeRegToStackSlot(MBB, MI, Reg, true, CSI[i-1].getFrameIdx(), + &X86::VR128RegClass, &RI); } } @@ -2315,11 +2158,11 @@ bool X86InstrInfo::restoreCalleeSavedRegisters(MachineBasicBlock &MBB, if (Reg == FPReg) // X86RegisterInfo::emitEpilogue will handle restoring of frame register. continue; - const TargetRegisterClass *RegClass = CSI[i].getRegClass(); - if (RegClass != &X86::VR128RegClass && !isWin64) { + if (!X86::VR128RegClass.contains(Reg) && !isWin64) { BuildMI(MBB, MI, DL, get(Opc), Reg); } else { - loadRegFromStackSlot(MBB, MI, Reg, CSI[i].getFrameIdx(), RegClass, &RI); + loadRegFromStackSlot(MBB, MI, Reg, CSI[i].getFrameIdx(), + &X86::VR128RegClass, &RI); } } return true; @@ -2492,7 +2335,7 @@ X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF, } // No fusion - if (PrintFailedFusing) + if (PrintFailedFusing && !MI->isCopy()) dbgs() << "We failed to fuse operand " << i << " in " << *MI; return NULL; } @@ -2610,7 +2453,7 @@ MachineInstr* X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF, } else if (Ops.size() != 1) return NULL; - SmallVector<MachineOperand,X86AddrNumOperands> MOs; + SmallVector<MachineOperand,X86::AddrNumOperands> MOs; switch (LoadMI->getOpcode()) { case X86::V_SET0PS: case X86::V_SET0PD: @@ -2632,7 +2475,7 @@ MachineInstr* X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF, if (TM.getSubtarget<X86Subtarget>().is64Bit()) PICBase = X86::RIP; else - // FIXME: PICBase = TM.getInstrInfo()->getGlobalBaseReg(&MF); + // FIXME: PICBase = getGlobalBaseReg(&MF); // This doesn't work for several reasons. // 1. GlobalBaseReg may have been spilled. // 2. It may not be live at MI. @@ -2664,7 +2507,7 @@ MachineInstr* X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF, default: { // Folding a normal load. Just copy the load's address operands. unsigned NumOps = LoadMI->getDesc().getNumOperands(); - for (unsigned i = NumOps - X86AddrNumOperands; i != NumOps; ++i) + for (unsigned i = NumOps - X86::AddrNumOperands; i != NumOps; ++i) MOs.push_back(LoadMI->getOperand(i)); break; } @@ -2727,7 +2570,7 @@ bool X86InstrInfo::canFoldMemoryOperand(const MachineInstr *MI, if (I != OpcodeTablePtr->end()) return true; } - return false; + return TargetInstrInfoImpl::canFoldMemoryOperand(MI, Ops); } bool X86InstrInfo::unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI, @@ -2751,13 +2594,20 @@ bool X86InstrInfo::unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI, const TargetInstrDesc &TID = get(Opc); const TargetOperandInfo &TOI = TID.OpInfo[Index]; const TargetRegisterClass *RC = TOI.getRegClass(&RI); - SmallVector<MachineOperand, X86AddrNumOperands> AddrOps; + if (!MI->hasOneMemOperand() && + RC == &X86::VR128RegClass && + !TM.getSubtarget<X86Subtarget>().isUnalignedMemAccessFast()) + // Without memoperands, loadRegFromAddr and storeRegToStackSlot will + // conservatively assume the address is unaligned. That's bad for + // performance. + return false; + SmallVector<MachineOperand, X86::AddrNumOperands> AddrOps; SmallVector<MachineOperand,2> BeforeOps; SmallVector<MachineOperand,2> AfterOps; SmallVector<MachineOperand,4> ImpOps; for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { MachineOperand &Op = MI->getOperand(i); - if (i >= Index && i < Index + X86AddrNumOperands) + if (i >= Index && i < Index + X86::AddrNumOperands) AddrOps.push_back(Op); else if (Op.isReg() && Op.isImplicit()) ImpOps.push_back(Op); @@ -2776,7 +2626,7 @@ bool X86InstrInfo::unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI, loadRegFromAddr(MF, Reg, AddrOps, RC, MMOs.first, MMOs.second, NewMIs); if (UnfoldStore) { // Address operands cannot be marked isKill. - for (unsigned i = 1; i != 1 + X86AddrNumOperands; ++i) { + for (unsigned i = 1; i != 1 + X86::AddrNumOperands; ++i) { MachineOperand &MO = NewMIs[0]->getOperand(i); if (MO.isReg()) MO.setIsKill(false); @@ -2873,7 +2723,7 @@ X86InstrInfo::unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N, unsigned NumOps = N->getNumOperands(); for (unsigned i = 0; i != NumOps-1; ++i) { SDValue Op = N->getOperand(i); - if (i >= Index-NumDefs && i < Index-NumDefs + X86AddrNumOperands) + if (i >= Index-NumDefs && i < Index-NumDefs + X86::AddrNumOperands) AddrOps.push_back(Op); else if (i < Index-NumDefs) BeforeOps.push_back(Op); @@ -2892,7 +2742,12 @@ X86InstrInfo::unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N, MachineInstr::mmo_iterator> MMOs = MF.extractLoadMemRefs(cast<MachineSDNode>(N)->memoperands_begin(), cast<MachineSDNode>(N)->memoperands_end()); - bool isAligned = (*MMOs.first)->getAlignment() >= 16; + if (!(*MMOs.first) && + RC == &X86::VR128RegClass && + !TM.getSubtarget<X86Subtarget>().isUnalignedMemAccessFast()) + // Do not introduce a slow unaligned load. + return false; + bool isAligned = (*MMOs.first) && (*MMOs.first)->getAlignment() >= 16; Load = DAG.getMachineNode(getLoadRegOpcode(0, RC, isAligned, TM), dl, VT, MVT::Other, &AddrOps[0], AddrOps.size()); NewNodes.push_back(Load); @@ -2929,7 +2784,12 @@ X86InstrInfo::unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N, MachineInstr::mmo_iterator> MMOs = MF.extractStoreMemRefs(cast<MachineSDNode>(N)->memoperands_begin(), cast<MachineSDNode>(N)->memoperands_end()); - bool isAligned = (*MMOs.first)->getAlignment() >= 16; + if (!(*MMOs.first) && + RC == &X86::VR128RegClass && + !TM.getSubtarget<X86Subtarget>().isUnalignedMemAccessFast()) + // Do not introduce a slow unaligned store. + return false; + bool isAligned = (*MMOs.first) && (*MMOs.first)->getAlignment() >= 16; SDNode *Store = DAG.getMachineNode(getStoreRegOpcode(0, DstRC, isAligned, TM), dl, MVT::Other, @@ -3065,16 +2925,16 @@ bool X86InstrInfo::shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2, EVT VT = Load1->getValueType(0); switch (VT.getSimpleVT().SimpleTy) { - default: { + default: // XMM registers. In 64-bit mode we can be a bit more aggressive since we // have 16 of them to play with. if (TM.getSubtargetImpl()->is64Bit()) { if (NumLoads >= 3) return false; - } else if (NumLoads) + } else if (NumLoads) { return false; + } break; - } case MVT::i8: case MVT::i16: case MVT::i32: @@ -3083,6 +2943,7 @@ bool X86InstrInfo::shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2, case MVT::f64: if (NumLoads) return false; + break; } return true; @@ -3123,6 +2984,8 @@ bool X86InstrInfo::isX86_64ExtendedReg(unsigned RegNo) { case X86::R12B: case X86::R13B: case X86::R14B: case X86::R15B: case X86::XMM8: case X86::XMM9: case X86::XMM10: case X86::XMM11: case X86::XMM12: case X86::XMM13: case X86::XMM14: case X86::XMM15: + case X86::YMM8: case X86::YMM9: case X86::YMM10: case X86::YMM11: + case X86::YMM12: case X86::YMM13: case X86::YMM14: case X86::YMM15: return true; } return false; @@ -3194,7 +3057,7 @@ unsigned X86InstrInfo::determineREX(const MachineInstr &MI) { case X86II::MRM4m: case X86II::MRM5m: case X86II::MRM6m: case X86II::MRM7m: case X86II::MRMDestMem: { - unsigned e = (isTwoAddr ? X86AddrNumOperands+1 : X86AddrNumOperands); + unsigned e = (isTwoAddr ? X86::AddrNumOperands+1 : X86::AddrNumOperands); i = isTwoAddr ? 1 : 0; if (NumOps > e && isX86_64ExtendedReg(MI.getOperand(e))) REX |= 1 << 2; @@ -3546,7 +3409,7 @@ static unsigned GetInstSizeWithDesc(const MachineInstr &MI, case X86II::MRMDestMem: { ++FinalSize; FinalSize += getMemModRMByteSize(MI, CurOp, IsPIC, Is64BitMode); - CurOp += X86AddrNumOperands + 1; + CurOp += X86::AddrNumOperands + 1; if (CurOp != NumOps) { ++CurOp; FinalSize += sizeConstant(X86II::getSizeOfImm(Desc->TSFlags)); @@ -3565,16 +3428,9 @@ static unsigned GetInstSizeWithDesc(const MachineInstr &MI, break; case X86II::MRMSrcMem: { - int AddrOperands; - if (Opcode == X86::LEA64r || Opcode == X86::LEA64_32r || - Opcode == X86::LEA16r || Opcode == X86::LEA32r) - AddrOperands = X86AddrNumOperands - 1; // No segment register - else - AddrOperands = X86AddrNumOperands; - ++FinalSize; FinalSize += getMemModRMByteSize(MI, CurOp+1, IsPIC, Is64BitMode); - CurOp += AddrOperands + 1; + CurOp += X86::AddrNumOperands + 1; if (CurOp != NumOps) { ++CurOp; FinalSize += sizeConstant(X86II::getSizeOfImm(Desc->TSFlags)); @@ -3628,7 +3484,7 @@ static unsigned GetInstSizeWithDesc(const MachineInstr &MI, ++FinalSize; FinalSize += getMemModRMByteSize(MI, CurOp, IsPIC, Is64BitMode); - CurOp += X86AddrNumOperands; + CurOp += X86::AddrNumOperands; if (CurOp != NumOps) { const MachineOperand &MO = MI.getOperand(CurOp++); @@ -3694,6 +3550,8 @@ unsigned X86InstrInfo::GetInstSizeInBytes(const MachineInstr *MI) const { /// the global base register value. Output instructions required to /// initialize the register in the function entry block, if necessary. /// +/// TODO: Eliminate this and move the code to X86MachineFunctionInfo. +/// unsigned X86InstrInfo::getGlobalBaseReg(MachineFunction *MF) const { assert(!TM.getSubtarget<X86Subtarget>().is64Bit() && "X86-64 PIC uses RIP relative addressing"); @@ -3703,30 +3561,10 @@ unsigned X86InstrInfo::getGlobalBaseReg(MachineFunction *MF) const { if (GlobalBaseReg != 0) return GlobalBaseReg; - // Insert the set of GlobalBaseReg into the first MBB of the function - MachineBasicBlock &FirstMBB = MF->front(); - MachineBasicBlock::iterator MBBI = FirstMBB.begin(); - DebugLoc DL = FirstMBB.findDebugLoc(MBBI); + // Create the register. The code to initialize it is inserted + // later, by the CGBR pass (below). MachineRegisterInfo &RegInfo = MF->getRegInfo(); - unsigned PC = RegInfo.createVirtualRegister(X86::GR32RegisterClass); - - const TargetInstrInfo *TII = TM.getInstrInfo(); - // Operand of MovePCtoStack is completely ignored by asm printer. It's - // only used in JIT code emission as displacement to pc. - BuildMI(FirstMBB, MBBI, DL, TII->get(X86::MOVPC32r), PC).addImm(0); - - // If we're using vanilla 'GOT' PIC style, we should use relative addressing - // not to pc, but to _GLOBAL_OFFSET_TABLE_ external. - if (TM.getSubtarget<X86Subtarget>().isPICStyleGOT()) { - GlobalBaseReg = RegInfo.createVirtualRegister(X86::GR32RegisterClass); - // Generate addl $__GLOBAL_OFFSET_TABLE_ + [.-piclabel], %some_register - BuildMI(FirstMBB, MBBI, DL, TII->get(X86::ADD32ri), GlobalBaseReg) - .addReg(PC).addExternalSymbol("_GLOBAL_OFFSET_TABLE_", - X86II::MO_GOT_ABSOLUTE_ADDRESS); - } else { - GlobalBaseReg = PC; - } - + GlobalBaseReg = RegInfo.createVirtualRegister(X86::GR32RegisterClass); X86FI->setGlobalBaseReg(GlobalBaseReg); return GlobalBaseReg; } @@ -3784,3 +3622,65 @@ void X86InstrInfo::getNoopForMachoTarget(MCInst &NopInst) const { NopInst.setOpcode(X86::NOOP); } +namespace { + /// CGBR - Create Global Base Reg pass. This initializes the PIC + /// global base register for x86-32. + struct CGBR : public MachineFunctionPass { + static char ID; + CGBR() : MachineFunctionPass(&ID) {} + + virtual bool runOnMachineFunction(MachineFunction &MF) { + const X86TargetMachine *TM = + static_cast<const X86TargetMachine *>(&MF.getTarget()); + + assert(!TM->getSubtarget<X86Subtarget>().is64Bit() && + "X86-64 PIC uses RIP relative addressing"); + + // Only emit a global base reg in PIC mode. + if (TM->getRelocationModel() != Reloc::PIC_) + return false; + + // Insert the set of GlobalBaseReg into the first MBB of the function + MachineBasicBlock &FirstMBB = MF.front(); + MachineBasicBlock::iterator MBBI = FirstMBB.begin(); + DebugLoc DL = FirstMBB.findDebugLoc(MBBI); + MachineRegisterInfo &RegInfo = MF.getRegInfo(); + const X86InstrInfo *TII = TM->getInstrInfo(); + + unsigned PC; + if (TM->getSubtarget<X86Subtarget>().isPICStyleGOT()) + PC = RegInfo.createVirtualRegister(X86::GR32RegisterClass); + else + PC = TII->getGlobalBaseReg(&MF); + + // Operand of MovePCtoStack is completely ignored by asm printer. It's + // only used in JIT code emission as displacement to pc. + BuildMI(FirstMBB, MBBI, DL, TII->get(X86::MOVPC32r), PC).addImm(0); + + // If we're using vanilla 'GOT' PIC style, we should use relative addressing + // not to pc, but to _GLOBAL_OFFSET_TABLE_ external. + if (TM->getSubtarget<X86Subtarget>().isPICStyleGOT()) { + unsigned GlobalBaseReg = TII->getGlobalBaseReg(&MF); + // Generate addl $__GLOBAL_OFFSET_TABLE_ + [.-piclabel], %some_register + BuildMI(FirstMBB, MBBI, DL, TII->get(X86::ADD32ri), GlobalBaseReg) + .addReg(PC).addExternalSymbol("_GLOBAL_OFFSET_TABLE_", + X86II::MO_GOT_ABSOLUTE_ADDRESS); + } + + return true; + } + + virtual const char *getPassName() const { + return "X86 PIC Global Base Reg Initialization"; + } + + virtual void getAnalysisUsage(AnalysisUsage &AU) const { + AU.setPreservesCFG(); + MachineFunctionPass::getAnalysisUsage(AU); + } + }; +} + +char CGBR::ID = 0; +FunctionPass* +llvm::createGlobalBaseRegPass() { return new CGBR(); } diff --git a/lib/Target/X86/X86InstrInfo.h b/lib/Target/X86/X86InstrInfo.h index 62d7c74..f762b58 100644 --- a/lib/Target/X86/X86InstrInfo.h +++ b/lib/Target/X86/X86InstrInfo.h @@ -24,6 +24,24 @@ namespace llvm { class X86TargetMachine; namespace X86 { + // Enums for memory operand decoding. Each memory operand is represented with + // a 5 operand sequence in the form: + // [BaseReg, ScaleAmt, IndexReg, Disp, Segment] + // These enums help decode this. + enum { + AddrBaseReg = 0, + AddrScaleAmt = 1, + AddrIndexReg = 2, + AddrDisp = 3, + + /// AddrSegmentReg - The operand # of the segment in the memory operand. + AddrSegmentReg = 4, + + /// AddrNumOperands - Total number of operands in a memory reference. + AddrNumOperands = 5 + }; + + // X86 specific condition code. These correspond to X86_*_COND in // X86InstrInfo.td. They must be kept in synch. enum CondCode { @@ -173,7 +191,19 @@ namespace X86II { /// indicates that the reference is actually to "FOO$non_lazy_ptr -PICBASE", /// which is a PIC-base-relative reference to a hidden dyld lazy pointer /// stub. - MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE + MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE, + + /// MO_TLVP - On a symbol operand this indicates that the immediate is + /// some TLS offset. + /// + /// This is the TLS offset for the Darwin TLS mechanism. + MO_TLVP, + + /// MO_TLVP_PIC_BASE - On a symbol operand this indicates that the immediate + /// is some TLS offset from the picbase. + /// + /// This is the 32-bit TLS offset for Darwin TLS in PIC mode. + MO_TLVP_PIC_BASE }; } @@ -203,6 +233,7 @@ inline static bool isGlobalRelativeToPICBase(unsigned char TargetFlag) { case X86II::MO_PIC_BASE_OFFSET: // Darwin local global. case X86II::MO_DARWIN_NONLAZY_PIC_BASE: // Darwin/32 external global. case X86II::MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE: // Darwin/32 hidden global. + case X86II::MO_TLVP: // ??? Pretty sure.. return true; default: return false; @@ -347,9 +378,10 @@ namespace X86II { Imm8 = 1 << ImmShift, Imm8PCRel = 2 << ImmShift, Imm16 = 3 << ImmShift, - Imm32 = 4 << ImmShift, - Imm32PCRel = 5 << ImmShift, - Imm64 = 6 << ImmShift, + Imm16PCRel = 4 << ImmShift, + Imm32 = 5 << ImmShift, + Imm32PCRel = 6 << ImmShift, + Imm64 = 7 << ImmShift, //===------------------------------------------------------------------===// // FP Instruction Classification... Zero is non-fp instruction. @@ -403,28 +435,47 @@ namespace X86II { SSEDomainShift = 22, OpcodeShift = 24, - OpcodeMask = 0xFF << OpcodeShift + OpcodeMask = 0xFF << OpcodeShift, + + //===------------------------------------------------------------------===// + // VEX - The opcode prefix used by AVX instructions + VEX = 1ULL << 32, + + // VEX_W - Has a opcode specific functionality, but is used in the same + // way as REX_W is for regular SSE instructions. + VEX_W = 1ULL << 33, + + // VEX_4V - Used to specify an additional AVX/SSE register. Several 2 + // address instructions in SSE are represented as 3 address ones in AVX + // and the additional register is encoded in VEX_VVVV prefix. + VEX_4V = 1ULL << 34, + + // VEX_I8IMM - Specifies that the last register used in a AVX instruction, + // must be encoded in the i8 immediate field. This usually happens in + // instructions with 4 operands. + VEX_I8IMM = 1ULL << 35 }; // getBaseOpcodeFor - This function returns the "base" X86 opcode for the // specified machine instruction. // - static inline unsigned char getBaseOpcodeFor(unsigned TSFlags) { + static inline unsigned char getBaseOpcodeFor(uint64_t TSFlags) { return TSFlags >> X86II::OpcodeShift; } - static inline bool hasImm(unsigned TSFlags) { + static inline bool hasImm(uint64_t TSFlags) { return (TSFlags & X86II::ImmMask) != 0; } /// getSizeOfImm - Decode the "size of immediate" field from the TSFlags field /// of the specified instruction. - static inline unsigned getSizeOfImm(unsigned TSFlags) { + static inline unsigned getSizeOfImm(uint64_t TSFlags) { switch (TSFlags & X86II::ImmMask) { default: assert(0 && "Unknown immediate size"); case X86II::Imm8: case X86II::Imm8PCRel: return 1; - case X86II::Imm16: return 2; + case X86II::Imm16: + case X86II::Imm16PCRel: return 2; case X86II::Imm32: case X86II::Imm32PCRel: return 4; case X86II::Imm64: return 8; @@ -433,23 +484,77 @@ namespace X86II { /// isImmPCRel - Return true if the immediate of the specified instruction's /// TSFlags indicates that it is pc relative. - static inline unsigned isImmPCRel(unsigned TSFlags) { + static inline unsigned isImmPCRel(uint64_t TSFlags) { switch (TSFlags & X86II::ImmMask) { - default: assert(0 && "Unknown immediate size"); - case X86II::Imm8PCRel: - case X86II::Imm32PCRel: - return true; - case X86II::Imm8: - case X86II::Imm16: - case X86II::Imm32: - case X86II::Imm64: - return false; + default: assert(0 && "Unknown immediate size"); + case X86II::Imm8PCRel: + case X86II::Imm16PCRel: + case X86II::Imm32PCRel: + return true; + case X86II::Imm8: + case X86II::Imm16: + case X86II::Imm32: + case X86II::Imm64: + return false; + } + } + + /// getMemoryOperandNo - The function returns the MCInst operand # for the + /// first field of the memory operand. If the instruction doesn't have a + /// memory operand, this returns -1. + /// + /// Note that this ignores tied operands. If there is a tied register which + /// is duplicated in the MCInst (e.g. "EAX = addl EAX, [mem]") it is only + /// counted as one operand. + /// + static inline int getMemoryOperandNo(uint64_t TSFlags) { + switch (TSFlags & X86II::FormMask) { + case X86II::MRMInitReg: assert(0 && "FIXME: Remove this form"); + default: assert(0 && "Unknown FormMask value in getMemoryOperandNo!"); + case X86II::Pseudo: + case X86II::RawFrm: + case X86II::AddRegFrm: + case X86II::MRMDestReg: + case X86II::MRMSrcReg: + return -1; + case X86II::MRMDestMem: + return 0; + case X86II::MRMSrcMem: { + bool HasVEX_4V = TSFlags & X86II::VEX_4V; + unsigned FirstMemOp = 1; + if (HasVEX_4V) + ++FirstMemOp;// Skip the register source (which is encoded in VEX_VVVV). + + // FIXME: Maybe lea should have its own form? This is a horrible hack. + //if (Opcode == X86::LEA64r || Opcode == X86::LEA64_32r || + // Opcode == X86::LEA16r || Opcode == X86::LEA32r) + return FirstMemOp; } - } + case X86II::MRM0r: case X86II::MRM1r: + case X86II::MRM2r: case X86II::MRM3r: + case X86II::MRM4r: case X86II::MRM5r: + case X86II::MRM6r: case X86II::MRM7r: + return -1; + case X86II::MRM0m: case X86II::MRM1m: + case X86II::MRM2m: case X86II::MRM3m: + case X86II::MRM4m: case X86II::MRM5m: + case X86II::MRM6m: case X86II::MRM7m: + return 0; + case X86II::MRM_C1: + case X86II::MRM_C2: + case X86II::MRM_C3: + case X86II::MRM_C4: + case X86II::MRM_C8: + case X86II::MRM_C9: + case X86II::MRM_E8: + case X86II::MRM_F0: + case X86II::MRM_F8: + case X86II::MRM_F9: + return -1; + } + } } -const int X86AddrNumOperands = 5; - inline static bool isScale(const MachineOperand &MO) { return MO.isImm() && (MO.getImm() == 1 || MO.getImm() == 2 || @@ -555,7 +660,7 @@ public: void reMaterialize(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, unsigned DestReg, unsigned SubIdx, const MachineInstr *Orig, - const TargetRegisterInfo *TRI) const; + const TargetRegisterInfo &TRI) const; /// convertToThreeAddress - This method must be implemented by targets that /// set the M_CONVERTIBLE_TO_3_ADDR flag. When this flag is set, the target @@ -585,13 +690,12 @@ public: virtual unsigned RemoveBranch(MachineBasicBlock &MBB) const; virtual unsigned InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB, MachineBasicBlock *FBB, - const SmallVectorImpl<MachineOperand> &Cond) const; - virtual bool copyRegToReg(MachineBasicBlock &MBB, - MachineBasicBlock::iterator MI, - unsigned DestReg, unsigned SrcReg, - const TargetRegisterClass *DestRC, - const TargetRegisterClass *SrcRC, - DebugLoc DL) const; + const SmallVectorImpl<MachineOperand> &Cond, + DebugLoc DL) const; + virtual void copyPhysReg(MachineBasicBlock &MBB, + MachineBasicBlock::iterator MI, DebugLoc DL, + unsigned DestReg, unsigned SrcReg, + bool KillSrc) const; virtual void storeRegToStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, unsigned SrcReg, bool isKill, int FrameIndex, diff --git a/lib/Target/X86/X86InstrInfo.td b/lib/Target/X86/X86InstrInfo.td index 0d59c42..1efef5a 100644 --- a/lib/Target/X86/X86InstrInfo.td +++ b/lib/Target/X86/X86InstrInfo.td @@ -72,6 +72,8 @@ def SDTX86Wrapper : SDTypeProfile<1, 1, [SDTCisSameAs<0, 1>, SDTCisPtrTy<0>]>; def SDT_X86TLSADDR : SDTypeProfile<0, 1, [SDTCisInt<0>]>; +def SDT_X86TLSCALL : SDTypeProfile<0, 1, [SDTCisPtrTy<0>]>; + def SDT_X86SegmentBaseAddress : SDTypeProfile<1, 1, [SDTCisPtrTy<0>]>; def SDT_X86EHRET : SDTypeProfile<0, 1, [SDTCisInt<0>]>; @@ -182,6 +184,9 @@ def X86mul_imm : SDNode<"X86ISD::MUL_IMM", SDTIntBinOp>; def X86MingwAlloca : SDNode<"X86ISD::MINGW_ALLOCA", SDTX86Void, [SDNPHasChain, SDNPInFlag, SDNPOutFlag]>; + +def X86TLSCall : SDNode<"X86ISD::TLSCALL", SDT_X86TLSCALL, + []>; //===----------------------------------------------------------------------===// // X86 Operand Definitions. @@ -197,13 +202,9 @@ def X86MemAsmOperand : AsmOperandClass { let Name = "Mem"; let SuperClasses = []; } -def X86NoSegMemAsmOperand : AsmOperandClass { - let Name = "NoSegMem"; - let SuperClasses = [X86MemAsmOperand]; -} def X86AbsMemAsmOperand : AsmOperandClass { let Name = "AbsMem"; - let SuperClasses = [X86NoSegMemAsmOperand]; + let SuperClasses = [X86MemAsmOperand]; } class X86MemOperand<string printMethod> : Operand<iPTR> { let PrintMethod = printMethod; @@ -226,7 +227,7 @@ def f32mem : X86MemOperand<"printf32mem">; def f64mem : X86MemOperand<"printf64mem">; def f80mem : X86MemOperand<"printf80mem">; def f128mem : X86MemOperand<"printf128mem">; -//def f256mem : X86MemOperand<"printf256mem">; +def f256mem : X86MemOperand<"printf256mem">; // A version of i8mem for use on x86-64 that uses GR64_NOREX instead of // plain GR64, so that it doesn't potentially require a REX prefix. @@ -245,15 +246,11 @@ def i32mem_TC : Operand<i32> { let ParserMatchClass = X86MemAsmOperand; } -def lea32mem : Operand<i32> { - let PrintMethod = "printlea32mem"; - let MIOperandInfo = (ops GR32, i8imm, GR32_NOSP, i32imm); - let ParserMatchClass = X86NoSegMemAsmOperand; -} let ParserMatchClass = X86AbsMemAsmOperand, PrintMethod = "print_pcrel_imm" in { def i32imm_pcrel : Operand<i32>; +def i16imm_pcrel : Operand<i16>; def offset8 : Operand<i64>; def offset16 : Operand<i64>; @@ -283,26 +280,31 @@ class ImmSExtAsmOperandClass : AsmOperandClass { // 64-bit immediates, but for a 16-bit target value we want to accept both "-1" // (which will be a -1ULL), and "0xFF" (-1 in 16-bits). -// [0, 0x7FFFFFFF] | [0xFFFFFFFF80000000, 0xFFFFFFFFFFFFFFFF] +// [0, 0x7FFFFFFF] | +// [0xFFFFFFFF80000000, 0xFFFFFFFFFFFFFFFF] def ImmSExti64i32AsmOperand : ImmSExtAsmOperandClass { let Name = "ImmSExti64i32"; } -// [0, 0x0000007F] | [0x000000000000FF80, 0x000000000000FFFF] | [0xFFFFFFFFFFFFFF80, 0xFFFFFFFFFFFFFFFF] +// [0, 0x0000007F] | [0x000000000000FF80, 0x000000000000FFFF] | +// [0xFFFFFFFFFFFFFF80, 0xFFFFFFFFFFFFFFFF] def ImmSExti16i8AsmOperand : ImmSExtAsmOperandClass { let Name = "ImmSExti16i8"; let SuperClasses = [ImmSExti64i32AsmOperand]; } -// [0, 0x0000007F] | [0x00000000FFFFFF80, 0x00000000FFFFFFFF] | [0xFFFFFFFFFFFFFF80, 0xFFFFFFFFFFFFFFFF] +// [0, 0x0000007F] | [0x00000000FFFFFF80, 0x00000000FFFFFFFF] | +// [0xFFFFFFFFFFFFFF80, 0xFFFFFFFFFFFFFFFF] def ImmSExti32i8AsmOperand : ImmSExtAsmOperandClass { let Name = "ImmSExti32i8"; } -// [0, 0x0000007F] | [0xFFFFFFFFFFFFFF80, 0xFFFFFFFFFFFFFFFF] +// [0, 0x0000007F] | +// [0xFFFFFFFFFFFFFF80, 0xFFFFFFFFFFFFFFFF] def ImmSExti64i8AsmOperand : ImmSExtAsmOperandClass { let Name = "ImmSExti64i8"; - let SuperClasses = [ImmSExti16i8AsmOperand, ImmSExti32i8AsmOperand, ImmSExti64i32AsmOperand]; + let SuperClasses = [ImmSExti16i8AsmOperand, ImmSExti32i8AsmOperand, + ImmSExti64i32AsmOperand]; } // A couple of more descriptive operand definitions. @@ -321,10 +323,10 @@ def i32i8imm : Operand<i32> { // Define X86 specific addressing mode. def addr : ComplexPattern<iPTR, 5, "SelectAddr", [], []>; -def lea32addr : ComplexPattern<i32, 4, "SelectLEAAddr", +def lea32addr : ComplexPattern<i32, 5, "SelectLEAAddr", [add, sub, mul, X86mul_imm, shl, or, frameindex], []>; -def tls32addr : ComplexPattern<i32, 4, "SelectTLSADDRAddr", +def tls32addr : ComplexPattern<i32, 5, "SelectTLSADDRAddr", [tglobaltlsaddr], []>; //===----------------------------------------------------------------------===// @@ -704,6 +706,12 @@ let isCall = 1 in "lcall{w}\t{*}$dst", []>, OpSize; def FARCALL32m : I<0xFF, MRM3m, (outs), (ins opaque48mem:$dst), "lcall{l}\t{*}$dst", []>; + + // callw for 16 bit code for the assembler. + let isAsmParserOnly = 1 in + def CALLpcrel16 : Ii16PCRel<0xE8, RawFrm, + (outs), (ins i16imm_pcrel:$dst, variable_ops), + "callw\t$dst", []>, OpSize; } // Constructing a stack frame. @@ -737,18 +745,10 @@ let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1 in "jmp\t$dst # TAILCALL", []>; def TAILJMPr : I<0xFF, MRM4r, (outs), (ins GR32_TC:$dst, variable_ops), - "jmp{l}\t{*}$dst # TAILCALL", - []>; + "", []>; // FIXME: Remove encoding when JIT is dead. let mayLoad = 1 in def TAILJMPm : I<0xFF, MRM4m, (outs), (ins i32mem_TC:$dst, variable_ops), "jmp{l}\t{*}$dst # TAILCALL", []>; - - // FIXME: This is a hack so that MCInst lowering can preserve the TAILCALL - // marker on instructions, while still being able to relax. - let isCodeGenOnly = 1 in { - def TAILJMP_1 : Ii8PCRel<0xEB, RawFrm, (outs), (ins brtarget8:$dst), - "jmp\t$dst # TAILCALL", []>; - } } //===----------------------------------------------------------------------===// @@ -815,7 +815,18 @@ def PUSHF32 : I<0x9C, RawFrm, (outs), (ins), "pushf{l|d}", []>, Requires<[In32BitMode]>; } -let isTwoAddress = 1 in // GR32 = bswap GR32 +let Defs = [EDI, ESI, EBP, EBX, EDX, ECX, EAX, ESP], Uses = [ESP], + mayLoad=1, neverHasSideEffects=1 in { +def POPA32 : I<0x61, RawFrm, (outs), (ins), "popa{l}", []>, + Requires<[In32BitMode]>; +} +let Defs = [ESP], Uses = [EDI, ESI, EBP, EBX, EDX, ECX, EAX, ESP], + mayStore=1, neverHasSideEffects=1 in { +def PUSHA32 : I<0x60, RawFrm, (outs), (ins), "pusha{l}", []>, + Requires<[In32BitMode]>; +} + +let Uses = [EFLAGS], Constraints = "$src = $dst" in // GR32 = bswap GR32 def BSWAP32r : I<0xC8, AddRegFrm, (outs GR32:$dst), (ins GR32:$src), "bswap{l}\t$dst", @@ -855,11 +866,11 @@ def BSR32rm : I<0xBD, MRMSrcMem, (outs GR32:$dst), (ins i32mem:$src), let neverHasSideEffects = 1 in def LEA16r : I<0x8D, MRMSrcMem, - (outs GR16:$dst), (ins lea32mem:$src), + (outs GR16:$dst), (ins i32mem:$src), "lea{w}\t{$src|$dst}, {$dst|$src}", []>, OpSize; let isReMaterializable = 1 in def LEA32r : I<0x8D, MRMSrcMem, - (outs GR32:$dst), (ins lea32mem:$src), + (outs GR32:$dst), (ins i32mem:$src), "lea{l}\t{$src|$dst}, {$dst|$src}", [(set GR32:$dst, lea32addr:$src)]>, Requires<[In32BitMode]>; @@ -1239,7 +1250,7 @@ def IDIV32m: I<0xF7, MRM7m, (outs), (ins i32mem:$src), //===----------------------------------------------------------------------===// // Two address Instructions. // -let isTwoAddress = 1 in { +let Constraints = "$src1 = $dst" in { // Conditional moves let Uses = [EFLAGS] in { @@ -1640,7 +1651,7 @@ def CMOVNO32rm : I<0x41, MRMSrcMem, // if !overflow, GR32 = [mem32] // i8 register pressure. Note that CMOV_GR8 is conservatively considered to // clobber EFLAGS, because if one of the operands is zero, the expansion // could involve an xor. -let usesCustomInserter = 1, isTwoAddress = 0, Defs = [EFLAGS] in { +let usesCustomInserter = 1, Constraints = "", Defs = [EFLAGS] in { def CMOV_GR8 : I<0, Pseudo, (outs GR8:$dst), (ins GR8:$src1, GR8:$src2, i8imm:$cond), "#CMOV_GR8 PSEUDO!", @@ -1659,86 +1670,106 @@ def CMOV_GR16 : I<0, Pseudo, [(set GR16:$dst, (X86cmov GR16:$src1, GR16:$src2, imm:$cond, EFLAGS))]>; def CMOV_RFP32 : I<0, Pseudo, - (outs RFP32:$dst), (ins RFP32:$src1, RFP32:$src2, i8imm:$cond), + (outs RFP32:$dst), + (ins RFP32:$src1, RFP32:$src2, i8imm:$cond), "#CMOV_RFP32 PSEUDO!", - [(set RFP32:$dst, (X86cmov RFP32:$src1, RFP32:$src2, imm:$cond, + [(set RFP32:$dst, + (X86cmov RFP32:$src1, RFP32:$src2, imm:$cond, EFLAGS))]>; def CMOV_RFP64 : I<0, Pseudo, - (outs RFP64:$dst), (ins RFP64:$src1, RFP64:$src2, i8imm:$cond), + (outs RFP64:$dst), + (ins RFP64:$src1, RFP64:$src2, i8imm:$cond), "#CMOV_RFP64 PSEUDO!", - [(set RFP64:$dst, (X86cmov RFP64:$src1, RFP64:$src2, imm:$cond, + [(set RFP64:$dst, + (X86cmov RFP64:$src1, RFP64:$src2, imm:$cond, EFLAGS))]>; def CMOV_RFP80 : I<0, Pseudo, - (outs RFP80:$dst), (ins RFP80:$src1, RFP80:$src2, i8imm:$cond), + (outs RFP80:$dst), + (ins RFP80:$src1, RFP80:$src2, i8imm:$cond), "#CMOV_RFP80 PSEUDO!", - [(set RFP80:$dst, (X86cmov RFP80:$src1, RFP80:$src2, imm:$cond, + [(set RFP80:$dst, + (X86cmov RFP80:$src1, RFP80:$src2, imm:$cond, EFLAGS))]>; } // Predicates = [NoCMov] -} // UsesCustomInserter = 1, isTwoAddress = 0, Defs = [EFLAGS] +} // UsesCustomInserter = 1, Constraints = "", Defs = [EFLAGS] } // Uses = [EFLAGS] // unary instructions let CodeSize = 2 in { let Defs = [EFLAGS] in { -def NEG8r : I<0xF6, MRM3r, (outs GR8 :$dst), (ins GR8 :$src), "neg{b}\t$dst", - [(set GR8:$dst, (ineg GR8:$src)), +def NEG8r : I<0xF6, MRM3r, (outs GR8 :$dst), (ins GR8 :$src1), + "neg{b}\t$dst", + [(set GR8:$dst, (ineg GR8:$src1)), (implicit EFLAGS)]>; -def NEG16r : I<0xF7, MRM3r, (outs GR16:$dst), (ins GR16:$src), "neg{w}\t$dst", - [(set GR16:$dst, (ineg GR16:$src)), +def NEG16r : I<0xF7, MRM3r, (outs GR16:$dst), (ins GR16:$src1), + "neg{w}\t$dst", + [(set GR16:$dst, (ineg GR16:$src1)), (implicit EFLAGS)]>, OpSize; -def NEG32r : I<0xF7, MRM3r, (outs GR32:$dst), (ins GR32:$src), "neg{l}\t$dst", - [(set GR32:$dst, (ineg GR32:$src)), +def NEG32r : I<0xF7, MRM3r, (outs GR32:$dst), (ins GR32:$src1), + "neg{l}\t$dst", + [(set GR32:$dst, (ineg GR32:$src1)), (implicit EFLAGS)]>; -let isTwoAddress = 0 in { - def NEG8m : I<0xF6, MRM3m, (outs), (ins i8mem :$dst), "neg{b}\t$dst", + +let Constraints = "" in { + def NEG8m : I<0xF6, MRM3m, (outs), (ins i8mem :$dst), + "neg{b}\t$dst", [(store (ineg (loadi8 addr:$dst)), addr:$dst), (implicit EFLAGS)]>; - def NEG16m : I<0xF7, MRM3m, (outs), (ins i16mem:$dst), "neg{w}\t$dst", + def NEG16m : I<0xF7, MRM3m, (outs), (ins i16mem:$dst), + "neg{w}\t$dst", [(store (ineg (loadi16 addr:$dst)), addr:$dst), (implicit EFLAGS)]>, OpSize; - def NEG32m : I<0xF7, MRM3m, (outs), (ins i32mem:$dst), "neg{l}\t$dst", + def NEG32m : I<0xF7, MRM3m, (outs), (ins i32mem:$dst), + "neg{l}\t$dst", [(store (ineg (loadi32 addr:$dst)), addr:$dst), (implicit EFLAGS)]>; -} +} // Constraints = "" } // Defs = [EFLAGS] // Match xor -1 to not. Favors these over a move imm + xor to save code size. let AddedComplexity = 15 in { -def NOT8r : I<0xF6, MRM2r, (outs GR8 :$dst), (ins GR8 :$src), "not{b}\t$dst", - [(set GR8:$dst, (not GR8:$src))]>; -def NOT16r : I<0xF7, MRM2r, (outs GR16:$dst), (ins GR16:$src), "not{w}\t$dst", - [(set GR16:$dst, (not GR16:$src))]>, OpSize; -def NOT32r : I<0xF7, MRM2r, (outs GR32:$dst), (ins GR32:$src), "not{l}\t$dst", - [(set GR32:$dst, (not GR32:$src))]>; +def NOT8r : I<0xF6, MRM2r, (outs GR8 :$dst), (ins GR8 :$src1), + "not{b}\t$dst", + [(set GR8:$dst, (not GR8:$src1))]>; +def NOT16r : I<0xF7, MRM2r, (outs GR16:$dst), (ins GR16:$src1), + "not{w}\t$dst", + [(set GR16:$dst, (not GR16:$src1))]>, OpSize; +def NOT32r : I<0xF7, MRM2r, (outs GR32:$dst), (ins GR32:$src1), + "not{l}\t$dst", + [(set GR32:$dst, (not GR32:$src1))]>; } -let isTwoAddress = 0 in { - def NOT8m : I<0xF6, MRM2m, (outs), (ins i8mem :$dst), "not{b}\t$dst", +let Constraints = "" in { + def NOT8m : I<0xF6, MRM2m, (outs), (ins i8mem :$dst), + "not{b}\t$dst", [(store (not (loadi8 addr:$dst)), addr:$dst)]>; - def NOT16m : I<0xF7, MRM2m, (outs), (ins i16mem:$dst), "not{w}\t$dst", + def NOT16m : I<0xF7, MRM2m, (outs), (ins i16mem:$dst), + "not{w}\t$dst", [(store (not (loadi16 addr:$dst)), addr:$dst)]>, OpSize; - def NOT32m : I<0xF7, MRM2m, (outs), (ins i32mem:$dst), "not{l}\t$dst", + def NOT32m : I<0xF7, MRM2m, (outs), (ins i32mem:$dst), + "not{l}\t$dst", [(store (not (loadi32 addr:$dst)), addr:$dst)]>; -} +} // Constraints = "" } // CodeSize // TODO: inc/dec is slow for P4, but fast for Pentium-M. let Defs = [EFLAGS] in { let CodeSize = 2 in -def INC8r : I<0xFE, MRM0r, (outs GR8 :$dst), (ins GR8 :$src), "inc{b}\t$dst", - [(set GR8:$dst, EFLAGS, (X86inc_flag GR8:$src))]>; +def INC8r : I<0xFE, MRM0r, (outs GR8 :$dst), (ins GR8 :$src1), + "inc{b}\t$dst", + [(set GR8:$dst, EFLAGS, (X86inc_flag GR8:$src1))]>; let isConvertibleToThreeAddress = 1, CodeSize = 1 in { // Can xform into LEA. -def INC16r : I<0x40, AddRegFrm, (outs GR16:$dst), (ins GR16:$src), +def INC16r : I<0x40, AddRegFrm, (outs GR16:$dst), (ins GR16:$src1), "inc{w}\t$dst", - [(set GR16:$dst, EFLAGS, (X86inc_flag GR16:$src))]>, + [(set GR16:$dst, EFLAGS, (X86inc_flag GR16:$src1))]>, OpSize, Requires<[In32BitMode]>; -def INC32r : I<0x40, AddRegFrm, (outs GR32:$dst), (ins GR32:$src), +def INC32r : I<0x40, AddRegFrm, (outs GR32:$dst), (ins GR32:$src1), "inc{l}\t$dst", - [(set GR32:$dst, EFLAGS, (X86inc_flag GR32:$src))]>, + [(set GR32:$dst, EFLAGS, (X86inc_flag GR32:$src1))]>, Requires<[In32BitMode]>; } -let isTwoAddress = 0, CodeSize = 2 in { +let Constraints = "", CodeSize = 2 in { def INC8m : I<0xFE, MRM0m, (outs), (ins i8mem :$dst), "inc{b}\t$dst", [(store (add (loadi8 addr:$dst), 1), addr:$dst), (implicit EFLAGS)]>; @@ -1750,23 +1781,24 @@ let isTwoAddress = 0, CodeSize = 2 in { [(store (add (loadi32 addr:$dst), 1), addr:$dst), (implicit EFLAGS)]>, Requires<[In32BitMode]>; -} +} // Constraints = "", CodeSize = 2 let CodeSize = 2 in -def DEC8r : I<0xFE, MRM1r, (outs GR8 :$dst), (ins GR8 :$src), "dec{b}\t$dst", - [(set GR8:$dst, EFLAGS, (X86dec_flag GR8:$src))]>; +def DEC8r : I<0xFE, MRM1r, (outs GR8 :$dst), (ins GR8 :$src1), + "dec{b}\t$dst", + [(set GR8:$dst, EFLAGS, (X86dec_flag GR8:$src1))]>; let isConvertibleToThreeAddress = 1, CodeSize = 1 in { // Can xform into LEA. -def DEC16r : I<0x48, AddRegFrm, (outs GR16:$dst), (ins GR16:$src), +def DEC16r : I<0x48, AddRegFrm, (outs GR16:$dst), (ins GR16:$src1), "dec{w}\t$dst", - [(set GR16:$dst, EFLAGS, (X86dec_flag GR16:$src))]>, + [(set GR16:$dst, EFLAGS, (X86dec_flag GR16:$src1))]>, OpSize, Requires<[In32BitMode]>; -def DEC32r : I<0x48, AddRegFrm, (outs GR32:$dst), (ins GR32:$src), +def DEC32r : I<0x48, AddRegFrm, (outs GR32:$dst), (ins GR32:$src1), "dec{l}\t$dst", - [(set GR32:$dst, EFLAGS, (X86dec_flag GR32:$src))]>, + [(set GR32:$dst, EFLAGS, (X86dec_flag GR32:$src1))]>, Requires<[In32BitMode]>; -} +} // CodeSize = 2 -let isTwoAddress = 0, CodeSize = 2 in { +let Constraints = "", CodeSize = 2 in { def DEC8m : I<0xFE, MRM1m, (outs), (ins i8mem :$dst), "dec{b}\t$dst", [(store (add (loadi8 addr:$dst), -1), addr:$dst), (implicit EFLAGS)]>; @@ -1778,7 +1810,7 @@ let isTwoAddress = 0, CodeSize = 2 in { [(store (add (loadi32 addr:$dst), -1), addr:$dst), (implicit EFLAGS)]>, Requires<[In32BitMode]>; -} +} // Constraints = "", CodeSize = 2 } // Defs = [EFLAGS] // Logical operators... @@ -1857,7 +1889,7 @@ def AND32ri8 : Ii8<0x83, MRM4r, [(set GR32:$dst, EFLAGS, (X86and_flag GR32:$src1, i32immSExt8:$src2))]>; -let isTwoAddress = 0 in { +let Constraints = "" in { def AND8mr : I<0x20, MRMDestMem, (outs), (ins i8mem :$dst, GR8 :$src), "and{b}\t{$src, $dst|$dst, $src}", @@ -1909,7 +1941,7 @@ let isTwoAddress = 0 in { def AND32i32 : Ii32<0x25, RawFrm, (outs), (ins i32imm:$src), "and{l}\t{$src, %eax|%eax, $src}", []>; -} +} // Constraints = "" let isCommutable = 1 in { // X = OR Y, Z --> X = OR Z, Y @@ -1983,7 +2015,7 @@ def OR32ri8 : Ii8<0x83, MRM1r, (outs GR32:$dst), "or{l}\t{$src2, $dst|$dst, $src2}", [(set GR32:$dst, EFLAGS, (X86or_flag GR32:$src1, i32immSExt8:$src2))]>; -let isTwoAddress = 0 in { +let Constraints = "" in { def OR8mr : I<0x08, MRMDestMem, (outs), (ins i8mem:$dst, GR8:$src), "or{b}\t{$src, $dst|$dst, $src}", [(store (or (load addr:$dst), GR8:$src), addr:$dst), @@ -2025,7 +2057,7 @@ let isTwoAddress = 0 in { "or{w}\t{$src, %ax|%ax, $src}", []>, OpSize; def OR32i32 : Ii32 <0x0D, RawFrm, (outs), (ins i32imm:$src), "or{l}\t{$src, %eax|%eax, $src}", []>; -} // isTwoAddress = 0 +} // Constraints = "" let isCommutable = 1 in { // X = XOR Y, Z --> X = XOR Z, Y @@ -2102,7 +2134,7 @@ def XOR32ri8 : Ii8<0x83, MRM6r, [(set GR32:$dst, EFLAGS, (X86xor_flag GR32:$src1, i32immSExt8:$src2))]>; -let isTwoAddress = 0 in { +let Constraints = "" in { def XOR8mr : I<0x30, MRMDestMem, (outs), (ins i8mem :$dst, GR8 :$src), "xor{b}\t{$src, $dst|$dst, $src}", @@ -2153,26 +2185,27 @@ let isTwoAddress = 0 in { "xor{w}\t{$src, %ax|%ax, $src}", []>, OpSize; def XOR32i32 : Ii32<0x35, RawFrm, (outs), (ins i32imm:$src), "xor{l}\t{$src, %eax|%eax, $src}", []>; -} // isTwoAddress = 0 +} // Constraints = "" } // Defs = [EFLAGS] // Shift instructions let Defs = [EFLAGS] in { let Uses = [CL] in { -def SHL8rCL : I<0xD2, MRM4r, (outs GR8 :$dst), (ins GR8 :$src), +def SHL8rCL : I<0xD2, MRM4r, (outs GR8 :$dst), (ins GR8 :$src1), "shl{b}\t{%cl, $dst|$dst, CL}", - [(set GR8:$dst, (shl GR8:$src, CL))]>; -def SHL16rCL : I<0xD3, MRM4r, (outs GR16:$dst), (ins GR16:$src), + [(set GR8:$dst, (shl GR8:$src1, CL))]>; +def SHL16rCL : I<0xD3, MRM4r, (outs GR16:$dst), (ins GR16:$src1), "shl{w}\t{%cl, $dst|$dst, CL}", - [(set GR16:$dst, (shl GR16:$src, CL))]>, OpSize; -def SHL32rCL : I<0xD3, MRM4r, (outs GR32:$dst), (ins GR32:$src), + [(set GR16:$dst, (shl GR16:$src1, CL))]>, OpSize; +def SHL32rCL : I<0xD3, MRM4r, (outs GR32:$dst), (ins GR32:$src1), "shl{l}\t{%cl, $dst|$dst, CL}", - [(set GR32:$dst, (shl GR32:$src, CL))]>; + [(set GR32:$dst, (shl GR32:$src1, CL))]>; } // Uses = [CL] def SHL8ri : Ii8<0xC0, MRM4r, (outs GR8 :$dst), (ins GR8 :$src1, i8imm:$src2), "shl{b}\t{$src2, $dst|$dst, $src2}", [(set GR8:$dst, (shl GR8:$src1, (i8 imm:$src2)))]>; + let isConvertibleToThreeAddress = 1 in { // Can transform into LEA. def SHL16ri : Ii8<0xC1, MRM4r, (outs GR16:$dst), (ins GR16:$src1, i8imm:$src2), "shl{w}\t{$src2, $dst|$dst, $src2}", @@ -2193,7 +2226,7 @@ def SHL32r1 : I<0xD1, MRM4r, (outs GR32:$dst), (ins GR32:$src1), } // isConvertibleToThreeAddress = 1 -let isTwoAddress = 0 in { +let Constraints = "" in { let Uses = [CL] in { def SHL8mCL : I<0xD2, MRM4m, (outs), (ins i8mem :$dst), "shl{b}\t{%cl, $dst|$dst, CL}", @@ -2227,18 +2260,18 @@ let isTwoAddress = 0 in { def SHL32m1 : I<0xD1, MRM4m, (outs), (ins i32mem:$dst), "shl{l}\t$dst", [(store (shl (loadi32 addr:$dst), (i8 1)), addr:$dst)]>; -} +} // Constraints = "" let Uses = [CL] in { -def SHR8rCL : I<0xD2, MRM5r, (outs GR8 :$dst), (ins GR8 :$src), +def SHR8rCL : I<0xD2, MRM5r, (outs GR8 :$dst), (ins GR8 :$src1), "shr{b}\t{%cl, $dst|$dst, CL}", - [(set GR8:$dst, (srl GR8:$src, CL))]>; -def SHR16rCL : I<0xD3, MRM5r, (outs GR16:$dst), (ins GR16:$src), + [(set GR8:$dst, (srl GR8:$src1, CL))]>; +def SHR16rCL : I<0xD3, MRM5r, (outs GR16:$dst), (ins GR16:$src1), "shr{w}\t{%cl, $dst|$dst, CL}", - [(set GR16:$dst, (srl GR16:$src, CL))]>, OpSize; -def SHR32rCL : I<0xD3, MRM5r, (outs GR32:$dst), (ins GR32:$src), + [(set GR16:$dst, (srl GR16:$src1, CL))]>, OpSize; +def SHR32rCL : I<0xD3, MRM5r, (outs GR32:$dst), (ins GR32:$src1), "shr{l}\t{%cl, $dst|$dst, CL}", - [(set GR32:$dst, (srl GR32:$src, CL))]>; + [(set GR32:$dst, (srl GR32:$src1, CL))]>; } def SHR8ri : Ii8<0xC0, MRM5r, (outs GR8:$dst), (ins GR8:$src1, i8imm:$src2), @@ -2262,7 +2295,7 @@ def SHR32r1 : I<0xD1, MRM5r, (outs GR32:$dst), (ins GR32:$src1), "shr{l}\t$dst", [(set GR32:$dst, (srl GR32:$src1, (i8 1)))]>; -let isTwoAddress = 0 in { +let Constraints = "" in { let Uses = [CL] in { def SHR8mCL : I<0xD2, MRM5m, (outs), (ins i8mem :$dst), "shr{b}\t{%cl, $dst|$dst, CL}", @@ -2296,18 +2329,18 @@ let isTwoAddress = 0 in { def SHR32m1 : I<0xD1, MRM5m, (outs), (ins i32mem:$dst), "shr{l}\t$dst", [(store (srl (loadi32 addr:$dst), (i8 1)), addr:$dst)]>; -} +} // Constraints = "" let Uses = [CL] in { -def SAR8rCL : I<0xD2, MRM7r, (outs GR8 :$dst), (ins GR8 :$src), +def SAR8rCL : I<0xD2, MRM7r, (outs GR8 :$dst), (ins GR8 :$src1), "sar{b}\t{%cl, $dst|$dst, CL}", - [(set GR8:$dst, (sra GR8:$src, CL))]>; -def SAR16rCL : I<0xD3, MRM7r, (outs GR16:$dst), (ins GR16:$src), + [(set GR8:$dst, (sra GR8:$src1, CL))]>; +def SAR16rCL : I<0xD3, MRM7r, (outs GR16:$dst), (ins GR16:$src1), "sar{w}\t{%cl, $dst|$dst, CL}", - [(set GR16:$dst, (sra GR16:$src, CL))]>, OpSize; -def SAR32rCL : I<0xD3, MRM7r, (outs GR32:$dst), (ins GR32:$src), + [(set GR16:$dst, (sra GR16:$src1, CL))]>, OpSize; +def SAR32rCL : I<0xD3, MRM7r, (outs GR32:$dst), (ins GR32:$src1), "sar{l}\t{%cl, $dst|$dst, CL}", - [(set GR32:$dst, (sra GR32:$src, CL))]>; + [(set GR32:$dst, (sra GR32:$src1, CL))]>; } def SAR8ri : Ii8<0xC0, MRM7r, (outs GR8 :$dst), (ins GR8 :$src1, i8imm:$src2), @@ -2332,7 +2365,7 @@ def SAR32r1 : I<0xD1, MRM7r, (outs GR32:$dst), (ins GR32:$src1), "sar{l}\t$dst", [(set GR32:$dst, (sra GR32:$src1, (i8 1)))]>; -let isTwoAddress = 0 in { +let Constraints = "" in { let Uses = [CL] in { def SAR8mCL : I<0xD2, MRM7m, (outs), (ins i8mem :$dst), "sar{b}\t{%cl, $dst|$dst, CL}", @@ -2366,65 +2399,65 @@ let isTwoAddress = 0 in { def SAR32m1 : I<0xD1, MRM7m, (outs), (ins i32mem:$dst), "sar{l}\t$dst", [(store (sra (loadi32 addr:$dst), (i8 1)), addr:$dst)]>; -} +} // Constraints = "" // Rotate instructions -def RCL8r1 : I<0xD0, MRM2r, (outs GR8:$dst), (ins GR8:$src), +def RCL8r1 : I<0xD0, MRM2r, (outs GR8:$dst), (ins GR8:$src1), "rcl{b}\t{1, $dst|$dst, 1}", []>; let Uses = [CL] in { -def RCL8rCL : I<0xD2, MRM2r, (outs GR8:$dst), (ins GR8:$src), +def RCL8rCL : I<0xD2, MRM2r, (outs GR8:$dst), (ins GR8:$src1), "rcl{b}\t{%cl, $dst|$dst, CL}", []>; } -def RCL8ri : Ii8<0xC0, MRM2r, (outs GR8:$dst), (ins GR8:$src, i8imm:$cnt), +def RCL8ri : Ii8<0xC0, MRM2r, (outs GR8:$dst), (ins GR8:$src1, i8imm:$cnt), "rcl{b}\t{$cnt, $dst|$dst, $cnt}", []>; -def RCL16r1 : I<0xD1, MRM2r, (outs GR16:$dst), (ins GR16:$src), +def RCL16r1 : I<0xD1, MRM2r, (outs GR16:$dst), (ins GR16:$src1), "rcl{w}\t{1, $dst|$dst, 1}", []>, OpSize; let Uses = [CL] in { -def RCL16rCL : I<0xD3, MRM2r, (outs GR16:$dst), (ins GR16:$src), +def RCL16rCL : I<0xD3, MRM2r, (outs GR16:$dst), (ins GR16:$src1), "rcl{w}\t{%cl, $dst|$dst, CL}", []>, OpSize; } -def RCL16ri : Ii8<0xC1, MRM2r, (outs GR16:$dst), (ins GR16:$src, i8imm:$cnt), +def RCL16ri : Ii8<0xC1, MRM2r, (outs GR16:$dst), (ins GR16:$src1, i8imm:$cnt), "rcl{w}\t{$cnt, $dst|$dst, $cnt}", []>, OpSize; -def RCL32r1 : I<0xD1, MRM2r, (outs GR32:$dst), (ins GR32:$src), +def RCL32r1 : I<0xD1, MRM2r, (outs GR32:$dst), (ins GR32:$src1), "rcl{l}\t{1, $dst|$dst, 1}", []>; let Uses = [CL] in { -def RCL32rCL : I<0xD3, MRM2r, (outs GR32:$dst), (ins GR32:$src), +def RCL32rCL : I<0xD3, MRM2r, (outs GR32:$dst), (ins GR32:$src1), "rcl{l}\t{%cl, $dst|$dst, CL}", []>; } -def RCL32ri : Ii8<0xC1, MRM2r, (outs GR32:$dst), (ins GR32:$src, i8imm:$cnt), +def RCL32ri : Ii8<0xC1, MRM2r, (outs GR32:$dst), (ins GR32:$src1, i8imm:$cnt), "rcl{l}\t{$cnt, $dst|$dst, $cnt}", []>; -def RCR8r1 : I<0xD0, MRM3r, (outs GR8:$dst), (ins GR8:$src), +def RCR8r1 : I<0xD0, MRM3r, (outs GR8:$dst), (ins GR8:$src1), "rcr{b}\t{1, $dst|$dst, 1}", []>; let Uses = [CL] in { -def RCR8rCL : I<0xD2, MRM3r, (outs GR8:$dst), (ins GR8:$src), +def RCR8rCL : I<0xD2, MRM3r, (outs GR8:$dst), (ins GR8:$src1), "rcr{b}\t{%cl, $dst|$dst, CL}", []>; } -def RCR8ri : Ii8<0xC0, MRM3r, (outs GR8:$dst), (ins GR8:$src, i8imm:$cnt), +def RCR8ri : Ii8<0xC0, MRM3r, (outs GR8:$dst), (ins GR8:$src1, i8imm:$cnt), "rcr{b}\t{$cnt, $dst|$dst, $cnt}", []>; -def RCR16r1 : I<0xD1, MRM3r, (outs GR16:$dst), (ins GR16:$src), +def RCR16r1 : I<0xD1, MRM3r, (outs GR16:$dst), (ins GR16:$src1), "rcr{w}\t{1, $dst|$dst, 1}", []>, OpSize; let Uses = [CL] in { -def RCR16rCL : I<0xD3, MRM3r, (outs GR16:$dst), (ins GR16:$src), +def RCR16rCL : I<0xD3, MRM3r, (outs GR16:$dst), (ins GR16:$src1), "rcr{w}\t{%cl, $dst|$dst, CL}", []>, OpSize; } -def RCR16ri : Ii8<0xC1, MRM3r, (outs GR16:$dst), (ins GR16:$src, i8imm:$cnt), +def RCR16ri : Ii8<0xC1, MRM3r, (outs GR16:$dst), (ins GR16:$src1, i8imm:$cnt), "rcr{w}\t{$cnt, $dst|$dst, $cnt}", []>, OpSize; -def RCR32r1 : I<0xD1, MRM3r, (outs GR32:$dst), (ins GR32:$src), +def RCR32r1 : I<0xD1, MRM3r, (outs GR32:$dst), (ins GR32:$src1), "rcr{l}\t{1, $dst|$dst, 1}", []>; let Uses = [CL] in { -def RCR32rCL : I<0xD3, MRM3r, (outs GR32:$dst), (ins GR32:$src), +def RCR32rCL : I<0xD3, MRM3r, (outs GR32:$dst), (ins GR32:$src1), "rcr{l}\t{%cl, $dst|$dst, CL}", []>; } -def RCR32ri : Ii8<0xC1, MRM3r, (outs GR32:$dst), (ins GR32:$src, i8imm:$cnt), +def RCR32ri : Ii8<0xC1, MRM3r, (outs GR32:$dst), (ins GR32:$src1, i8imm:$cnt), "rcr{l}\t{$cnt, $dst|$dst, $cnt}", []>; -let isTwoAddress = 0 in { +let Constraints = "" in { def RCL8m1 : I<0xD0, MRM2m, (outs), (ins i8mem:$dst), "rcl{b}\t{1, $dst|$dst, 1}", []>; def RCL8mi : Ii8<0xC0, MRM2m, (outs), (ins i8mem:$dst, i8imm:$cnt), @@ -2464,19 +2497,19 @@ def RCR16mCL : I<0xD3, MRM3m, (outs), (ins i16mem:$dst), def RCR32mCL : I<0xD3, MRM3m, (outs), (ins i32mem:$dst), "rcr{l}\t{%cl, $dst|$dst, CL}", []>; } -} +} // Constraints = "" // FIXME: provide shorter instructions when imm8 == 1 let Uses = [CL] in { -def ROL8rCL : I<0xD2, MRM0r, (outs GR8 :$dst), (ins GR8 :$src), +def ROL8rCL : I<0xD2, MRM0r, (outs GR8 :$dst), (ins GR8 :$src1), "rol{b}\t{%cl, $dst|$dst, CL}", - [(set GR8:$dst, (rotl GR8:$src, CL))]>; -def ROL16rCL : I<0xD3, MRM0r, (outs GR16:$dst), (ins GR16:$src), + [(set GR8:$dst, (rotl GR8:$src1, CL))]>; +def ROL16rCL : I<0xD3, MRM0r, (outs GR16:$dst), (ins GR16:$src1), "rol{w}\t{%cl, $dst|$dst, CL}", - [(set GR16:$dst, (rotl GR16:$src, CL))]>, OpSize; -def ROL32rCL : I<0xD3, MRM0r, (outs GR32:$dst), (ins GR32:$src), + [(set GR16:$dst, (rotl GR16:$src1, CL))]>, OpSize; +def ROL32rCL : I<0xD3, MRM0r, (outs GR32:$dst), (ins GR32:$src1), "rol{l}\t{%cl, $dst|$dst, CL}", - [(set GR32:$dst, (rotl GR32:$src, CL))]>; + [(set GR32:$dst, (rotl GR32:$src1, CL))]>; } def ROL8ri : Ii8<0xC0, MRM0r, (outs GR8 :$dst), (ins GR8 :$src1, i8imm:$src2), @@ -2501,7 +2534,7 @@ def ROL32r1 : I<0xD1, MRM0r, (outs GR32:$dst), (ins GR32:$src1), "rol{l}\t$dst", [(set GR32:$dst, (rotl GR32:$src1, (i8 1)))]>; -let isTwoAddress = 0 in { +let Constraints = "" in { let Uses = [CL] in { def ROL8mCL : I<0xD2, MRM0m, (outs), (ins i8mem :$dst), "rol{b}\t{%cl, $dst|$dst, CL}", @@ -2535,18 +2568,18 @@ let isTwoAddress = 0 in { def ROL32m1 : I<0xD1, MRM0m, (outs), (ins i32mem:$dst), "rol{l}\t$dst", [(store (rotl (loadi32 addr:$dst), (i8 1)), addr:$dst)]>; -} +} // Constraints = "" let Uses = [CL] in { -def ROR8rCL : I<0xD2, MRM1r, (outs GR8 :$dst), (ins GR8 :$src), +def ROR8rCL : I<0xD2, MRM1r, (outs GR8 :$dst), (ins GR8 :$src1), "ror{b}\t{%cl, $dst|$dst, CL}", - [(set GR8:$dst, (rotr GR8:$src, CL))]>; -def ROR16rCL : I<0xD3, MRM1r, (outs GR16:$dst), (ins GR16:$src), + [(set GR8:$dst, (rotr GR8:$src1, CL))]>; +def ROR16rCL : I<0xD3, MRM1r, (outs GR16:$dst), (ins GR16:$src1), "ror{w}\t{%cl, $dst|$dst, CL}", - [(set GR16:$dst, (rotr GR16:$src, CL))]>, OpSize; -def ROR32rCL : I<0xD3, MRM1r, (outs GR32:$dst), (ins GR32:$src), + [(set GR16:$dst, (rotr GR16:$src1, CL))]>, OpSize; +def ROR32rCL : I<0xD3, MRM1r, (outs GR32:$dst), (ins GR32:$src1), "ror{l}\t{%cl, $dst|$dst, CL}", - [(set GR32:$dst, (rotr GR32:$src, CL))]>; + [(set GR32:$dst, (rotr GR32:$src1, CL))]>; } def ROR8ri : Ii8<0xC0, MRM1r, (outs GR8 :$dst), (ins GR8 :$src1, i8imm:$src2), @@ -2571,7 +2604,7 @@ def ROR32r1 : I<0xD1, MRM1r, (outs GR32:$dst), (ins GR32:$src1), "ror{l}\t$dst", [(set GR32:$dst, (rotr GR32:$src1, (i8 1)))]>; -let isTwoAddress = 0 in { +let Constraints = "" in { let Uses = [CL] in { def ROR8mCL : I<0xD2, MRM1m, (outs), (ins i8mem :$dst), "ror{b}\t{%cl, $dst|$dst, CL}", @@ -2605,8 +2638,7 @@ let isTwoAddress = 0 in { def ROR32m1 : I<0xD1, MRM1m, (outs), (ins i32mem:$dst), "ror{l}\t$dst", [(store (rotr (loadi32 addr:$dst), (i8 1)), addr:$dst)]>; -} - +} // Constraints = "" // Double shift instructions (generalizations of rotate) @@ -2662,7 +2694,7 @@ def SHRD16rri8 : Ii8<0xAC, MRMDestReg, TB, OpSize; } -let isTwoAddress = 0 in { +let Constraints = "" in { let Uses = [CL] in { def SHLD32mrCL : I<0xA5, MRMDestMem, (outs), (ins i32mem:$dst, GR32:$src2), "shld{l}\t{%cl, $src2, $dst|$dst, $src2, CL}", @@ -2708,7 +2740,7 @@ let isTwoAddress = 0 in { [(store (X86shrd (loadi16 addr:$dst), GR16:$src2, (i8 imm:$src3)), addr:$dst)]>, TB, OpSize; -} +} // Constraints = "" } // Defs = [EFLAGS] @@ -2794,7 +2826,7 @@ def ADD32ri8 : Ii8<0x83, MRM0r, (outs GR32:$dst), (X86add_flag GR32:$src1, i32immSExt8:$src2))]>; } -let isTwoAddress = 0 in { +let Constraints = "" in { // Memory-Register Addition def ADD8mr : I<0x00, MRMDestMem, (outs), (ins i8mem:$dst, GR8:$src2), "add{b}\t{$src2, $dst|$dst, $src2}", @@ -2838,7 +2870,7 @@ let isTwoAddress = 0 in { "add{w}\t{$src, %ax|%ax, $src}", []>, OpSize; def ADD32i32 : Ii32<0x05, RawFrm, (outs), (ins i32imm:$src), "add{l}\t{$src, %eax|%eax, $src}", []>; -} +} // Constraints = "" let Uses = [EFLAGS] in { let isCommutable = 1 in { // X = ADC Y, Z --> X = ADC Z, Y @@ -2900,7 +2932,7 @@ def ADC32ri8 : Ii8<0x83, MRM2r, (outs GR32:$dst), "adc{l}\t{$src2, $dst|$dst, $src2}", [(set GR32:$dst, (adde GR32:$src1, i32immSExt8:$src2))]>; -let isTwoAddress = 0 in { +let Constraints = "" in { def ADC8mr : I<0x10, MRMDestMem, (outs), (ins i8mem:$dst, GR8:$src2), "adc{b}\t{$src2, $dst|$dst, $src2}", [(store (adde (load addr:$dst), GR8:$src2), addr:$dst)]>; @@ -2935,7 +2967,7 @@ let isTwoAddress = 0 in { "adc{w}\t{$src, %ax|%ax, $src}", []>, OpSize; def ADC32i32 : Ii32<0x15, RawFrm, (outs), (ins i32imm:$src), "adc{l}\t{$src, %eax|%eax, $src}", []>; -} +} // Constraints = "" } // Uses = [EFLAGS] // Register-Register Subtraction @@ -3007,7 +3039,7 @@ def SUB32ri8 : Ii8<0x83, MRM5r, (outs GR32:$dst), [(set GR32:$dst, EFLAGS, (X86sub_flag GR32:$src1, i32immSExt8:$src2))]>; -let isTwoAddress = 0 in { +let Constraints = "" in { // Memory-Register Subtraction def SUB8mr : I<0x28, MRMDestMem, (outs), (ins i8mem :$dst, GR8 :$src2), "sub{b}\t{$src2, $dst|$dst, $src2}", @@ -3052,7 +3084,7 @@ let isTwoAddress = 0 in { "sub{w}\t{$src, %ax|%ax, $src}", []>, OpSize; def SUB32i32 : Ii32<0x2D, RawFrm, (outs), (ins i32imm:$src), "sub{l}\t{$src, %eax|%eax, $src}", []>; -} +} // Constraints = "" let Uses = [EFLAGS] in { def SBB8rr : I<0x18, MRMDestReg, (outs GR8:$dst), @@ -3068,7 +3100,7 @@ def SBB32rr : I<0x19, MRMDestReg, (outs GR32:$dst), "sbb{l}\t{$src2, $dst|$dst, $src2}", [(set GR32:$dst, (sube GR32:$src1, GR32:$src2))]>; -let isTwoAddress = 0 in { +let Constraints = "" in { def SBB8mr : I<0x18, MRMDestMem, (outs), (ins i8mem:$dst, GR8:$src2), "sbb{b}\t{$src2, $dst|$dst, $src2}", [(store (sube (load addr:$dst), GR8:$src2), addr:$dst)]>; @@ -3103,7 +3135,7 @@ let isTwoAddress = 0 in { "sbb{w}\t{$src, %ax|%ax, $src}", []>, OpSize; def SBB32i32 : Ii32<0x1D, RawFrm, (outs), (ins i32imm:$src), "sbb{l}\t{$src, %eax|%eax, $src}", []>; -} +} // Constraints = "" let isCodeGenOnly = 1 in { def SBB8rr_REV : I<0x1A, MRMSrcReg, (outs GR8:$dst), (ins GR8:$src1, GR8:$src2), @@ -3811,6 +3843,7 @@ def MOV32r0 : I<0x31, MRMInitReg, (outs GR32:$dst), (ins), "", // Thread Local Storage Instructions // +// ELF TLS Support // All calls clobber the non-callee saved registers. ESP is marked as // a use to prevent stack-pointer assignments that appear immediately // before calls from potentially appearing dead. @@ -3819,12 +3852,24 @@ let Defs = [EAX, ECX, EDX, FP0, FP1, FP2, FP3, FP4, FP5, FP6, ST0, XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7, XMM8, XMM9, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15, EFLAGS], Uses = [ESP] in -def TLS_addr32 : I<0, Pseudo, (outs), (ins lea32mem:$sym), +def TLS_addr32 : I<0, Pseudo, (outs), (ins i32mem:$sym), "leal\t$sym, %eax; " "call\t___tls_get_addr@PLT", [(X86tlsaddr tls32addr:$sym)]>, Requires<[In32BitMode]>; +// Darwin TLS Support +// For i386, the address of the thunk is passed on the stack, on return the +// address of the variable is in %eax. %ecx is trashed during the function +// call. All other registers are preserved. +let Defs = [EAX, ECX], + Uses = [ESP], + usesCustomInserter = 1 in +def TLSCall_32 : I<0, Pseudo, (outs), (ins i32mem:$sym), + "# TLSCall_32", + [(X86TLSCall addr:$sym)]>, + Requires<[In32BitMode]>; + let AddedComplexity = 5, isCodeGenOnly = 1 in def GS_MOV32rm : I<0x8B, MRMSrcMem, (outs GR32:$dst), (ins i32mem:$src), "movl\t%gs:$src, $dst", @@ -4783,14 +4828,14 @@ def : Pat<(X86smul_flag GR32:$src1, 2), (ADD32rr GR32:$src1, GR32:$src1)>; // Patterns for nodes that do not produce flags, for instructions that do. // Increment reg. -def : Pat<(add GR8:$src , 1), (INC8r GR8:$src)>; -def : Pat<(add GR16:$src, 1), (INC16r GR16:$src)>, Requires<[In32BitMode]>; -def : Pat<(add GR32:$src, 1), (INC32r GR32:$src)>, Requires<[In32BitMode]>; +def : Pat<(add GR8:$src1 , 1), (INC8r GR8:$src1)>; +def : Pat<(add GR16:$src1, 1), (INC16r GR16:$src1)>, Requires<[In32BitMode]>; +def : Pat<(add GR32:$src1, 1), (INC32r GR32:$src1)>, Requires<[In32BitMode]>; // Decrement reg. -def : Pat<(add GR8:$src , -1), (DEC8r GR8:$src)>; -def : Pat<(add GR16:$src, -1), (DEC16r GR16:$src)>, Requires<[In32BitMode]>; -def : Pat<(add GR32:$src, -1), (DEC32r GR32:$src)>, Requires<[In32BitMode]>; +def : Pat<(add GR8:$src1 , -1), (DEC8r GR8:$src1)>; +def : Pat<(add GR16:$src1, -1), (DEC16r GR16:$src1)>, Requires<[In32BitMode]>; +def : Pat<(add GR32:$src1, -1), (DEC32r GR32:$src1)>, Requires<[In32BitMode]>; // or reg/reg. def : Pat<(or GR8 :$src1, GR8 :$src2), (OR8rr GR8 :$src1, GR8 :$src2)>; diff --git a/lib/Target/X86/X86InstrMMX.td b/lib/Target/X86/X86InstrMMX.td index 0952fc8..6cf7ac8 100644 --- a/lib/Target/X86/X86InstrMMX.td +++ b/lib/Target/X86/X86InstrMMX.td @@ -513,30 +513,20 @@ def : Pat<(store (v4i16 VR64:$src), addr:$dst), (MMX_MOVQ64mr addr:$dst, VR64:$src)>; def : Pat<(store (v2i32 VR64:$src), addr:$dst), (MMX_MOVQ64mr addr:$dst, VR64:$src)>; -def : Pat<(store (v2f32 VR64:$src), addr:$dst), - (MMX_MOVQ64mr addr:$dst, VR64:$src)>; def : Pat<(store (v1i64 VR64:$src), addr:$dst), (MMX_MOVQ64mr addr:$dst, VR64:$src)>; // Bit convert. def : Pat<(v8i8 (bitconvert (v1i64 VR64:$src))), (v8i8 VR64:$src)>; def : Pat<(v8i8 (bitconvert (v2i32 VR64:$src))), (v8i8 VR64:$src)>; -def : Pat<(v8i8 (bitconvert (v2f32 VR64:$src))), (v8i8 VR64:$src)>; def : Pat<(v8i8 (bitconvert (v4i16 VR64:$src))), (v8i8 VR64:$src)>; def : Pat<(v4i16 (bitconvert (v1i64 VR64:$src))), (v4i16 VR64:$src)>; def : Pat<(v4i16 (bitconvert (v2i32 VR64:$src))), (v4i16 VR64:$src)>; -def : Pat<(v4i16 (bitconvert (v2f32 VR64:$src))), (v4i16 VR64:$src)>; def : Pat<(v4i16 (bitconvert (v8i8 VR64:$src))), (v4i16 VR64:$src)>; def : Pat<(v2i32 (bitconvert (v1i64 VR64:$src))), (v2i32 VR64:$src)>; -def : Pat<(v2i32 (bitconvert (v2f32 VR64:$src))), (v2i32 VR64:$src)>; def : Pat<(v2i32 (bitconvert (v4i16 VR64:$src))), (v2i32 VR64:$src)>; def : Pat<(v2i32 (bitconvert (v8i8 VR64:$src))), (v2i32 VR64:$src)>; -def : Pat<(v2f32 (bitconvert (v1i64 VR64:$src))), (v2f32 VR64:$src)>; -def : Pat<(v2f32 (bitconvert (v2i32 VR64:$src))), (v2f32 VR64:$src)>; -def : Pat<(v2f32 (bitconvert (v4i16 VR64:$src))), (v2f32 VR64:$src)>; -def : Pat<(v2f32 (bitconvert (v8i8 VR64:$src))), (v2f32 VR64:$src)>; def : Pat<(v1i64 (bitconvert (v2i32 VR64:$src))), (v1i64 VR64:$src)>; -def : Pat<(v1i64 (bitconvert (v2f32 VR64:$src))), (v1i64 VR64:$src)>; def : Pat<(v1i64 (bitconvert (v4i16 VR64:$src))), (v1i64 VR64:$src)>; def : Pat<(v1i64 (bitconvert (v8i8 VR64:$src))), (v1i64 VR64:$src)>; @@ -545,8 +535,6 @@ def : Pat<(v1i64 (bitconvert (i64 GR64:$src))), (MMX_MOVD64to64rr GR64:$src)>; def : Pat<(v2i32 (bitconvert (i64 GR64:$src))), (MMX_MOVD64to64rr GR64:$src)>; -def : Pat<(v2f32 (bitconvert (i64 GR64:$src))), - (MMX_MOVD64to64rr GR64:$src)>; def : Pat<(v4i16 (bitconvert (i64 GR64:$src))), (MMX_MOVD64to64rr GR64:$src)>; def : Pat<(v8i8 (bitconvert (i64 GR64:$src))), @@ -555,8 +543,6 @@ def : Pat<(i64 (bitconvert (v1i64 VR64:$src))), (MMX_MOVD64from64rr VR64:$src)>; def : Pat<(i64 (bitconvert (v2i32 VR64:$src))), (MMX_MOVD64from64rr VR64:$src)>; -def : Pat<(i64 (bitconvert (v2f32 VR64:$src))), - (MMX_MOVD64from64rr VR64:$src)>; def : Pat<(i64 (bitconvert (v4i16 VR64:$src))), (MMX_MOVD64from64rr VR64:$src)>; def : Pat<(i64 (bitconvert (v8i8 VR64:$src))), diff --git a/lib/Target/X86/X86InstrSSE.td b/lib/Target/X86/X86InstrSSE.td index 5580ba7..ab0005b 100644 --- a/lib/Target/X86/X86InstrSSE.td +++ b/lib/Target/X86/X86InstrSSE.td @@ -15,322 +15,6 @@ //===----------------------------------------------------------------------===// -// SSE specific DAG Nodes. -//===----------------------------------------------------------------------===// - -def SDTX86FPShiftOp : SDTypeProfile<1, 2, [ SDTCisSameAs<0, 1>, - SDTCisFP<0>, SDTCisInt<2> ]>; -def SDTX86VFCMP : SDTypeProfile<1, 3, [SDTCisInt<0>, SDTCisSameAs<1, 2>, - SDTCisFP<1>, SDTCisVT<3, i8>]>; - -def X86fmin : SDNode<"X86ISD::FMIN", SDTFPBinOp>; -def X86fmax : SDNode<"X86ISD::FMAX", SDTFPBinOp>; -def X86fand : SDNode<"X86ISD::FAND", SDTFPBinOp, - [SDNPCommutative, SDNPAssociative]>; -def X86for : SDNode<"X86ISD::FOR", SDTFPBinOp, - [SDNPCommutative, SDNPAssociative]>; -def X86fxor : SDNode<"X86ISD::FXOR", SDTFPBinOp, - [SDNPCommutative, SDNPAssociative]>; -def X86frsqrt : SDNode<"X86ISD::FRSQRT", SDTFPUnaryOp>; -def X86frcp : SDNode<"X86ISD::FRCP", SDTFPUnaryOp>; -def X86fsrl : SDNode<"X86ISD::FSRL", SDTX86FPShiftOp>; -def X86comi : SDNode<"X86ISD::COMI", SDTX86CmpTest>; -def X86ucomi : SDNode<"X86ISD::UCOMI", SDTX86CmpTest>; -def X86pshufb : SDNode<"X86ISD::PSHUFB", - SDTypeProfile<1, 2, [SDTCisVT<0, v16i8>, SDTCisSameAs<0,1>, - SDTCisSameAs<0,2>]>>; -def X86pextrb : SDNode<"X86ISD::PEXTRB", - SDTypeProfile<1, 2, [SDTCisVT<0, i32>, SDTCisPtrTy<2>]>>; -def X86pextrw : SDNode<"X86ISD::PEXTRW", - SDTypeProfile<1, 2, [SDTCisVT<0, i32>, SDTCisPtrTy<2>]>>; -def X86pinsrb : SDNode<"X86ISD::PINSRB", - SDTypeProfile<1, 3, [SDTCisVT<0, v16i8>, SDTCisSameAs<0,1>, - SDTCisVT<2, i32>, SDTCisPtrTy<3>]>>; -def X86pinsrw : SDNode<"X86ISD::PINSRW", - SDTypeProfile<1, 3, [SDTCisVT<0, v8i16>, SDTCisSameAs<0,1>, - SDTCisVT<2, i32>, SDTCisPtrTy<3>]>>; -def X86insrtps : SDNode<"X86ISD::INSERTPS", - SDTypeProfile<1, 3, [SDTCisVT<0, v4f32>, SDTCisSameAs<0,1>, - SDTCisVT<2, v4f32>, SDTCisPtrTy<3>]>>; -def X86vzmovl : SDNode<"X86ISD::VZEXT_MOVL", - SDTypeProfile<1, 1, [SDTCisSameAs<0,1>]>>; -def X86vzload : SDNode<"X86ISD::VZEXT_LOAD", SDTLoad, - [SDNPHasChain, SDNPMayLoad]>; -def X86vshl : SDNode<"X86ISD::VSHL", SDTIntShiftOp>; -def X86vshr : SDNode<"X86ISD::VSRL", SDTIntShiftOp>; -def X86cmpps : SDNode<"X86ISD::CMPPS", SDTX86VFCMP>; -def X86cmppd : SDNode<"X86ISD::CMPPD", SDTX86VFCMP>; -def X86pcmpeqb : SDNode<"X86ISD::PCMPEQB", SDTIntBinOp, [SDNPCommutative]>; -def X86pcmpeqw : SDNode<"X86ISD::PCMPEQW", SDTIntBinOp, [SDNPCommutative]>; -def X86pcmpeqd : SDNode<"X86ISD::PCMPEQD", SDTIntBinOp, [SDNPCommutative]>; -def X86pcmpeqq : SDNode<"X86ISD::PCMPEQQ", SDTIntBinOp, [SDNPCommutative]>; -def X86pcmpgtb : SDNode<"X86ISD::PCMPGTB", SDTIntBinOp>; -def X86pcmpgtw : SDNode<"X86ISD::PCMPGTW", SDTIntBinOp>; -def X86pcmpgtd : SDNode<"X86ISD::PCMPGTD", SDTIntBinOp>; -def X86pcmpgtq : SDNode<"X86ISD::PCMPGTQ", SDTIntBinOp>; - -def SDTX86CmpPTest : SDTypeProfile<1, 2, [SDTCisVT<0, i32>, - SDTCisVT<1, v4f32>, - SDTCisVT<2, v4f32>]>; -def X86ptest : SDNode<"X86ISD::PTEST", SDTX86CmpPTest>; - -//===----------------------------------------------------------------------===// -// SSE Complex Patterns -//===----------------------------------------------------------------------===// - -// These are 'extloads' from a scalar to the low element of a vector, zeroing -// the top elements. These are used for the SSE 'ss' and 'sd' instruction -// forms. -def sse_load_f32 : ComplexPattern<v4f32, 5, "SelectScalarSSELoad", [], - [SDNPHasChain, SDNPMayLoad]>; -def sse_load_f64 : ComplexPattern<v2f64, 5, "SelectScalarSSELoad", [], - [SDNPHasChain, SDNPMayLoad]>; - -def ssmem : Operand<v4f32> { - let PrintMethod = "printf32mem"; - let MIOperandInfo = (ops ptr_rc, i8imm, ptr_rc_nosp, i32imm, i8imm); - let ParserMatchClass = X86MemAsmOperand; -} -def sdmem : Operand<v2f64> { - let PrintMethod = "printf64mem"; - let MIOperandInfo = (ops ptr_rc, i8imm, ptr_rc_nosp, i32imm, i8imm); - let ParserMatchClass = X86MemAsmOperand; -} - -//===----------------------------------------------------------------------===// -// SSE pattern fragments -//===----------------------------------------------------------------------===// - -def loadv4f32 : PatFrag<(ops node:$ptr), (v4f32 (load node:$ptr))>; -def loadv2f64 : PatFrag<(ops node:$ptr), (v2f64 (load node:$ptr))>; -def loadv4i32 : PatFrag<(ops node:$ptr), (v4i32 (load node:$ptr))>; -def loadv2i64 : PatFrag<(ops node:$ptr), (v2i64 (load node:$ptr))>; - -// Like 'store', but always requires vector alignment. -def alignedstore : PatFrag<(ops node:$val, node:$ptr), - (store node:$val, node:$ptr), [{ - return cast<StoreSDNode>(N)->getAlignment() >= 16; -}]>; - -// Like 'load', but always requires vector alignment. -def alignedload : PatFrag<(ops node:$ptr), (load node:$ptr), [{ - return cast<LoadSDNode>(N)->getAlignment() >= 16; -}]>; - -def alignedloadfsf32 : PatFrag<(ops node:$ptr), - (f32 (alignedload node:$ptr))>; -def alignedloadfsf64 : PatFrag<(ops node:$ptr), - (f64 (alignedload node:$ptr))>; -def alignedloadv4f32 : PatFrag<(ops node:$ptr), - (v4f32 (alignedload node:$ptr))>; -def alignedloadv2f64 : PatFrag<(ops node:$ptr), - (v2f64 (alignedload node:$ptr))>; -def alignedloadv4i32 : PatFrag<(ops node:$ptr), - (v4i32 (alignedload node:$ptr))>; -def alignedloadv2i64 : PatFrag<(ops node:$ptr), - (v2i64 (alignedload node:$ptr))>; - -// Like 'load', but uses special alignment checks suitable for use in -// memory operands in most SSE instructions, which are required to -// be naturally aligned on some targets but not on others. If the subtarget -// allows unaligned accesses, match any load, though this may require -// setting a feature bit in the processor (on startup, for example). -// Opteron 10h and later implement such a feature. -def memop : PatFrag<(ops node:$ptr), (load node:$ptr), [{ - return Subtarget->hasVectorUAMem() - || cast<LoadSDNode>(N)->getAlignment() >= 16; -}]>; - -def memopfsf32 : PatFrag<(ops node:$ptr), (f32 (memop node:$ptr))>; -def memopfsf64 : PatFrag<(ops node:$ptr), (f64 (memop node:$ptr))>; -def memopv4f32 : PatFrag<(ops node:$ptr), (v4f32 (memop node:$ptr))>; -def memopv2f64 : PatFrag<(ops node:$ptr), (v2f64 (memop node:$ptr))>; -def memopv4i32 : PatFrag<(ops node:$ptr), (v4i32 (memop node:$ptr))>; -def memopv2i64 : PatFrag<(ops node:$ptr), (v2i64 (memop node:$ptr))>; -def memopv16i8 : PatFrag<(ops node:$ptr), (v16i8 (memop node:$ptr))>; - -// SSSE3 uses MMX registers for some instructions. They aren't aligned on a -// 16-byte boundary. -// FIXME: 8 byte alignment for mmx reads is not required -def memop64 : PatFrag<(ops node:$ptr), (load node:$ptr), [{ - return cast<LoadSDNode>(N)->getAlignment() >= 8; -}]>; - -def memopv8i8 : PatFrag<(ops node:$ptr), (v8i8 (memop64 node:$ptr))>; -def memopv4i16 : PatFrag<(ops node:$ptr), (v4i16 (memop64 node:$ptr))>; -def memopv8i16 : PatFrag<(ops node:$ptr), (v8i16 (memop64 node:$ptr))>; -def memopv2i32 : PatFrag<(ops node:$ptr), (v2i32 (memop64 node:$ptr))>; - -// MOVNT Support -// Like 'store', but requires the non-temporal bit to be set -def nontemporalstore : PatFrag<(ops node:$val, node:$ptr), - (st node:$val, node:$ptr), [{ - if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) - return ST->isNonTemporal(); - return false; -}]>; - -def alignednontemporalstore : PatFrag<(ops node:$val, node:$ptr), - (st node:$val, node:$ptr), [{ - if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) - return ST->isNonTemporal() && !ST->isTruncatingStore() && - ST->getAddressingMode() == ISD::UNINDEXED && - ST->getAlignment() >= 16; - return false; -}]>; - -def unalignednontemporalstore : PatFrag<(ops node:$val, node:$ptr), - (st node:$val, node:$ptr), [{ - if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) - return ST->isNonTemporal() && - ST->getAlignment() < 16; - return false; -}]>; - -def bc_v4f32 : PatFrag<(ops node:$in), (v4f32 (bitconvert node:$in))>; -def bc_v2f64 : PatFrag<(ops node:$in), (v2f64 (bitconvert node:$in))>; -def bc_v16i8 : PatFrag<(ops node:$in), (v16i8 (bitconvert node:$in))>; -def bc_v8i16 : PatFrag<(ops node:$in), (v8i16 (bitconvert node:$in))>; -def bc_v4i32 : PatFrag<(ops node:$in), (v4i32 (bitconvert node:$in))>; -def bc_v2i64 : PatFrag<(ops node:$in), (v2i64 (bitconvert node:$in))>; - -def vzmovl_v2i64 : PatFrag<(ops node:$src), - (bitconvert (v2i64 (X86vzmovl - (v2i64 (scalar_to_vector (loadi64 node:$src))))))>; -def vzmovl_v4i32 : PatFrag<(ops node:$src), - (bitconvert (v4i32 (X86vzmovl - (v4i32 (scalar_to_vector (loadi32 node:$src))))))>; - -def vzload_v2i64 : PatFrag<(ops node:$src), - (bitconvert (v2i64 (X86vzload node:$src)))>; - - -def fp32imm0 : PatLeaf<(f32 fpimm), [{ - return N->isExactlyValue(+0.0); -}]>; - -// BYTE_imm - Transform bit immediates into byte immediates. -def BYTE_imm : SDNodeXForm<imm, [{ - // Transformation function: imm >> 3 - return getI32Imm(N->getZExtValue() >> 3); -}]>; - -// SHUFFLE_get_shuf_imm xform function: convert vector_shuffle mask to PSHUF*, -// SHUFP* etc. imm. -def SHUFFLE_get_shuf_imm : SDNodeXForm<vector_shuffle, [{ - return getI8Imm(X86::getShuffleSHUFImmediate(N)); -}]>; - -// SHUFFLE_get_pshufhw_imm xform function: convert vector_shuffle mask to -// PSHUFHW imm. -def SHUFFLE_get_pshufhw_imm : SDNodeXForm<vector_shuffle, [{ - return getI8Imm(X86::getShufflePSHUFHWImmediate(N)); -}]>; - -// SHUFFLE_get_pshuflw_imm xform function: convert vector_shuffle mask to -// PSHUFLW imm. -def SHUFFLE_get_pshuflw_imm : SDNodeXForm<vector_shuffle, [{ - return getI8Imm(X86::getShufflePSHUFLWImmediate(N)); -}]>; - -// SHUFFLE_get_palign_imm xform function: convert vector_shuffle mask to -// a PALIGNR imm. -def SHUFFLE_get_palign_imm : SDNodeXForm<vector_shuffle, [{ - return getI8Imm(X86::getShufflePALIGNRImmediate(N)); -}]>; - -def splat_lo : PatFrag<(ops node:$lhs, node:$rhs), - (vector_shuffle node:$lhs, node:$rhs), [{ - ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); - return SVOp->isSplat() && SVOp->getSplatIndex() == 0; -}]>; - -def movddup : PatFrag<(ops node:$lhs, node:$rhs), - (vector_shuffle node:$lhs, node:$rhs), [{ - return X86::isMOVDDUPMask(cast<ShuffleVectorSDNode>(N)); -}]>; - -def movhlps : PatFrag<(ops node:$lhs, node:$rhs), - (vector_shuffle node:$lhs, node:$rhs), [{ - return X86::isMOVHLPSMask(cast<ShuffleVectorSDNode>(N)); -}]>; - -def movhlps_undef : PatFrag<(ops node:$lhs, node:$rhs), - (vector_shuffle node:$lhs, node:$rhs), [{ - return X86::isMOVHLPS_v_undef_Mask(cast<ShuffleVectorSDNode>(N)); -}]>; - -def movlhps : PatFrag<(ops node:$lhs, node:$rhs), - (vector_shuffle node:$lhs, node:$rhs), [{ - return X86::isMOVLHPSMask(cast<ShuffleVectorSDNode>(N)); -}]>; - -def movlp : PatFrag<(ops node:$lhs, node:$rhs), - (vector_shuffle node:$lhs, node:$rhs), [{ - return X86::isMOVLPMask(cast<ShuffleVectorSDNode>(N)); -}]>; - -def movl : PatFrag<(ops node:$lhs, node:$rhs), - (vector_shuffle node:$lhs, node:$rhs), [{ - return X86::isMOVLMask(cast<ShuffleVectorSDNode>(N)); -}]>; - -def movshdup : PatFrag<(ops node:$lhs, node:$rhs), - (vector_shuffle node:$lhs, node:$rhs), [{ - return X86::isMOVSHDUPMask(cast<ShuffleVectorSDNode>(N)); -}]>; - -def movsldup : PatFrag<(ops node:$lhs, node:$rhs), - (vector_shuffle node:$lhs, node:$rhs), [{ - return X86::isMOVSLDUPMask(cast<ShuffleVectorSDNode>(N)); -}]>; - -def unpckl : PatFrag<(ops node:$lhs, node:$rhs), - (vector_shuffle node:$lhs, node:$rhs), [{ - return X86::isUNPCKLMask(cast<ShuffleVectorSDNode>(N)); -}]>; - -def unpckh : PatFrag<(ops node:$lhs, node:$rhs), - (vector_shuffle node:$lhs, node:$rhs), [{ - return X86::isUNPCKHMask(cast<ShuffleVectorSDNode>(N)); -}]>; - -def unpckl_undef : PatFrag<(ops node:$lhs, node:$rhs), - (vector_shuffle node:$lhs, node:$rhs), [{ - return X86::isUNPCKL_v_undef_Mask(cast<ShuffleVectorSDNode>(N)); -}]>; - -def unpckh_undef : PatFrag<(ops node:$lhs, node:$rhs), - (vector_shuffle node:$lhs, node:$rhs), [{ - return X86::isUNPCKH_v_undef_Mask(cast<ShuffleVectorSDNode>(N)); -}]>; - -def pshufd : PatFrag<(ops node:$lhs, node:$rhs), - (vector_shuffle node:$lhs, node:$rhs), [{ - return X86::isPSHUFDMask(cast<ShuffleVectorSDNode>(N)); -}], SHUFFLE_get_shuf_imm>; - -def shufp : PatFrag<(ops node:$lhs, node:$rhs), - (vector_shuffle node:$lhs, node:$rhs), [{ - return X86::isSHUFPMask(cast<ShuffleVectorSDNode>(N)); -}], SHUFFLE_get_shuf_imm>; - -def pshufhw : PatFrag<(ops node:$lhs, node:$rhs), - (vector_shuffle node:$lhs, node:$rhs), [{ - return X86::isPSHUFHWMask(cast<ShuffleVectorSDNode>(N)); -}], SHUFFLE_get_pshufhw_imm>; - -def pshuflw : PatFrag<(ops node:$lhs, node:$rhs), - (vector_shuffle node:$lhs, node:$rhs), [{ - return X86::isPSHUFLWMask(cast<ShuffleVectorSDNode>(N)); -}], SHUFFLE_get_pshuflw_imm>; - -def palign : PatFrag<(ops node:$lhs, node:$rhs), - (vector_shuffle node:$lhs, node:$rhs), [{ - return X86::isPALIGNRMask(cast<ShuffleVectorSDNode>(N)); -}], SHUFFLE_get_palign_imm>; - -//===----------------------------------------------------------------------===// // SSE scalar FP Instructions //===----------------------------------------------------------------------===// @@ -368,857 +52,642 @@ let Uses = [EFLAGS], usesCustomInserter = 1 in { } //===----------------------------------------------------------------------===// -// SSE1 Instructions +// SSE 1 & 2 Instructions Classes //===----------------------------------------------------------------------===// -// Move Instructions. Register-to-register movss is not used for FR32 -// register copies because it's a partial register update; FsMOVAPSrr is -// used instead. Register-to-register movss is not modeled as an INSERT_SUBREG -// because INSERT_SUBREG requires that the insert be implementable in terms of -// a copy, and just mentioned, we don't use movss for copies. -let Constraints = "$src1 = $dst" in -def MOVSSrr : SSI<0x10, MRMSrcReg, - (outs VR128:$dst), (ins VR128:$src1, FR32:$src2), - "movss\t{$src2, $dst|$dst, $src2}", - [(set (v4f32 VR128:$dst), - (movl VR128:$src1, (scalar_to_vector FR32:$src2)))]>; +/// sse12_fp_scalar - SSE 1 & 2 scalar instructions class +multiclass sse12_fp_scalar<bits<8> opc, string OpcodeStr, SDNode OpNode, + RegisterClass RC, X86MemOperand x86memop, + bit Is2Addr = 1> { + let isCommutable = 1 in { + def rr : SI<opc, MRMSrcReg, (outs RC:$dst), (ins RC:$src1, RC:$src2), + !if(Is2Addr, + !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"), + !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")), + [(set RC:$dst, (OpNode RC:$src1, RC:$src2))]>; + } + def rm : SI<opc, MRMSrcMem, (outs RC:$dst), (ins RC:$src1, x86memop:$src2), + !if(Is2Addr, + !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"), + !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")), + [(set RC:$dst, (OpNode RC:$src1, (load addr:$src2)))]>; +} + +/// sse12_fp_scalar_int - SSE 1 & 2 scalar instructions intrinsics class +multiclass sse12_fp_scalar_int<bits<8> opc, string OpcodeStr, RegisterClass RC, + string asm, string SSEVer, string FPSizeStr, + Operand memopr, ComplexPattern mem_cpat, + bit Is2Addr = 1> { + def rr_Int : SI<opc, MRMSrcReg, (outs RC:$dst), (ins RC:$src1, RC:$src2), + !if(Is2Addr, + !strconcat(asm, "\t{$src2, $dst|$dst, $src2}"), + !strconcat(asm, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")), + [(set RC:$dst, (!nameconcat<Intrinsic>("int_x86_sse", + !strconcat(SSEVer, !strconcat("_", + !strconcat(OpcodeStr, FPSizeStr)))) + RC:$src1, RC:$src2))]>; + def rm_Int : SI<opc, MRMSrcMem, (outs RC:$dst), (ins RC:$src1, memopr:$src2), + !if(Is2Addr, + !strconcat(asm, "\t{$src2, $dst|$dst, $src2}"), + !strconcat(asm, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")), + [(set RC:$dst, (!nameconcat<Intrinsic>("int_x86_sse", + !strconcat(SSEVer, !strconcat("_", + !strconcat(OpcodeStr, FPSizeStr)))) + RC:$src1, mem_cpat:$src2))]>; +} + +/// sse12_fp_packed - SSE 1 & 2 packed instructions class +multiclass sse12_fp_packed<bits<8> opc, string OpcodeStr, SDNode OpNode, + RegisterClass RC, ValueType vt, + X86MemOperand x86memop, PatFrag mem_frag, + Domain d, bit Is2Addr = 1> { + let isCommutable = 1 in + def rr : PI<opc, MRMSrcReg, (outs RC:$dst), (ins RC:$src1, RC:$src2), + !if(Is2Addr, + !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"), + !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")), + [(set RC:$dst, (vt (OpNode RC:$src1, RC:$src2)))], d>; + let mayLoad = 1 in + def rm : PI<opc, MRMSrcMem, (outs RC:$dst), (ins RC:$src1, x86memop:$src2), + !if(Is2Addr, + !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"), + !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")), + [(set RC:$dst, (OpNode RC:$src1, (mem_frag addr:$src2)))], d>; +} + +/// sse12_fp_packed_logical_rm - SSE 1 & 2 packed instructions class +multiclass sse12_fp_packed_logical_rm<bits<8> opc, RegisterClass RC, Domain d, + string OpcodeStr, X86MemOperand x86memop, + list<dag> pat_rr, list<dag> pat_rm, + bit Is2Addr = 1> { + let isCommutable = 1 in + def rr : PI<opc, MRMSrcReg, (outs RC:$dst), (ins RC:$src1, RC:$src2), + !if(Is2Addr, + !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"), + !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")), + pat_rr, d>; + def rm : PI<opc, MRMSrcMem, (outs RC:$dst), (ins RC:$src1, x86memop:$src2), + !if(Is2Addr, + !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"), + !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")), + pat_rm, d>; +} + +/// sse12_fp_packed_int - SSE 1 & 2 packed instructions intrinsics class +multiclass sse12_fp_packed_int<bits<8> opc, string OpcodeStr, RegisterClass RC, + string asm, string SSEVer, string FPSizeStr, + X86MemOperand x86memop, PatFrag mem_frag, + Domain d, bit Is2Addr = 1> { + def rr_Int : PI<opc, MRMSrcReg, (outs RC:$dst), (ins RC:$src1, RC:$src2), + !if(Is2Addr, + !strconcat(asm, "\t{$src2, $dst|$dst, $src2}"), + !strconcat(asm, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")), + [(set RC:$dst, (!nameconcat<Intrinsic>("int_x86_sse", + !strconcat(SSEVer, !strconcat("_", + !strconcat(OpcodeStr, FPSizeStr)))) + RC:$src1, RC:$src2))], d>; + def rm_Int : PI<opc, MRMSrcMem, (outs RC:$dst), (ins RC:$src1,x86memop:$src2), + !if(Is2Addr, + !strconcat(asm, "\t{$src2, $dst|$dst, $src2}"), + !strconcat(asm, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")), + [(set RC:$dst, (!nameconcat<Intrinsic>("int_x86_sse", + !strconcat(SSEVer, !strconcat("_", + !strconcat(OpcodeStr, FPSizeStr)))) + RC:$src1, (mem_frag addr:$src2)))], d>; +} + +//===----------------------------------------------------------------------===// +// SSE 1 & 2 - Move Instructions +//===----------------------------------------------------------------------===// + +class sse12_move_rr<RegisterClass RC, ValueType vt, string asm> : + SI<0x10, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src1, RC:$src2), asm, + [(set (vt VR128:$dst), (movl VR128:$src1, (scalar_to_vector RC:$src2)))]>; + +// Loading from memory automatically zeroing upper bits. +class sse12_move_rm<RegisterClass RC, X86MemOperand x86memop, + PatFrag mem_pat, string OpcodeStr> : + SI<0x10, MRMSrcMem, (outs RC:$dst), (ins x86memop:$src), + !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"), + [(set RC:$dst, (mem_pat addr:$src))]>; + +// Move Instructions. Register-to-register movss/movsd is not used for FR32/64 +// register copies because it's a partial register update; FsMOVAPSrr/FsMOVAPDrr +// is used instead. Register-to-register movss/movsd is not modeled as an +// INSERT_SUBREG because INSERT_SUBREG requires that the insert be implementable +// in terms of a copy, and just mentioned, we don't use movss/movsd for copies. +let isAsmParserOnly = 1 in { + def VMOVSSrr : sse12_move_rr<FR32, v4f32, + "movss\t{$src2, $src1, $dst|$dst, $src1, $src2}">, XS, VEX_4V; + def VMOVSDrr : sse12_move_rr<FR64, v2f64, + "movsd\t{$src2, $src1, $dst|$dst, $src1, $src2}">, XD, VEX_4V; + + let canFoldAsLoad = 1, isReMaterializable = 1 in { + def VMOVSSrm : sse12_move_rm<FR32, f32mem, loadf32, "movss">, XS, VEX; + + let AddedComplexity = 20 in + def VMOVSDrm : sse12_move_rm<FR64, f64mem, loadf64, "movsd">, XD, VEX; + } +} + +let Constraints = "$src1 = $dst" in { + def MOVSSrr : sse12_move_rr<FR32, v4f32, + "movss\t{$src2, $dst|$dst, $src2}">, XS; + def MOVSDrr : sse12_move_rr<FR64, v2f64, + "movsd\t{$src2, $dst|$dst, $src2}">, XD; +} + +let canFoldAsLoad = 1, isReMaterializable = 1 in { + def MOVSSrm : sse12_move_rm<FR32, f32mem, loadf32, "movss">, XS; + let AddedComplexity = 20 in + def MOVSDrm : sse12_move_rm<FR64, f64mem, loadf64, "movsd">, XD; +} + +let AddedComplexity = 15 in { // Extract the low 32-bit value from one vector and insert it into another. -let AddedComplexity = 15 in def : Pat<(v4f32 (movl VR128:$src1, VR128:$src2)), (MOVSSrr (v4f32 VR128:$src1), (EXTRACT_SUBREG (v4f32 VR128:$src2), sub_ss))>; +// Extract the low 64-bit value from one vector and insert it into another. +def : Pat<(v2f64 (movl VR128:$src1, VR128:$src2)), + (MOVSDrr (v2f64 VR128:$src1), + (EXTRACT_SUBREG (v2f64 VR128:$src2), sub_sd))>; +} // Implicitly promote a 32-bit scalar to a vector. def : Pat<(v4f32 (scalar_to_vector FR32:$src)), (INSERT_SUBREG (v4f32 (IMPLICIT_DEF)), FR32:$src, sub_ss)>; +// Implicitly promote a 64-bit scalar to a vector. +def : Pat<(v2f64 (scalar_to_vector FR64:$src)), + (INSERT_SUBREG (v2f64 (IMPLICIT_DEF)), FR64:$src, sub_sd)>; -// Loading from memory automatically zeroing upper bits. -let canFoldAsLoad = 1, isReMaterializable = 1 in -def MOVSSrm : SSI<0x10, MRMSrcMem, (outs FR32:$dst), (ins f32mem:$src), - "movss\t{$src, $dst|$dst, $src}", - [(set FR32:$dst, (loadf32 addr:$src))]>; - +let AddedComplexity = 20 in { // MOVSSrm zeros the high parts of the register; represent this // with SUBREG_TO_REG. -let AddedComplexity = 20 in { def : Pat<(v4f32 (X86vzmovl (v4f32 (scalar_to_vector (loadf32 addr:$src))))), (SUBREG_TO_REG (i32 0), (MOVSSrm addr:$src), sub_ss)>; def : Pat<(v4f32 (scalar_to_vector (loadf32 addr:$src))), (SUBREG_TO_REG (i32 0), (MOVSSrm addr:$src), sub_ss)>; def : Pat<(v4f32 (X86vzmovl (loadv4f32 addr:$src))), (SUBREG_TO_REG (i32 0), (MOVSSrm addr:$src), sub_ss)>; +// MOVSDrm zeros the high parts of the register; represent this +// with SUBREG_TO_REG. +def : Pat<(v2f64 (X86vzmovl (v2f64 (scalar_to_vector (loadf64 addr:$src))))), + (SUBREG_TO_REG (i64 0), (MOVSDrm addr:$src), sub_sd)>; +def : Pat<(v2f64 (scalar_to_vector (loadf64 addr:$src))), + (SUBREG_TO_REG (i64 0), (MOVSDrm addr:$src), sub_sd)>; +def : Pat<(v2f64 (X86vzmovl (loadv2f64 addr:$src))), + (SUBREG_TO_REG (i64 0), (MOVSDrm addr:$src), sub_sd)>; +def : Pat<(v2f64 (X86vzmovl (bc_v2f64 (loadv4f32 addr:$src)))), + (SUBREG_TO_REG (i64 0), (MOVSDrm addr:$src), sub_sd)>; +def : Pat<(v2f64 (X86vzload addr:$src)), + (SUBREG_TO_REG (i64 0), (MOVSDrm addr:$src), sub_sd)>; } // Store scalar value to memory. def MOVSSmr : SSI<0x11, MRMDestMem, (outs), (ins f32mem:$dst, FR32:$src), "movss\t{$src, $dst|$dst, $src}", [(store FR32:$src, addr:$dst)]>; +def MOVSDmr : SDI<0x11, MRMDestMem, (outs), (ins f64mem:$dst, FR64:$src), + "movsd\t{$src, $dst|$dst, $src}", + [(store FR64:$src, addr:$dst)]>; + +let isAsmParserOnly = 1 in { +def VMOVSSmr : SI<0x11, MRMDestMem, (outs), (ins f32mem:$dst, FR32:$src), + "movss\t{$src, $dst|$dst, $src}", + [(store FR32:$src, addr:$dst)]>, XS, VEX_4V; +def VMOVSDmr : SI<0x11, MRMDestMem, (outs), (ins f64mem:$dst, FR64:$src), + "movsd\t{$src, $dst|$dst, $src}", + [(store FR64:$src, addr:$dst)]>, XD, VEX_4V; +} // Extract and store. def : Pat<(store (f32 (vector_extract (v4f32 VR128:$src), (iPTR 0))), addr:$dst), (MOVSSmr addr:$dst, (EXTRACT_SUBREG (v4f32 VR128:$src), sub_ss))>; +def : Pat<(store (f64 (vector_extract (v2f64 VR128:$src), (iPTR 0))), + addr:$dst), + (MOVSDmr addr:$dst, + (EXTRACT_SUBREG (v2f64 VR128:$src), sub_sd))>; -// Conversion instructions -def CVTTSS2SIrr : SSI<0x2C, MRMSrcReg, (outs GR32:$dst), (ins FR32:$src), - "cvttss2si\t{$src, $dst|$dst, $src}", - [(set GR32:$dst, (fp_to_sint FR32:$src))]>; -def CVTTSS2SIrm : SSI<0x2C, MRMSrcMem, (outs GR32:$dst), (ins f32mem:$src), - "cvttss2si\t{$src, $dst|$dst, $src}", - [(set GR32:$dst, (fp_to_sint (loadf32 addr:$src)))]>; -def CVTSI2SSrr : SSI<0x2A, MRMSrcReg, (outs FR32:$dst), (ins GR32:$src), - "cvtsi2ss\t{$src, $dst|$dst, $src}", - [(set FR32:$dst, (sint_to_fp GR32:$src))]>; -def CVTSI2SSrm : SSI<0x2A, MRMSrcMem, (outs FR32:$dst), (ins i32mem:$src), - "cvtsi2ss\t{$src, $dst|$dst, $src}", - [(set FR32:$dst, (sint_to_fp (loadi32 addr:$src)))]>; - -// Match intrinsics which expect XMM operand(s). -def CVTSS2SIrr: SSI<0x2D, MRMSrcReg, (outs GR32:$dst), (ins FR32:$src), - "cvtss2si{l}\t{$src, $dst|$dst, $src}", []>; -def CVTSS2SIrm: SSI<0x2D, MRMSrcMem, (outs GR32:$dst), (ins f32mem:$src), - "cvtss2si{l}\t{$src, $dst|$dst, $src}", []>; - -def Int_CVTSS2SIrr : SSI<0x2D, MRMSrcReg, (outs GR32:$dst), (ins VR128:$src), - "cvtss2si\t{$src, $dst|$dst, $src}", - [(set GR32:$dst, (int_x86_sse_cvtss2si VR128:$src))]>; -def Int_CVTSS2SIrm : SSI<0x2D, MRMSrcMem, (outs GR32:$dst), (ins f32mem:$src), - "cvtss2si\t{$src, $dst|$dst, $src}", - [(set GR32:$dst, (int_x86_sse_cvtss2si - (load addr:$src)))]>; - -// Match intrinsics which expect MM and XMM operand(s). -def Int_CVTPS2PIrr : PSI<0x2D, MRMSrcReg, (outs VR64:$dst), (ins VR128:$src), - "cvtps2pi\t{$src, $dst|$dst, $src}", - [(set VR64:$dst, (int_x86_sse_cvtps2pi VR128:$src))]>; -def Int_CVTPS2PIrm : PSI<0x2D, MRMSrcMem, (outs VR64:$dst), (ins f64mem:$src), - "cvtps2pi\t{$src, $dst|$dst, $src}", - [(set VR64:$dst, (int_x86_sse_cvtps2pi - (load addr:$src)))]>; -def Int_CVTTPS2PIrr: PSI<0x2C, MRMSrcReg, (outs VR64:$dst), (ins VR128:$src), - "cvttps2pi\t{$src, $dst|$dst, $src}", - [(set VR64:$dst, (int_x86_sse_cvttps2pi VR128:$src))]>; -def Int_CVTTPS2PIrm: PSI<0x2C, MRMSrcMem, (outs VR64:$dst), (ins f64mem:$src), - "cvttps2pi\t{$src, $dst|$dst, $src}", - [(set VR64:$dst, (int_x86_sse_cvttps2pi - (load addr:$src)))]>; -let Constraints = "$src1 = $dst" in { - def Int_CVTPI2PSrr : PSI<0x2A, MRMSrcReg, - (outs VR128:$dst), (ins VR128:$src1, VR64:$src2), - "cvtpi2ps\t{$src2, $dst|$dst, $src2}", - [(set VR128:$dst, (int_x86_sse_cvtpi2ps VR128:$src1, - VR64:$src2))]>; - def Int_CVTPI2PSrm : PSI<0x2A, MRMSrcMem, - (outs VR128:$dst), (ins VR128:$src1, i64mem:$src2), - "cvtpi2ps\t{$src2, $dst|$dst, $src2}", - [(set VR128:$dst, (int_x86_sse_cvtpi2ps VR128:$src1, - (load addr:$src2)))]>; -} - -// Aliases for intrinsics -def Int_CVTTSS2SIrr : SSI<0x2C, MRMSrcReg, (outs GR32:$dst), (ins VR128:$src), - "cvttss2si\t{$src, $dst|$dst, $src}", - [(set GR32:$dst, - (int_x86_sse_cvttss2si VR128:$src))]>; -def Int_CVTTSS2SIrm : SSI<0x2C, MRMSrcMem, (outs GR32:$dst), (ins f32mem:$src), - "cvttss2si\t{$src, $dst|$dst, $src}", - [(set GR32:$dst, - (int_x86_sse_cvttss2si(load addr:$src)))]>; - -let Constraints = "$src1 = $dst" in { - def Int_CVTSI2SSrr : SSI<0x2A, MRMSrcReg, - (outs VR128:$dst), (ins VR128:$src1, GR32:$src2), - "cvtsi2ss\t{$src2, $dst|$dst, $src2}", - [(set VR128:$dst, (int_x86_sse_cvtsi2ss VR128:$src1, - GR32:$src2))]>; - def Int_CVTSI2SSrm : SSI<0x2A, MRMSrcMem, - (outs VR128:$dst), (ins VR128:$src1, i32mem:$src2), - "cvtsi2ss\t{$src2, $dst|$dst, $src2}", - [(set VR128:$dst, (int_x86_sse_cvtsi2ss VR128:$src1, - (loadi32 addr:$src2)))]>; -} - -// Comparison instructions -let Constraints = "$src1 = $dst", neverHasSideEffects = 1 in { - def CMPSSrr : SSIi8<0xC2, MRMSrcReg, - (outs FR32:$dst), (ins FR32:$src1, FR32:$src, SSECC:$cc), - "cmp${cc}ss\t{$src, $dst|$dst, $src}", []>; -let mayLoad = 1 in - def CMPSSrm : SSIi8<0xC2, MRMSrcMem, - (outs FR32:$dst), (ins FR32:$src1, f32mem:$src, SSECC:$cc), - "cmp${cc}ss\t{$src, $dst|$dst, $src}", []>; - - // Accept explicit immediate argument form instead of comparison code. -let isAsmParserOnly = 1 in { - def CMPSSrr_alt : SSIi8<0xC2, MRMSrcReg, - (outs FR32:$dst), (ins FR32:$src1, FR32:$src, i8imm:$src2), - "cmpss\t{$src2, $src, $dst|$dst, $src, $src2}", []>; -let mayLoad = 1 in - def CMPSSrm_alt : SSIi8<0xC2, MRMSrcMem, - (outs FR32:$dst), (ins FR32:$src1, f32mem:$src, i8imm:$src2), - "cmpss\t{$src2, $src, $dst|$dst, $src, $src2}", []>; -} -} - -let Defs = [EFLAGS] in { -def UCOMISSrr: PSI<0x2E, MRMSrcReg, (outs), (ins FR32:$src1, FR32:$src2), - "ucomiss\t{$src2, $src1|$src1, $src2}", - [(set EFLAGS, (X86cmp FR32:$src1, FR32:$src2))]>; -def UCOMISSrm: PSI<0x2E, MRMSrcMem, (outs), (ins FR32:$src1, f32mem:$src2), - "ucomiss\t{$src2, $src1|$src1, $src2}", - [(set EFLAGS, (X86cmp FR32:$src1, (loadf32 addr:$src2)))]>; - -def COMISSrr: PSI<0x2F, MRMSrcReg, (outs), (ins VR128:$src1, VR128:$src2), - "comiss\t{$src2, $src1|$src1, $src2}", []>; -def COMISSrm: PSI<0x2F, MRMSrcMem, (outs), (ins VR128:$src1, f128mem:$src2), - "comiss\t{$src2, $src1|$src1, $src2}", []>; - -} // Defs = [EFLAGS] - -// Aliases to match intrinsics which expect XMM operand(s). -let Constraints = "$src1 = $dst" in { - def Int_CMPSSrr : SSIi8<0xC2, MRMSrcReg, - (outs VR128:$dst), - (ins VR128:$src1, VR128:$src, SSECC:$cc), - "cmp${cc}ss\t{$src, $dst|$dst, $src}", - [(set VR128:$dst, (int_x86_sse_cmp_ss - VR128:$src1, - VR128:$src, imm:$cc))]>; - def Int_CMPSSrm : SSIi8<0xC2, MRMSrcMem, - (outs VR128:$dst), - (ins VR128:$src1, f32mem:$src, SSECC:$cc), - "cmp${cc}ss\t{$src, $dst|$dst, $src}", - [(set VR128:$dst, (int_x86_sse_cmp_ss VR128:$src1, - (load addr:$src), imm:$cc))]>; -} - -let Defs = [EFLAGS] in { -def Int_UCOMISSrr: PSI<0x2E, MRMSrcReg, (outs), (ins VR128:$src1, VR128:$src2), - "ucomiss\t{$src2, $src1|$src1, $src2}", - [(set EFLAGS, (X86ucomi (v4f32 VR128:$src1), - VR128:$src2))]>; -def Int_UCOMISSrm: PSI<0x2E, MRMSrcMem, (outs),(ins VR128:$src1, f128mem:$src2), - "ucomiss\t{$src2, $src1|$src1, $src2}", - [(set EFLAGS, (X86ucomi (v4f32 VR128:$src1), - (load addr:$src2)))]>; - -def Int_COMISSrr: PSI<0x2F, MRMSrcReg, (outs), (ins VR128:$src1, VR128:$src2), - "comiss\t{$src2, $src1|$src1, $src2}", - [(set EFLAGS, (X86comi (v4f32 VR128:$src1), - VR128:$src2))]>; -def Int_COMISSrm: PSI<0x2F, MRMSrcMem, (outs), (ins VR128:$src1, f128mem:$src2), - "comiss\t{$src2, $src1|$src1, $src2}", - [(set EFLAGS, (X86comi (v4f32 VR128:$src1), - (load addr:$src2)))]>; -} // Defs = [EFLAGS] - -// Aliases of packed SSE1 instructions for scalar use. These all have names -// that start with 'Fs'. - -// Alias instructions that map fld0 to pxor for sse. -let isReMaterializable = 1, isAsCheapAsAMove = 1, isCodeGenOnly = 1, - canFoldAsLoad = 1 in - // FIXME: Set encoding to pseudo! -def FsFLD0SS : I<0xEF, MRMInitReg, (outs FR32:$dst), (ins), "", - [(set FR32:$dst, fp32imm0)]>, - Requires<[HasSSE1]>, TB, OpSize; - -// Alias instruction to do FR32 reg-to-reg copy using movaps. Upper bits are -// disregarded. +// Move Aligned/Unaligned floating point values +multiclass sse12_mov_packed<bits<8> opc, RegisterClass RC, + X86MemOperand x86memop, PatFrag ld_frag, + string asm, Domain d, + bit IsReMaterializable = 1> { let neverHasSideEffects = 1 in -def FsMOVAPSrr : PSI<0x28, MRMSrcReg, (outs FR32:$dst), (ins FR32:$src), - "movaps\t{$src, $dst|$dst, $src}", []>; - -// Alias instruction to load FR32 from f128mem using movaps. Upper bits are -// disregarded. -let canFoldAsLoad = 1, isReMaterializable = 1 in -def FsMOVAPSrm : PSI<0x28, MRMSrcMem, (outs FR32:$dst), (ins f128mem:$src), - "movaps\t{$src, $dst|$dst, $src}", - [(set FR32:$dst, (alignedloadfsf32 addr:$src))]>; - -// Alias bitwise logical operations using SSE logical ops on packed FP values. -let Constraints = "$src1 = $dst" in { -let isCommutable = 1 in { - def FsANDPSrr : PSI<0x54, MRMSrcReg, (outs FR32:$dst), - (ins FR32:$src1, FR32:$src2), - "andps\t{$src2, $dst|$dst, $src2}", - [(set FR32:$dst, (X86fand FR32:$src1, FR32:$src2))]>; - def FsORPSrr : PSI<0x56, MRMSrcReg, (outs FR32:$dst), - (ins FR32:$src1, FR32:$src2), - "orps\t{$src2, $dst|$dst, $src2}", - [(set FR32:$dst, (X86for FR32:$src1, FR32:$src2))]>; - def FsXORPSrr : PSI<0x57, MRMSrcReg, (outs FR32:$dst), - (ins FR32:$src1, FR32:$src2), - "xorps\t{$src2, $dst|$dst, $src2}", - [(set FR32:$dst, (X86fxor FR32:$src1, FR32:$src2))]>; -} - -def FsANDPSrm : PSI<0x54, MRMSrcMem, (outs FR32:$dst), - (ins FR32:$src1, f128mem:$src2), - "andps\t{$src2, $dst|$dst, $src2}", - [(set FR32:$dst, (X86fand FR32:$src1, - (memopfsf32 addr:$src2)))]>; -def FsORPSrm : PSI<0x56, MRMSrcMem, (outs FR32:$dst), - (ins FR32:$src1, f128mem:$src2), - "orps\t{$src2, $dst|$dst, $src2}", - [(set FR32:$dst, (X86for FR32:$src1, - (memopfsf32 addr:$src2)))]>; -def FsXORPSrm : PSI<0x57, MRMSrcMem, (outs FR32:$dst), - (ins FR32:$src1, f128mem:$src2), - "xorps\t{$src2, $dst|$dst, $src2}", - [(set FR32:$dst, (X86fxor FR32:$src1, - (memopfsf32 addr:$src2)))]>; - -let neverHasSideEffects = 1 in { -def FsANDNPSrr : PSI<0x55, MRMSrcReg, - (outs FR32:$dst), (ins FR32:$src1, FR32:$src2), - "andnps\t{$src2, $dst|$dst, $src2}", []>; -let mayLoad = 1 in -def FsANDNPSrm : PSI<0x55, MRMSrcMem, - (outs FR32:$dst), (ins FR32:$src1, f128mem:$src2), - "andnps\t{$src2, $dst|$dst, $src2}", []>; -} -} - -/// basic_sse1_fp_binop_rm - SSE1 binops come in both scalar and vector forms. -/// -/// In addition, we also have a special variant of the scalar form here to -/// represent the associated intrinsic operation. This form is unlike the -/// plain scalar form, in that it takes an entire vector (instead of a scalar) -/// and leaves the top elements unmodified (therefore these cannot be commuted). -/// -/// These three forms can each be reg+reg or reg+mem, so there are a total of -/// six "instructions". -/// -let Constraints = "$src1 = $dst" in { -multiclass basic_sse1_fp_binop_rm<bits<8> opc, string OpcodeStr, - SDNode OpNode, Intrinsic F32Int, - bit Commutable = 0> { - // Scalar operation, reg+reg. - def SSrr : SSI<opc, MRMSrcReg, (outs FR32:$dst), (ins FR32:$src1, FR32:$src2), - !strconcat(OpcodeStr, "ss\t{$src2, $dst|$dst, $src2}"), - [(set FR32:$dst, (OpNode FR32:$src1, FR32:$src2))]> { - let isCommutable = Commutable; - } - - // Scalar operation, reg+mem. - def SSrm : SSI<opc, MRMSrcMem, (outs FR32:$dst), - (ins FR32:$src1, f32mem:$src2), - !strconcat(OpcodeStr, "ss\t{$src2, $dst|$dst, $src2}"), - [(set FR32:$dst, (OpNode FR32:$src1, (load addr:$src2)))]>; - - // Vector operation, reg+reg. - def PSrr : PSI<opc, MRMSrcReg, (outs VR128:$dst), - (ins VR128:$src1, VR128:$src2), - !strconcat(OpcodeStr, "ps\t{$src2, $dst|$dst, $src2}"), - [(set VR128:$dst, (v4f32 (OpNode VR128:$src1, VR128:$src2)))]> { - let isCommutable = Commutable; - } - - // Vector operation, reg+mem. - def PSrm : PSI<opc, MRMSrcMem, (outs VR128:$dst), - (ins VR128:$src1, f128mem:$src2), - !strconcat(OpcodeStr, "ps\t{$src2, $dst|$dst, $src2}"), - [(set VR128:$dst, (OpNode VR128:$src1, (memopv4f32 addr:$src2)))]>; - - // Intrinsic operation, reg+reg. - def SSrr_Int : SSI<opc, MRMSrcReg, (outs VR128:$dst), - (ins VR128:$src1, VR128:$src2), - !strconcat(OpcodeStr, "ss\t{$src2, $dst|$dst, $src2}"), - [(set VR128:$dst, (F32Int VR128:$src1, VR128:$src2))]>; - - // Intrinsic operation, reg+mem. - def SSrm_Int : SSI<opc, MRMSrcMem, (outs VR128:$dst), - (ins VR128:$src1, ssmem:$src2), - !strconcat(OpcodeStr, "ss\t{$src2, $dst|$dst, $src2}"), - [(set VR128:$dst, (F32Int VR128:$src1, - sse_load_f32:$src2))]>; + def rr : PI<opc, MRMSrcReg, (outs RC:$dst), (ins RC:$src), + !strconcat(asm, "\t{$src, $dst|$dst, $src}"), [], d>; +let canFoldAsLoad = 1, isReMaterializable = IsReMaterializable in + def rm : PI<opc, MRMSrcMem, (outs RC:$dst), (ins x86memop:$src), + !strconcat(asm, "\t{$src, $dst|$dst, $src}"), + [(set RC:$dst, (ld_frag addr:$src))], d>; } -} - -// Arithmetic instructions -defm ADD : basic_sse1_fp_binop_rm<0x58, "add", fadd, int_x86_sse_add_ss, 1>; -defm MUL : basic_sse1_fp_binop_rm<0x59, "mul", fmul, int_x86_sse_mul_ss, 1>; -defm SUB : basic_sse1_fp_binop_rm<0x5C, "sub", fsub, int_x86_sse_sub_ss>; -defm DIV : basic_sse1_fp_binop_rm<0x5E, "div", fdiv, int_x86_sse_div_ss>; -/// sse1_fp_binop_rm - Other SSE1 binops -/// -/// This multiclass is like basic_sse1_fp_binop_rm, with the addition of -/// instructions for a full-vector intrinsic form. Operations that map -/// onto C operators don't use this form since they just use the plain -/// vector form instead of having a separate vector intrinsic form. -/// -/// This provides a total of eight "instructions". -/// -let Constraints = "$src1 = $dst" in { -multiclass sse1_fp_binop_rm<bits<8> opc, string OpcodeStr, - SDNode OpNode, - Intrinsic F32Int, - Intrinsic V4F32Int, - bit Commutable = 0> { - - // Scalar operation, reg+reg. - def SSrr : SSI<opc, MRMSrcReg, (outs FR32:$dst), (ins FR32:$src1, FR32:$src2), - !strconcat(OpcodeStr, "ss\t{$src2, $dst|$dst, $src2}"), - [(set FR32:$dst, (OpNode FR32:$src1, FR32:$src2))]> { - let isCommutable = Commutable; - } - - // Scalar operation, reg+mem. - def SSrm : SSI<opc, MRMSrcMem, (outs FR32:$dst), - (ins FR32:$src1, f32mem:$src2), - !strconcat(OpcodeStr, "ss\t{$src2, $dst|$dst, $src2}"), - [(set FR32:$dst, (OpNode FR32:$src1, (load addr:$src2)))]>; - - // Vector operation, reg+reg. - def PSrr : PSI<opc, MRMSrcReg, (outs VR128:$dst), - (ins VR128:$src1, VR128:$src2), - !strconcat(OpcodeStr, "ps\t{$src2, $dst|$dst, $src2}"), - [(set VR128:$dst, (v4f32 (OpNode VR128:$src1, VR128:$src2)))]> { - let isCommutable = Commutable; - } - - // Vector operation, reg+mem. - def PSrm : PSI<opc, MRMSrcMem, (outs VR128:$dst), - (ins VR128:$src1, f128mem:$src2), - !strconcat(OpcodeStr, "ps\t{$src2, $dst|$dst, $src2}"), - [(set VR128:$dst, (OpNode VR128:$src1, (memopv4f32 addr:$src2)))]>; - - // Intrinsic operation, reg+reg. - def SSrr_Int : SSI<opc, MRMSrcReg, (outs VR128:$dst), - (ins VR128:$src1, VR128:$src2), - !strconcat(OpcodeStr, "ss\t{$src2, $dst|$dst, $src2}"), - [(set VR128:$dst, (F32Int VR128:$src1, VR128:$src2))]> { - let isCommutable = Commutable; - } - - // Intrinsic operation, reg+mem. - def SSrm_Int : SSI<opc, MRMSrcMem, (outs VR128:$dst), - (ins VR128:$src1, ssmem:$src2), - !strconcat(OpcodeStr, "ss\t{$src2, $dst|$dst, $src2}"), - [(set VR128:$dst, (F32Int VR128:$src1, - sse_load_f32:$src2))]>; - - // Vector intrinsic operation, reg+reg. - def PSrr_Int : PSI<opc, MRMSrcReg, (outs VR128:$dst), - (ins VR128:$src1, VR128:$src2), - !strconcat(OpcodeStr, "ps\t{$src2, $dst|$dst, $src2}"), - [(set VR128:$dst, (V4F32Int VR128:$src1, VR128:$src2))]> { - let isCommutable = Commutable; - } - - // Vector intrinsic operation, reg+mem. - def PSrm_Int : PSI<opc, MRMSrcMem, (outs VR128:$dst), - (ins VR128:$src1, f128mem:$src2), - !strconcat(OpcodeStr, "ps\t{$src2, $dst|$dst, $src2}"), - [(set VR128:$dst, (V4F32Int VR128:$src1, (memopv4f32 addr:$src2)))]>; -} +let isAsmParserOnly = 1 in { +defm VMOVAPS : sse12_mov_packed<0x28, VR128, f128mem, alignedloadv4f32, + "movaps", SSEPackedSingle>, VEX; +defm VMOVAPD : sse12_mov_packed<0x28, VR128, f128mem, alignedloadv2f64, + "movapd", SSEPackedDouble>, OpSize, VEX; +defm VMOVUPS : sse12_mov_packed<0x10, VR128, f128mem, loadv4f32, + "movups", SSEPackedSingle>, VEX; +defm VMOVUPD : sse12_mov_packed<0x10, VR128, f128mem, loadv2f64, + "movupd", SSEPackedDouble, 0>, OpSize, VEX; + +defm VMOVAPSY : sse12_mov_packed<0x28, VR256, f256mem, alignedloadv8f32, + "movaps", SSEPackedSingle>, VEX; +defm VMOVAPDY : sse12_mov_packed<0x28, VR256, f256mem, alignedloadv4f64, + "movapd", SSEPackedDouble>, OpSize, VEX; +defm VMOVUPSY : sse12_mov_packed<0x10, VR256, f256mem, loadv8f32, + "movups", SSEPackedSingle>, VEX; +defm VMOVUPDY : sse12_mov_packed<0x10, VR256, f256mem, loadv4f64, + "movupd", SSEPackedDouble, 0>, OpSize, VEX; } +defm MOVAPS : sse12_mov_packed<0x28, VR128, f128mem, alignedloadv4f32, + "movaps", SSEPackedSingle>, TB; +defm MOVAPD : sse12_mov_packed<0x28, VR128, f128mem, alignedloadv2f64, + "movapd", SSEPackedDouble>, TB, OpSize; +defm MOVUPS : sse12_mov_packed<0x10, VR128, f128mem, loadv4f32, + "movups", SSEPackedSingle>, TB; +defm MOVUPD : sse12_mov_packed<0x10, VR128, f128mem, loadv2f64, + "movupd", SSEPackedDouble, 0>, TB, OpSize; -defm MAX : sse1_fp_binop_rm<0x5F, "max", X86fmax, - int_x86_sse_max_ss, int_x86_sse_max_ps>; -defm MIN : sse1_fp_binop_rm<0x5D, "min", X86fmin, - int_x86_sse_min_ss, int_x86_sse_min_ps>; - -//===----------------------------------------------------------------------===// -// SSE packed FP Instructions - -// Move Instructions -let neverHasSideEffects = 1 in -def MOVAPSrr : PSI<0x28, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), - "movaps\t{$src, $dst|$dst, $src}", []>; -let canFoldAsLoad = 1, isReMaterializable = 1 in -def MOVAPSrm : PSI<0x28, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src), +let isAsmParserOnly = 1 in { +def VMOVAPSmr : VPSI<0x29, MRMDestMem, (outs), (ins f128mem:$dst, VR128:$src), "movaps\t{$src, $dst|$dst, $src}", - [(set VR128:$dst, (alignedloadv4f32 addr:$src))]>; - + [(alignedstore (v4f32 VR128:$src), addr:$dst)]>, VEX; +def VMOVAPDmr : VPDI<0x29, MRMDestMem, (outs), (ins f128mem:$dst, VR128:$src), + "movapd\t{$src, $dst|$dst, $src}", + [(alignedstore (v2f64 VR128:$src), addr:$dst)]>, VEX; +def VMOVUPSmr : VPSI<0x11, MRMDestMem, (outs), (ins f128mem:$dst, VR128:$src), + "movups\t{$src, $dst|$dst, $src}", + [(store (v4f32 VR128:$src), addr:$dst)]>, VEX; +def VMOVUPDmr : VPDI<0x11, MRMDestMem, (outs), (ins f128mem:$dst, VR128:$src), + "movupd\t{$src, $dst|$dst, $src}", + [(store (v2f64 VR128:$src), addr:$dst)]>, VEX; +def VMOVAPSYmr : VPSI<0x29, MRMDestMem, (outs), (ins f256mem:$dst, VR256:$src), + "movaps\t{$src, $dst|$dst, $src}", + [(alignedstore (v8f32 VR256:$src), addr:$dst)]>, VEX; +def VMOVAPDYmr : VPDI<0x29, MRMDestMem, (outs), (ins f256mem:$dst, VR256:$src), + "movapd\t{$src, $dst|$dst, $src}", + [(alignedstore (v4f64 VR256:$src), addr:$dst)]>, VEX; +def VMOVUPSYmr : VPSI<0x11, MRMDestMem, (outs), (ins f256mem:$dst, VR256:$src), + "movups\t{$src, $dst|$dst, $src}", + [(store (v8f32 VR256:$src), addr:$dst)]>, VEX; +def VMOVUPDYmr : VPDI<0x11, MRMDestMem, (outs), (ins f256mem:$dst, VR256:$src), + "movupd\t{$src, $dst|$dst, $src}", + [(store (v4f64 VR256:$src), addr:$dst)]>, VEX; +} def MOVAPSmr : PSI<0x29, MRMDestMem, (outs), (ins f128mem:$dst, VR128:$src), "movaps\t{$src, $dst|$dst, $src}", [(alignedstore (v4f32 VR128:$src), addr:$dst)]>; - -let neverHasSideEffects = 1 in -def MOVUPSrr : PSI<0x10, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), - "movups\t{$src, $dst|$dst, $src}", []>; -let canFoldAsLoad = 1, isReMaterializable = 1 in -def MOVUPSrm : PSI<0x10, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src), - "movups\t{$src, $dst|$dst, $src}", - [(set VR128:$dst, (loadv4f32 addr:$src))]>; +def MOVAPDmr : PDI<0x29, MRMDestMem, (outs), (ins f128mem:$dst, VR128:$src), + "movapd\t{$src, $dst|$dst, $src}", + [(alignedstore (v2f64 VR128:$src), addr:$dst)]>; def MOVUPSmr : PSI<0x11, MRMDestMem, (outs), (ins f128mem:$dst, VR128:$src), "movups\t{$src, $dst|$dst, $src}", [(store (v4f32 VR128:$src), addr:$dst)]>; +def MOVUPDmr : PDI<0x11, MRMDestMem, (outs), (ins f128mem:$dst, VR128:$src), + "movupd\t{$src, $dst|$dst, $src}", + [(store (v2f64 VR128:$src), addr:$dst)]>; -// Intrinsic forms of MOVUPS load and store +// Intrinsic forms of MOVUPS/D load and store +let isAsmParserOnly = 1 in { + let canFoldAsLoad = 1, isReMaterializable = 1 in + def VMOVUPSrm_Int : VPSI<0x10, MRMSrcMem, (outs VR128:$dst), + (ins f128mem:$src), + "movups\t{$src, $dst|$dst, $src}", + [(set VR128:$dst, (int_x86_sse_loadu_ps addr:$src))]>, VEX; + def VMOVUPDrm_Int : VPDI<0x10, MRMSrcMem, (outs VR128:$dst), + (ins f128mem:$src), + "movupd\t{$src, $dst|$dst, $src}", + [(set VR128:$dst, (int_x86_sse2_loadu_pd addr:$src))]>, VEX; + def VMOVUPSmr_Int : VPSI<0x11, MRMDestMem, (outs), + (ins f128mem:$dst, VR128:$src), + "movups\t{$src, $dst|$dst, $src}", + [(int_x86_sse_storeu_ps addr:$dst, VR128:$src)]>, VEX; + def VMOVUPDmr_Int : VPDI<0x11, MRMDestMem, (outs), + (ins f128mem:$dst, VR128:$src), + "movupd\t{$src, $dst|$dst, $src}", + [(int_x86_sse2_storeu_pd addr:$dst, VR128:$src)]>, VEX; +} let canFoldAsLoad = 1, isReMaterializable = 1 in def MOVUPSrm_Int : PSI<0x10, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src), "movups\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (int_x86_sse_loadu_ps addr:$src))]>; +def MOVUPDrm_Int : PDI<0x10, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src), + "movupd\t{$src, $dst|$dst, $src}", + [(set VR128:$dst, (int_x86_sse2_loadu_pd addr:$src))]>; + def MOVUPSmr_Int : PSI<0x11, MRMDestMem, (outs), (ins f128mem:$dst, VR128:$src), "movups\t{$src, $dst|$dst, $src}", [(int_x86_sse_storeu_ps addr:$dst, VR128:$src)]>; +def MOVUPDmr_Int : PDI<0x11, MRMDestMem, (outs), (ins f128mem:$dst, VR128:$src), + "movupd\t{$src, $dst|$dst, $src}", + [(int_x86_sse2_storeu_pd addr:$dst, VR128:$src)]>; -let Constraints = "$src1 = $dst" in { - let AddedComplexity = 20 in { - def MOVLPSrm : PSI<0x12, MRMSrcMem, - (outs VR128:$dst), (ins VR128:$src1, f64mem:$src2), - "movlps\t{$src2, $dst|$dst, $src2}", - [(set VR128:$dst, - (movlp VR128:$src1, - (bc_v4f32 (v2f64 (scalar_to_vector (loadf64 addr:$src2))))))]>; - def MOVHPSrm : PSI<0x16, MRMSrcMem, - (outs VR128:$dst), (ins VR128:$src1, f64mem:$src2), - "movhps\t{$src2, $dst|$dst, $src2}", - [(set VR128:$dst, - (movlhps VR128:$src1, - (bc_v4f32 (v2f64 (scalar_to_vector (loadf64 addr:$src2))))))]>; - } // AddedComplexity -} // Constraints = "$src1 = $dst" - +// Move Low/High packed floating point values +multiclass sse12_mov_hilo_packed<bits<8>opc, RegisterClass RC, + PatFrag mov_frag, string base_opc, + string asm_opr> { + def PSrm : PI<opc, MRMSrcMem, + (outs VR128:$dst), (ins VR128:$src1, f64mem:$src2), + !strconcat(!strconcat(base_opc,"s"), asm_opr), + [(set RC:$dst, + (mov_frag RC:$src1, + (bc_v4f32 (v2f64 (scalar_to_vector (loadf64 addr:$src2))))))], + SSEPackedSingle>, TB; + + def PDrm : PI<opc, MRMSrcMem, + (outs RC:$dst), (ins RC:$src1, f64mem:$src2), + !strconcat(!strconcat(base_opc,"d"), asm_opr), + [(set RC:$dst, (v2f64 (mov_frag RC:$src1, + (scalar_to_vector (loadf64 addr:$src2)))))], + SSEPackedDouble>, TB, OpSize; +} -def : Pat<(movlhps VR128:$src1, (bc_v4i32 (v2i64 (X86vzload addr:$src2)))), - (MOVHPSrm (v4i32 VR128:$src1), addr:$src2)>; +let isAsmParserOnly = 1, AddedComplexity = 20 in { + defm VMOVL : sse12_mov_hilo_packed<0x12, VR128, movlp, "movlp", + "\t{$src2, $src1, $dst|$dst, $src1, $src2}">, VEX_4V; + defm VMOVH : sse12_mov_hilo_packed<0x16, VR128, movlhps, "movhp", + "\t{$src2, $src1, $dst|$dst, $src1, $src2}">, VEX_4V; +} +let Constraints = "$src1 = $dst", AddedComplexity = 20 in { + defm MOVL : sse12_mov_hilo_packed<0x12, VR128, movlp, "movlp", + "\t{$src2, $dst|$dst, $src2}">; + defm MOVH : sse12_mov_hilo_packed<0x16, VR128, movlhps, "movhp", + "\t{$src2, $dst|$dst, $src2}">; +} +let isAsmParserOnly = 1 in { +def VMOVLPSmr : VPSI<0x13, MRMDestMem, (outs), (ins f64mem:$dst, VR128:$src), + "movlps\t{$src, $dst|$dst, $src}", + [(store (f64 (vector_extract (bc_v2f64 (v4f32 VR128:$src)), + (iPTR 0))), addr:$dst)]>, VEX; +def VMOVLPDmr : VPDI<0x13, MRMDestMem, (outs), (ins f64mem:$dst, VR128:$src), + "movlpd\t{$src, $dst|$dst, $src}", + [(store (f64 (vector_extract (v2f64 VR128:$src), + (iPTR 0))), addr:$dst)]>, VEX; +} def MOVLPSmr : PSI<0x13, MRMDestMem, (outs), (ins f64mem:$dst, VR128:$src), "movlps\t{$src, $dst|$dst, $src}", [(store (f64 (vector_extract (bc_v2f64 (v4f32 VR128:$src)), (iPTR 0))), addr:$dst)]>; +def MOVLPDmr : PDI<0x13, MRMDestMem, (outs), (ins f64mem:$dst, VR128:$src), + "movlpd\t{$src, $dst|$dst, $src}", + [(store (f64 (vector_extract (v2f64 VR128:$src), + (iPTR 0))), addr:$dst)]>; // v2f64 extract element 1 is always custom lowered to unpack high to low // and extract element 0 so the non-store version isn't too horrible. +let isAsmParserOnly = 1 in { +def VMOVHPSmr : VPSI<0x17, MRMDestMem, (outs), (ins f64mem:$dst, VR128:$src), + "movhps\t{$src, $dst|$dst, $src}", + [(store (f64 (vector_extract + (unpckh (bc_v2f64 (v4f32 VR128:$src)), + (undef)), (iPTR 0))), addr:$dst)]>, + VEX; +def VMOVHPDmr : VPDI<0x17, MRMDestMem, (outs), (ins f64mem:$dst, VR128:$src), + "movhpd\t{$src, $dst|$dst, $src}", + [(store (f64 (vector_extract + (v2f64 (unpckh VR128:$src, (undef))), + (iPTR 0))), addr:$dst)]>, + VEX; +} def MOVHPSmr : PSI<0x17, MRMDestMem, (outs), (ins f64mem:$dst, VR128:$src), "movhps\t{$src, $dst|$dst, $src}", [(store (f64 (vector_extract (unpckh (bc_v2f64 (v4f32 VR128:$src)), (undef)), (iPTR 0))), addr:$dst)]>; +def MOVHPDmr : PDI<0x17, MRMDestMem, (outs), (ins f64mem:$dst, VR128:$src), + "movhpd\t{$src, $dst|$dst, $src}", + [(store (f64 (vector_extract + (v2f64 (unpckh VR128:$src, (undef))), + (iPTR 0))), addr:$dst)]>; -let Constraints = "$src1 = $dst" in { -let AddedComplexity = 20 in { -def MOVLHPSrr : PSI<0x16, MRMSrcReg, (outs VR128:$dst), - (ins VR128:$src1, VR128:$src2), - "movlhps\t{$src2, $dst|$dst, $src2}", - [(set VR128:$dst, - (v4f32 (movlhps VR128:$src1, VR128:$src2)))]>; - -def MOVHLPSrr : PSI<0x12, MRMSrcReg, (outs VR128:$dst), - (ins VR128:$src1, VR128:$src2), - "movhlps\t{$src2, $dst|$dst, $src2}", - [(set VR128:$dst, - (v4f32 (movhlps VR128:$src1, VR128:$src2)))]>; -} // AddedComplexity -} // Constraints = "$src1 = $dst" +let isAsmParserOnly = 1, AddedComplexity = 20 in { + def VMOVLHPSrr : VPSI<0x16, MRMSrcReg, (outs VR128:$dst), + (ins VR128:$src1, VR128:$src2), + "movlhps\t{$src2, $src1, $dst|$dst, $src1, $src2}", + [(set VR128:$dst, + (v4f32 (movlhps VR128:$src1, VR128:$src2)))]>, + VEX_4V; + def VMOVHLPSrr : VPSI<0x12, MRMSrcReg, (outs VR128:$dst), + (ins VR128:$src1, VR128:$src2), + "movhlps\t{$src2, $src1, $dst|$dst, $src1, $src2}", + [(set VR128:$dst, + (v4f32 (movhlps VR128:$src1, VR128:$src2)))]>, + VEX_4V; +} +let Constraints = "$src1 = $dst", AddedComplexity = 20 in { + def MOVLHPSrr : PSI<0x16, MRMSrcReg, (outs VR128:$dst), + (ins VR128:$src1, VR128:$src2), + "movlhps\t{$src2, $dst|$dst, $src2}", + [(set VR128:$dst, + (v4f32 (movlhps VR128:$src1, VR128:$src2)))]>; + def MOVHLPSrr : PSI<0x12, MRMSrcReg, (outs VR128:$dst), + (ins VR128:$src1, VR128:$src2), + "movhlps\t{$src2, $dst|$dst, $src2}", + [(set VR128:$dst, + (v4f32 (movhlps VR128:$src1, VR128:$src2)))]>; +} +def : Pat<(movlhps VR128:$src1, (bc_v4i32 (v2i64 (X86vzload addr:$src2)))), + (MOVHPSrm (v4i32 VR128:$src1), addr:$src2)>; let AddedComplexity = 20 in { -def : Pat<(v4f32 (movddup VR128:$src, (undef))), - (MOVLHPSrr (v4f32 VR128:$src), (v4f32 VR128:$src))>; -def : Pat<(v2i64 (movddup VR128:$src, (undef))), - (MOVLHPSrr (v2i64 VR128:$src), (v2i64 VR128:$src))>; + def : Pat<(v4f32 (movddup VR128:$src, (undef))), + (MOVLHPSrr (v4f32 VR128:$src), (v4f32 VR128:$src))>; + def : Pat<(v2i64 (movddup VR128:$src, (undef))), + (MOVLHPSrr (v2i64 VR128:$src), (v2i64 VR128:$src))>; } +//===----------------------------------------------------------------------===// +// SSE 1 & 2 - Conversion Instructions +//===----------------------------------------------------------------------===// +multiclass sse12_cvt_s<bits<8> opc, RegisterClass SrcRC, RegisterClass DstRC, + SDNode OpNode, X86MemOperand x86memop, PatFrag ld_frag, + string asm> { + def rr : SI<opc, MRMSrcReg, (outs DstRC:$dst), (ins SrcRC:$src), asm, + [(set DstRC:$dst, (OpNode SrcRC:$src))]>; + def rm : SI<opc, MRMSrcMem, (outs DstRC:$dst), (ins x86memop:$src), asm, + [(set DstRC:$dst, (OpNode (ld_frag addr:$src)))]>; +} -// Arithmetic - -/// sse1_fp_unop_rm - SSE1 unops come in both scalar and vector forms. -/// -/// In addition, we also have a special variant of the scalar form here to -/// represent the associated intrinsic operation. This form is unlike the -/// plain scalar form, in that it takes an entire vector (instead of a -/// scalar) and leaves the top elements undefined. -/// -/// And, we have a special variant form for a full-vector intrinsic form. -/// -/// These four forms can each have a reg or a mem operand, so there are a -/// total of eight "instructions". -/// -multiclass sse1_fp_unop_rm<bits<8> opc, string OpcodeStr, - SDNode OpNode, - Intrinsic F32Int, - Intrinsic V4F32Int, - bit Commutable = 0> { - // Scalar operation, reg. - def SSr : SSI<opc, MRMSrcReg, (outs FR32:$dst), (ins FR32:$src), - !strconcat(OpcodeStr, "ss\t{$src, $dst|$dst, $src}"), - [(set FR32:$dst, (OpNode FR32:$src))]> { - let isCommutable = Commutable; - } - - // Scalar operation, mem. - def SSm : I<opc, MRMSrcMem, (outs FR32:$dst), (ins f32mem:$src), - !strconcat(OpcodeStr, "ss\t{$src, $dst|$dst, $src}"), - [(set FR32:$dst, (OpNode (load addr:$src)))]>, XS, - Requires<[HasSSE1, OptForSize]>; +multiclass sse12_cvt_p<bits<8> opc, RegisterClass SrcRC, RegisterClass DstRC, + SDNode OpNode, X86MemOperand x86memop, PatFrag ld_frag, + string asm, Domain d> { + def rr : PI<opc, MRMSrcReg, (outs DstRC:$dst), (ins SrcRC:$src), asm, + [(set DstRC:$dst, (OpNode SrcRC:$src))], d>; + def rm : PI<opc, MRMSrcMem, (outs DstRC:$dst), (ins x86memop:$src), asm, + [(set DstRC:$dst, (OpNode (ld_frag addr:$src)))], d>; +} - // Vector operation, reg. - def PSr : PSI<opc, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), - !strconcat(OpcodeStr, "ps\t{$src, $dst|$dst, $src}"), - [(set VR128:$dst, (v4f32 (OpNode VR128:$src)))]> { - let isCommutable = Commutable; - } +multiclass sse12_vcvt_avx<bits<8> opc, RegisterClass SrcRC, RegisterClass DstRC, + SDNode OpNode, X86MemOperand x86memop, PatFrag ld_frag, + string asm> { + def rr : SI<opc, MRMSrcReg, (outs DstRC:$dst), (ins DstRC:$src1, SrcRC:$src), + asm, []>; + def rm : SI<opc, MRMSrcMem, (outs DstRC:$dst), + (ins DstRC:$src1, x86memop:$src), asm, []>; +} - // Vector operation, mem. - def PSm : PSI<opc, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src), - !strconcat(OpcodeStr, "ps\t{$src, $dst|$dst, $src}"), - [(set VR128:$dst, (OpNode (memopv4f32 addr:$src)))]>; +let isAsmParserOnly = 1 in { +defm VCVTTSS2SI : sse12_cvt_s<0x2C, FR32, GR32, fp_to_sint, f32mem, loadf32, + "cvttss2si\t{$src, $dst|$dst, $src}">, XS, VEX; +defm VCVTTSD2SI : sse12_cvt_s<0x2C, FR64, GR32, fp_to_sint, f64mem, loadf64, + "cvttsd2si\t{$src, $dst|$dst, $src}">, XD, VEX; +defm VCVTSI2SS : sse12_vcvt_avx<0x2A, GR32, FR32, sint_to_fp, i32mem, loadi32, + "cvtsi2ss\t{$src, $src1, $dst|$dst, $src1, $src}">, XS, + VEX_4V; +defm VCVTSI2SD : sse12_vcvt_avx<0x2A, GR32, FR64, sint_to_fp, i32mem, loadi32, + "cvtsi2sd\t{$src, $src1, $dst|$dst, $src1, $src}">, XD, + VEX_4V; +} - // Intrinsic operation, reg. - def SSr_Int : SSI<opc, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), - !strconcat(OpcodeStr, "ss\t{$src, $dst|$dst, $src}"), - [(set VR128:$dst, (F32Int VR128:$src))]> { - let isCommutable = Commutable; - } +defm CVTTSS2SI : sse12_cvt_s<0x2C, FR32, GR32, fp_to_sint, f32mem, loadf32, + "cvttss2si\t{$src, $dst|$dst, $src}">, XS; +defm CVTTSD2SI : sse12_cvt_s<0x2C, FR64, GR32, fp_to_sint, f64mem, loadf64, + "cvttsd2si\t{$src, $dst|$dst, $src}">, XD; +defm CVTSI2SS : sse12_cvt_s<0x2A, GR32, FR32, sint_to_fp, i32mem, loadi32, + "cvtsi2ss\t{$src, $dst|$dst, $src}">, XS; +defm CVTSI2SD : sse12_cvt_s<0x2A, GR32, FR64, sint_to_fp, i32mem, loadi32, + "cvtsi2sd\t{$src, $dst|$dst, $src}">, XD; + +// Conversion Instructions Intrinsics - Match intrinsics which expect MM +// and/or XMM operand(s). +multiclass sse12_cvt_pint<bits<8> opc, RegisterClass SrcRC, RegisterClass DstRC, + Intrinsic Int, X86MemOperand x86memop, PatFrag ld_frag, + string asm, Domain d> { + def rr : PI<opc, MRMSrcReg, (outs DstRC:$dst), (ins SrcRC:$src), asm, + [(set DstRC:$dst, (Int SrcRC:$src))], d>; + def rm : PI<opc, MRMSrcMem, (outs DstRC:$dst), (ins x86memop:$src), asm, + [(set DstRC:$dst, (Int (ld_frag addr:$src)))], d>; +} - // Intrinsic operation, mem. - def SSm_Int : SSI<opc, MRMSrcMem, (outs VR128:$dst), (ins ssmem:$src), - !strconcat(OpcodeStr, "ss\t{$src, $dst|$dst, $src}"), - [(set VR128:$dst, (F32Int sse_load_f32:$src))]>; +multiclass sse12_cvt_sint<bits<8> opc, RegisterClass SrcRC, RegisterClass DstRC, + Intrinsic Int, X86MemOperand x86memop, PatFrag ld_frag, + string asm> { + def rr : SI<opc, MRMSrcReg, (outs DstRC:$dst), (ins SrcRC:$src), asm, + [(set DstRC:$dst, (Int SrcRC:$src))]>; + def rm : SI<opc, MRMSrcMem, (outs DstRC:$dst), (ins x86memop:$src), asm, + [(set DstRC:$dst, (Int (ld_frag addr:$src)))]>; +} - // Vector intrinsic operation, reg - def PSr_Int : PSI<opc, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), - !strconcat(OpcodeStr, "ps\t{$src, $dst|$dst, $src}"), - [(set VR128:$dst, (V4F32Int VR128:$src))]> { - let isCommutable = Commutable; - } +multiclass sse12_cvt_pint_3addr<bits<8> opc, RegisterClass SrcRC, + RegisterClass DstRC, Intrinsic Int, X86MemOperand x86memop, + PatFrag ld_frag, string asm, Domain d> { + def rr : PI<opc, MRMSrcReg, (outs DstRC:$dst), (ins DstRC:$src1, SrcRC:$src2), + asm, [(set DstRC:$dst, (Int DstRC:$src1, SrcRC:$src2))], d>; + def rm : PI<opc, MRMSrcMem, (outs DstRC:$dst), + (ins DstRC:$src1, x86memop:$src2), asm, + [(set DstRC:$dst, (Int DstRC:$src1, (ld_frag addr:$src2)))], d>; +} - // Vector intrinsic operation, mem - def PSm_Int : PSI<opc, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src), - !strconcat(OpcodeStr, "ps\t{$src, $dst|$dst, $src}"), - [(set VR128:$dst, (V4F32Int (memopv4f32 addr:$src)))]>; +multiclass sse12_cvt_sint_3addr<bits<8> opc, RegisterClass SrcRC, + RegisterClass DstRC, Intrinsic Int, X86MemOperand x86memop, + PatFrag ld_frag, string asm> { + def rr : SI<opc, MRMSrcReg, (outs DstRC:$dst), (ins DstRC:$src1, SrcRC:$src2), + asm, [(set DstRC:$dst, (Int DstRC:$src1, SrcRC:$src2))]>; + def rm : SI<opc, MRMSrcMem, (outs DstRC:$dst), + (ins DstRC:$src1, x86memop:$src2), asm, + [(set DstRC:$dst, (Int DstRC:$src1, (ld_frag addr:$src2)))]>; } -// Square root. -defm SQRT : sse1_fp_unop_rm<0x51, "sqrt", fsqrt, - int_x86_sse_sqrt_ss, int_x86_sse_sqrt_ps>; +let isAsmParserOnly = 1 in { + defm Int_VCVTSS2SI : sse12_cvt_sint<0x2D, VR128, GR32, int_x86_sse_cvtss2si, + f32mem, load, "cvtss2si\t{$src, $dst|$dst, $src}">, XS, + VEX; + defm Int_VCVTSD2SI : sse12_cvt_sint<0x2D, VR128, GR32, int_x86_sse2_cvtsd2si, + f128mem, load, "cvtsd2si\t{$src, $dst|$dst, $src}">, XD, + VEX; +} +defm Int_CVTSS2SI : sse12_cvt_sint<0x2D, VR128, GR32, int_x86_sse_cvtss2si, + f32mem, load, "cvtss2si\t{$src, $dst|$dst, $src}">, XS; +defm Int_CVTSD2SI : sse12_cvt_sint<0x2D, VR128, GR32, int_x86_sse2_cvtsd2si, + f128mem, load, "cvtsd2si\t{$src, $dst|$dst, $src}">, XD; -// Reciprocal approximations. Note that these typically require refinement -// in order to obtain suitable precision. -defm RSQRT : sse1_fp_unop_rm<0x52, "rsqrt", X86frsqrt, - int_x86_sse_rsqrt_ss, int_x86_sse_rsqrt_ps>; -defm RCP : sse1_fp_unop_rm<0x53, "rcp", X86frcp, - int_x86_sse_rcp_ss, int_x86_sse_rcp_ps>; -// Logical let Constraints = "$src1 = $dst" in { - let isCommutable = 1 in { - def ANDPSrr : PSI<0x54, MRMSrcReg, - (outs VR128:$dst), (ins VR128:$src1, VR128:$src2), - "andps\t{$src2, $dst|$dst, $src2}", - [(set VR128:$dst, (v2i64 - (and VR128:$src1, VR128:$src2)))]>; - def ORPSrr : PSI<0x56, MRMSrcReg, - (outs VR128:$dst), (ins VR128:$src1, VR128:$src2), - "orps\t{$src2, $dst|$dst, $src2}", - [(set VR128:$dst, (v2i64 - (or VR128:$src1, VR128:$src2)))]>; - def XORPSrr : PSI<0x57, MRMSrcReg, - (outs VR128:$dst), (ins VR128:$src1, VR128:$src2), - "xorps\t{$src2, $dst|$dst, $src2}", - [(set VR128:$dst, (v2i64 - (xor VR128:$src1, VR128:$src2)))]>; - } - - def ANDPSrm : PSI<0x54, MRMSrcMem, - (outs VR128:$dst), (ins VR128:$src1, f128mem:$src2), - "andps\t{$src2, $dst|$dst, $src2}", - [(set VR128:$dst, (and (bc_v2i64 (v4f32 VR128:$src1)), - (memopv2i64 addr:$src2)))]>; - def ORPSrm : PSI<0x56, MRMSrcMem, - (outs VR128:$dst), (ins VR128:$src1, f128mem:$src2), - "orps\t{$src2, $dst|$dst, $src2}", - [(set VR128:$dst, (or (bc_v2i64 (v4f32 VR128:$src1)), - (memopv2i64 addr:$src2)))]>; - def XORPSrm : PSI<0x57, MRMSrcMem, - (outs VR128:$dst), (ins VR128:$src1, f128mem:$src2), - "xorps\t{$src2, $dst|$dst, $src2}", - [(set VR128:$dst, (xor (bc_v2i64 (v4f32 VR128:$src1)), - (memopv2i64 addr:$src2)))]>; - def ANDNPSrr : PSI<0x55, MRMSrcReg, - (outs VR128:$dst), (ins VR128:$src1, VR128:$src2), - "andnps\t{$src2, $dst|$dst, $src2}", - [(set VR128:$dst, - (v2i64 (and (xor VR128:$src1, - (bc_v2i64 (v4i32 immAllOnesV))), - VR128:$src2)))]>; - def ANDNPSrm : PSI<0x55, MRMSrcMem, - (outs VR128:$dst), (ins VR128:$src1,f128mem:$src2), - "andnps\t{$src2, $dst|$dst, $src2}", - [(set VR128:$dst, - (v2i64 (and (xor (bc_v2i64 (v4f32 VR128:$src1)), - (bc_v2i64 (v4i32 immAllOnesV))), - (memopv2i64 addr:$src2))))]>; + defm Int_CVTSI2SS : sse12_cvt_sint_3addr<0x2A, GR32, VR128, + int_x86_sse_cvtsi2ss, i32mem, loadi32, + "cvtsi2ss\t{$src2, $dst|$dst, $src2}">, XS; + defm Int_CVTSI2SD : sse12_cvt_sint_3addr<0x2A, GR32, VR128, + int_x86_sse2_cvtsi2sd, i32mem, loadi32, + "cvtsi2ss\t{$src2, $dst|$dst, $src2}">, XD; } +// Instructions below don't have an AVX form. +defm Int_CVTPS2PI : sse12_cvt_pint<0x2D, VR128, VR64, int_x86_sse_cvtps2pi, + f64mem, load, "cvtps2pi\t{$src, $dst|$dst, $src}", + SSEPackedSingle>, TB; +defm Int_CVTPD2PI : sse12_cvt_pint<0x2D, VR128, VR64, int_x86_sse_cvtpd2pi, + f128mem, memop, "cvtpd2pi\t{$src, $dst|$dst, $src}", + SSEPackedDouble>, TB, OpSize; +defm Int_CVTTPS2PI : sse12_cvt_pint<0x2C, VR128, VR64, int_x86_sse_cvttps2pi, + f64mem, load, "cvttps2pi\t{$src, $dst|$dst, $src}", + SSEPackedSingle>, TB; +defm Int_CVTTPD2PI : sse12_cvt_pint<0x2C, VR128, VR64, int_x86_sse_cvttpd2pi, + f128mem, memop, "cvttpd2pi\t{$src, $dst|$dst, $src}", + SSEPackedDouble>, TB, OpSize; +defm Int_CVTPI2PD : sse12_cvt_pint<0x2A, VR64, VR128, int_x86_sse_cvtpi2pd, + i64mem, load, "cvtpi2pd\t{$src, $dst|$dst, $src}", + SSEPackedDouble>, TB, OpSize; let Constraints = "$src1 = $dst" in { - def CMPPSrri : PSIi8<0xC2, MRMSrcReg, - (outs VR128:$dst), (ins VR128:$src1, VR128:$src, SSECC:$cc), - "cmp${cc}ps\t{$src, $dst|$dst, $src}", - [(set VR128:$dst, (int_x86_sse_cmp_ps VR128:$src1, - VR128:$src, imm:$cc))]>; - def CMPPSrmi : PSIi8<0xC2, MRMSrcMem, - (outs VR128:$dst), (ins VR128:$src1, f128mem:$src, SSECC:$cc), - "cmp${cc}ps\t{$src, $dst|$dst, $src}", - [(set VR128:$dst, (int_x86_sse_cmp_ps VR128:$src1, - (memop addr:$src), imm:$cc))]>; - - // Accept explicit immediate argument form instead of comparison code. -let isAsmParserOnly = 1 in { - def CMPPSrri_alt : PSIi8<0xC2, MRMSrcReg, - (outs VR128:$dst), (ins VR128:$src1, VR128:$src, i8imm:$src2), - "cmpps\t{$src2, $src, $dst|$dst, $src, $src}", []>; - def CMPPSrmi_alt : PSIi8<0xC2, MRMSrcMem, - (outs VR128:$dst), (ins VR128:$src1, f128mem:$src, i8imm:$src2), - "cmpps\t{$src2, $src, $dst|$dst, $src, $src}", []>; + defm Int_CVTPI2PS : sse12_cvt_pint_3addr<0x2A, VR64, VR128, + int_x86_sse_cvtpi2ps, + i64mem, load, "cvtpi2ps\t{$src2, $dst|$dst, $src2}", + SSEPackedSingle>, TB; } -} -def : Pat<(v4i32 (X86cmpps (v4f32 VR128:$src1), VR128:$src2, imm:$cc)), - (CMPPSrri (v4f32 VR128:$src1), (v4f32 VR128:$src2), imm:$cc)>; -def : Pat<(v4i32 (X86cmpps (v4f32 VR128:$src1), (memop addr:$src2), imm:$cc)), - (CMPPSrmi (v4f32 VR128:$src1), addr:$src2, imm:$cc)>; - -// Shuffle and unpack instructions -let Constraints = "$src1 = $dst" in { - let isConvertibleToThreeAddress = 1 in // Convert to pshufd - def SHUFPSrri : PSIi8<0xC6, MRMSrcReg, - (outs VR128:$dst), (ins VR128:$src1, - VR128:$src2, i8imm:$src3), - "shufps\t{$src3, $src2, $dst|$dst, $src2, $src3}", - [(set VR128:$dst, - (v4f32 (shufp:$src3 VR128:$src1, VR128:$src2)))]>; - def SHUFPSrmi : PSIi8<0xC6, MRMSrcMem, - (outs VR128:$dst), (ins VR128:$src1, - f128mem:$src2, i8imm:$src3), - "shufps\t{$src3, $src2, $dst|$dst, $src2, $src3}", - [(set VR128:$dst, - (v4f32 (shufp:$src3 - VR128:$src1, (memopv4f32 addr:$src2))))]>; - - let AddedComplexity = 10 in { - def UNPCKHPSrr : PSI<0x15, MRMSrcReg, - (outs VR128:$dst), (ins VR128:$src1, VR128:$src2), - "unpckhps\t{$src2, $dst|$dst, $src2}", - [(set VR128:$dst, - (v4f32 (unpckh VR128:$src1, VR128:$src2)))]>; - def UNPCKHPSrm : PSI<0x15, MRMSrcMem, - (outs VR128:$dst), (ins VR128:$src1, f128mem:$src2), - "unpckhps\t{$src2, $dst|$dst, $src2}", - [(set VR128:$dst, - (v4f32 (unpckh VR128:$src1, - (memopv4f32 addr:$src2))))]>; - - def UNPCKLPSrr : PSI<0x14, MRMSrcReg, - (outs VR128:$dst), (ins VR128:$src1, VR128:$src2), - "unpcklps\t{$src2, $dst|$dst, $src2}", - [(set VR128:$dst, - (v4f32 (unpckl VR128:$src1, VR128:$src2)))]>; - def UNPCKLPSrm : PSI<0x14, MRMSrcMem, - (outs VR128:$dst), (ins VR128:$src1, f128mem:$src2), - "unpcklps\t{$src2, $dst|$dst, $src2}", - [(set VR128:$dst, - (unpckl VR128:$src1, (memopv4f32 addr:$src2)))]>; - } // AddedComplexity -} // Constraints = "$src1 = $dst" - -// Mask creation -def MOVMSKPSrr : PSI<0x50, MRMSrcReg, (outs GR32:$dst), (ins VR128:$src), - "movmskps\t{$src, $dst|$dst, $src}", - [(set GR32:$dst, (int_x86_sse_movmsk_ps VR128:$src))]>; -def MOVMSKPDrr : PDI<0x50, MRMSrcReg, (outs GR32:$dst), (ins VR128:$src), - "movmskpd\t{$src, $dst|$dst, $src}", - [(set GR32:$dst, (int_x86_sse2_movmsk_pd VR128:$src))]>; - -// Prefetch intrinsic. -def PREFETCHT0 : PSI<0x18, MRM1m, (outs), (ins i8mem:$src), - "prefetcht0\t$src", [(prefetch addr:$src, imm, (i32 3))]>; -def PREFETCHT1 : PSI<0x18, MRM2m, (outs), (ins i8mem:$src), - "prefetcht1\t$src", [(prefetch addr:$src, imm, (i32 2))]>; -def PREFETCHT2 : PSI<0x18, MRM3m, (outs), (ins i8mem:$src), - "prefetcht2\t$src", [(prefetch addr:$src, imm, (i32 1))]>; -def PREFETCHNTA : PSI<0x18, MRM0m, (outs), (ins i8mem:$src), - "prefetchnta\t$src", [(prefetch addr:$src, imm, (i32 0))]>; -// Non-temporal stores -def MOVNTPSmr_Int : PSI<0x2B, MRMDestMem, (outs), (ins i128mem:$dst, VR128:$src), - "movntps\t{$src, $dst|$dst, $src}", - [(int_x86_sse_movnt_ps addr:$dst, VR128:$src)]>; +/// SSE 1 Only -let AddedComplexity = 400 in { // Prefer non-temporal versions -def MOVNTPSmr : PSI<0x2B, MRMDestMem, (outs), (ins f128mem:$dst, VR128:$src), - "movntps\t{$src, $dst|$dst, $src}", - [(alignednontemporalstore (v4f32 VR128:$src), addr:$dst)]>; - -def MOVNTDQ_64mr : PDI<0xE7, MRMDestMem, (outs), (ins f128mem:$dst, VR128:$src), - "movntdq\t{$src, $dst|$dst, $src}", - [(alignednontemporalstore (v2f64 VR128:$src), addr:$dst)]>; - -def MOVNTImr : I<0xC3, MRMDestMem, (outs), (ins i32mem:$dst, GR32:$src), - "movnti\t{$src, $dst|$dst, $src}", - [(nontemporalstore (i32 GR32:$src), addr:$dst)]>, - TB, Requires<[HasSSE2]>; - -def MOVNTI_64mr : RI<0xC3, MRMDestMem, (outs), (ins i64mem:$dst, GR64:$src), - "movnti\t{$src, $dst|$dst, $src}", - [(nontemporalstore (i64 GR64:$src), addr:$dst)]>, - TB, Requires<[HasSSE2]>; +// Aliases for intrinsics +let isAsmParserOnly = 1, Pattern = []<dag> in { +defm Int_VCVTTSS2SI : sse12_cvt_sint_3addr<0x2C, VR128, GR32, + int_x86_sse_cvttss2si, f32mem, load, + "cvttss2si\t{$src2, $src1, $dst|$dst, $src1, $src2}">, XS; +defm Int_VCVTTSD2SI : sse12_cvt_sint_3addr<0x2C, VR128, GR32, + int_x86_sse2_cvttsd2si, f128mem, load, + "cvttss2si\t{$src2, $src1, $dst|$dst, $src1, $src2}">, XD; } - -// Load, store, and memory fence -def SFENCE : I<0xAE, MRM_F8, (outs), (ins), "sfence", [(int_x86_sse_sfence)]>, - TB, Requires<[HasSSE1]>; - -// MXCSR register -def LDMXCSR : PSI<0xAE, MRM2m, (outs), (ins i32mem:$src), - "ldmxcsr\t$src", [(int_x86_sse_ldmxcsr addr:$src)]>; -def STMXCSR : PSI<0xAE, MRM3m, (outs), (ins i32mem:$dst), - "stmxcsr\t$dst", [(int_x86_sse_stmxcsr addr:$dst)]>; - -// Alias instructions that map zero vector to pxor / xorp* for sse. -// We set canFoldAsLoad because this can be converted to a constant-pool -// load of an all-zeros value if folding it would be beneficial. -// FIXME: Change encoding to pseudo! -let isReMaterializable = 1, isAsCheapAsAMove = 1, canFoldAsLoad = 1, - isCodeGenOnly = 1 in { -def V_SET0PS : PSI<0x57, MRMInitReg, (outs VR128:$dst), (ins), "", - [(set VR128:$dst, (v4f32 immAllZerosV))]>; -def V_SET0PD : PDI<0x57, MRMInitReg, (outs VR128:$dst), (ins), "", - [(set VR128:$dst, (v2f64 immAllZerosV))]>; -let ExeDomain = SSEPackedInt in -def V_SET0PI : PDI<0xEF, MRMInitReg, (outs VR128:$dst), (ins), "", - [(set VR128:$dst, (v4i32 immAllZerosV))]>; +defm Int_CVTTSS2SI : sse12_cvt_sint<0x2C, VR128, GR32, int_x86_sse_cvttss2si, + f32mem, load, "cvttss2si\t{$src, $dst|$dst, $src}">, + XS; +defm Int_CVTTSD2SI : sse12_cvt_sint<0x2C, VR128, GR32, int_x86_sse2_cvttsd2si, + f128mem, load, "cvttss2si\t{$src, $dst|$dst, $src}">, + XD; + +let isAsmParserOnly = 1, Pattern = []<dag> in { +defm VCVTSS2SI : sse12_cvt_s<0x2D, FR32, GR32, undef, f32mem, load, + "cvtss2si{l}\t{$src, $dst|$dst, $src}">, XS, VEX; +defm VCVTDQ2PS : sse12_cvt_p<0x5B, VR128, VR128, undef, f128mem, load, + "cvtdq2ps\t{$src, $dst|$dst, $src}", + SSEPackedSingle>, TB, VEX; } - -def : Pat<(v2i64 immAllZerosV), (V_SET0PI)>; -def : Pat<(v8i16 immAllZerosV), (V_SET0PI)>; -def : Pat<(v16i8 immAllZerosV), (V_SET0PI)>; - -def : Pat<(f32 (vector_extract (v4f32 VR128:$src), (iPTR 0))), - (f32 (EXTRACT_SUBREG (v4f32 VR128:$src), sub_ss))>; - -//===---------------------------------------------------------------------===// -// SSE2 Instructions -//===---------------------------------------------------------------------===// - -// Move Instructions. Register-to-register movsd is not used for FR64 -// register copies because it's a partial register update; FsMOVAPDrr is -// used instead. Register-to-register movsd is not modeled as an INSERT_SUBREG -// because INSERT_SUBREG requires that the insert be implementable in terms of -// a copy, and just mentioned, we don't use movsd for copies. -let Constraints = "$src1 = $dst" in -def MOVSDrr : SDI<0x10, MRMSrcReg, - (outs VR128:$dst), (ins VR128:$src1, FR64:$src2), - "movsd\t{$src2, $dst|$dst, $src2}", - [(set (v2f64 VR128:$dst), - (movl VR128:$src1, (scalar_to_vector FR64:$src2)))]>; - -// Extract the low 64-bit value from one vector and insert it into another. -let AddedComplexity = 15 in -def : Pat<(v2f64 (movl VR128:$src1, VR128:$src2)), - (MOVSDrr (v2f64 VR128:$src1), - (EXTRACT_SUBREG (v2f64 VR128:$src2), sub_sd))>; - -// Implicitly promote a 64-bit scalar to a vector. -def : Pat<(v2f64 (scalar_to_vector FR64:$src)), - (INSERT_SUBREG (v2f64 (IMPLICIT_DEF)), FR64:$src, sub_sd)>; - -// Loading from memory automatically zeroing upper bits. -let canFoldAsLoad = 1, isReMaterializable = 1, AddedComplexity = 20 in -def MOVSDrm : SDI<0x10, MRMSrcMem, (outs FR64:$dst), (ins f64mem:$src), - "movsd\t{$src, $dst|$dst, $src}", - [(set FR64:$dst, (loadf64 addr:$src))]>; - -// MOVSDrm zeros the high parts of the register; represent this -// with SUBREG_TO_REG. -let AddedComplexity = 20 in { -def : Pat<(v2f64 (X86vzmovl (v2f64 (scalar_to_vector (loadf64 addr:$src))))), - (SUBREG_TO_REG (i64 0), (MOVSDrm addr:$src), sub_sd)>; -def : Pat<(v2f64 (scalar_to_vector (loadf64 addr:$src))), - (SUBREG_TO_REG (i64 0), (MOVSDrm addr:$src), sub_sd)>; -def : Pat<(v2f64 (X86vzmovl (loadv2f64 addr:$src))), - (SUBREG_TO_REG (i64 0), (MOVSDrm addr:$src), sub_sd)>; -def : Pat<(v2f64 (X86vzmovl (bc_v2f64 (loadv4f32 addr:$src)))), - (SUBREG_TO_REG (i64 0), (MOVSDrm addr:$src), sub_sd)>; -def : Pat<(v2f64 (X86vzload addr:$src)), - (SUBREG_TO_REG (i64 0), (MOVSDrm addr:$src), sub_sd)>; +let Pattern = []<dag> in { +defm CVTSS2SI : sse12_cvt_s<0x2D, FR32, GR32, undef, f32mem, load /*dummy*/, + "cvtss2si{l}\t{$src, $dst|$dst, $src}">, XS; +defm CVTDQ2PS : sse12_cvt_p<0x5B, VR128, VR128, undef, f128mem, load /*dummy*/, + "cvtdq2ps\t{$src, $dst|$dst, $src}", + SSEPackedSingle>, TB; /* PD SSE3 form is avaiable */ } -// Store scalar value to memory. -def MOVSDmr : SDI<0x11, MRMDestMem, (outs), (ins f64mem:$dst, FR64:$src), - "movsd\t{$src, $dst|$dst, $src}", - [(store FR64:$src, addr:$dst)]>; - -// Extract and store. -def : Pat<(store (f64 (vector_extract (v2f64 VR128:$src), (iPTR 0))), - addr:$dst), - (MOVSDmr addr:$dst, - (EXTRACT_SUBREG (v2f64 VR128:$src), sub_sd))>; +/// SSE 2 Only -// Conversion instructions -def CVTTSD2SIrr : SDI<0x2C, MRMSrcReg, (outs GR32:$dst), (ins FR64:$src), - "cvttsd2si\t{$src, $dst|$dst, $src}", - [(set GR32:$dst, (fp_to_sint FR64:$src))]>; -def CVTTSD2SIrm : SDI<0x2C, MRMSrcMem, (outs GR32:$dst), (ins f64mem:$src), - "cvttsd2si\t{$src, $dst|$dst, $src}", - [(set GR32:$dst, (fp_to_sint (loadf64 addr:$src)))]>; +// Convert scalar double to scalar single +let isAsmParserOnly = 1 in { +def VCVTSD2SSrr : VSDI<0x5A, MRMSrcReg, (outs FR32:$dst), + (ins FR64:$src1, FR64:$src2), + "cvtsd2ss\t{$src2, $src1, $dst|$dst, $src1, $src2}", []>, + VEX_4V; +def VCVTSD2SSrm : I<0x5A, MRMSrcMem, (outs FR32:$dst), + (ins FR64:$src1, f64mem:$src2), + "vcvtsd2ss\t{$src2, $src1, $dst|$dst, $src1, $src2}", + []>, XD, Requires<[HasAVX, OptForSize]>, VEX_4V; +} def CVTSD2SSrr : SDI<0x5A, MRMSrcReg, (outs FR32:$dst), (ins FR64:$src), "cvtsd2ss\t{$src, $dst|$dst, $src}", [(set FR32:$dst, (fround FR64:$src))]>; @@ -1226,35 +695,28 @@ def CVTSD2SSrm : I<0x5A, MRMSrcMem, (outs FR32:$dst), (ins f64mem:$src), "cvtsd2ss\t{$src, $dst|$dst, $src}", [(set FR32:$dst, (fround (loadf64 addr:$src)))]>, XD, Requires<[HasSSE2, OptForSize]>; -def CVTSI2SDrr : SDI<0x2A, MRMSrcReg, (outs FR64:$dst), (ins GR32:$src), - "cvtsi2sd\t{$src, $dst|$dst, $src}", - [(set FR64:$dst, (sint_to_fp GR32:$src))]>; -def CVTSI2SDrm : SDI<0x2A, MRMSrcMem, (outs FR64:$dst), (ins i32mem:$src), - "cvtsi2sd\t{$src, $dst|$dst, $src}", - [(set FR64:$dst, (sint_to_fp (loadi32 addr:$src)))]>; -def CVTPD2DQrm : S3DI<0xE6, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src), - "cvtpd2dq\t{$src, $dst|$dst, $src}", []>; -def CVTPD2DQrr : S3DI<0xE6, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), - "cvtpd2dq\t{$src, $dst|$dst, $src}", []>; -def CVTDQ2PDrm : S3SI<0xE6, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src), - "cvtdq2pd\t{$src, $dst|$dst, $src}", []>; -def CVTDQ2PDrr : S3SI<0xE6, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), - "cvtdq2pd\t{$src, $dst|$dst, $src}", []>; -def CVTPS2DQrr : PDI<0x5B, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), - "cvtps2dq\t{$src, $dst|$dst, $src}", []>; -def CVTPS2DQrm : PDI<0x5B, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src), - "cvtps2dq\t{$src, $dst|$dst, $src}", []>; -def CVTDQ2PSrr : PSI<0x5B, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), - "cvtdq2ps\t{$src, $dst|$dst, $src}", []>; -def CVTDQ2PSrm : PSI<0x5B, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src), - "cvtdq2ps\t{$src, $dst|$dst, $src}", []>; -def COMISDrr: PDI<0x2F, MRMSrcReg, (outs), (ins VR128:$src1, VR128:$src2), - "comisd\t{$src2, $src1|$src1, $src2}", []>; -def COMISDrm: PDI<0x2F, MRMSrcMem, (outs), (ins VR128:$src1, f128mem:$src2), - "comisd\t{$src2, $src1|$src1, $src2}", []>; - -// SSE2 instructions with XS prefix +let isAsmParserOnly = 1 in +defm Int_VCVTSD2SS: sse12_cvt_sint_3addr<0x5A, VR128, VR128, + int_x86_sse2_cvtsd2ss, f64mem, load, + "cvtsd2ss\t{$src2, $src1, $dst|$dst, $src1, $src2}">, + XS, VEX_4V; +let Constraints = "$src1 = $dst" in +defm Int_CVTSD2SS: sse12_cvt_sint_3addr<0x5A, VR128, VR128, + int_x86_sse2_cvtsd2ss, f64mem, load, + "cvtsd2ss\t{$src2, $dst|$dst, $src2}">, XS; + +// Convert scalar single to scalar double +let isAsmParserOnly = 1 in { // SSE2 instructions with XS prefix +def VCVTSS2SDrr : I<0x5A, MRMSrcReg, (outs FR64:$dst), + (ins FR32:$src1, FR32:$src2), + "vcvtss2sd\t{$src2, $src1, $dst|$dst, $src1, $src2}", + []>, XS, Requires<[HasAVX]>, VEX_4V; +def VCVTSS2SDrm : I<0x5A, MRMSrcMem, (outs FR64:$dst), + (ins FR32:$src1, f32mem:$src2), + "vcvtss2sd\t{$src2, $src1, $dst|$dst, $src1, $src2}", + []>, XS, VEX_4V, Requires<[HasAVX, OptForSize]>; +} def CVTSS2SDrr : I<0x5A, MRMSrcReg, (outs FR64:$dst), (ins FR32:$src), "cvtss2sd\t{$src, $dst|$dst, $src}", [(set FR64:$dst, (fextend FR32:$src))]>, XS, @@ -1264,394 +726,51 @@ def CVTSS2SDrm : I<0x5A, MRMSrcMem, (outs FR64:$dst), (ins f32mem:$src), [(set FR64:$dst, (extloadf32 addr:$src))]>, XS, Requires<[HasSSE2, OptForSize]>; -def : Pat<(extloadf32 addr:$src), - (CVTSS2SDrr (MOVSSrm addr:$src))>, - Requires<[HasSSE2, OptForSpeed]>; - -// Match intrinsics which expect XMM operand(s). -def Int_CVTSD2SIrr : SDI<0x2D, MRMSrcReg, (outs GR32:$dst), (ins VR128:$src), - "cvtsd2si\t{$src, $dst|$dst, $src}", - [(set GR32:$dst, (int_x86_sse2_cvtsd2si VR128:$src))]>; -def Int_CVTSD2SIrm : SDI<0x2D, MRMSrcMem, (outs GR32:$dst), (ins f128mem:$src), - "cvtsd2si\t{$src, $dst|$dst, $src}", - [(set GR32:$dst, (int_x86_sse2_cvtsd2si - (load addr:$src)))]>; - -// Match intrinsics which expect MM and XMM operand(s). -def Int_CVTPD2PIrr : PDI<0x2D, MRMSrcReg, (outs VR64:$dst), (ins VR128:$src), - "cvtpd2pi\t{$src, $dst|$dst, $src}", - [(set VR64:$dst, (int_x86_sse_cvtpd2pi VR128:$src))]>; -def Int_CVTPD2PIrm : PDI<0x2D, MRMSrcMem, (outs VR64:$dst), (ins f128mem:$src), - "cvtpd2pi\t{$src, $dst|$dst, $src}", - [(set VR64:$dst, (int_x86_sse_cvtpd2pi - (memop addr:$src)))]>; -def Int_CVTTPD2PIrr: PDI<0x2C, MRMSrcReg, (outs VR64:$dst), (ins VR128:$src), - "cvttpd2pi\t{$src, $dst|$dst, $src}", - [(set VR64:$dst, (int_x86_sse_cvttpd2pi VR128:$src))]>; -def Int_CVTTPD2PIrm: PDI<0x2C, MRMSrcMem, (outs VR64:$dst), (ins f128mem:$src), - "cvttpd2pi\t{$src, $dst|$dst, $src}", - [(set VR64:$dst, (int_x86_sse_cvttpd2pi - (memop addr:$src)))]>; -def Int_CVTPI2PDrr : PDI<0x2A, MRMSrcReg, (outs VR128:$dst), (ins VR64:$src), - "cvtpi2pd\t{$src, $dst|$dst, $src}", - [(set VR128:$dst, (int_x86_sse_cvtpi2pd VR64:$src))]>; -def Int_CVTPI2PDrm : PDI<0x2A, MRMSrcMem, (outs VR128:$dst), (ins i64mem:$src), - "cvtpi2pd\t{$src, $dst|$dst, $src}", - [(set VR128:$dst, (int_x86_sse_cvtpi2pd - (load addr:$src)))]>; - -// Aliases for intrinsics -def Int_CVTTSD2SIrr : SDI<0x2C, MRMSrcReg, (outs GR32:$dst), (ins VR128:$src), - "cvttsd2si\t{$src, $dst|$dst, $src}", - [(set GR32:$dst, - (int_x86_sse2_cvttsd2si VR128:$src))]>; -def Int_CVTTSD2SIrm : SDI<0x2C, MRMSrcMem, (outs GR32:$dst), (ins f128mem:$src), - "cvttsd2si\t{$src, $dst|$dst, $src}", - [(set GR32:$dst, (int_x86_sse2_cvttsd2si - (load addr:$src)))]>; - -// Comparison instructions -let Constraints = "$src1 = $dst", neverHasSideEffects = 1 in { - def CMPSDrr : SDIi8<0xC2, MRMSrcReg, - (outs FR64:$dst), (ins FR64:$src1, FR64:$src, SSECC:$cc), - "cmp${cc}sd\t{$src, $dst|$dst, $src}", []>; -let mayLoad = 1 in - def CMPSDrm : SDIi8<0xC2, MRMSrcMem, - (outs FR64:$dst), (ins FR64:$src1, f64mem:$src, SSECC:$cc), - "cmp${cc}sd\t{$src, $dst|$dst, $src}", []>; - - // Accept explicit immediate argument form instead of comparison code. let isAsmParserOnly = 1 in { - def CMPSDrr_alt : SDIi8<0xC2, MRMSrcReg, - (outs FR64:$dst), (ins FR64:$src1, FR64:$src, i8imm:$src2), - "cmpsd\t{$src2, $src, $dst|$dst, $src, $src2}", []>; -let mayLoad = 1 in - def CMPSDrm_alt : SDIi8<0xC2, MRMSrcMem, - (outs FR64:$dst), (ins FR64:$src1, f64mem:$src, i8imm:$src2), - "cmpsd\t{$src2, $src, $dst|$dst, $src, $src2}", []>; -} -} - -let Defs = [EFLAGS] in { -def UCOMISDrr: PDI<0x2E, MRMSrcReg, (outs), (ins FR64:$src1, FR64:$src2), - "ucomisd\t{$src2, $src1|$src1, $src2}", - [(set EFLAGS, (X86cmp FR64:$src1, FR64:$src2))]>; -def UCOMISDrm: PDI<0x2E, MRMSrcMem, (outs), (ins FR64:$src1, f64mem:$src2), - "ucomisd\t{$src2, $src1|$src1, $src2}", - [(set EFLAGS, (X86cmp FR64:$src1, (loadf64 addr:$src2)))]>; -} // Defs = [EFLAGS] - -// Aliases to match intrinsics which expect XMM operand(s). -let Constraints = "$src1 = $dst" in { - def Int_CMPSDrr : SDIi8<0xC2, MRMSrcReg, - (outs VR128:$dst), - (ins VR128:$src1, VR128:$src, SSECC:$cc), - "cmp${cc}sd\t{$src, $dst|$dst, $src}", - [(set VR128:$dst, (int_x86_sse2_cmp_sd VR128:$src1, - VR128:$src, imm:$cc))]>; - def Int_CMPSDrm : SDIi8<0xC2, MRMSrcMem, - (outs VR128:$dst), - (ins VR128:$src1, f64mem:$src, SSECC:$cc), - "cmp${cc}sd\t{$src, $dst|$dst, $src}", - [(set VR128:$dst, (int_x86_sse2_cmp_sd VR128:$src1, - (load addr:$src), imm:$cc))]>; -} - -let Defs = [EFLAGS] in { -def Int_UCOMISDrr: PDI<0x2E, MRMSrcReg, (outs), (ins VR128:$src1, VR128:$src2), - "ucomisd\t{$src2, $src1|$src1, $src2}", - [(set EFLAGS, (X86ucomi (v2f64 VR128:$src1), - VR128:$src2))]>; -def Int_UCOMISDrm: PDI<0x2E, MRMSrcMem, (outs),(ins VR128:$src1, f128mem:$src2), - "ucomisd\t{$src2, $src1|$src1, $src2}", - [(set EFLAGS, (X86ucomi (v2f64 VR128:$src1), - (load addr:$src2)))]>; - -def Int_COMISDrr: PDI<0x2F, MRMSrcReg, (outs), (ins VR128:$src1, VR128:$src2), - "comisd\t{$src2, $src1|$src1, $src2}", - [(set EFLAGS, (X86comi (v2f64 VR128:$src1), - VR128:$src2))]>; -def Int_COMISDrm: PDI<0x2F, MRMSrcMem, (outs), (ins VR128:$src1, f128mem:$src2), - "comisd\t{$src2, $src1|$src1, $src2}", - [(set EFLAGS, (X86comi (v2f64 VR128:$src1), - (load addr:$src2)))]>; -} // Defs = [EFLAGS] - -// Aliases of packed SSE2 instructions for scalar use. These all have names -// that start with 'Fs'. - -// Alias instructions that map fld0 to pxor for sse. -let isReMaterializable = 1, isAsCheapAsAMove = 1, isCodeGenOnly = 1, - canFoldAsLoad = 1 in -def FsFLD0SD : I<0xEF, MRMInitReg, (outs FR64:$dst), (ins), "", - [(set FR64:$dst, fpimm0)]>, - Requires<[HasSSE2]>, TB, OpSize; - -// Alias instruction to do FR64 reg-to-reg copy using movapd. Upper bits are -// disregarded. -let neverHasSideEffects = 1 in -def FsMOVAPDrr : PDI<0x28, MRMSrcReg, (outs FR64:$dst), (ins FR64:$src), - "movapd\t{$src, $dst|$dst, $src}", []>; - -// Alias instruction to load FR64 from f128mem using movapd. Upper bits are -// disregarded. -let canFoldAsLoad = 1, isReMaterializable = 1 in -def FsMOVAPDrm : PDI<0x28, MRMSrcMem, (outs FR64:$dst), (ins f128mem:$src), - "movapd\t{$src, $dst|$dst, $src}", - [(set FR64:$dst, (alignedloadfsf64 addr:$src))]>; - -// Alias bitwise logical operations using SSE logical ops on packed FP values. -let Constraints = "$src1 = $dst" in { -let isCommutable = 1 in { - def FsANDPDrr : PDI<0x54, MRMSrcReg, (outs FR64:$dst), - (ins FR64:$src1, FR64:$src2), - "andpd\t{$src2, $dst|$dst, $src2}", - [(set FR64:$dst, (X86fand FR64:$src1, FR64:$src2))]>; - def FsORPDrr : PDI<0x56, MRMSrcReg, (outs FR64:$dst), - (ins FR64:$src1, FR64:$src2), - "orpd\t{$src2, $dst|$dst, $src2}", - [(set FR64:$dst, (X86for FR64:$src1, FR64:$src2))]>; - def FsXORPDrr : PDI<0x57, MRMSrcReg, (outs FR64:$dst), - (ins FR64:$src1, FR64:$src2), - "xorpd\t{$src2, $dst|$dst, $src2}", - [(set FR64:$dst, (X86fxor FR64:$src1, FR64:$src2))]>; -} - -def FsANDPDrm : PDI<0x54, MRMSrcMem, (outs FR64:$dst), - (ins FR64:$src1, f128mem:$src2), - "andpd\t{$src2, $dst|$dst, $src2}", - [(set FR64:$dst, (X86fand FR64:$src1, - (memopfsf64 addr:$src2)))]>; -def FsORPDrm : PDI<0x56, MRMSrcMem, (outs FR64:$dst), - (ins FR64:$src1, f128mem:$src2), - "orpd\t{$src2, $dst|$dst, $src2}", - [(set FR64:$dst, (X86for FR64:$src1, - (memopfsf64 addr:$src2)))]>; -def FsXORPDrm : PDI<0x57, MRMSrcMem, (outs FR64:$dst), - (ins FR64:$src1, f128mem:$src2), - "xorpd\t{$src2, $dst|$dst, $src2}", - [(set FR64:$dst, (X86fxor FR64:$src1, - (memopfsf64 addr:$src2)))]>; - -let neverHasSideEffects = 1 in { -def FsANDNPDrr : PDI<0x55, MRMSrcReg, - (outs FR64:$dst), (ins FR64:$src1, FR64:$src2), - "andnpd\t{$src2, $dst|$dst, $src2}", []>; -let mayLoad = 1 in -def FsANDNPDrm : PDI<0x55, MRMSrcMem, - (outs FR64:$dst), (ins FR64:$src1, f128mem:$src2), - "andnpd\t{$src2, $dst|$dst, $src2}", []>; -} -} - -/// basic_sse2_fp_binop_rm - SSE2 binops come in both scalar and vector forms. -/// -/// In addition, we also have a special variant of the scalar form here to -/// represent the associated intrinsic operation. This form is unlike the -/// plain scalar form, in that it takes an entire vector (instead of a scalar) -/// and leaves the top elements unmodified (therefore these cannot be commuted). -/// -/// These three forms can each be reg+reg or reg+mem, so there are a total of -/// six "instructions". -/// -let Constraints = "$src1 = $dst" in { -multiclass basic_sse2_fp_binop_rm<bits<8> opc, string OpcodeStr, - SDNode OpNode, Intrinsic F64Int, - bit Commutable = 0> { - // Scalar operation, reg+reg. - def SDrr : SDI<opc, MRMSrcReg, (outs FR64:$dst), (ins FR64:$src1, FR64:$src2), - !strconcat(OpcodeStr, "sd\t{$src2, $dst|$dst, $src2}"), - [(set FR64:$dst, (OpNode FR64:$src1, FR64:$src2))]> { - let isCommutable = Commutable; - } - - // Scalar operation, reg+mem. - def SDrm : SDI<opc, MRMSrcMem, (outs FR64:$dst), - (ins FR64:$src1, f64mem:$src2), - !strconcat(OpcodeStr, "sd\t{$src2, $dst|$dst, $src2}"), - [(set FR64:$dst, (OpNode FR64:$src1, (load addr:$src2)))]>; - - // Vector operation, reg+reg. - def PDrr : PDI<opc, MRMSrcReg, (outs VR128:$dst), - (ins VR128:$src1, VR128:$src2), - !strconcat(OpcodeStr, "pd\t{$src2, $dst|$dst, $src2}"), - [(set VR128:$dst, (v2f64 (OpNode VR128:$src1, VR128:$src2)))]> { - let isCommutable = Commutable; - } - - // Vector operation, reg+mem. - def PDrm : PDI<opc, MRMSrcMem, (outs VR128:$dst), - (ins VR128:$src1, f128mem:$src2), - !strconcat(OpcodeStr, "pd\t{$src2, $dst|$dst, $src2}"), - [(set VR128:$dst, (OpNode VR128:$src1, (memopv2f64 addr:$src2)))]>; - - // Intrinsic operation, reg+reg. - def SDrr_Int : SDI<opc, MRMSrcReg, (outs VR128:$dst), - (ins VR128:$src1, VR128:$src2), - !strconcat(OpcodeStr, "sd\t{$src2, $dst|$dst, $src2}"), - [(set VR128:$dst, (F64Int VR128:$src1, VR128:$src2))]>; - - // Intrinsic operation, reg+mem. - def SDrm_Int : SDI<opc, MRMSrcMem, (outs VR128:$dst), - (ins VR128:$src1, sdmem:$src2), - !strconcat(OpcodeStr, "sd\t{$src2, $dst|$dst, $src2}"), - [(set VR128:$dst, (F64Int VR128:$src1, - sse_load_f64:$src2))]>; +def Int_VCVTSS2SDrr: I<0x5A, MRMSrcReg, + (outs VR128:$dst), (ins VR128:$src1, VR128:$src2), + "vcvtss2sd\t{$src2, $src1, $dst|$dst, $src1, $src2}", + [(set VR128:$dst, (int_x86_sse2_cvtss2sd VR128:$src1, + VR128:$src2))]>, XS, VEX_4V, + Requires<[HasAVX]>; +def Int_VCVTSS2SDrm: I<0x5A, MRMSrcMem, + (outs VR128:$dst), (ins VR128:$src1, f32mem:$src2), + "vcvtss2sd\t{$src2, $src1, $dst|$dst, $src1, $src2}", + [(set VR128:$dst, (int_x86_sse2_cvtss2sd VR128:$src1, + (load addr:$src2)))]>, XS, VEX_4V, + Requires<[HasAVX]>; } +let Constraints = "$src1 = $dst" in { // SSE2 instructions with XS prefix +def Int_CVTSS2SDrr: I<0x5A, MRMSrcReg, + (outs VR128:$dst), (ins VR128:$src1, VR128:$src2), + "cvtss2sd\t{$src2, $dst|$dst, $src2}", + [(set VR128:$dst, (int_x86_sse2_cvtss2sd VR128:$src1, + VR128:$src2))]>, XS, + Requires<[HasSSE2]>; +def Int_CVTSS2SDrm: I<0x5A, MRMSrcMem, + (outs VR128:$dst), (ins VR128:$src1, f32mem:$src2), + "cvtss2sd\t{$src2, $dst|$dst, $src2}", + [(set VR128:$dst, (int_x86_sse2_cvtss2sd VR128:$src1, + (load addr:$src2)))]>, XS, + Requires<[HasSSE2]>; } -// Arithmetic instructions -defm ADD : basic_sse2_fp_binop_rm<0x58, "add", fadd, int_x86_sse2_add_sd, 1>; -defm MUL : basic_sse2_fp_binop_rm<0x59, "mul", fmul, int_x86_sse2_mul_sd, 1>; -defm SUB : basic_sse2_fp_binop_rm<0x5C, "sub", fsub, int_x86_sse2_sub_sd>; -defm DIV : basic_sse2_fp_binop_rm<0x5E, "div", fdiv, int_x86_sse2_div_sd>; - -/// sse2_fp_binop_rm - Other SSE2 binops -/// -/// This multiclass is like basic_sse2_fp_binop_rm, with the addition of -/// instructions for a full-vector intrinsic form. Operations that map -/// onto C operators don't use this form since they just use the plain -/// vector form instead of having a separate vector intrinsic form. -/// -/// This provides a total of eight "instructions". -/// -let Constraints = "$src1 = $dst" in { -multiclass sse2_fp_binop_rm<bits<8> opc, string OpcodeStr, - SDNode OpNode, - Intrinsic F64Int, - Intrinsic V2F64Int, - bit Commutable = 0> { - - // Scalar operation, reg+reg. - def SDrr : SDI<opc, MRMSrcReg, (outs FR64:$dst), (ins FR64:$src1, FR64:$src2), - !strconcat(OpcodeStr, "sd\t{$src2, $dst|$dst, $src2}"), - [(set FR64:$dst, (OpNode FR64:$src1, FR64:$src2))]> { - let isCommutable = Commutable; - } - - // Scalar operation, reg+mem. - def SDrm : SDI<opc, MRMSrcMem, (outs FR64:$dst), - (ins FR64:$src1, f64mem:$src2), - !strconcat(OpcodeStr, "sd\t{$src2, $dst|$dst, $src2}"), - [(set FR64:$dst, (OpNode FR64:$src1, (load addr:$src2)))]>; - - // Vector operation, reg+reg. - def PDrr : PDI<opc, MRMSrcReg, (outs VR128:$dst), - (ins VR128:$src1, VR128:$src2), - !strconcat(OpcodeStr, "pd\t{$src2, $dst|$dst, $src2}"), - [(set VR128:$dst, (v2f64 (OpNode VR128:$src1, VR128:$src2)))]> { - let isCommutable = Commutable; - } - - // Vector operation, reg+mem. - def PDrm : PDI<opc, MRMSrcMem, (outs VR128:$dst), - (ins VR128:$src1, f128mem:$src2), - !strconcat(OpcodeStr, "pd\t{$src2, $dst|$dst, $src2}"), - [(set VR128:$dst, (OpNode VR128:$src1, (memopv2f64 addr:$src2)))]>; - - // Intrinsic operation, reg+reg. - def SDrr_Int : SDI<opc, MRMSrcReg, (outs VR128:$dst), - (ins VR128:$src1, VR128:$src2), - !strconcat(OpcodeStr, "sd\t{$src2, $dst|$dst, $src2}"), - [(set VR128:$dst, (F64Int VR128:$src1, VR128:$src2))]> { - let isCommutable = Commutable; - } - - // Intrinsic operation, reg+mem. - def SDrm_Int : SDI<opc, MRMSrcMem, (outs VR128:$dst), - (ins VR128:$src1, sdmem:$src2), - !strconcat(OpcodeStr, "sd\t{$src2, $dst|$dst, $src2}"), - [(set VR128:$dst, (F64Int VR128:$src1, - sse_load_f64:$src2))]>; - - // Vector intrinsic operation, reg+reg. - def PDrr_Int : PDI<opc, MRMSrcReg, (outs VR128:$dst), - (ins VR128:$src1, VR128:$src2), - !strconcat(OpcodeStr, "pd\t{$src2, $dst|$dst, $src2}"), - [(set VR128:$dst, (V2F64Int VR128:$src1, VR128:$src2))]> { - let isCommutable = Commutable; - } +def : Pat<(extloadf32 addr:$src), + (CVTSS2SDrr (MOVSSrm addr:$src))>, + Requires<[HasSSE2, OptForSpeed]>; - // Vector intrinsic operation, reg+mem. - def PDrm_Int : PDI<opc, MRMSrcMem, (outs VR128:$dst), - (ins VR128:$src1, f128mem:$src2), - !strconcat(OpcodeStr, "pd\t{$src2, $dst|$dst, $src2}"), - [(set VR128:$dst, (V2F64Int VR128:$src1, - (memopv2f64 addr:$src2)))]>; -} +// Convert doubleword to packed single/double fp +let isAsmParserOnly = 1 in { // SSE2 instructions without OpSize prefix +def Int_VCVTDQ2PSrr : I<0x5B, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), + "vcvtdq2ps\t{$src, $dst|$dst, $src}", + [(set VR128:$dst, (int_x86_sse2_cvtdq2ps VR128:$src))]>, + TB, VEX, Requires<[HasAVX]>; +def Int_VCVTDQ2PSrm : I<0x5B, MRMSrcMem, (outs VR128:$dst), (ins i128mem:$src), + "vcvtdq2ps\t{$src, $dst|$dst, $src}", + [(set VR128:$dst, (int_x86_sse2_cvtdq2ps + (bitconvert (memopv2i64 addr:$src))))]>, + TB, VEX, Requires<[HasAVX]>; } - -defm MAX : sse2_fp_binop_rm<0x5F, "max", X86fmax, - int_x86_sse2_max_sd, int_x86_sse2_max_pd>; -defm MIN : sse2_fp_binop_rm<0x5D, "min", X86fmin, - int_x86_sse2_min_sd, int_x86_sse2_min_pd>; - -//===---------------------------------------------------------------------===// -// SSE packed FP Instructions - -// Move Instructions -let neverHasSideEffects = 1 in -def MOVAPDrr : PDI<0x28, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), - "movapd\t{$src, $dst|$dst, $src}", []>; -let canFoldAsLoad = 1, isReMaterializable = 1 in -def MOVAPDrm : PDI<0x28, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src), - "movapd\t{$src, $dst|$dst, $src}", - [(set VR128:$dst, (alignedloadv2f64 addr:$src))]>; - -def MOVAPDmr : PDI<0x29, MRMDestMem, (outs), (ins f128mem:$dst, VR128:$src), - "movapd\t{$src, $dst|$dst, $src}", - [(alignedstore (v2f64 VR128:$src), addr:$dst)]>; - -let neverHasSideEffects = 1 in -def MOVUPDrr : PDI<0x10, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), - "movupd\t{$src, $dst|$dst, $src}", []>; -let canFoldAsLoad = 1 in -def MOVUPDrm : PDI<0x10, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src), - "movupd\t{$src, $dst|$dst, $src}", - [(set VR128:$dst, (loadv2f64 addr:$src))]>; -def MOVUPDmr : PDI<0x11, MRMDestMem, (outs), (ins f128mem:$dst, VR128:$src), - "movupd\t{$src, $dst|$dst, $src}", - [(store (v2f64 VR128:$src), addr:$dst)]>; - -// Intrinsic forms of MOVUPD load and store -def MOVUPDrm_Int : PDI<0x10, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src), - "movupd\t{$src, $dst|$dst, $src}", - [(set VR128:$dst, (int_x86_sse2_loadu_pd addr:$src))]>; -def MOVUPDmr_Int : PDI<0x11, MRMDestMem, (outs), (ins f128mem:$dst, VR128:$src), - "movupd\t{$src, $dst|$dst, $src}", - [(int_x86_sse2_storeu_pd addr:$dst, VR128:$src)]>; - -let Constraints = "$src1 = $dst" in { - let AddedComplexity = 20 in { - def MOVLPDrm : PDI<0x12, MRMSrcMem, - (outs VR128:$dst), (ins VR128:$src1, f64mem:$src2), - "movlpd\t{$src2, $dst|$dst, $src2}", - [(set VR128:$dst, - (v2f64 (movlp VR128:$src1, - (scalar_to_vector (loadf64 addr:$src2)))))]>; - def MOVHPDrm : PDI<0x16, MRMSrcMem, - (outs VR128:$dst), (ins VR128:$src1, f64mem:$src2), - "movhpd\t{$src2, $dst|$dst, $src2}", - [(set VR128:$dst, - (v2f64 (movlhps VR128:$src1, - (scalar_to_vector (loadf64 addr:$src2)))))]>; - } // AddedComplexity -} // Constraints = "$src1 = $dst" - -def MOVLPDmr : PDI<0x13, MRMDestMem, (outs), (ins f64mem:$dst, VR128:$src), - "movlpd\t{$src, $dst|$dst, $src}", - [(store (f64 (vector_extract (v2f64 VR128:$src), - (iPTR 0))), addr:$dst)]>; - -// v2f64 extract element 1 is always custom lowered to unpack high to low -// and extract element 0 so the non-store version isn't too horrible. -def MOVHPDmr : PDI<0x17, MRMDestMem, (outs), (ins f64mem:$dst, VR128:$src), - "movhpd\t{$src, $dst|$dst, $src}", - [(store (f64 (vector_extract - (v2f64 (unpckh VR128:$src, (undef))), - (iPTR 0))), addr:$dst)]>; - -// SSE2 instructions without OpSize prefix def Int_CVTDQ2PSrr : I<0x5B, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), "cvtdq2ps\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (int_x86_sse2_cvtdq2ps VR128:$src))]>, @@ -1662,7 +781,18 @@ def Int_CVTDQ2PSrm : I<0x5B, MRMSrcMem, (outs VR128:$dst), (ins i128mem:$src), (bitconvert (memopv2i64 addr:$src))))]>, TB, Requires<[HasSSE2]>; -// SSE2 instructions with XS prefix +// FIXME: why the non-intrinsic version is described as SSE3? +let isAsmParserOnly = 1 in { // SSE2 instructions with XS prefix +def Int_VCVTDQ2PDrr : I<0xE6, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), + "vcvtdq2pd\t{$src, $dst|$dst, $src}", + [(set VR128:$dst, (int_x86_sse2_cvtdq2pd VR128:$src))]>, + XS, VEX, Requires<[HasAVX]>; +def Int_VCVTDQ2PDrm : I<0xE6, MRMSrcMem, (outs VR128:$dst), (ins i64mem:$src), + "vcvtdq2pd\t{$src, $dst|$dst, $src}", + [(set VR128:$dst, (int_x86_sse2_cvtdq2pd + (bitconvert (memopv2i64 addr:$src))))]>, + XS, VEX, Requires<[HasAVX]>; +} def Int_CVTDQ2PDrr : I<0xE6, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), "cvtdq2pd\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (int_x86_sse2_cvtdq2pd VR128:$src))]>, @@ -1673,6 +803,29 @@ def Int_CVTDQ2PDrm : I<0xE6, MRMSrcMem, (outs VR128:$dst), (ins i64mem:$src), (bitconvert (memopv2i64 addr:$src))))]>, XS, Requires<[HasSSE2]>; +// Convert packed single/double fp to doubleword +let isAsmParserOnly = 1 in { +def VCVTPS2DQrr : VPDI<0x5B, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), + "cvtps2dq\t{$src, $dst|$dst, $src}", []>, VEX; +def VCVTPS2DQrm : VPDI<0x5B, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src), + "cvtps2dq\t{$src, $dst|$dst, $src}", []>, VEX; +} +def CVTPS2DQrr : PDI<0x5B, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), + "cvtps2dq\t{$src, $dst|$dst, $src}", []>; +def CVTPS2DQrm : PDI<0x5B, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src), + "cvtps2dq\t{$src, $dst|$dst, $src}", []>; + +let isAsmParserOnly = 1 in { +def Int_VCVTPS2DQrr : VPDI<0x5B, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), + "cvtps2dq\t{$src, $dst|$dst, $src}", + [(set VR128:$dst, (int_x86_sse2_cvtps2dq VR128:$src))]>, + VEX; +def Int_VCVTPS2DQrm : VPDI<0x5B, MRMSrcMem, (outs VR128:$dst), + (ins f128mem:$src), + "cvtps2dq\t{$src, $dst|$dst, $src}", + [(set VR128:$dst, (int_x86_sse2_cvtps2dq + (memop addr:$src)))]>, VEX; +} def Int_CVTPS2DQrr : PDI<0x5B, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), "cvtps2dq\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (int_x86_sse2_cvtps2dq VR128:$src))]>; @@ -1680,12 +833,54 @@ def Int_CVTPS2DQrm : PDI<0x5B, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src), "cvtps2dq\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (int_x86_sse2_cvtps2dq (memop addr:$src)))]>; -// SSE2 packed instructions with XS prefix + +let isAsmParserOnly = 1 in { // SSE2 packed instructions with XD prefix +def Int_VCVTPD2DQrr : I<0xE6, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), + "vcvtpd2dq\t{$src, $dst|$dst, $src}", + [(set VR128:$dst, (int_x86_sse2_cvtpd2dq VR128:$src))]>, + XD, VEX, Requires<[HasAVX]>; +def Int_VCVTPD2DQrm : I<0xE6, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src), + "vcvtpd2dq\t{$src, $dst|$dst, $src}", + [(set VR128:$dst, (int_x86_sse2_cvtpd2dq + (memop addr:$src)))]>, + XD, VEX, Requires<[HasAVX]>; +} +def Int_CVTPD2DQrr : I<0xE6, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), + "cvtpd2dq\t{$src, $dst|$dst, $src}", + [(set VR128:$dst, (int_x86_sse2_cvtpd2dq VR128:$src))]>, + XD, Requires<[HasSSE2]>; +def Int_CVTPD2DQrm : I<0xE6, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src), + "cvtpd2dq\t{$src, $dst|$dst, $src}", + [(set VR128:$dst, (int_x86_sse2_cvtpd2dq + (memop addr:$src)))]>, + XD, Requires<[HasSSE2]>; + + +// Convert with truncation packed single/double fp to doubleword +let isAsmParserOnly = 1 in { // SSE2 packed instructions with XS prefix +def VCVTTPS2DQrr : VSSI<0x5B, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), + "cvttps2dq\t{$src, $dst|$dst, $src}", []>, VEX; +def VCVTTPS2DQrm : VSSI<0x5B, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src), + "cvttps2dq\t{$src, $dst|$dst, $src}", []>, VEX; +} def CVTTPS2DQrr : SSI<0x5B, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), "cvttps2dq\t{$src, $dst|$dst, $src}", []>; def CVTTPS2DQrm : SSI<0x5B, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src), "cvttps2dq\t{$src, $dst|$dst, $src}", []>; + +let isAsmParserOnly = 1 in { +def Int_VCVTTPS2DQrr : I<0x5B, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), + "vcvttps2dq\t{$src, $dst|$dst, $src}", + [(set VR128:$dst, + (int_x86_sse2_cvttps2dq VR128:$src))]>, + XS, VEX, Requires<[HasAVX]>; +def Int_VCVTTPS2DQrm : I<0x5B, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src), + "vcvttps2dq\t{$src, $dst|$dst, $src}", + [(set VR128:$dst, (int_x86_sse2_cvttps2dq + (memop addr:$src)))]>, + XS, VEX, Requires<[HasAVX]>; +} def Int_CVTTPS2DQrr : I<0x5B, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), "cvttps2dq\t{$src, $dst|$dst, $src}", [(set VR128:$dst, @@ -1697,17 +892,18 @@ def Int_CVTTPS2DQrm : I<0x5B, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src), (memop addr:$src)))]>, XS, Requires<[HasSSE2]>; -// SSE2 packed instructions with XD prefix -def Int_CVTPD2DQrr : I<0xE6, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), - "cvtpd2dq\t{$src, $dst|$dst, $src}", - [(set VR128:$dst, (int_x86_sse2_cvtpd2dq VR128:$src))]>, - XD, Requires<[HasSSE2]>; -def Int_CVTPD2DQrm : I<0xE6, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src), - "cvtpd2dq\t{$src, $dst|$dst, $src}", - [(set VR128:$dst, (int_x86_sse2_cvtpd2dq - (memop addr:$src)))]>, - XD, Requires<[HasSSE2]>; - +let isAsmParserOnly = 1 in { +def Int_VCVTTPD2DQrr : VPDI<0xE6, MRMSrcReg, (outs VR128:$dst), + (ins VR128:$src), + "cvttpd2dq\t{$src, $dst|$dst, $src}", + [(set VR128:$dst, (int_x86_sse2_cvttpd2dq VR128:$src))]>, + VEX; +def Int_VCVTTPD2DQrm : VPDI<0xE6, MRMSrcMem, (outs VR128:$dst), + (ins f128mem:$src), + "cvttpd2dq\t{$src, $dst|$dst, $src}", + [(set VR128:$dst, (int_x86_sse2_cvttpd2dq + (memop addr:$src)))]>, VEX; +} def Int_CVTTPD2DQrr : PDI<0xE6, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), "cvttpd2dq\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (int_x86_sse2_cvttpd2dq VR128:$src))]>; @@ -1716,12 +912,31 @@ def Int_CVTTPD2DQrm : PDI<0xE6, MRMSrcMem, (outs VR128:$dst),(ins f128mem:$src), [(set VR128:$dst, (int_x86_sse2_cvttpd2dq (memop addr:$src)))]>; -// SSE2 instructions without OpSize prefix +// Convert packed single to packed double +let isAsmParserOnly = 1 in { // SSE2 instructions without OpSize prefix +def VCVTPS2PDrr : I<0x5A, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), + "vcvtps2pd\t{$src, $dst|$dst, $src}", []>, VEX, + Requires<[HasAVX]>; +def VCVTPS2PDrm : I<0x5A, MRMSrcMem, (outs VR128:$dst), (ins f64mem:$src), + "vcvtps2pd\t{$src, $dst|$dst, $src}", []>, VEX, + Requires<[HasAVX]>; +} def CVTPS2PDrr : I<0x5A, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), "cvtps2pd\t{$src, $dst|$dst, $src}", []>, TB; def CVTPS2PDrm : I<0x5A, MRMSrcMem, (outs VR128:$dst), (ins f64mem:$src), "cvtps2pd\t{$src, $dst|$dst, $src}", []>, TB; +let isAsmParserOnly = 1 in { +def Int_VCVTPS2PDrr : I<0x5A, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), + "cvtps2pd\t{$src, $dst|$dst, $src}", + [(set VR128:$dst, (int_x86_sse2_cvtps2pd VR128:$src))]>, + VEX, Requires<[HasAVX]>; +def Int_VCVTPS2PDrm : I<0x5A, MRMSrcMem, (outs VR128:$dst), (ins f64mem:$src), + "cvtps2pd\t{$src, $dst|$dst, $src}", + [(set VR128:$dst, (int_x86_sse2_cvtps2pd + (load addr:$src)))]>, + VEX, Requires<[HasAVX]>; +} def Int_CVTPS2PDrr : I<0x5A, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), "cvtps2pd\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (int_x86_sse2_cvtps2pd VR128:$src))]>, @@ -1732,12 +947,29 @@ def Int_CVTPS2PDrm : I<0x5A, MRMSrcMem, (outs VR128:$dst), (ins f64mem:$src), (load addr:$src)))]>, TB, Requires<[HasSSE2]>; +// Convert packed double to packed single +let isAsmParserOnly = 1 in { +def VCVTPD2PSrr : VPDI<0x5A, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), + "cvtpd2ps\t{$src, $dst|$dst, $src}", []>, VEX; +// FIXME: the memory form of this instruction should described using +// use extra asm syntax +} def CVTPD2PSrr : PDI<0x5A, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), "cvtpd2ps\t{$src, $dst|$dst, $src}", []>; def CVTPD2PSrm : PDI<0x5A, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src), "cvtpd2ps\t{$src, $dst|$dst, $src}", []>; +let isAsmParserOnly = 1 in { +def Int_VCVTPD2PSrr : VPDI<0x5A, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), + "cvtpd2ps\t{$src, $dst|$dst, $src}", + [(set VR128:$dst, (int_x86_sse2_cvtpd2ps VR128:$src))]>; +def Int_VCVTPD2PSrm : VPDI<0x5A, MRMSrcMem, (outs VR128:$dst), + (ins f128mem:$src), + "cvtpd2ps\t{$src, $dst|$dst, $src}", + [(set VR128:$dst, (int_x86_sse2_cvtpd2ps + (memop addr:$src)))]>; +} def Int_CVTPD2PSrr : PDI<0x5A, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), "cvtpd2ps\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (int_x86_sse2_cvtpd2ps VR128:$src))]>; @@ -1746,269 +978,1039 @@ def Int_CVTPD2PSrm : PDI<0x5A, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src), [(set VR128:$dst, (int_x86_sse2_cvtpd2ps (memop addr:$src)))]>; -// Match intrinsics which expect XMM operand(s). -// Aliases for intrinsics +//===----------------------------------------------------------------------===// +// SSE 1 & 2 - Compare Instructions +//===----------------------------------------------------------------------===// + +// sse12_cmp_scalar - sse 1 & 2 compare scalar instructions +multiclass sse12_cmp_scalar<RegisterClass RC, X86MemOperand x86memop, + string asm, string asm_alt> { + def rr : SIi8<0xC2, MRMSrcReg, + (outs RC:$dst), (ins RC:$src1, RC:$src, SSECC:$cc), + asm, []>; + let mayLoad = 1 in + def rm : SIi8<0xC2, MRMSrcMem, + (outs RC:$dst), (ins RC:$src1, x86memop:$src, SSECC:$cc), + asm, []>; + // Accept explicit immediate argument form instead of comparison code. + let isAsmParserOnly = 1 in { + def rr_alt : SIi8<0xC2, MRMSrcReg, + (outs RC:$dst), (ins RC:$src1, RC:$src, i8imm:$src2), + asm_alt, []>; + let mayLoad = 1 in + def rm_alt : SIi8<0xC2, MRMSrcMem, + (outs RC:$dst), (ins RC:$src1, x86memop:$src, i8imm:$src2), + asm_alt, []>; + } +} + +let neverHasSideEffects = 1, isAsmParserOnly = 1 in { + defm VCMPSS : sse12_cmp_scalar<FR32, f32mem, + "cmp${cc}ss\t{$src, $src1, $dst|$dst, $src1, $src}", + "cmpss\t{$src2, $src, $src1, $dst|$dst, $src1, $src, $src2}">, + XS, VEX_4V; + defm VCMPSD : sse12_cmp_scalar<FR64, f64mem, + "cmp${cc}sd\t{$src, $src1, $dst|$dst, $src1, $src}", + "cmpsd\t{$src2, $src, $src1, $dst|$dst, $src1, $src, $src2}">, + XD, VEX_4V; +} + +let Constraints = "$src1 = $dst", neverHasSideEffects = 1 in { + defm CMPSS : sse12_cmp_scalar<FR32, f32mem, + "cmp${cc}ss\t{$src, $dst|$dst, $src}", + "cmpss\t{$src2, $src, $dst|$dst, $src, $src2}">, XS; + defm CMPSD : sse12_cmp_scalar<FR64, f64mem, + "cmp${cc}sd\t{$src, $dst|$dst, $src}", + "cmpsd\t{$src2, $src, $dst|$dst, $src, $src2}">, XD; +} + +multiclass sse12_cmp_scalar_int<RegisterClass RC, X86MemOperand x86memop, + Intrinsic Int, string asm> { + def rr : SIi8<0xC2, MRMSrcReg, (outs VR128:$dst), + (ins VR128:$src1, VR128:$src, SSECC:$cc), asm, + [(set VR128:$dst, (Int VR128:$src1, + VR128:$src, imm:$cc))]>; + def rm : SIi8<0xC2, MRMSrcMem, (outs VR128:$dst), + (ins VR128:$src1, f32mem:$src, SSECC:$cc), asm, + [(set VR128:$dst, (Int VR128:$src1, + (load addr:$src), imm:$cc))]>; +} + +// Aliases to match intrinsics which expect XMM operand(s). +let isAsmParserOnly = 1 in { + defm Int_VCMPSS : sse12_cmp_scalar_int<VR128, f32mem, int_x86_sse_cmp_ss, + "cmp${cc}ss\t{$src, $src1, $dst|$dst, $src1, $src}">, + XS, VEX_4V; + defm Int_VCMPSD : sse12_cmp_scalar_int<VR128, f64mem, int_x86_sse2_cmp_sd, + "cmp${cc}sd\t{$src, $src1, $dst|$dst, $src1, $src}">, + XD, VEX_4V; +} let Constraints = "$src1 = $dst" in { -def Int_CVTSI2SDrr: SDI<0x2A, MRMSrcReg, - (outs VR128:$dst), (ins VR128:$src1, GR32:$src2), - "cvtsi2sd\t{$src2, $dst|$dst, $src2}", - [(set VR128:$dst, (int_x86_sse2_cvtsi2sd VR128:$src1, - GR32:$src2))]>; -def Int_CVTSI2SDrm: SDI<0x2A, MRMSrcMem, - (outs VR128:$dst), (ins VR128:$src1, i32mem:$src2), - "cvtsi2sd\t{$src2, $dst|$dst, $src2}", - [(set VR128:$dst, (int_x86_sse2_cvtsi2sd VR128:$src1, - (loadi32 addr:$src2)))]>; -def Int_CVTSD2SSrr: SDI<0x5A, MRMSrcReg, - (outs VR128:$dst), (ins VR128:$src1, VR128:$src2), - "cvtsd2ss\t{$src2, $dst|$dst, $src2}", - [(set VR128:$dst, (int_x86_sse2_cvtsd2ss VR128:$src1, - VR128:$src2))]>; -def Int_CVTSD2SSrm: SDI<0x5A, MRMSrcMem, - (outs VR128:$dst), (ins VR128:$src1, f64mem:$src2), - "cvtsd2ss\t{$src2, $dst|$dst, $src2}", - [(set VR128:$dst, (int_x86_sse2_cvtsd2ss VR128:$src1, - (load addr:$src2)))]>; -def Int_CVTSS2SDrr: I<0x5A, MRMSrcReg, - (outs VR128:$dst), (ins VR128:$src1, VR128:$src2), - "cvtss2sd\t{$src2, $dst|$dst, $src2}", - [(set VR128:$dst, (int_x86_sse2_cvtss2sd VR128:$src1, - VR128:$src2))]>, XS, - Requires<[HasSSE2]>; -def Int_CVTSS2SDrm: I<0x5A, MRMSrcMem, - (outs VR128:$dst), (ins VR128:$src1, f32mem:$src2), - "cvtss2sd\t{$src2, $dst|$dst, $src2}", - [(set VR128:$dst, (int_x86_sse2_cvtss2sd VR128:$src1, - (load addr:$src2)))]>, XS, - Requires<[HasSSE2]>; + defm Int_CMPSS : sse12_cmp_scalar_int<VR128, f32mem, int_x86_sse_cmp_ss, + "cmp${cc}ss\t{$src, $dst|$dst, $src}">, XS; + defm Int_CMPSD : sse12_cmp_scalar_int<VR128, f64mem, int_x86_sse2_cmp_sd, + "cmp${cc}sd\t{$src, $dst|$dst, $src}">, XD; +} + + +// sse12_ord_cmp - Unordered/Ordered scalar fp compare and set EFLAGS +multiclass sse12_ord_cmp<bits<8> opc, RegisterClass RC, SDNode OpNode, + ValueType vt, X86MemOperand x86memop, + PatFrag ld_frag, string OpcodeStr, Domain d> { + def rr: PI<opc, MRMSrcReg, (outs), (ins RC:$src1, RC:$src2), + !strconcat(OpcodeStr, "\t{$src2, $src1|$src1, $src2}"), + [(set EFLAGS, (OpNode (vt RC:$src1), RC:$src2))], d>; + def rm: PI<opc, MRMSrcMem, (outs), (ins RC:$src1, x86memop:$src2), + !strconcat(OpcodeStr, "\t{$src2, $src1|$src1, $src2}"), + [(set EFLAGS, (OpNode (vt RC:$src1), + (ld_frag addr:$src2)))], d>; +} + +let Defs = [EFLAGS] in { + let isAsmParserOnly = 1 in { + defm VUCOMISS : sse12_ord_cmp<0x2E, FR32, X86cmp, f32, f32mem, loadf32, + "ucomiss", SSEPackedSingle>, VEX; + defm VUCOMISD : sse12_ord_cmp<0x2E, FR64, X86cmp, f64, f64mem, loadf64, + "ucomisd", SSEPackedDouble>, OpSize, VEX; + let Pattern = []<dag> in { + defm VCOMISS : sse12_ord_cmp<0x2F, VR128, undef, v4f32, f128mem, load, + "comiss", SSEPackedSingle>, VEX; + defm VCOMISD : sse12_ord_cmp<0x2F, VR128, undef, v2f64, f128mem, load, + "comisd", SSEPackedDouble>, OpSize, VEX; + } + + defm Int_VUCOMISS : sse12_ord_cmp<0x2E, VR128, X86ucomi, v4f32, f128mem, + load, "ucomiss", SSEPackedSingle>, VEX; + defm Int_VUCOMISD : sse12_ord_cmp<0x2E, VR128, X86ucomi, v2f64, f128mem, + load, "ucomisd", SSEPackedDouble>, OpSize, VEX; + + defm Int_VCOMISS : sse12_ord_cmp<0x2F, VR128, X86comi, v4f32, f128mem, + load, "comiss", SSEPackedSingle>, VEX; + defm Int_VCOMISD : sse12_ord_cmp<0x2F, VR128, X86comi, v2f64, f128mem, + load, "comisd", SSEPackedDouble>, OpSize, VEX; + } + defm UCOMISS : sse12_ord_cmp<0x2E, FR32, X86cmp, f32, f32mem, loadf32, + "ucomiss", SSEPackedSingle>, TB; + defm UCOMISD : sse12_ord_cmp<0x2E, FR64, X86cmp, f64, f64mem, loadf64, + "ucomisd", SSEPackedDouble>, TB, OpSize; + + let Pattern = []<dag> in { + defm COMISS : sse12_ord_cmp<0x2F, VR128, undef, v4f32, f128mem, load, + "comiss", SSEPackedSingle>, TB; + defm COMISD : sse12_ord_cmp<0x2F, VR128, undef, v2f64, f128mem, load, + "comisd", SSEPackedDouble>, TB, OpSize; + } + + defm Int_UCOMISS : sse12_ord_cmp<0x2E, VR128, X86ucomi, v4f32, f128mem, + load, "ucomiss", SSEPackedSingle>, TB; + defm Int_UCOMISD : sse12_ord_cmp<0x2E, VR128, X86ucomi, v2f64, f128mem, + load, "ucomisd", SSEPackedDouble>, TB, OpSize; + + defm Int_COMISS : sse12_ord_cmp<0x2F, VR128, X86comi, v4f32, f128mem, load, + "comiss", SSEPackedSingle>, TB; + defm Int_COMISD : sse12_ord_cmp<0x2F, VR128, X86comi, v2f64, f128mem, load, + "comisd", SSEPackedDouble>, TB, OpSize; +} // Defs = [EFLAGS] + +// sse12_cmp_packed - sse 1 & 2 compared packed instructions +multiclass sse12_cmp_packed<RegisterClass RC, X86MemOperand x86memop, + Intrinsic Int, string asm, string asm_alt, + Domain d> { + def rri : PIi8<0xC2, MRMSrcReg, + (outs RC:$dst), (ins RC:$src1, RC:$src, SSECC:$cc), asm, + [(set RC:$dst, (Int RC:$src1, RC:$src, imm:$cc))], d>; + def rmi : PIi8<0xC2, MRMSrcMem, + (outs RC:$dst), (ins RC:$src1, f128mem:$src, SSECC:$cc), asm, + [(set RC:$dst, (Int RC:$src1, (memop addr:$src), imm:$cc))], d>; + // Accept explicit immediate argument form instead of comparison code. + let isAsmParserOnly = 1 in { + def rri_alt : PIi8<0xC2, MRMSrcReg, + (outs RC:$dst), (ins RC:$src1, RC:$src, i8imm:$src2), + asm_alt, [], d>; + def rmi_alt : PIi8<0xC2, MRMSrcMem, + (outs RC:$dst), (ins RC:$src1, f128mem:$src, i8imm:$src2), + asm_alt, [], d>; + } +} + +let isAsmParserOnly = 1 in { + defm VCMPPS : sse12_cmp_packed<VR128, f128mem, int_x86_sse_cmp_ps, + "cmp${cc}ps\t{$src, $src1, $dst|$dst, $src1, $src}", + "cmpps\t{$src2, $src, $src1, $dst|$dst, $src1, $src, $src2}", + SSEPackedSingle>, VEX_4V; + defm VCMPPD : sse12_cmp_packed<VR128, f128mem, int_x86_sse2_cmp_pd, + "cmp${cc}pd\t{$src, $src1, $dst|$dst, $src1, $src}", + "cmppd\t{$src2, $src, $src1, $dst|$dst, $src1, $src, $src2}", + SSEPackedDouble>, OpSize, VEX_4V; +} +let Constraints = "$src1 = $dst" in { + defm CMPPS : sse12_cmp_packed<VR128, f128mem, int_x86_sse_cmp_ps, + "cmp${cc}ps\t{$src, $dst|$dst, $src}", + "cmpps\t{$src2, $src, $dst|$dst, $src, $src2}", + SSEPackedSingle>, TB; + defm CMPPD : sse12_cmp_packed<VR128, f128mem, int_x86_sse2_cmp_pd, + "cmp${cc}pd\t{$src, $dst|$dst, $src}", + "cmppd\t{$src2, $src, $dst|$dst, $src, $src2}", + SSEPackedDouble>, TB, OpSize; +} + +def : Pat<(v4i32 (X86cmpps (v4f32 VR128:$src1), VR128:$src2, imm:$cc)), + (CMPPSrri (v4f32 VR128:$src1), (v4f32 VR128:$src2), imm:$cc)>; +def : Pat<(v4i32 (X86cmpps (v4f32 VR128:$src1), (memop addr:$src2), imm:$cc)), + (CMPPSrmi (v4f32 VR128:$src1), addr:$src2, imm:$cc)>; +def : Pat<(v2i64 (X86cmppd (v2f64 VR128:$src1), VR128:$src2, imm:$cc)), + (CMPPDrri VR128:$src1, VR128:$src2, imm:$cc)>; +def : Pat<(v2i64 (X86cmppd (v2f64 VR128:$src1), (memop addr:$src2), imm:$cc)), + (CMPPDrmi VR128:$src1, addr:$src2, imm:$cc)>; + +//===----------------------------------------------------------------------===// +// SSE 1 & 2 - Shuffle Instructions +//===----------------------------------------------------------------------===// + +/// sse12_shuffle - sse 1 & 2 shuffle instructions +multiclass sse12_shuffle<RegisterClass RC, X86MemOperand x86memop, + ValueType vt, string asm, PatFrag mem_frag, + Domain d, bit IsConvertibleToThreeAddress = 0> { + def rmi : PIi8<0xC6, MRMSrcMem, (outs VR128:$dst), + (ins VR128:$src1, f128mem:$src2, i8imm:$src3), asm, + [(set VR128:$dst, (vt (shufp:$src3 + VR128:$src1, (mem_frag addr:$src2))))], d>; + let isConvertibleToThreeAddress = IsConvertibleToThreeAddress in + def rri : PIi8<0xC6, MRMSrcReg, (outs VR128:$dst), + (ins VR128:$src1, VR128:$src2, i8imm:$src3), asm, + [(set VR128:$dst, + (vt (shufp:$src3 VR128:$src1, VR128:$src2)))], d>; +} + +let isAsmParserOnly = 1 in { + defm VSHUFPS : sse12_shuffle<VR128, f128mem, v4f32, + "shufps\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}", + memopv4f32, SSEPackedSingle>, VEX_4V; + defm VSHUFPD : sse12_shuffle<VR128, f128mem, v2f64, + "shufpd\t{$src3, $src2, $src1, $dst|$dst, $src2, $src2, $src3}", + memopv2f64, SSEPackedDouble>, OpSize, VEX_4V; +} + +let Constraints = "$src1 = $dst" in { + defm SHUFPS : sse12_shuffle<VR128, f128mem, v4f32, + "shufps\t{$src3, $src2, $dst|$dst, $src2, $src3}", + memopv4f32, SSEPackedSingle, 1 /* cvt to pshufd */>, + TB; + defm SHUFPD : sse12_shuffle<VR128, f128mem, v2f64, + "shufpd\t{$src3, $src2, $dst|$dst, $src2, $src3}", + memopv2f64, SSEPackedDouble>, TB, OpSize; +} + +//===----------------------------------------------------------------------===// +// SSE 1 & 2 - Unpack Instructions +//===----------------------------------------------------------------------===// + +/// sse12_unpack_interleave - sse 1 & 2 unpack and interleave +multiclass sse12_unpack_interleave<bits<8> opc, PatFrag OpNode, ValueType vt, + PatFrag mem_frag, RegisterClass RC, + X86MemOperand x86memop, string asm, + Domain d> { + def rr : PI<opc, MRMSrcReg, + (outs RC:$dst), (ins RC:$src1, RC:$src2), + asm, [(set RC:$dst, + (vt (OpNode RC:$src1, RC:$src2)))], d>; + def rm : PI<opc, MRMSrcMem, + (outs RC:$dst), (ins RC:$src1, x86memop:$src2), + asm, [(set RC:$dst, + (vt (OpNode RC:$src1, + (mem_frag addr:$src2))))], d>; +} + +let AddedComplexity = 10 in { + let isAsmParserOnly = 1 in { + defm VUNPCKHPS: sse12_unpack_interleave<0x15, unpckh, v4f32, memopv4f32, + VR128, f128mem, "unpckhps\t{$src2, $src1, $dst|$dst, $src1, $src2}", + SSEPackedSingle>, VEX_4V; + defm VUNPCKHPD: sse12_unpack_interleave<0x15, unpckh, v2f64, memopv2f64, + VR128, f128mem, "unpckhpd\t{$src2, $src1, $dst|$dst, $src1, $src2}", + SSEPackedDouble>, OpSize, VEX_4V; + defm VUNPCKLPS: sse12_unpack_interleave<0x14, unpckl, v4f32, memopv4f32, + VR128, f128mem, "unpcklps\t{$src2, $src1, $dst|$dst, $src1, $src2}", + SSEPackedSingle>, VEX_4V; + defm VUNPCKLPD: sse12_unpack_interleave<0x14, unpckl, v2f64, memopv2f64, + VR128, f128mem, "unpcklpd\t{$src2, $src1, $dst|$dst, $src1, $src2}", + SSEPackedDouble>, OpSize, VEX_4V; + + defm VUNPCKHPSY: sse12_unpack_interleave<0x15, unpckh, v8f32, memopv8f32, + VR256, f256mem, "unpckhps\t{$src2, $src1, $dst|$dst, $src1, $src2}", + SSEPackedSingle>, VEX_4V; + defm VUNPCKHPDY: sse12_unpack_interleave<0x15, unpckh, v4f64, memopv4f64, + VR256, f256mem, "unpckhpd\t{$src2, $src1, $dst|$dst, $src1, $src2}", + SSEPackedDouble>, OpSize, VEX_4V; + defm VUNPCKLPSY: sse12_unpack_interleave<0x14, unpckl, v8f32, memopv8f32, + VR256, f256mem, "unpcklps\t{$src2, $src1, $dst|$dst, $src1, $src2}", + SSEPackedSingle>, VEX_4V; + defm VUNPCKLPDY: sse12_unpack_interleave<0x14, unpckl, v4f64, memopv4f64, + VR256, f256mem, "unpcklpd\t{$src2, $src1, $dst|$dst, $src1, $src2}", + SSEPackedDouble>, OpSize, VEX_4V; + } + + let Constraints = "$src1 = $dst" in { + defm UNPCKHPS: sse12_unpack_interleave<0x15, unpckh, v4f32, memopv4f32, + VR128, f128mem, "unpckhps\t{$src2, $dst|$dst, $src2}", + SSEPackedSingle>, TB; + defm UNPCKHPD: sse12_unpack_interleave<0x15, unpckh, v2f64, memopv2f64, + VR128, f128mem, "unpckhpd\t{$src2, $dst|$dst, $src2}", + SSEPackedDouble>, TB, OpSize; + defm UNPCKLPS: sse12_unpack_interleave<0x14, unpckl, v4f32, memopv4f32, + VR128, f128mem, "unpcklps\t{$src2, $dst|$dst, $src2}", + SSEPackedSingle>, TB; + defm UNPCKLPD: sse12_unpack_interleave<0x14, unpckl, v2f64, memopv2f64, + VR128, f128mem, "unpcklpd\t{$src2, $dst|$dst, $src2}", + SSEPackedDouble>, TB, OpSize; + } // Constraints = "$src1 = $dst" +} // AddedComplexity + +//===----------------------------------------------------------------------===// +// SSE 1 & 2 - Extract Floating-Point Sign mask +//===----------------------------------------------------------------------===// + +/// sse12_extr_sign_mask - sse 1 & 2 unpack and interleave +multiclass sse12_extr_sign_mask<RegisterClass RC, Intrinsic Int, string asm, + Domain d> { + def rr : PI<0x50, MRMSrcReg, (outs GR32:$dst), (ins RC:$src), + !strconcat(asm, "\t{$src, $dst|$dst, $src}"), + [(set GR32:$dst, (Int RC:$src))], d>; +} + +// Mask creation +defm MOVMSKPS : sse12_extr_sign_mask<VR128, int_x86_sse_movmsk_ps, "movmskps", + SSEPackedSingle>, TB; +defm MOVMSKPD : sse12_extr_sign_mask<VR128, int_x86_sse2_movmsk_pd, "movmskpd", + SSEPackedDouble>, TB, OpSize; + +let isAsmParserOnly = 1 in { + defm VMOVMSKPS : sse12_extr_sign_mask<VR128, int_x86_sse_movmsk_ps, + "movmskps", SSEPackedSingle>, VEX; + defm VMOVMSKPD : sse12_extr_sign_mask<VR128, int_x86_sse2_movmsk_pd, + "movmskpd", SSEPackedDouble>, OpSize, + VEX; + // FIXME: merge with multiclass above when the intrinsics come. + def VMOVMSKPSYrr : PI<0x50, MRMSrcReg, (outs GR32:$dst), (ins VR256:$src), + "movmskps\t{$src, $dst|$dst, $src}", [], SSEPackedSingle>, VEX; + def VMOVMSKPDYrr : PI<0x50, MRMSrcReg, (outs GR32:$dst), (ins VR256:$src), + "movmskpd\t{$src, $dst|$dst, $src}", [], SSEPackedDouble>, OpSize, + VEX; +} + +//===----------------------------------------------------------------------===// +// SSE 1 & 2 - Misc aliasing of packed SSE 1 & 2 instructions +//===----------------------------------------------------------------------===// + +// Aliases of packed SSE1 & SSE2 instructions for scalar use. These all have +// names that start with 'Fs'. + +// Alias instructions that map fld0 to pxor for sse. +let isReMaterializable = 1, isAsCheapAsAMove = 1, isCodeGenOnly = 1, + canFoldAsLoad = 1 in { + // FIXME: Set encoding to pseudo! +def FsFLD0SS : I<0xEF, MRMInitReg, (outs FR32:$dst), (ins), "", + [(set FR32:$dst, fp32imm0)]>, + Requires<[HasSSE1]>, TB, OpSize; +def FsFLD0SD : I<0xEF, MRMInitReg, (outs FR64:$dst), (ins), "", + [(set FR64:$dst, fpimm0)]>, + Requires<[HasSSE2]>, TB, OpSize; } -// Arithmetic +// Alias instruction to do FR32 or FR64 reg-to-reg copy using movaps. Upper +// bits are disregarded. +let neverHasSideEffects = 1 in { +def FsMOVAPSrr : PSI<0x28, MRMSrcReg, (outs FR32:$dst), (ins FR32:$src), + "movaps\t{$src, $dst|$dst, $src}", []>; +def FsMOVAPDrr : PDI<0x28, MRMSrcReg, (outs FR64:$dst), (ins FR64:$src), + "movapd\t{$src, $dst|$dst, $src}", []>; +} -/// sse2_fp_unop_rm - SSE2 unops come in both scalar and vector forms. +// Alias instruction to load FR32 or FR64 from f128mem using movaps. Upper +// bits are disregarded. +let canFoldAsLoad = 1, isReMaterializable = 1 in { +def FsMOVAPSrm : PSI<0x28, MRMSrcMem, (outs FR32:$dst), (ins f128mem:$src), + "movaps\t{$src, $dst|$dst, $src}", + [(set FR32:$dst, (alignedloadfsf32 addr:$src))]>; +def FsMOVAPDrm : PDI<0x28, MRMSrcMem, (outs FR64:$dst), (ins f128mem:$src), + "movapd\t{$src, $dst|$dst, $src}", + [(set FR64:$dst, (alignedloadfsf64 addr:$src))]>; +} + +//===----------------------------------------------------------------------===// +// SSE 1 & 2 - Logical Instructions +//===----------------------------------------------------------------------===// + +/// sse12_fp_alias_pack_logical - SSE 1 & 2 aliased packed FP logical ops +/// +multiclass sse12_fp_alias_pack_logical<bits<8> opc, string OpcodeStr, + SDNode OpNode> { + let isAsmParserOnly = 1 in { + defm V#NAME#PS : sse12_fp_packed<opc, !strconcat(OpcodeStr, "ps"), OpNode, + FR32, f32, f128mem, memopfsf32, SSEPackedSingle, 0>, VEX_4V; + + defm V#NAME#PD : sse12_fp_packed<opc, !strconcat(OpcodeStr, "pd"), OpNode, + FR64, f64, f128mem, memopfsf64, SSEPackedDouble, 0>, OpSize, VEX_4V; + } + + let Constraints = "$src1 = $dst" in { + defm PS : sse12_fp_packed<opc, !strconcat(OpcodeStr, "ps"), OpNode, FR32, + f32, f128mem, memopfsf32, SSEPackedSingle>, TB; + + defm PD : sse12_fp_packed<opc, !strconcat(OpcodeStr, "pd"), OpNode, FR64, + f64, f128mem, memopfsf64, SSEPackedDouble>, TB, OpSize; + } +} + +// Alias bitwise logical operations using SSE logical ops on packed FP values. +let mayLoad = 0 in { + defm FsAND : sse12_fp_alias_pack_logical<0x54, "and", X86fand>; + defm FsOR : sse12_fp_alias_pack_logical<0x56, "or", X86for>; + defm FsXOR : sse12_fp_alias_pack_logical<0x57, "xor", X86fxor>; +} + +let neverHasSideEffects = 1, Pattern = []<dag>, isCommutable = 0 in + defm FsANDN : sse12_fp_alias_pack_logical<0x55, "andn", undef>; + +/// sse12_fp_packed_logical - SSE 1 & 2 packed FP logical ops /// +multiclass sse12_fp_packed_logical<bits<8> opc, string OpcodeStr, + SDNode OpNode, int HasPat = 0, + list<list<dag>> Pattern = []> { + let isAsmParserOnly = 1, Pattern = []<dag> in { + defm V#NAME#PS : sse12_fp_packed_logical_rm<opc, VR128, SSEPackedSingle, + !strconcat(OpcodeStr, "ps"), f128mem, + !if(HasPat, Pattern[0], // rr + [(set VR128:$dst, (v2i64 (OpNode VR128:$src1, + VR128:$src2)))]), + !if(HasPat, Pattern[2], // rm + [(set VR128:$dst, (OpNode (bc_v2i64 (v4f32 VR128:$src1)), + (memopv2i64 addr:$src2)))]), 0>, + VEX_4V; + + defm V#NAME#PD : sse12_fp_packed_logical_rm<opc, VR128, SSEPackedDouble, + !strconcat(OpcodeStr, "pd"), f128mem, + !if(HasPat, Pattern[1], // rr + [(set VR128:$dst, (OpNode (bc_v2i64 (v2f64 VR128:$src1)), + (bc_v2i64 (v2f64 + VR128:$src2))))]), + !if(HasPat, Pattern[3], // rm + [(set VR128:$dst, (OpNode (bc_v2i64 (v2f64 VR128:$src1)), + (memopv2i64 addr:$src2)))]), 0>, + OpSize, VEX_4V; + } + let Constraints = "$src1 = $dst" in { + defm PS : sse12_fp_packed_logical_rm<opc, VR128, SSEPackedSingle, + !strconcat(OpcodeStr, "ps"), f128mem, + !if(HasPat, Pattern[0], // rr + [(set VR128:$dst, (v2i64 (OpNode VR128:$src1, + VR128:$src2)))]), + !if(HasPat, Pattern[2], // rm + [(set VR128:$dst, (OpNode (bc_v2i64 (v4f32 VR128:$src1)), + (memopv2i64 addr:$src2)))])>, TB; + + defm PD : sse12_fp_packed_logical_rm<opc, VR128, SSEPackedDouble, + !strconcat(OpcodeStr, "pd"), f128mem, + !if(HasPat, Pattern[1], // rr + [(set VR128:$dst, (OpNode (bc_v2i64 (v2f64 VR128:$src1)), + (bc_v2i64 (v2f64 + VR128:$src2))))]), + !if(HasPat, Pattern[3], // rm + [(set VR128:$dst, (OpNode (bc_v2i64 (v2f64 VR128:$src1)), + (memopv2i64 addr:$src2)))])>, + TB, OpSize; + } +} + +/// sse12_fp_packed_logical_y - AVX 256-bit SSE 1 & 2 logical ops forms +/// +let isAsmParserOnly = 1 in { +multiclass sse12_fp_packed_logical_y<bits<8> opc, string OpcodeStr> { + defm PSY : sse12_fp_packed_logical_rm<opc, VR256, SSEPackedSingle, + !strconcat(OpcodeStr, "ps"), f256mem, [], [], 0>, VEX_4V; + + defm PDY : sse12_fp_packed_logical_rm<opc, VR256, SSEPackedDouble, + !strconcat(OpcodeStr, "pd"), f256mem, [], [], 0>, OpSize, VEX_4V; +} +} + +// AVX 256-bit packed logical ops forms +defm VAND : sse12_fp_packed_logical_y<0x54, "and">; +defm VOR : sse12_fp_packed_logical_y<0x56, "or">; +defm VXOR : sse12_fp_packed_logical_y<0x57, "xor">; +let isCommutable = 0 in + defm VANDN : sse12_fp_packed_logical_y<0x55, "andn">; + +defm AND : sse12_fp_packed_logical<0x54, "and", and>; +defm OR : sse12_fp_packed_logical<0x56, "or", or>; +defm XOR : sse12_fp_packed_logical<0x57, "xor", xor>; +let isCommutable = 0 in + defm ANDN : sse12_fp_packed_logical<0x55, "andn", undef /* dummy */, 1, [ + // single r+r + [(set VR128:$dst, (v2i64 (and (xor VR128:$src1, + (bc_v2i64 (v4i32 immAllOnesV))), + VR128:$src2)))], + // double r+r + [(set VR128:$dst, (and (vnot (bc_v2i64 (v2f64 VR128:$src1))), + (bc_v2i64 (v2f64 VR128:$src2))))], + // single r+m + [(set VR128:$dst, (v2i64 (and (xor (bc_v2i64 (v4f32 VR128:$src1)), + (bc_v2i64 (v4i32 immAllOnesV))), + (memopv2i64 addr:$src2))))], + // double r+m + [(set VR128:$dst, (and (vnot (bc_v2i64 (v2f64 VR128:$src1))), + (memopv2i64 addr:$src2)))]]>; + +//===----------------------------------------------------------------------===// +// SSE 1 & 2 - Arithmetic Instructions +//===----------------------------------------------------------------------===// + +/// basic_sse12_fp_binop_xxx - SSE 1 & 2 binops come in both scalar and +/// vector forms. +/// +/// In addition, we also have a special variant of the scalar form here to +/// represent the associated intrinsic operation. This form is unlike the +/// plain scalar form, in that it takes an entire vector (instead of a scalar) +/// and leaves the top elements unmodified (therefore these cannot be commuted). +/// +/// These three forms can each be reg+reg or reg+mem. +/// +multiclass basic_sse12_fp_binop_s<bits<8> opc, string OpcodeStr, SDNode OpNode, + bit Is2Addr = 1> { + defm SS : sse12_fp_scalar<opc, !strconcat(OpcodeStr, "ss"), + OpNode, FR32, f32mem, Is2Addr>, XS; + defm SD : sse12_fp_scalar<opc, !strconcat(OpcodeStr, "sd"), + OpNode, FR64, f64mem, Is2Addr>, XD; +} + +multiclass basic_sse12_fp_binop_p<bits<8> opc, string OpcodeStr, SDNode OpNode, + bit Is2Addr = 1> { + let mayLoad = 0 in { + defm PS : sse12_fp_packed<opc, !strconcat(OpcodeStr, "ps"), OpNode, VR128, + v4f32, f128mem, memopv4f32, SSEPackedSingle, Is2Addr>, TB; + defm PD : sse12_fp_packed<opc, !strconcat(OpcodeStr, "pd"), OpNode, VR128, + v2f64, f128mem, memopv2f64, SSEPackedDouble, Is2Addr>, TB, OpSize; + } +} + +multiclass basic_sse12_fp_binop_p_y<bits<8> opc, string OpcodeStr, + SDNode OpNode> { + let mayLoad = 0 in { + defm PSY : sse12_fp_packed<opc, !strconcat(OpcodeStr, "ps"), OpNode, VR256, + v8f32, f256mem, memopv8f32, SSEPackedSingle, 0>, TB; + defm PDY : sse12_fp_packed<opc, !strconcat(OpcodeStr, "pd"), OpNode, VR256, + v4f64, f256mem, memopv4f64, SSEPackedDouble, 0>, TB, OpSize; + } +} + +multiclass basic_sse12_fp_binop_s_int<bits<8> opc, string OpcodeStr, + bit Is2Addr = 1> { + defm SS : sse12_fp_scalar_int<opc, OpcodeStr, VR128, + !strconcat(OpcodeStr, "ss"), "", "_ss", ssmem, sse_load_f32, Is2Addr>, XS; + defm SD : sse12_fp_scalar_int<opc, OpcodeStr, VR128, + !strconcat(OpcodeStr, "sd"), "2", "_sd", sdmem, sse_load_f64, Is2Addr>, XD; +} + +multiclass basic_sse12_fp_binop_p_int<bits<8> opc, string OpcodeStr, + bit Is2Addr = 1> { + defm PS : sse12_fp_packed_int<opc, OpcodeStr, VR128, + !strconcat(OpcodeStr, "ps"), "", "_ps", f128mem, memopv4f32, + SSEPackedSingle, Is2Addr>, TB; + + defm PD : sse12_fp_packed_int<opc, OpcodeStr, VR128, + !strconcat(OpcodeStr, "pd"), "2", "_pd", f128mem, memopv2f64, + SSEPackedDouble, Is2Addr>, TB, OpSize; +} + +// Binary Arithmetic instructions +let isAsmParserOnly = 1 in { + defm VADD : basic_sse12_fp_binop_s<0x58, "add", fadd, 0>, + basic_sse12_fp_binop_p<0x58, "add", fadd, 0>, + basic_sse12_fp_binop_p_y<0x58, "add", fadd>, VEX_4V; + defm VMUL : basic_sse12_fp_binop_s<0x59, "mul", fmul, 0>, + basic_sse12_fp_binop_p<0x59, "mul", fmul, 0>, + basic_sse12_fp_binop_p_y<0x59, "mul", fmul>, VEX_4V; + + let isCommutable = 0 in { + defm VSUB : basic_sse12_fp_binop_s<0x5C, "sub", fsub, 0>, + basic_sse12_fp_binop_p<0x5C, "sub", fsub, 0>, + basic_sse12_fp_binop_p_y<0x5C, "sub", fsub>, VEX_4V; + defm VDIV : basic_sse12_fp_binop_s<0x5E, "div", fdiv, 0>, + basic_sse12_fp_binop_p<0x5E, "div", fdiv, 0>, + basic_sse12_fp_binop_p_y<0x5E, "div", fdiv>, VEX_4V; + defm VMAX : basic_sse12_fp_binop_s<0x5F, "max", X86fmax, 0>, + basic_sse12_fp_binop_p<0x5F, "max", X86fmax, 0>, + basic_sse12_fp_binop_p_y<0x5F, "max", X86fmax>, VEX_4V; + defm VMIN : basic_sse12_fp_binop_s<0x5D, "min", X86fmin, 0>, + basic_sse12_fp_binop_p<0x5D, "min", X86fmin, 0>, + basic_sse12_fp_binop_p_y<0x5D, "min", X86fmin>, VEX_4V; + } +} + +let Constraints = "$src1 = $dst" in { + defm ADD : basic_sse12_fp_binop_s<0x58, "add", fadd>, + basic_sse12_fp_binop_p<0x58, "add", fadd>, + basic_sse12_fp_binop_s_int<0x58, "add">; + defm MUL : basic_sse12_fp_binop_s<0x59, "mul", fmul>, + basic_sse12_fp_binop_p<0x59, "mul", fmul>, + basic_sse12_fp_binop_s_int<0x59, "mul">; + + let isCommutable = 0 in { + defm SUB : basic_sse12_fp_binop_s<0x5C, "sub", fsub>, + basic_sse12_fp_binop_p<0x5C, "sub", fsub>, + basic_sse12_fp_binop_s_int<0x5C, "sub">; + defm DIV : basic_sse12_fp_binop_s<0x5E, "div", fdiv>, + basic_sse12_fp_binop_p<0x5E, "div", fdiv>, + basic_sse12_fp_binop_s_int<0x5E, "div">; + defm MAX : basic_sse12_fp_binop_s<0x5F, "max", X86fmax>, + basic_sse12_fp_binop_p<0x5F, "max", X86fmax>, + basic_sse12_fp_binop_s_int<0x5F, "max">, + basic_sse12_fp_binop_p_int<0x5F, "max">; + defm MIN : basic_sse12_fp_binop_s<0x5D, "min", X86fmin>, + basic_sse12_fp_binop_p<0x5D, "min", X86fmin>, + basic_sse12_fp_binop_s_int<0x5D, "min">, + basic_sse12_fp_binop_p_int<0x5D, "min">; + } +} + +/// Unop Arithmetic /// In addition, we also have a special variant of the scalar form here to /// represent the associated intrinsic operation. This form is unlike the /// plain scalar form, in that it takes an entire vector (instead of a /// scalar) and leaves the top elements undefined. /// /// And, we have a special variant form for a full-vector intrinsic form. -/// -/// These four forms can each have a reg or a mem operand, so there are a -/// total of eight "instructions". -/// -multiclass sse2_fp_unop_rm<bits<8> opc, string OpcodeStr, - SDNode OpNode, - Intrinsic F64Int, - Intrinsic V2F64Int, - bit Commutable = 0> { - // Scalar operation, reg. + +/// sse1_fp_unop_s - SSE1 unops in scalar form. +multiclass sse1_fp_unop_s<bits<8> opc, string OpcodeStr, + SDNode OpNode, Intrinsic F32Int> { + def SSr : SSI<opc, MRMSrcReg, (outs FR32:$dst), (ins FR32:$src), + !strconcat(OpcodeStr, "ss\t{$src, $dst|$dst, $src}"), + [(set FR32:$dst, (OpNode FR32:$src))]>; + // For scalar unary operations, fold a load into the operation + // only in OptForSize mode. It eliminates an instruction, but it also + // eliminates a whole-register clobber (the load), so it introduces a + // partial register update condition. + def SSm : I<opc, MRMSrcMem, (outs FR32:$dst), (ins f32mem:$src), + !strconcat(OpcodeStr, "ss\t{$src, $dst|$dst, $src}"), + [(set FR32:$dst, (OpNode (load addr:$src)))]>, XS, + Requires<[HasSSE1, OptForSize]>; + def SSr_Int : SSI<opc, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), + !strconcat(OpcodeStr, "ss\t{$src, $dst|$dst, $src}"), + [(set VR128:$dst, (F32Int VR128:$src))]>; + def SSm_Int : SSI<opc, MRMSrcMem, (outs VR128:$dst), (ins ssmem:$src), + !strconcat(OpcodeStr, "ss\t{$src, $dst|$dst, $src}"), + [(set VR128:$dst, (F32Int sse_load_f32:$src))]>; +} + +/// sse1_fp_unop_s_avx - AVX SSE1 unops in scalar form. +multiclass sse1_fp_unop_s_avx<bits<8> opc, string OpcodeStr, + SDNode OpNode, Intrinsic F32Int> { + def SSr : SSI<opc, MRMSrcReg, (outs FR32:$dst), (ins FR32:$src1, FR32:$src2), + !strconcat(!strconcat("v", OpcodeStr), + "ss\t{$src2, $src1, $dst|$dst, $src1, $src2}"), []>; + def SSm : I<opc, MRMSrcMem, (outs FR32:$dst), (ins FR32:$src1, f32mem:$src2), + !strconcat(!strconcat("v", OpcodeStr), + "ss\t{$src2, $src1, $dst|$dst, $src1, $src2}"), + []>, XS, Requires<[HasAVX, OptForSize]>; + def SSr_Int : SSI<opc, MRMSrcReg, (outs VR128:$dst), + (ins VR128:$src1, VR128:$src2), + !strconcat(!strconcat("v", OpcodeStr), + "ss\t{$src2, $src1, $dst|$dst, $src1, $src2}"), []>; + def SSm_Int : SSI<opc, MRMSrcMem, (outs VR128:$dst), + (ins VR128:$src1, ssmem:$src2), + !strconcat(!strconcat("v", OpcodeStr), + "ss\t{$src2, $src1, $dst|$dst, $src1, $src2}"), []>; +} + +/// sse1_fp_unop_p - SSE1 unops in packed form. +multiclass sse1_fp_unop_p<bits<8> opc, string OpcodeStr, SDNode OpNode> { + def PSr : PSI<opc, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), + !strconcat(OpcodeStr, "ps\t{$src, $dst|$dst, $src}"), + [(set VR128:$dst, (v4f32 (OpNode VR128:$src)))]>; + def PSm : PSI<opc, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src), + !strconcat(OpcodeStr, "ps\t{$src, $dst|$dst, $src}"), + [(set VR128:$dst, (OpNode (memopv4f32 addr:$src)))]>; +} + +/// sse1_fp_unop_p_y - AVX 256-bit SSE1 unops in packed form. +multiclass sse1_fp_unop_p_y<bits<8> opc, string OpcodeStr, SDNode OpNode> { + def PSYr : PSI<opc, MRMSrcReg, (outs VR256:$dst), (ins VR256:$src), + !strconcat(OpcodeStr, "ps\t{$src, $dst|$dst, $src}"), + [(set VR256:$dst, (v8f32 (OpNode VR256:$src)))]>; + def PSYm : PSI<opc, MRMSrcMem, (outs VR256:$dst), (ins f256mem:$src), + !strconcat(OpcodeStr, "ps\t{$src, $dst|$dst, $src}"), + [(set VR256:$dst, (OpNode (memopv8f32 addr:$src)))]>; +} + +/// sse1_fp_unop_p_int - SSE1 intrinsics unops in packed forms. +multiclass sse1_fp_unop_p_int<bits<8> opc, string OpcodeStr, + Intrinsic V4F32Int> { + def PSr_Int : PSI<opc, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), + !strconcat(OpcodeStr, "ps\t{$src, $dst|$dst, $src}"), + [(set VR128:$dst, (V4F32Int VR128:$src))]>; + def PSm_Int : PSI<opc, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src), + !strconcat(OpcodeStr, "ps\t{$src, $dst|$dst, $src}"), + [(set VR128:$dst, (V4F32Int (memopv4f32 addr:$src)))]>; +} + + +/// sse2_fp_unop_s - SSE2 unops in scalar form. +multiclass sse2_fp_unop_s<bits<8> opc, string OpcodeStr, + SDNode OpNode, Intrinsic F64Int> { def SDr : SDI<opc, MRMSrcReg, (outs FR64:$dst), (ins FR64:$src), !strconcat(OpcodeStr, "sd\t{$src, $dst|$dst, $src}"), - [(set FR64:$dst, (OpNode FR64:$src))]> { - let isCommutable = Commutable; - } - - // Scalar operation, mem. - def SDm : SDI<opc, MRMSrcMem, (outs FR64:$dst), (ins f64mem:$src), + [(set FR64:$dst, (OpNode FR64:$src))]>; + // See the comments in sse1_fp_unop_s for why this is OptForSize. + def SDm : I<opc, MRMSrcMem, (outs FR64:$dst), (ins f64mem:$src), !strconcat(OpcodeStr, "sd\t{$src, $dst|$dst, $src}"), - [(set FR64:$dst, (OpNode (load addr:$src)))]>; + [(set FR64:$dst, (OpNode (load addr:$src)))]>, XD, + Requires<[HasSSE2, OptForSize]>; + def SDr_Int : SDI<opc, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), + !strconcat(OpcodeStr, "sd\t{$src, $dst|$dst, $src}"), + [(set VR128:$dst, (F64Int VR128:$src))]>; + def SDm_Int : SDI<opc, MRMSrcMem, (outs VR128:$dst), (ins sdmem:$src), + !strconcat(OpcodeStr, "sd\t{$src, $dst|$dst, $src}"), + [(set VR128:$dst, (F64Int sse_load_f64:$src))]>; +} + +/// sse2_fp_unop_s_avx - AVX SSE2 unops in scalar form. +multiclass sse2_fp_unop_s_avx<bits<8> opc, string OpcodeStr, + SDNode OpNode, Intrinsic F64Int> { + def SDr : VSDI<opc, MRMSrcReg, (outs FR64:$dst), (ins FR64:$src1, FR64:$src2), + !strconcat(OpcodeStr, + "sd\t{$src2, $src1, $dst|$dst, $src1, $src2}"), []>; + def SDm : VSDI<opc, MRMSrcMem, (outs FR64:$dst), + (ins FR64:$src1, f64mem:$src2), + !strconcat(OpcodeStr, + "sd\t{$src2, $src1, $dst|$dst, $src1, $src2}"), []>; + def SDr_Int : VSDI<opc, MRMSrcReg, (outs VR128:$dst), + (ins VR128:$src1, VR128:$src2), + !strconcat(OpcodeStr, "sd\t{$src2, $src1, $dst|$dst, $src1, $src2}"), + []>; + def SDm_Int : VSDI<opc, MRMSrcMem, (outs VR128:$dst), + (ins VR128:$src1, sdmem:$src2), + !strconcat(OpcodeStr, "sd\t{$src2, $src1, $dst|$dst, $src1, $src2}"), + []>; +} - // Vector operation, reg. +/// sse2_fp_unop_p - SSE2 unops in vector forms. +multiclass sse2_fp_unop_p<bits<8> opc, string OpcodeStr, + SDNode OpNode> { def PDr : PDI<opc, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), !strconcat(OpcodeStr, "pd\t{$src, $dst|$dst, $src}"), - [(set VR128:$dst, (v2f64 (OpNode VR128:$src)))]> { - let isCommutable = Commutable; - } - - // Vector operation, mem. + [(set VR128:$dst, (v2f64 (OpNode VR128:$src)))]>; def PDm : PDI<opc, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src), !strconcat(OpcodeStr, "pd\t{$src, $dst|$dst, $src}"), [(set VR128:$dst, (OpNode (memopv2f64 addr:$src)))]>; +} - // Intrinsic operation, reg. - def SDr_Int : SDI<opc, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), - !strconcat(OpcodeStr, "sd\t{$src, $dst|$dst, $src}"), - [(set VR128:$dst, (F64Int VR128:$src))]> { - let isCommutable = Commutable; - } - - // Intrinsic operation, mem. - def SDm_Int : SDI<opc, MRMSrcMem, (outs VR128:$dst), (ins sdmem:$src), - !strconcat(OpcodeStr, "sd\t{$src, $dst|$dst, $src}"), - [(set VR128:$dst, (F64Int sse_load_f64:$src))]>; +/// sse2_fp_unop_p_y - AVX SSE2 256-bit unops in vector forms. +multiclass sse2_fp_unop_p_y<bits<8> opc, string OpcodeStr, SDNode OpNode> { + def PDYr : PDI<opc, MRMSrcReg, (outs VR256:$dst), (ins VR256:$src), + !strconcat(OpcodeStr, "pd\t{$src, $dst|$dst, $src}"), + [(set VR256:$dst, (v4f64 (OpNode VR256:$src)))]>; + def PDYm : PDI<opc, MRMSrcMem, (outs VR256:$dst), (ins f256mem:$src), + !strconcat(OpcodeStr, "pd\t{$src, $dst|$dst, $src}"), + [(set VR256:$dst, (OpNode (memopv4f64 addr:$src)))]>; +} - // Vector intrinsic operation, reg +/// sse2_fp_unop_p_int - SSE2 intrinsic unops in vector forms. +multiclass sse2_fp_unop_p_int<bits<8> opc, string OpcodeStr, + Intrinsic V2F64Int> { def PDr_Int : PDI<opc, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), !strconcat(OpcodeStr, "pd\t{$src, $dst|$dst, $src}"), - [(set VR128:$dst, (V2F64Int VR128:$src))]> { - let isCommutable = Commutable; - } - - // Vector intrinsic operation, mem + [(set VR128:$dst, (V2F64Int VR128:$src))]>; def PDm_Int : PDI<opc, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src), !strconcat(OpcodeStr, "pd\t{$src, $dst|$dst, $src}"), [(set VR128:$dst, (V2F64Int (memopv2f64 addr:$src)))]>; } +let isAsmParserOnly = 1, Predicates = [HasAVX] in { + // Square root. + defm VSQRT : sse1_fp_unop_s_avx<0x51, "sqrt", fsqrt, int_x86_sse_sqrt_ss>, + sse2_fp_unop_s_avx<0x51, "sqrt", fsqrt, int_x86_sse2_sqrt_sd>, + VEX_4V; + + defm VSQRT : sse1_fp_unop_p<0x51, "vsqrt", fsqrt>, + sse2_fp_unop_p<0x51, "vsqrt", fsqrt>, + sse1_fp_unop_p_y<0x51, "vsqrt", fsqrt>, + sse2_fp_unop_p_y<0x51, "vsqrt", fsqrt>, + VEX; + + // Reciprocal approximations. Note that these typically require refinement + // in order to obtain suitable precision. + defm VRSQRT : sse1_fp_unop_s_avx<0x52, "rsqrt", X86frsqrt, + int_x86_sse_rsqrt_ss>, VEX_4V; + defm VRSQRT : sse1_fp_unop_p<0x52, "vrsqrt", X86frsqrt>, + sse1_fp_unop_p_y<0x52, "vrsqrt", X86frsqrt>, VEX; + + defm VRCP : sse1_fp_unop_s_avx<0x53, "rcp", X86frcp, int_x86_sse_rcp_ss>, + VEX_4V; + defm VRCP : sse1_fp_unop_p<0x53, "vrcp", X86frcp>, + sse1_fp_unop_p_y<0x53, "vrcp", X86frcp>, VEX; +} + // Square root. -defm SQRT : sse2_fp_unop_rm<0x51, "sqrt", fsqrt, - int_x86_sse2_sqrt_sd, int_x86_sse2_sqrt_pd>; +defm SQRT : sse1_fp_unop_s<0x51, "sqrt", fsqrt, int_x86_sse_sqrt_ss>, + sse1_fp_unop_p<0x51, "sqrt", fsqrt>, + sse1_fp_unop_p_int<0x51, "sqrt", int_x86_sse_sqrt_ps>, + sse2_fp_unop_s<0x51, "sqrt", fsqrt, int_x86_sse2_sqrt_sd>, + sse2_fp_unop_p<0x51, "sqrt", fsqrt>, + sse2_fp_unop_p_int<0x51, "sqrt", int_x86_sse2_sqrt_pd>; + +// Reciprocal approximations. Note that these typically require refinement +// in order to obtain suitable precision. +defm RSQRT : sse1_fp_unop_s<0x52, "rsqrt", X86frsqrt, int_x86_sse_rsqrt_ss>, + sse1_fp_unop_p<0x52, "rsqrt", X86frsqrt>, + sse1_fp_unop_p_int<0x52, "rsqrt", int_x86_sse_rsqrt_ps>; +defm RCP : sse1_fp_unop_s<0x53, "rcp", X86frcp, int_x86_sse_rcp_ss>, + sse1_fp_unop_p<0x53, "rcp", X86frcp>, + sse1_fp_unop_p_int<0x53, "rcp", int_x86_sse_rcp_ps>; // There is no f64 version of the reciprocal approximation instructions. -// Logical -let Constraints = "$src1 = $dst" in { - let isCommutable = 1 in { - def ANDPDrr : PDI<0x54, MRMSrcReg, - (outs VR128:$dst), (ins VR128:$src1, VR128:$src2), - "andpd\t{$src2, $dst|$dst, $src2}", - [(set VR128:$dst, - (and (bc_v2i64 (v2f64 VR128:$src1)), - (bc_v2i64 (v2f64 VR128:$src2))))]>; - def ORPDrr : PDI<0x56, MRMSrcReg, - (outs VR128:$dst), (ins VR128:$src1, VR128:$src2), - "orpd\t{$src2, $dst|$dst, $src2}", - [(set VR128:$dst, - (or (bc_v2i64 (v2f64 VR128:$src1)), - (bc_v2i64 (v2f64 VR128:$src2))))]>; - def XORPDrr : PDI<0x57, MRMSrcReg, - (outs VR128:$dst), (ins VR128:$src1, VR128:$src2), - "xorpd\t{$src2, $dst|$dst, $src2}", - [(set VR128:$dst, - (xor (bc_v2i64 (v2f64 VR128:$src1)), - (bc_v2i64 (v2f64 VR128:$src2))))]>; - } +//===----------------------------------------------------------------------===// +// SSE 1 & 2 - Non-temporal stores +//===----------------------------------------------------------------------===// - def ANDPDrm : PDI<0x54, MRMSrcMem, - (outs VR128:$dst), (ins VR128:$src1, f128mem:$src2), - "andpd\t{$src2, $dst|$dst, $src2}", - [(set VR128:$dst, - (and (bc_v2i64 (v2f64 VR128:$src1)), - (memopv2i64 addr:$src2)))]>; - def ORPDrm : PDI<0x56, MRMSrcMem, - (outs VR128:$dst), (ins VR128:$src1, f128mem:$src2), - "orpd\t{$src2, $dst|$dst, $src2}", - [(set VR128:$dst, - (or (bc_v2i64 (v2f64 VR128:$src1)), - (memopv2i64 addr:$src2)))]>; - def XORPDrm : PDI<0x57, MRMSrcMem, - (outs VR128:$dst), (ins VR128:$src1, f128mem:$src2), - "xorpd\t{$src2, $dst|$dst, $src2}", - [(set VR128:$dst, - (xor (bc_v2i64 (v2f64 VR128:$src1)), - (memopv2i64 addr:$src2)))]>; - def ANDNPDrr : PDI<0x55, MRMSrcReg, - (outs VR128:$dst), (ins VR128:$src1, VR128:$src2), - "andnpd\t{$src2, $dst|$dst, $src2}", - [(set VR128:$dst, - (and (vnot (bc_v2i64 (v2f64 VR128:$src1))), - (bc_v2i64 (v2f64 VR128:$src2))))]>; - def ANDNPDrm : PDI<0x55, MRMSrcMem, - (outs VR128:$dst), (ins VR128:$src1,f128mem:$src2), - "andnpd\t{$src2, $dst|$dst, $src2}", - [(set VR128:$dst, - (and (vnot (bc_v2i64 (v2f64 VR128:$src1))), - (memopv2i64 addr:$src2)))]>; +let isAsmParserOnly = 1 in { + def VMOVNTPSmr_Int : VPSI<0x2B, MRMDestMem, (outs), + (ins i128mem:$dst, VR128:$src), + "movntps\t{$src, $dst|$dst, $src}", + [(int_x86_sse_movnt_ps addr:$dst, VR128:$src)]>, VEX; + def VMOVNTPDmr_Int : VPDI<0x2B, MRMDestMem, (outs), + (ins i128mem:$dst, VR128:$src), + "movntpd\t{$src, $dst|$dst, $src}", + [(int_x86_sse2_movnt_pd addr:$dst, VR128:$src)]>, VEX; + + let ExeDomain = SSEPackedInt in + def VMOVNTDQmr_Int : VPDI<0xE7, MRMDestMem, (outs), + (ins f128mem:$dst, VR128:$src), + "movntdq\t{$src, $dst|$dst, $src}", + [(int_x86_sse2_movnt_dq addr:$dst, VR128:$src)]>, VEX; + + let AddedComplexity = 400 in { // Prefer non-temporal versions + def VMOVNTPSmr : VPSI<0x2B, MRMDestMem, (outs), + (ins f128mem:$dst, VR128:$src), + "movntps\t{$src, $dst|$dst, $src}", + [(alignednontemporalstore (v4f32 VR128:$src), + addr:$dst)]>, VEX; + def VMOVNTPDmr : VPDI<0x2B, MRMDestMem, (outs), + (ins f128mem:$dst, VR128:$src), + "movntpd\t{$src, $dst|$dst, $src}", + [(alignednontemporalstore (v2f64 VR128:$src), + addr:$dst)]>, VEX; + def VMOVNTDQ_64mr : VPDI<0xE7, MRMDestMem, (outs), + (ins f128mem:$dst, VR128:$src), + "movntdq\t{$src, $dst|$dst, $src}", + [(alignednontemporalstore (v2f64 VR128:$src), + addr:$dst)]>, VEX; + let ExeDomain = SSEPackedInt in + def VMOVNTDQmr : VPDI<0xE7, MRMDestMem, (outs), + (ins f128mem:$dst, VR128:$src), + "movntdq\t{$src, $dst|$dst, $src}", + [(alignednontemporalstore (v4f32 VR128:$src), + addr:$dst)]>, VEX; + + def VMOVNTPSYmr : VPSI<0x2B, MRMDestMem, (outs), + (ins f256mem:$dst, VR256:$src), + "movntps\t{$src, $dst|$dst, $src}", + [(alignednontemporalstore (v8f32 VR256:$src), + addr:$dst)]>, VEX; + def VMOVNTPDYmr : VPDI<0x2B, MRMDestMem, (outs), + (ins f256mem:$dst, VR256:$src), + "movntpd\t{$src, $dst|$dst, $src}", + [(alignednontemporalstore (v4f64 VR256:$src), + addr:$dst)]>, VEX; + def VMOVNTDQY_64mr : VPDI<0xE7, MRMDestMem, (outs), + (ins f256mem:$dst, VR256:$src), + "movntdq\t{$src, $dst|$dst, $src}", + [(alignednontemporalstore (v4f64 VR256:$src), + addr:$dst)]>, VEX; + let ExeDomain = SSEPackedInt in + def VMOVNTDQYmr : VPDI<0xE7, MRMDestMem, (outs), + (ins f256mem:$dst, VR256:$src), + "movntdq\t{$src, $dst|$dst, $src}", + [(alignednontemporalstore (v8f32 VR256:$src), + addr:$dst)]>, VEX; + } } -let Constraints = "$src1 = $dst" in { - def CMPPDrri : PDIi8<0xC2, MRMSrcReg, - (outs VR128:$dst), (ins VR128:$src1, VR128:$src, SSECC:$cc), - "cmp${cc}pd\t{$src, $dst|$dst, $src}", - [(set VR128:$dst, (int_x86_sse2_cmp_pd VR128:$src1, - VR128:$src, imm:$cc))]>; - def CMPPDrmi : PDIi8<0xC2, MRMSrcMem, - (outs VR128:$dst), (ins VR128:$src1, f128mem:$src, SSECC:$cc), - "cmp${cc}pd\t{$src, $dst|$dst, $src}", - [(set VR128:$dst, (int_x86_sse2_cmp_pd VR128:$src1, - (memop addr:$src), imm:$cc))]>; +def MOVNTPSmr_Int : PSI<0x2B, MRMDestMem, (outs), (ins i128mem:$dst, VR128:$src), + "movntps\t{$src, $dst|$dst, $src}", + [(int_x86_sse_movnt_ps addr:$dst, VR128:$src)]>; +def MOVNTPDmr_Int : PDI<0x2B, MRMDestMem, (outs), (ins i128mem:$dst, VR128:$src), + "movntpd\t{$src, $dst|$dst, $src}", + [(int_x86_sse2_movnt_pd addr:$dst, VR128:$src)]>; + +let ExeDomain = SSEPackedInt in +def MOVNTDQmr_Int : PDI<0xE7, MRMDestMem, (outs), (ins f128mem:$dst, VR128:$src), + "movntdq\t{$src, $dst|$dst, $src}", + [(int_x86_sse2_movnt_dq addr:$dst, VR128:$src)]>; + +let AddedComplexity = 400 in { // Prefer non-temporal versions +def MOVNTPSmr : PSI<0x2B, MRMDestMem, (outs), (ins f128mem:$dst, VR128:$src), + "movntps\t{$src, $dst|$dst, $src}", + [(alignednontemporalstore (v4f32 VR128:$src), addr:$dst)]>; +def MOVNTPDmr : PDI<0x2B, MRMDestMem, (outs), (ins f128mem:$dst, VR128:$src), + "movntpd\t{$src, $dst|$dst, $src}", + [(alignednontemporalstore(v2f64 VR128:$src), addr:$dst)]>; + +def MOVNTDQ_64mr : PDI<0xE7, MRMDestMem, (outs), (ins f128mem:$dst, VR128:$src), + "movntdq\t{$src, $dst|$dst, $src}", + [(alignednontemporalstore (v2f64 VR128:$src), addr:$dst)]>; + +let ExeDomain = SSEPackedInt in +def MOVNTDQmr : PDI<0xE7, MRMDestMem, (outs), (ins f128mem:$dst, VR128:$src), + "movntdq\t{$src, $dst|$dst, $src}", + [(alignednontemporalstore (v4f32 VR128:$src), addr:$dst)]>; + +// There is no AVX form for instructions below this point +def MOVNTImr : I<0xC3, MRMDestMem, (outs), (ins i32mem:$dst, GR32:$src), + "movnti\t{$src, $dst|$dst, $src}", + [(nontemporalstore (i32 GR32:$src), addr:$dst)]>, + TB, Requires<[HasSSE2]>; + +def MOVNTI_64mr : RI<0xC3, MRMDestMem, (outs), (ins i64mem:$dst, GR64:$src), + "movnti\t{$src, $dst|$dst, $src}", + [(nontemporalstore (i64 GR64:$src), addr:$dst)]>, + TB, Requires<[HasSSE2]>; - // Accept explicit immediate argument form instead of comparison code. -let isAsmParserOnly = 1 in { - def CMPPDrri_alt : PDIi8<0xC2, MRMSrcReg, - (outs VR128:$dst), (ins VR128:$src1, VR128:$src, i8imm:$src2), - "cmppd\t{$src2, $src, $dst|$dst, $src, $src2}", []>; - def CMPPDrmi_alt : PDIi8<0xC2, MRMSrcMem, - (outs VR128:$dst), (ins VR128:$src1, f128mem:$src, i8imm:$src2), - "cmppd\t{$src2, $src, $dst|$dst, $src, $src2}", []>; } +def MOVNTImr_Int : I<0xC3, MRMDestMem, (outs), (ins i32mem:$dst, GR32:$src), + "movnti\t{$src, $dst|$dst, $src}", + [(int_x86_sse2_movnt_i addr:$dst, GR32:$src)]>, + TB, Requires<[HasSSE2]>; + +//===----------------------------------------------------------------------===// +// SSE 1 & 2 - Misc Instructions (No AVX form) +//===----------------------------------------------------------------------===// + +// Prefetch intrinsic. +def PREFETCHT0 : PSI<0x18, MRM1m, (outs), (ins i8mem:$src), + "prefetcht0\t$src", [(prefetch addr:$src, imm, (i32 3))]>; +def PREFETCHT1 : PSI<0x18, MRM2m, (outs), (ins i8mem:$src), + "prefetcht1\t$src", [(prefetch addr:$src, imm, (i32 2))]>; +def PREFETCHT2 : PSI<0x18, MRM3m, (outs), (ins i8mem:$src), + "prefetcht2\t$src", [(prefetch addr:$src, imm, (i32 1))]>; +def PREFETCHNTA : PSI<0x18, MRM0m, (outs), (ins i8mem:$src), + "prefetchnta\t$src", [(prefetch addr:$src, imm, (i32 0))]>; + +// Load, store, and memory fence +def SFENCE : I<0xAE, MRM_F8, (outs), (ins), "sfence", [(int_x86_sse_sfence)]>, + TB, Requires<[HasSSE1]>; + +// Alias instructions that map zero vector to pxor / xorp* for sse. +// We set canFoldAsLoad because this can be converted to a constant-pool +// load of an all-zeros value if folding it would be beneficial. +// FIXME: Change encoding to pseudo! +let isReMaterializable = 1, isAsCheapAsAMove = 1, canFoldAsLoad = 1, + isCodeGenOnly = 1 in { +def V_SET0PS : PSI<0x57, MRMInitReg, (outs VR128:$dst), (ins), "", + [(set VR128:$dst, (v4f32 immAllZerosV))]>; +def V_SET0PD : PDI<0x57, MRMInitReg, (outs VR128:$dst), (ins), "", + [(set VR128:$dst, (v2f64 immAllZerosV))]>; +let ExeDomain = SSEPackedInt in +def V_SET0PI : PDI<0xEF, MRMInitReg, (outs VR128:$dst), (ins), "", + [(set VR128:$dst, (v4i32 immAllZerosV))]>; } -def : Pat<(v2i64 (X86cmppd (v2f64 VR128:$src1), VR128:$src2, imm:$cc)), - (CMPPDrri VR128:$src1, VR128:$src2, imm:$cc)>; -def : Pat<(v2i64 (X86cmppd (v2f64 VR128:$src1), (memop addr:$src2), imm:$cc)), - (CMPPDrmi VR128:$src1, addr:$src2, imm:$cc)>; -// Shuffle and unpack instructions -let Constraints = "$src1 = $dst" in { - def SHUFPDrri : PDIi8<0xC6, MRMSrcReg, - (outs VR128:$dst), (ins VR128:$src1, VR128:$src2, i8imm:$src3), - "shufpd\t{$src3, $src2, $dst|$dst, $src2, $src3}", - [(set VR128:$dst, - (v2f64 (shufp:$src3 VR128:$src1, VR128:$src2)))]>; - def SHUFPDrmi : PDIi8<0xC6, MRMSrcMem, - (outs VR128:$dst), (ins VR128:$src1, - f128mem:$src2, i8imm:$src3), - "shufpd\t{$src3, $src2, $dst|$dst, $src2, $src3}", - [(set VR128:$dst, - (v2f64 (shufp:$src3 - VR128:$src1, (memopv2f64 addr:$src2))))]>; +def : Pat<(v2i64 immAllZerosV), (V_SET0PI)>; +def : Pat<(v8i16 immAllZerosV), (V_SET0PI)>; +def : Pat<(v16i8 immAllZerosV), (V_SET0PI)>; - let AddedComplexity = 10 in { - def UNPCKHPDrr : PDI<0x15, MRMSrcReg, - (outs VR128:$dst), (ins VR128:$src1, VR128:$src2), - "unpckhpd\t{$src2, $dst|$dst, $src2}", - [(set VR128:$dst, - (v2f64 (unpckh VR128:$src1, VR128:$src2)))]>; - def UNPCKHPDrm : PDI<0x15, MRMSrcMem, - (outs VR128:$dst), (ins VR128:$src1, f128mem:$src2), - "unpckhpd\t{$src2, $dst|$dst, $src2}", - [(set VR128:$dst, - (v2f64 (unpckh VR128:$src1, - (memopv2f64 addr:$src2))))]>; - - def UNPCKLPDrr : PDI<0x14, MRMSrcReg, - (outs VR128:$dst), (ins VR128:$src1, VR128:$src2), - "unpcklpd\t{$src2, $dst|$dst, $src2}", - [(set VR128:$dst, - (v2f64 (unpckl VR128:$src1, VR128:$src2)))]>; - def UNPCKLPDrm : PDI<0x14, MRMSrcMem, - (outs VR128:$dst), (ins VR128:$src1, f128mem:$src2), - "unpcklpd\t{$src2, $dst|$dst, $src2}", - [(set VR128:$dst, - (unpckl VR128:$src1, (memopv2f64 addr:$src2)))]>; - } // AddedComplexity -} // Constraints = "$src1 = $dst" +def : Pat<(f32 (vector_extract (v4f32 VR128:$src), (iPTR 0))), + (f32 (EXTRACT_SUBREG (v4f32 VR128:$src), sub_ss))>; + +//===----------------------------------------------------------------------===// +// SSE 1 & 2 - Load/Store XCSR register +//===----------------------------------------------------------------------===// +let isAsmParserOnly = 1 in { + def VLDMXCSR : VPSI<0xAE, MRM2m, (outs), (ins i32mem:$src), + "ldmxcsr\t$src", [(int_x86_sse_ldmxcsr addr:$src)]>, VEX; + def VSTMXCSR : VPSI<0xAE, MRM3m, (outs), (ins i32mem:$dst), + "stmxcsr\t$dst", [(int_x86_sse_stmxcsr addr:$dst)]>, VEX; +} + +def LDMXCSR : PSI<0xAE, MRM2m, (outs), (ins i32mem:$src), + "ldmxcsr\t$src", [(int_x86_sse_ldmxcsr addr:$src)]>; +def STMXCSR : PSI<0xAE, MRM3m, (outs), (ins i32mem:$dst), + "stmxcsr\t$dst", [(int_x86_sse_stmxcsr addr:$dst)]>; //===---------------------------------------------------------------------===// -// SSE integer instructions -let ExeDomain = SSEPackedInt in { +// SSE2 - Move Aligned/Unaligned Packed Integer Instructions +//===---------------------------------------------------------------------===// +let ExeDomain = SSEPackedInt in { // SSE integer instructions + +let isAsmParserOnly = 1 in { + let neverHasSideEffects = 1 in + def VMOVDQArr : VPDI<0x6F, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), + "movdqa\t{$src, $dst|$dst, $src}", []>, VEX; + def VMOVDQUrr : VPDI<0x6F, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), + "movdqu\t{$src, $dst|$dst, $src}", []>, XS, VEX; + + let canFoldAsLoad = 1, mayLoad = 1 in { + def VMOVDQArm : VPDI<0x6F, MRMSrcMem, (outs VR128:$dst), (ins i128mem:$src), + "movdqa\t{$src, $dst|$dst, $src}", + [/*(set VR128:$dst, (alignedloadv2i64 addr:$src))*/]>, + VEX; + def VMOVDQUrm : I<0x6F, MRMSrcMem, (outs VR128:$dst), (ins i128mem:$src), + "vmovdqu\t{$src, $dst|$dst, $src}", + [/*(set VR128:$dst, (loadv2i64 addr:$src))*/]>, + XS, VEX, Requires<[HasAVX]>; + } + + let mayStore = 1 in { + def VMOVDQAmr : VPDI<0x7F, MRMDestMem, (outs), + (ins i128mem:$dst, VR128:$src), + "movdqa\t{$src, $dst|$dst, $src}", + [/*(alignedstore (v2i64 VR128:$src), addr:$dst)*/]>, VEX; + def VMOVDQUmr : I<0x7F, MRMDestMem, (outs), (ins i128mem:$dst, VR128:$src), + "vmovdqu\t{$src, $dst|$dst, $src}", + [/*(store (v2i64 VR128:$src), addr:$dst)*/]>, + XS, VEX, Requires<[HasAVX]>; + } +} -// Move Instructions let neverHasSideEffects = 1 in def MOVDQArr : PDI<0x6F, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), "movdqa\t{$src, $dst|$dst, $src}", []>; -let canFoldAsLoad = 1, mayLoad = 1 in + +let canFoldAsLoad = 1, mayLoad = 1 in { def MOVDQArm : PDI<0x6F, MRMSrcMem, (outs VR128:$dst), (ins i128mem:$src), "movdqa\t{$src, $dst|$dst, $src}", [/*(set VR128:$dst, (alignedloadv2i64 addr:$src))*/]>; -let mayStore = 1 in -def MOVDQAmr : PDI<0x7F, MRMDestMem, (outs), (ins i128mem:$dst, VR128:$src), - "movdqa\t{$src, $dst|$dst, $src}", - [/*(alignedstore (v2i64 VR128:$src), addr:$dst)*/]>; -let canFoldAsLoad = 1, mayLoad = 1 in def MOVDQUrm : I<0x6F, MRMSrcMem, (outs VR128:$dst), (ins i128mem:$src), "movdqu\t{$src, $dst|$dst, $src}", [/*(set VR128:$dst, (loadv2i64 addr:$src))*/]>, XS, Requires<[HasSSE2]>; -let mayStore = 1 in +} + +let mayStore = 1 in { +def MOVDQAmr : PDI<0x7F, MRMDestMem, (outs), (ins i128mem:$dst, VR128:$src), + "movdqa\t{$src, $dst|$dst, $src}", + [/*(alignedstore (v2i64 VR128:$src), addr:$dst)*/]>; def MOVDQUmr : I<0x7F, MRMDestMem, (outs), (ins i128mem:$dst, VR128:$src), "movdqu\t{$src, $dst|$dst, $src}", [/*(store (v2i64 VR128:$src), addr:$dst)*/]>, XS, Requires<[HasSSE2]>; +} // Intrinsic forms of MOVDQU load and store +let isAsmParserOnly = 1 in { +let canFoldAsLoad = 1 in +def VMOVDQUrm_Int : I<0x6F, MRMSrcMem, (outs VR128:$dst), (ins i128mem:$src), + "vmovdqu\t{$src, $dst|$dst, $src}", + [(set VR128:$dst, (int_x86_sse2_loadu_dq addr:$src))]>, + XS, VEX, Requires<[HasAVX]>; +def VMOVDQUmr_Int : I<0x7F, MRMDestMem, (outs), (ins i128mem:$dst, VR128:$src), + "vmovdqu\t{$src, $dst|$dst, $src}", + [(int_x86_sse2_storeu_dq addr:$dst, VR128:$src)]>, + XS, VEX, Requires<[HasAVX]>; +} + let canFoldAsLoad = 1 in def MOVDQUrm_Int : I<0x6F, MRMSrcMem, (outs VR128:$dst), (ins i128mem:$src), "movdqu\t{$src, $dst|$dst, $src}", @@ -2019,55 +2021,72 @@ def MOVDQUmr_Int : I<0x7F, MRMDestMem, (outs), (ins i128mem:$dst, VR128:$src), [(int_x86_sse2_storeu_dq addr:$dst, VR128:$src)]>, XS, Requires<[HasSSE2]>; -let Constraints = "$src1 = $dst" in { +} // ExeDomain = SSEPackedInt + +//===---------------------------------------------------------------------===// +// SSE2 - Packed Integer Arithmetic Instructions +//===---------------------------------------------------------------------===// + +let ExeDomain = SSEPackedInt in { // SSE integer instructions multiclass PDI_binop_rm_int<bits<8> opc, string OpcodeStr, Intrinsic IntId, - bit Commutable = 0> { + bit IsCommutable = 0, bit Is2Addr = 1> { + let isCommutable = IsCommutable in def rr : PDI<opc, MRMSrcReg, (outs VR128:$dst), - (ins VR128:$src1, VR128:$src2), - !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"), - [(set VR128:$dst, (IntId VR128:$src1, VR128:$src2))]> { - let isCommutable = Commutable; - } + (ins VR128:$src1, VR128:$src2), + !if(Is2Addr, + !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"), + !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")), + [(set VR128:$dst, (IntId VR128:$src1, VR128:$src2))]>; def rm : PDI<opc, MRMSrcMem, (outs VR128:$dst), - (ins VR128:$src1, i128mem:$src2), - !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"), - [(set VR128:$dst, (IntId VR128:$src1, - (bitconvert (memopv2i64 - addr:$src2))))]>; + (ins VR128:$src1, i128mem:$src2), + !if(Is2Addr, + !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"), + !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")), + [(set VR128:$dst, (IntId VR128:$src1, + (bitconvert (memopv2i64 addr:$src2))))]>; } multiclass PDI_binop_rmi_int<bits<8> opc, bits<8> opc2, Format ImmForm, - string OpcodeStr, - Intrinsic IntId, Intrinsic IntId2> { + string OpcodeStr, Intrinsic IntId, + Intrinsic IntId2, bit Is2Addr = 1> { def rr : PDI<opc, MRMSrcReg, (outs VR128:$dst), - (ins VR128:$src1, VR128:$src2), - !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"), - [(set VR128:$dst, (IntId VR128:$src1, VR128:$src2))]>; + (ins VR128:$src1, VR128:$src2), + !if(Is2Addr, + !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"), + !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")), + [(set VR128:$dst, (IntId VR128:$src1, VR128:$src2))]>; def rm : PDI<opc, MRMSrcMem, (outs VR128:$dst), - (ins VR128:$src1, i128mem:$src2), - !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"), - [(set VR128:$dst, (IntId VR128:$src1, + (ins VR128:$src1, i128mem:$src2), + !if(Is2Addr, + !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"), + !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")), + [(set VR128:$dst, (IntId VR128:$src1, (bitconvert (memopv2i64 addr:$src2))))]>; def ri : PDIi8<opc2, ImmForm, (outs VR128:$dst), - (ins VR128:$src1, i32i8imm:$src2), - !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"), - [(set VR128:$dst, (IntId2 VR128:$src1, (i32 imm:$src2)))]>; + (ins VR128:$src1, i32i8imm:$src2), + !if(Is2Addr, + !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"), + !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")), + [(set VR128:$dst, (IntId2 VR128:$src1, (i32 imm:$src2)))]>; } /// PDI_binop_rm - Simple SSE2 binary operator. multiclass PDI_binop_rm<bits<8> opc, string OpcodeStr, SDNode OpNode, - ValueType OpVT, bit Commutable = 0> { + ValueType OpVT, bit IsCommutable = 0, bit Is2Addr = 1> { + let isCommutable = IsCommutable in def rr : PDI<opc, MRMSrcReg, (outs VR128:$dst), - (ins VR128:$src1, VR128:$src2), - !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"), - [(set VR128:$dst, (OpVT (OpNode VR128:$src1, VR128:$src2)))]> { - let isCommutable = Commutable; - } + (ins VR128:$src1, VR128:$src2), + !if(Is2Addr, + !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"), + !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")), + [(set VR128:$dst, (OpVT (OpNode VR128:$src1, VR128:$src2)))]>; def rm : PDI<opc, MRMSrcMem, (outs VR128:$dst), - (ins VR128:$src1, i128mem:$src2), - !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"), - [(set VR128:$dst, (OpVT (OpNode VR128:$src1, + (ins VR128:$src1, i128mem:$src2), + !if(Is2Addr, + !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"), + !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")), + [(set VR128:$dst, (OpVT (OpNode VR128:$src1, (bitconvert (memopv2i64 addr:$src2)))))]>; } @@ -2077,64 +2096,177 @@ multiclass PDI_binop_rm<bits<8> opc, string OpcodeStr, SDNode OpNode, /// to collapse (bitconvert VT to VT) into its operand. /// multiclass PDI_binop_rm_v2i64<bits<8> opc, string OpcodeStr, SDNode OpNode, - bit Commutable = 0> { + bit IsCommutable = 0, bit Is2Addr = 1> { + let isCommutable = IsCommutable in def rr : PDI<opc, MRMSrcReg, (outs VR128:$dst), - (ins VR128:$src1, VR128:$src2), - !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"), - [(set VR128:$dst, (v2i64 (OpNode VR128:$src1, VR128:$src2)))]> { - let isCommutable = Commutable; - } + (ins VR128:$src1, VR128:$src2), + !if(Is2Addr, + !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"), + !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")), + [(set VR128:$dst, (v2i64 (OpNode VR128:$src1, VR128:$src2)))]>; def rm : PDI<opc, MRMSrcMem, (outs VR128:$dst), - (ins VR128:$src1, i128mem:$src2), - !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"), - [(set VR128:$dst, (OpNode VR128:$src1, - (memopv2i64 addr:$src2)))]>; + (ins VR128:$src1, i128mem:$src2), + !if(Is2Addr, + !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"), + !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")), + [(set VR128:$dst, (OpNode VR128:$src1, (memopv2i64 addr:$src2)))]>; } -} // Constraints = "$src1 = $dst" } // ExeDomain = SSEPackedInt // 128-bit Integer Arithmetic -defm PADDB : PDI_binop_rm<0xFC, "paddb", add, v16i8, 1>; -defm PADDW : PDI_binop_rm<0xFD, "paddw", add, v8i16, 1>; -defm PADDD : PDI_binop_rm<0xFE, "paddd", add, v4i32, 1>; -defm PADDQ : PDI_binop_rm_v2i64<0xD4, "paddq", add, 1>; - -defm PADDSB : PDI_binop_rm_int<0xEC, "paddsb" , int_x86_sse2_padds_b, 1>; -defm PADDSW : PDI_binop_rm_int<0xED, "paddsw" , int_x86_sse2_padds_w, 1>; -defm PADDUSB : PDI_binop_rm_int<0xDC, "paddusb", int_x86_sse2_paddus_b, 1>; -defm PADDUSW : PDI_binop_rm_int<0xDD, "paddusw", int_x86_sse2_paddus_w, 1>; +let isAsmParserOnly = 1, Predicates = [HasAVX] in { +defm VPADDB : PDI_binop_rm<0xFC, "vpaddb", add, v16i8, 1, 0 /*3addr*/>, VEX_4V; +defm VPADDW : PDI_binop_rm<0xFD, "vpaddw", add, v8i16, 1, 0>, VEX_4V; +defm VPADDD : PDI_binop_rm<0xFE, "vpaddd", add, v4i32, 1, 0>, VEX_4V; +defm VPADDQ : PDI_binop_rm_v2i64<0xD4, "vpaddq", add, 1, 0>, VEX_4V; +defm VPMULLW : PDI_binop_rm<0xD5, "vpmullw", mul, v8i16, 1, 0>, VEX_4V; +defm VPSUBB : PDI_binop_rm<0xF8, "vpsubb", sub, v16i8, 0, 0>, VEX_4V; +defm VPSUBW : PDI_binop_rm<0xF9, "vpsubw", sub, v8i16, 0, 0>, VEX_4V; +defm VPSUBD : PDI_binop_rm<0xFA, "vpsubd", sub, v4i32, 0, 0>, VEX_4V; +defm VPSUBQ : PDI_binop_rm_v2i64<0xFB, "vpsubq", sub, 0, 0>, VEX_4V; + +// Intrinsic forms +defm VPSUBSB : PDI_binop_rm_int<0xE8, "vpsubsb" , int_x86_sse2_psubs_b, 0, 0>, + VEX_4V; +defm VPSUBSW : PDI_binop_rm_int<0xE9, "vpsubsw" , int_x86_sse2_psubs_w, 0, 0>, + VEX_4V; +defm VPSUBUSB : PDI_binop_rm_int<0xD8, "vpsubusb", int_x86_sse2_psubus_b, 0, 0>, + VEX_4V; +defm VPSUBUSW : PDI_binop_rm_int<0xD9, "vpsubusw", int_x86_sse2_psubus_w, 0, 0>, + VEX_4V; +defm VPADDSB : PDI_binop_rm_int<0xEC, "vpaddsb" , int_x86_sse2_padds_b, 1, 0>, + VEX_4V; +defm VPADDSW : PDI_binop_rm_int<0xED, "vpaddsw" , int_x86_sse2_padds_w, 1, 0>, + VEX_4V; +defm VPADDUSB : PDI_binop_rm_int<0xDC, "vpaddusb", int_x86_sse2_paddus_b, 1, 0>, + VEX_4V; +defm VPADDUSW : PDI_binop_rm_int<0xDD, "vpaddusw", int_x86_sse2_paddus_w, 1, 0>, + VEX_4V; +defm VPMULHUW : PDI_binop_rm_int<0xE4, "vpmulhuw", int_x86_sse2_pmulhu_w, 1, 0>, + VEX_4V; +defm VPMULHW : PDI_binop_rm_int<0xE5, "vpmulhw" , int_x86_sse2_pmulh_w, 1, 0>, + VEX_4V; +defm VPMULUDQ : PDI_binop_rm_int<0xF4, "vpmuludq", int_x86_sse2_pmulu_dq, 1, 0>, + VEX_4V; +defm VPMADDWD : PDI_binop_rm_int<0xF5, "vpmaddwd", int_x86_sse2_pmadd_wd, 1, 0>, + VEX_4V; +defm VPAVGB : PDI_binop_rm_int<0xE0, "vpavgb", int_x86_sse2_pavg_b, 1, 0>, + VEX_4V; +defm VPAVGW : PDI_binop_rm_int<0xE3, "vpavgw", int_x86_sse2_pavg_w, 1, 0>, + VEX_4V; +defm VPMINUB : PDI_binop_rm_int<0xDA, "vpminub", int_x86_sse2_pminu_b, 1, 0>, + VEX_4V; +defm VPMINSW : PDI_binop_rm_int<0xEA, "vpminsw", int_x86_sse2_pmins_w, 1, 0>, + VEX_4V; +defm VPMAXUB : PDI_binop_rm_int<0xDE, "vpmaxub", int_x86_sse2_pmaxu_b, 1, 0>, + VEX_4V; +defm VPMAXSW : PDI_binop_rm_int<0xEE, "vpmaxsw", int_x86_sse2_pmaxs_w, 1, 0>, + VEX_4V; +defm VPSADBW : PDI_binop_rm_int<0xF6, "vpsadbw", int_x86_sse2_psad_bw, 1, 0>, + VEX_4V; +} +let Constraints = "$src1 = $dst" in { +defm PADDB : PDI_binop_rm<0xFC, "paddb", add, v16i8, 1>; +defm PADDW : PDI_binop_rm<0xFD, "paddw", add, v8i16, 1>; +defm PADDD : PDI_binop_rm<0xFE, "paddd", add, v4i32, 1>; +defm PADDQ : PDI_binop_rm_v2i64<0xD4, "paddq", add, 1>; +defm PMULLW : PDI_binop_rm<0xD5, "pmullw", mul, v8i16, 1>; defm PSUBB : PDI_binop_rm<0xF8, "psubb", sub, v16i8>; defm PSUBW : PDI_binop_rm<0xF9, "psubw", sub, v8i16>; defm PSUBD : PDI_binop_rm<0xFA, "psubd", sub, v4i32>; defm PSUBQ : PDI_binop_rm_v2i64<0xFB, "psubq", sub>; +// Intrinsic forms defm PSUBSB : PDI_binop_rm_int<0xE8, "psubsb" , int_x86_sse2_psubs_b>; defm PSUBSW : PDI_binop_rm_int<0xE9, "psubsw" , int_x86_sse2_psubs_w>; defm PSUBUSB : PDI_binop_rm_int<0xD8, "psubusb", int_x86_sse2_psubus_b>; defm PSUBUSW : PDI_binop_rm_int<0xD9, "psubusw", int_x86_sse2_psubus_w>; - -defm PMULLW : PDI_binop_rm<0xD5, "pmullw", mul, v8i16, 1>; - +defm PADDSB : PDI_binop_rm_int<0xEC, "paddsb" , int_x86_sse2_padds_b, 1>; +defm PADDSW : PDI_binop_rm_int<0xED, "paddsw" , int_x86_sse2_padds_w, 1>; +defm PADDUSB : PDI_binop_rm_int<0xDC, "paddusb", int_x86_sse2_paddus_b, 1>; +defm PADDUSW : PDI_binop_rm_int<0xDD, "paddusw", int_x86_sse2_paddus_w, 1>; defm PMULHUW : PDI_binop_rm_int<0xE4, "pmulhuw", int_x86_sse2_pmulhu_w, 1>; -defm PMULHW : PDI_binop_rm_int<0xE5, "pmulhw" , int_x86_sse2_pmulh_w , 1>; +defm PMULHW : PDI_binop_rm_int<0xE5, "pmulhw" , int_x86_sse2_pmulh_w, 1>; defm PMULUDQ : PDI_binop_rm_int<0xF4, "pmuludq", int_x86_sse2_pmulu_dq, 1>; - defm PMADDWD : PDI_binop_rm_int<0xF5, "pmaddwd", int_x86_sse2_pmadd_wd, 1>; +defm PAVGB : PDI_binop_rm_int<0xE0, "pavgb", int_x86_sse2_pavg_b, 1>; +defm PAVGW : PDI_binop_rm_int<0xE3, "pavgw", int_x86_sse2_pavg_w, 1>; +defm PMINUB : PDI_binop_rm_int<0xDA, "pminub", int_x86_sse2_pminu_b, 1>; +defm PMINSW : PDI_binop_rm_int<0xEA, "pminsw", int_x86_sse2_pmins_w, 1>; +defm PMAXUB : PDI_binop_rm_int<0xDE, "pmaxub", int_x86_sse2_pmaxu_b, 1>; +defm PMAXSW : PDI_binop_rm_int<0xEE, "pmaxsw", int_x86_sse2_pmaxs_w, 1>; +defm PSADBW : PDI_binop_rm_int<0xF6, "psadbw", int_x86_sse2_psad_bw, 1>; + +} // Constraints = "$src1 = $dst" -defm PAVGB : PDI_binop_rm_int<0xE0, "pavgb", int_x86_sse2_pavg_b, 1>; -defm PAVGW : PDI_binop_rm_int<0xE3, "pavgw", int_x86_sse2_pavg_w, 1>; +//===---------------------------------------------------------------------===// +// SSE2 - Packed Integer Logical Instructions +//===---------------------------------------------------------------------===// +let isAsmParserOnly = 1, Predicates = [HasAVX] in { +defm VPSLLW : PDI_binop_rmi_int<0xF1, 0x71, MRM6r, "vpsllw", + int_x86_sse2_psll_w, int_x86_sse2_pslli_w, 0>, + VEX_4V; +defm VPSLLD : PDI_binop_rmi_int<0xF2, 0x72, MRM6r, "vpslld", + int_x86_sse2_psll_d, int_x86_sse2_pslli_d, 0>, + VEX_4V; +defm VPSLLQ : PDI_binop_rmi_int<0xF3, 0x73, MRM6r, "vpsllq", + int_x86_sse2_psll_q, int_x86_sse2_pslli_q, 0>, + VEX_4V; + +defm VPSRLW : PDI_binop_rmi_int<0xD1, 0x71, MRM2r, "vpsrlw", + int_x86_sse2_psrl_w, int_x86_sse2_psrli_w, 0>, + VEX_4V; +defm VPSRLD : PDI_binop_rmi_int<0xD2, 0x72, MRM2r, "vpsrld", + int_x86_sse2_psrl_d, int_x86_sse2_psrli_d, 0>, + VEX_4V; +defm VPSRLQ : PDI_binop_rmi_int<0xD3, 0x73, MRM2r, "vpsrlq", + int_x86_sse2_psrl_q, int_x86_sse2_psrli_q, 0>, + VEX_4V; + +defm VPSRAW : PDI_binop_rmi_int<0xE1, 0x71, MRM4r, "vpsraw", + int_x86_sse2_psra_w, int_x86_sse2_psrai_w, 0>, + VEX_4V; +defm VPSRAD : PDI_binop_rmi_int<0xE2, 0x72, MRM4r, "vpsrad", + int_x86_sse2_psra_d, int_x86_sse2_psrai_d, 0>, + VEX_4V; + +defm VPAND : PDI_binop_rm_v2i64<0xDB, "vpand", and, 1, 0>, VEX_4V; +defm VPOR : PDI_binop_rm_v2i64<0xEB, "vpor" , or, 1, 0>, VEX_4V; +defm VPXOR : PDI_binop_rm_v2i64<0xEF, "vpxor", xor, 1, 0>, VEX_4V; -defm PMINUB : PDI_binop_rm_int<0xDA, "pminub", int_x86_sse2_pminu_b, 1>; -defm PMINSW : PDI_binop_rm_int<0xEA, "pminsw", int_x86_sse2_pmins_w, 1>; -defm PMAXUB : PDI_binop_rm_int<0xDE, "pmaxub", int_x86_sse2_pmaxu_b, 1>; -defm PMAXSW : PDI_binop_rm_int<0xEE, "pmaxsw", int_x86_sse2_pmaxs_w, 1>; -defm PSADBW : PDI_binop_rm_int<0xF6, "psadbw", int_x86_sse2_psad_bw, 1>; +let ExeDomain = SSEPackedInt in { + let neverHasSideEffects = 1 in { + // 128-bit logical shifts. + def VPSLLDQri : PDIi8<0x73, MRM7r, + (outs VR128:$dst), (ins VR128:$src1, i32i8imm:$src2), + "vpslldq\t{$src2, $src1, $dst|$dst, $src1, $src2}", []>, + VEX_4V; + def VPSRLDQri : PDIi8<0x73, MRM3r, + (outs VR128:$dst), (ins VR128:$src1, i32i8imm:$src2), + "vpsrldq\t{$src2, $src1, $dst|$dst, $src1, $src2}", []>, + VEX_4V; + // PSRADQri doesn't exist in SSE[1-3]. + } + def VPANDNrr : PDI<0xDF, MRMSrcReg, + (outs VR128:$dst), (ins VR128:$src1, VR128:$src2), + "vpandn\t{$src2, $src1, $dst|$dst, $src1, $src2}", + [(set VR128:$dst, (v2i64 (and (vnot VR128:$src1), + VR128:$src2)))]>, VEX_4V; + def VPANDNrm : PDI<0xDF, MRMSrcMem, + (outs VR128:$dst), (ins VR128:$src1, i128mem:$src2), + "vpandn\t{$src2, $src1, $dst|$dst, $src1, $src2}", + [(set VR128:$dst, (v2i64 (and (vnot VR128:$src1), + (memopv2i64 addr:$src2))))]>, + VEX_4V; +} +} +let Constraints = "$src1 = $dst" in { defm PSLLW : PDI_binop_rmi_int<0xF1, 0x71, MRM6r, "psllw", int_x86_sse2_psll_w, int_x86_sse2_pslli_w>; defm PSLLD : PDI_binop_rmi_int<0xF2, 0x72, MRM6r, "pslld", @@ -2154,17 +2286,34 @@ defm PSRAW : PDI_binop_rmi_int<0xE1, 0x71, MRM4r, "psraw", defm PSRAD : PDI_binop_rmi_int<0xE2, 0x72, MRM4r, "psrad", int_x86_sse2_psra_d, int_x86_sse2_psrai_d>; -// 128-bit logical shifts. -let Constraints = "$src1 = $dst", neverHasSideEffects = 1, - ExeDomain = SSEPackedInt in { - def PSLLDQri : PDIi8<0x73, MRM7r, - (outs VR128:$dst), (ins VR128:$src1, i32i8imm:$src2), - "pslldq\t{$src2, $dst|$dst, $src2}", []>; - def PSRLDQri : PDIi8<0x73, MRM3r, - (outs VR128:$dst), (ins VR128:$src1, i32i8imm:$src2), - "psrldq\t{$src2, $dst|$dst, $src2}", []>; - // PSRADQri doesn't exist in SSE[1-3]. +defm PAND : PDI_binop_rm_v2i64<0xDB, "pand", and, 1>; +defm POR : PDI_binop_rm_v2i64<0xEB, "por" , or, 1>; +defm PXOR : PDI_binop_rm_v2i64<0xEF, "pxor", xor, 1>; + +let ExeDomain = SSEPackedInt in { + let neverHasSideEffects = 1 in { + // 128-bit logical shifts. + def PSLLDQri : PDIi8<0x73, MRM7r, + (outs VR128:$dst), (ins VR128:$src1, i32i8imm:$src2), + "pslldq\t{$src2, $dst|$dst, $src2}", []>; + def PSRLDQri : PDIi8<0x73, MRM3r, + (outs VR128:$dst), (ins VR128:$src1, i32i8imm:$src2), + "psrldq\t{$src2, $dst|$dst, $src2}", []>; + // PSRADQri doesn't exist in SSE[1-3]. + } + def PANDNrr : PDI<0xDF, MRMSrcReg, + (outs VR128:$dst), (ins VR128:$src1, VR128:$src2), + "pandn\t{$src2, $dst|$dst, $src2}", + [(set VR128:$dst, (v2i64 (and (vnot VR128:$src1), + VR128:$src2)))]>; + + def PANDNrm : PDI<0xDF, MRMSrcMem, + (outs VR128:$dst), (ins VR128:$src1, i128mem:$src2), + "pandn\t{$src2, $dst|$dst, $src2}", + [(set VR128:$dst, (v2i64 (and (vnot VR128:$src1), + (memopv2i64 addr:$src2))))]>; } +} // Constraints = "$src1 = $dst" let Predicates = [HasSSE2] in { def : Pat<(int_x86_sse2_psll_dq VR128:$src1, imm:$src2), @@ -2185,32 +2334,33 @@ let Predicates = [HasSSE2] in { (v2i64 (PSRLDQri VR128:$src, (BYTE_imm imm:$amt)))>; } -// Logical -defm PAND : PDI_binop_rm_v2i64<0xDB, "pand", and, 1>; -defm POR : PDI_binop_rm_v2i64<0xEB, "por" , or , 1>; -defm PXOR : PDI_binop_rm_v2i64<0xEF, "pxor", xor, 1>; - -let Constraints = "$src1 = $dst", ExeDomain = SSEPackedInt in { - def PANDNrr : PDI<0xDF, MRMSrcReg, - (outs VR128:$dst), (ins VR128:$src1, VR128:$src2), - "pandn\t{$src2, $dst|$dst, $src2}", - [(set VR128:$dst, (v2i64 (and (vnot VR128:$src1), - VR128:$src2)))]>; +//===---------------------------------------------------------------------===// +// SSE2 - Packed Integer Comparison Instructions +//===---------------------------------------------------------------------===// - def PANDNrm : PDI<0xDF, MRMSrcMem, - (outs VR128:$dst), (ins VR128:$src1, i128mem:$src2), - "pandn\t{$src2, $dst|$dst, $src2}", - [(set VR128:$dst, (v2i64 (and (vnot VR128:$src1), - (memopv2i64 addr:$src2))))]>; +let isAsmParserOnly = 1, Predicates = [HasAVX] in { + defm VPCMPEQB : PDI_binop_rm_int<0x74, "vpcmpeqb", int_x86_sse2_pcmpeq_b, 1, + 0>, VEX_4V; + defm VPCMPEQW : PDI_binop_rm_int<0x75, "vpcmpeqw", int_x86_sse2_pcmpeq_w, 1, + 0>, VEX_4V; + defm VPCMPEQD : PDI_binop_rm_int<0x76, "vpcmpeqd", int_x86_sse2_pcmpeq_d, 1, + 0>, VEX_4V; + defm VPCMPGTB : PDI_binop_rm_int<0x64, "vpcmpgtb", int_x86_sse2_pcmpgt_b, 0, + 0>, VEX_4V; + defm VPCMPGTW : PDI_binop_rm_int<0x65, "vpcmpgtw", int_x86_sse2_pcmpgt_w, 0, + 0>, VEX_4V; + defm VPCMPGTD : PDI_binop_rm_int<0x66, "vpcmpgtd", int_x86_sse2_pcmpgt_d, 0, + 0>, VEX_4V; } -// SSE2 Integer comparison -defm PCMPEQB : PDI_binop_rm_int<0x74, "pcmpeqb", int_x86_sse2_pcmpeq_b>; -defm PCMPEQW : PDI_binop_rm_int<0x75, "pcmpeqw", int_x86_sse2_pcmpeq_w>; -defm PCMPEQD : PDI_binop_rm_int<0x76, "pcmpeqd", int_x86_sse2_pcmpeq_d>; -defm PCMPGTB : PDI_binop_rm_int<0x64, "pcmpgtb", int_x86_sse2_pcmpgt_b>; -defm PCMPGTW : PDI_binop_rm_int<0x65, "pcmpgtw", int_x86_sse2_pcmpgt_w>; -defm PCMPGTD : PDI_binop_rm_int<0x66, "pcmpgtd", int_x86_sse2_pcmpgt_d>; +let Constraints = "$src1 = $dst" in { + defm PCMPEQB : PDI_binop_rm_int<0x74, "pcmpeqb", int_x86_sse2_pcmpeq_b, 1>; + defm PCMPEQW : PDI_binop_rm_int<0x75, "pcmpeqw", int_x86_sse2_pcmpeq_w, 1>; + defm PCMPEQD : PDI_binop_rm_int<0x76, "pcmpeqd", int_x86_sse2_pcmpeq_d, 1>; + defm PCMPGTB : PDI_binop_rm_int<0x64, "pcmpgtb", int_x86_sse2_pcmpgt_b>; + defm PCMPGTW : PDI_binop_rm_int<0x65, "pcmpgtw", int_x86_sse2_pcmpgt_w>; + defm PCMPGTD : PDI_binop_rm_int<0x66, "pcmpgtd", int_x86_sse2_pcmpgt_d>; +} // Constraints = "$src1 = $dst" def : Pat<(v16i8 (X86pcmpeqb VR128:$src1, VR128:$src2)), (PCMPEQBrr VR128:$src1, VR128:$src2)>; @@ -2238,94 +2388,147 @@ def : Pat<(v4i32 (X86pcmpgtd VR128:$src1, VR128:$src2)), def : Pat<(v4i32 (X86pcmpgtd VR128:$src1, (memop addr:$src2))), (PCMPGTDrm VR128:$src1, addr:$src2)>; +//===---------------------------------------------------------------------===// +// SSE2 - Packed Integer Pack Instructions +//===---------------------------------------------------------------------===// -// Pack instructions +let isAsmParserOnly = 1, Predicates = [HasAVX] in { +defm VPACKSSWB : PDI_binop_rm_int<0x63, "vpacksswb", int_x86_sse2_packsswb_128, + 0, 0>, VEX_4V; +defm VPACKSSDW : PDI_binop_rm_int<0x6B, "vpackssdw", int_x86_sse2_packssdw_128, + 0, 0>, VEX_4V; +defm VPACKUSWB : PDI_binop_rm_int<0x67, "vpackuswb", int_x86_sse2_packuswb_128, + 0, 0>, VEX_4V; +} + +let Constraints = "$src1 = $dst" in { defm PACKSSWB : PDI_binop_rm_int<0x63, "packsswb", int_x86_sse2_packsswb_128>; defm PACKSSDW : PDI_binop_rm_int<0x6B, "packssdw", int_x86_sse2_packssdw_128>; defm PACKUSWB : PDI_binop_rm_int<0x67, "packuswb", int_x86_sse2_packuswb_128>; +} // Constraints = "$src1 = $dst" + +//===---------------------------------------------------------------------===// +// SSE2 - Packed Integer Shuffle Instructions +//===---------------------------------------------------------------------===// let ExeDomain = SSEPackedInt in { +multiclass sse2_pshuffle<string OpcodeStr, ValueType vt, PatFrag pshuf_frag, + PatFrag bc_frag> { +def ri : Ii8<0x70, MRMSrcReg, + (outs VR128:$dst), (ins VR128:$src1, i8imm:$src2), + !strconcat(OpcodeStr, + "\t{$src2, $src1, $dst|$dst, $src1, $src2}"), + [(set VR128:$dst, (vt (pshuf_frag:$src2 VR128:$src1, + (undef))))]>; +def mi : Ii8<0x70, MRMSrcMem, + (outs VR128:$dst), (ins i128mem:$src1, i8imm:$src2), + !strconcat(OpcodeStr, + "\t{$src2, $src1, $dst|$dst, $src1, $src2}"), + [(set VR128:$dst, (vt (pshuf_frag:$src2 + (bc_frag (memopv2i64 addr:$src1)), + (undef))))]>; +} +} // ExeDomain = SSEPackedInt -// Shuffle and unpack instructions -let AddedComplexity = 5 in { -def PSHUFDri : PDIi8<0x70, MRMSrcReg, - (outs VR128:$dst), (ins VR128:$src1, i8imm:$src2), - "pshufd\t{$src2, $src1, $dst|$dst, $src1, $src2}", - [(set VR128:$dst, (v4i32 (pshufd:$src2 - VR128:$src1, (undef))))]>; -def PSHUFDmi : PDIi8<0x70, MRMSrcMem, - (outs VR128:$dst), (ins i128mem:$src1, i8imm:$src2), - "pshufd\t{$src2, $src1, $dst|$dst, $src1, $src2}", - [(set VR128:$dst, (v4i32 (pshufd:$src2 - (bc_v4i32 (memopv2i64 addr:$src1)), - (undef))))]>; -} - -// SSE2 with ImmT == Imm8 and XS prefix. -def PSHUFHWri : Ii8<0x70, MRMSrcReg, - (outs VR128:$dst), (ins VR128:$src1, i8imm:$src2), - "pshufhw\t{$src2, $src1, $dst|$dst, $src1, $src2}", - [(set VR128:$dst, (v8i16 (pshufhw:$src2 VR128:$src1, - (undef))))]>, - XS, Requires<[HasSSE2]>; -def PSHUFHWmi : Ii8<0x70, MRMSrcMem, - (outs VR128:$dst), (ins i128mem:$src1, i8imm:$src2), - "pshufhw\t{$src2, $src1, $dst|$dst, $src1, $src2}", - [(set VR128:$dst, (v8i16 (pshufhw:$src2 - (bc_v8i16 (memopv2i64 addr:$src1)), - (undef))))]>, - XS, Requires<[HasSSE2]>; - -// SSE2 with ImmT == Imm8 and XD prefix. -def PSHUFLWri : Ii8<0x70, MRMSrcReg, - (outs VR128:$dst), (ins VR128:$src1, i8imm:$src2), - "pshuflw\t{$src2, $src1, $dst|$dst, $src1, $src2}", - [(set VR128:$dst, (v8i16 (pshuflw:$src2 VR128:$src1, - (undef))))]>, - XD, Requires<[HasSSE2]>; -def PSHUFLWmi : Ii8<0x70, MRMSrcMem, - (outs VR128:$dst), (ins i128mem:$src1, i8imm:$src2), - "pshuflw\t{$src2, $src1, $dst|$dst, $src1, $src2}", - [(set VR128:$dst, (v8i16 (pshuflw:$src2 - (bc_v8i16 (memopv2i64 addr:$src1)), - (undef))))]>, - XD, Requires<[HasSSE2]>; +let isAsmParserOnly = 1, Predicates = [HasAVX] in { + let AddedComplexity = 5 in + defm VPSHUFD : sse2_pshuffle<"vpshufd", v4i32, pshufd, bc_v4i32>, OpSize, + VEX; + // SSE2 with ImmT == Imm8 and XS prefix. + defm VPSHUFHW : sse2_pshuffle<"vpshufhw", v8i16, pshufhw, bc_v8i16>, XS, + VEX; -let Constraints = "$src1 = $dst" in { - def PUNPCKLBWrr : PDI<0x60, MRMSrcReg, - (outs VR128:$dst), (ins VR128:$src1, VR128:$src2), - "punpcklbw\t{$src2, $dst|$dst, $src2}", - [(set VR128:$dst, - (v16i8 (unpckl VR128:$src1, VR128:$src2)))]>; - def PUNPCKLBWrm : PDI<0x60, MRMSrcMem, - (outs VR128:$dst), (ins VR128:$src1, i128mem:$src2), - "punpcklbw\t{$src2, $dst|$dst, $src2}", - [(set VR128:$dst, - (unpckl VR128:$src1, - (bc_v16i8 (memopv2i64 addr:$src2))))]>; - def PUNPCKLWDrr : PDI<0x61, MRMSrcReg, - (outs VR128:$dst), (ins VR128:$src1, VR128:$src2), - "punpcklwd\t{$src2, $dst|$dst, $src2}", + // SSE2 with ImmT == Imm8 and XD prefix. + defm VPSHUFLW : sse2_pshuffle<"vpshuflw", v8i16, pshuflw, bc_v8i16>, XD, + VEX; +} + +let Predicates = [HasSSE2] in { + let AddedComplexity = 5 in + defm PSHUFD : sse2_pshuffle<"pshufd", v4i32, pshufd, bc_v4i32>, TB, OpSize; + + // SSE2 with ImmT == Imm8 and XS prefix. + defm PSHUFHW : sse2_pshuffle<"pshufhw", v8i16, pshufhw, bc_v8i16>, XS; + + // SSE2 with ImmT == Imm8 and XD prefix. + defm PSHUFLW : sse2_pshuffle<"pshuflw", v8i16, pshuflw, bc_v8i16>, XD; +} + +//===---------------------------------------------------------------------===// +// SSE2 - Packed Integer Unpack Instructions +//===---------------------------------------------------------------------===// + +let ExeDomain = SSEPackedInt in { +multiclass sse2_unpack<bits<8> opc, string OpcodeStr, ValueType vt, + PatFrag unp_frag, PatFrag bc_frag, bit Is2Addr = 1> { + def rr : PDI<opc, MRMSrcReg, + (outs VR128:$dst), (ins VR128:$src1, VR128:$src2), + !if(Is2Addr, + !strconcat(OpcodeStr,"\t{$src2, $dst|$dst, $src2}"), + !strconcat(OpcodeStr,"\t{$src2, $src1, $dst|$dst, $src1, $src2}")), + [(set VR128:$dst, (vt (unp_frag VR128:$src1, VR128:$src2)))]>; + def rm : PDI<opc, MRMSrcMem, + (outs VR128:$dst), (ins VR128:$src1, i128mem:$src2), + !if(Is2Addr, + !strconcat(OpcodeStr,"\t{$src2, $dst|$dst, $src2}"), + !strconcat(OpcodeStr,"\t{$src2, $src1, $dst|$dst, $src1, $src2}")), + [(set VR128:$dst, (unp_frag VR128:$src1, + (bc_frag (memopv2i64 + addr:$src2))))]>; +} + +let isAsmParserOnly = 1, Predicates = [HasAVX] in { + defm VPUNPCKLBW : sse2_unpack<0x60, "vpunpcklbw", v16i8, unpckl, bc_v16i8, + 0>, VEX_4V; + defm VPUNPCKLWD : sse2_unpack<0x61, "vpunpcklwd", v8i16, unpckl, bc_v8i16, + 0>, VEX_4V; + defm VPUNPCKLDQ : sse2_unpack<0x62, "vpunpckldq", v4i32, unpckl, bc_v4i32, + 0>, VEX_4V; + + /// FIXME: we could eliminate this and use sse2_unpack instead if tblgen + /// knew to collapse (bitconvert VT to VT) into its operand. + def VPUNPCKLQDQrr : PDI<0x6C, MRMSrcReg, + (outs VR128:$dst), (ins VR128:$src1, VR128:$src2), + "vpunpcklqdq\t{$src2, $src1, $dst|$dst, $src1, $src2}", [(set VR128:$dst, - (v8i16 (unpckl VR128:$src1, VR128:$src2)))]>; - def PUNPCKLWDrm : PDI<0x61, MRMSrcMem, - (outs VR128:$dst), (ins VR128:$src1, i128mem:$src2), - "punpcklwd\t{$src2, $dst|$dst, $src2}", + (v2i64 (unpckl VR128:$src1, VR128:$src2)))]>, VEX_4V; + def VPUNPCKLQDQrm : PDI<0x6C, MRMSrcMem, + (outs VR128:$dst), (ins VR128:$src1, i128mem:$src2), + "vpunpcklqdq\t{$src2, $src1, $dst|$dst, $src1, $src2}", [(set VR128:$dst, - (unpckl VR128:$src1, - (bc_v8i16 (memopv2i64 addr:$src2))))]>; - def PUNPCKLDQrr : PDI<0x62, MRMSrcReg, - (outs VR128:$dst), (ins VR128:$src1, VR128:$src2), - "punpckldq\t{$src2, $dst|$dst, $src2}", + (v2i64 (unpckl VR128:$src1, + (memopv2i64 addr:$src2))))]>, VEX_4V; + + defm VPUNPCKHBW : sse2_unpack<0x68, "vpunpckhbw", v16i8, unpckh, bc_v16i8, + 0>, VEX_4V; + defm VPUNPCKHWD : sse2_unpack<0x69, "vpunpckhwd", v8i16, unpckh, bc_v8i16, + 0>, VEX_4V; + defm VPUNPCKHDQ : sse2_unpack<0x6A, "vpunpckhdq", v4i32, unpckh, bc_v4i32, + 0>, VEX_4V; + + /// FIXME: we could eliminate this and use sse2_unpack instead if tblgen + /// knew to collapse (bitconvert VT to VT) into its operand. + def VPUNPCKHQDQrr : PDI<0x6D, MRMSrcReg, + (outs VR128:$dst), (ins VR128:$src1, VR128:$src2), + "vpunpckhqdq\t{$src2, $src1, $dst|$dst, $src1, $src2}", [(set VR128:$dst, - (v4i32 (unpckl VR128:$src1, VR128:$src2)))]>; - def PUNPCKLDQrm : PDI<0x62, MRMSrcMem, + (v2i64 (unpckh VR128:$src1, VR128:$src2)))]>, VEX_4V; + def VPUNPCKHQDQrm : PDI<0x6D, MRMSrcMem, (outs VR128:$dst), (ins VR128:$src1, i128mem:$src2), - "punpckldq\t{$src2, $dst|$dst, $src2}", + "vpunpckhqdq\t{$src2, $src1, $dst|$dst, $src1, $src2}", [(set VR128:$dst, - (unpckl VR128:$src1, - (bc_v4i32 (memopv2i64 addr:$src2))))]>; + (v2i64 (unpckh VR128:$src1, + (memopv2i64 addr:$src2))))]>, VEX_4V; +} + +let Constraints = "$src1 = $dst" in { + defm PUNPCKLBW : sse2_unpack<0x60, "punpcklbw", v16i8, unpckl, bc_v16i8>; + defm PUNPCKLWD : sse2_unpack<0x61, "punpcklwd", v8i16, unpckl, bc_v8i16>; + defm PUNPCKLDQ : sse2_unpack<0x62, "punpckldq", v4i32, unpckl, bc_v4i32>; + + /// FIXME: we could eliminate this and use sse2_unpack instead if tblgen + /// knew to collapse (bitconvert VT to VT) into its operand. def PUNPCKLQDQrr : PDI<0x6C, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src1, VR128:$src2), "punpcklqdq\t{$src2, $dst|$dst, $src2}", @@ -2338,39 +2541,12 @@ let Constraints = "$src1 = $dst" in { (v2i64 (unpckl VR128:$src1, (memopv2i64 addr:$src2))))]>; - def PUNPCKHBWrr : PDI<0x68, MRMSrcReg, - (outs VR128:$dst), (ins VR128:$src1, VR128:$src2), - "punpckhbw\t{$src2, $dst|$dst, $src2}", - [(set VR128:$dst, - (v16i8 (unpckh VR128:$src1, VR128:$src2)))]>; - def PUNPCKHBWrm : PDI<0x68, MRMSrcMem, - (outs VR128:$dst), (ins VR128:$src1, i128mem:$src2), - "punpckhbw\t{$src2, $dst|$dst, $src2}", - [(set VR128:$dst, - (unpckh VR128:$src1, - (bc_v16i8 (memopv2i64 addr:$src2))))]>; - def PUNPCKHWDrr : PDI<0x69, MRMSrcReg, - (outs VR128:$dst), (ins VR128:$src1, VR128:$src2), - "punpckhwd\t{$src2, $dst|$dst, $src2}", - [(set VR128:$dst, - (v8i16 (unpckh VR128:$src1, VR128:$src2)))]>; - def PUNPCKHWDrm : PDI<0x69, MRMSrcMem, - (outs VR128:$dst), (ins VR128:$src1, i128mem:$src2), - "punpckhwd\t{$src2, $dst|$dst, $src2}", - [(set VR128:$dst, - (unpckh VR128:$src1, - (bc_v8i16 (memopv2i64 addr:$src2))))]>; - def PUNPCKHDQrr : PDI<0x6A, MRMSrcReg, - (outs VR128:$dst), (ins VR128:$src1, VR128:$src2), - "punpckhdq\t{$src2, $dst|$dst, $src2}", - [(set VR128:$dst, - (v4i32 (unpckh VR128:$src1, VR128:$src2)))]>; - def PUNPCKHDQrm : PDI<0x6A, MRMSrcMem, - (outs VR128:$dst), (ins VR128:$src1, i128mem:$src2), - "punpckhdq\t{$src2, $dst|$dst, $src2}", - [(set VR128:$dst, - (unpckh VR128:$src1, - (bc_v4i32 (memopv2i64 addr:$src2))))]>; + defm PUNPCKHBW : sse2_unpack<0x68, "punpckhbw", v16i8, unpckh, bc_v16i8>; + defm PUNPCKHWD : sse2_unpack<0x69, "punpckhwd", v8i16, unpckh, bc_v8i16>; + defm PUNPCKHDQ : sse2_unpack<0x6A, "punpckhdq", v4i32, unpckh, bc_v4i32>; + + /// FIXME: we could eliminate this and use sse2_unpack instead if tblgen + /// knew to collapse (bitconvert VT to VT) into its operand. def PUNPCKHQDQrr : PDI<0x6D, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src1, VR128:$src2), "punpckhqdq\t{$src2, $dst|$dst, $src2}", @@ -2384,102 +2560,117 @@ let Constraints = "$src1 = $dst" in { (memopv2i64 addr:$src2))))]>; } -// Extract / Insert +} // ExeDomain = SSEPackedInt + +//===---------------------------------------------------------------------===// +// SSE2 - Packed Integer Extract and Insert +//===---------------------------------------------------------------------===// + +let ExeDomain = SSEPackedInt in { +multiclass sse2_pinsrw<bit Is2Addr = 1> { + def rri : Ii8<0xC4, MRMSrcReg, + (outs VR128:$dst), (ins VR128:$src1, + GR32:$src2, i32i8imm:$src3), + !if(Is2Addr, + "pinsrw\t{$src3, $src2, $dst|$dst, $src2, $src3}", + "vpinsrw\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"), + [(set VR128:$dst, + (X86pinsrw VR128:$src1, GR32:$src2, imm:$src3))]>; + def rmi : Ii8<0xC4, MRMSrcMem, + (outs VR128:$dst), (ins VR128:$src1, + i16mem:$src2, i32i8imm:$src3), + !if(Is2Addr, + "pinsrw\t{$src3, $src2, $dst|$dst, $src2, $src3}", + "vpinsrw\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"), + [(set VR128:$dst, + (X86pinsrw VR128:$src1, (extloadi16 addr:$src2), + imm:$src3))]>; +} + +// Extract +let isAsmParserOnly = 1, Predicates = [HasAVX] in +def VPEXTRWri : Ii8<0xC5, MRMSrcReg, + (outs GR32:$dst), (ins VR128:$src1, i32i8imm:$src2), + "vpextrw\t{$src2, $src1, $dst|$dst, $src1, $src2}", + [(set GR32:$dst, (X86pextrw (v8i16 VR128:$src1), + imm:$src2))]>, OpSize, VEX; def PEXTRWri : PDIi8<0xC5, MRMSrcReg, (outs GR32:$dst), (ins VR128:$src1, i32i8imm:$src2), "pextrw\t{$src2, $src1, $dst|$dst, $src1, $src2}", [(set GR32:$dst, (X86pextrw (v8i16 VR128:$src1), imm:$src2))]>; -let Constraints = "$src1 = $dst" in { - def PINSRWrri : PDIi8<0xC4, MRMSrcReg, - (outs VR128:$dst), (ins VR128:$src1, - GR32:$src2, i32i8imm:$src3), - "pinsrw\t{$src3, $src2, $dst|$dst, $src2, $src3}", - [(set VR128:$dst, - (X86pinsrw VR128:$src1, GR32:$src2, imm:$src3))]>; - def PINSRWrmi : PDIi8<0xC4, MRMSrcMem, - (outs VR128:$dst), (ins VR128:$src1, - i16mem:$src2, i32i8imm:$src3), - "pinsrw\t{$src3, $src2, $dst|$dst, $src2, $src3}", - [(set VR128:$dst, - (X86pinsrw VR128:$src1, (extloadi16 addr:$src2), - imm:$src3))]>; -} -// Mask creation -def PMOVMSKBrr : PDI<0xD7, MRMSrcReg, (outs GR32:$dst), (ins VR128:$src), - "pmovmskb\t{$src, $dst|$dst, $src}", - [(set GR32:$dst, (int_x86_sse2_pmovmskb_128 VR128:$src))]>; +// Insert +let isAsmParserOnly = 1, Predicates = [HasAVX] in + defm PINSRW : sse2_pinsrw<0>, OpSize, VEX_4V; -// Conditional store -let Uses = [EDI] in -def MASKMOVDQU : PDI<0xF7, MRMSrcReg, (outs), (ins VR128:$src, VR128:$mask), - "maskmovdqu\t{$mask, $src|$src, $mask}", - [(int_x86_sse2_maskmov_dqu VR128:$src, VR128:$mask, EDI)]>; - -let Uses = [RDI] in -def MASKMOVDQU64 : PDI<0xF7, MRMSrcReg, (outs), (ins VR128:$src, VR128:$mask), - "maskmovdqu\t{$mask, $src|$src, $mask}", - [(int_x86_sse2_maskmov_dqu VR128:$src, VR128:$mask, RDI)]>; +let Constraints = "$src1 = $dst" in + defm VPINSRW : sse2_pinsrw, TB, OpSize; } // ExeDomain = SSEPackedInt -// Non-temporal stores -def MOVNTPDmr_Int : PDI<0x2B, MRMDestMem, (outs), (ins i128mem:$dst, VR128:$src), - "movntpd\t{$src, $dst|$dst, $src}", - [(int_x86_sse2_movnt_pd addr:$dst, VR128:$src)]>; -let ExeDomain = SSEPackedInt in -def MOVNTDQmr_Int : PDI<0xE7, MRMDestMem, (outs), (ins f128mem:$dst, VR128:$src), - "movntdq\t{$src, $dst|$dst, $src}", - [(int_x86_sse2_movnt_dq addr:$dst, VR128:$src)]>; -def MOVNTImr_Int : I<0xC3, MRMDestMem, (outs), (ins i32mem:$dst, GR32:$src), - "movnti\t{$src, $dst|$dst, $src}", - [(int_x86_sse2_movnt_i addr:$dst, GR32:$src)]>, - TB, Requires<[HasSSE2]>; +//===---------------------------------------------------------------------===// +// SSE2 - Packed Mask Creation +//===---------------------------------------------------------------------===// -let AddedComplexity = 400 in { // Prefer non-temporal versions -def MOVNTPDmr : PDI<0x2B, MRMDestMem, (outs), (ins f128mem:$dst, VR128:$src), - "movntpd\t{$src, $dst|$dst, $src}", - [(alignednontemporalstore(v2f64 VR128:$src), addr:$dst)]>; +let ExeDomain = SSEPackedInt in { -let ExeDomain = SSEPackedInt in -def MOVNTDQmr : PDI<0xE7, MRMDestMem, (outs), (ins f128mem:$dst, VR128:$src), - "movntdq\t{$src, $dst|$dst, $src}", - [(alignednontemporalstore (v4f32 VR128:$src), addr:$dst)]>; -} +let isAsmParserOnly = 1 in +def VPMOVMSKBrr : VPDI<0xD7, MRMSrcReg, (outs GR32:$dst), (ins VR128:$src), + "pmovmskb\t{$src, $dst|$dst, $src}", + [(set GR32:$dst, (int_x86_sse2_pmovmskb_128 VR128:$src))]>, VEX; +def PMOVMSKBrr : PDI<0xD7, MRMSrcReg, (outs GR32:$dst), (ins VR128:$src), + "pmovmskb\t{$src, $dst|$dst, $src}", + [(set GR32:$dst, (int_x86_sse2_pmovmskb_128 VR128:$src))]>; -// Flush cache -def CLFLUSH : I<0xAE, MRM7m, (outs), (ins i8mem:$src), - "clflush\t$src", [(int_x86_sse2_clflush addr:$src)]>, - TB, Requires<[HasSSE2]>; +} // ExeDomain = SSEPackedInt -// Load, store, and memory fence -def LFENCE : I<0xAE, MRM_E8, (outs), (ins), - "lfence", [(int_x86_sse2_lfence)]>, TB, Requires<[HasSSE2]>; -def MFENCE : I<0xAE, MRM_F0, (outs), (ins), - "mfence", [(int_x86_sse2_mfence)]>, TB, Requires<[HasSSE2]>; +//===---------------------------------------------------------------------===// +// SSE2 - Conditional Store +//===---------------------------------------------------------------------===// -// Pause. This "instruction" is encoded as "rep; nop", so even though it -// was introduced with SSE2, it's backward compatible. -def PAUSE : I<0x90, RawFrm, (outs), (ins), "pause", []>, REP; +let ExeDomain = SSEPackedInt in { -//TODO: custom lower this so as to never even generate the noop -def : Pat<(membarrier (i8 imm), (i8 imm), (i8 imm), (i8 imm), - (i8 0)), (NOOP)>; -def : Pat<(membarrier (i8 0), (i8 0), (i8 0), (i8 1), (i8 1)), (SFENCE)>; -def : Pat<(membarrier (i8 1), (i8 0), (i8 0), (i8 0), (i8 1)), (LFENCE)>; -def : Pat<(membarrier (i8 imm), (i8 imm), (i8 imm), (i8 imm), - (i8 1)), (MFENCE)>; +let isAsmParserOnly = 1 in { +let Uses = [EDI] in +def VMASKMOVDQU : VPDI<0xF7, MRMSrcReg, (outs), + (ins VR128:$src, VR128:$mask), + "maskmovdqu\t{$mask, $src|$src, $mask}", + [(int_x86_sse2_maskmov_dqu VR128:$src, VR128:$mask, EDI)]>, VEX; +let Uses = [RDI] in +def VMASKMOVDQU64 : VPDI<0xF7, MRMSrcReg, (outs), + (ins VR128:$src, VR128:$mask), + "maskmovdqu\t{$mask, $src|$src, $mask}", + [(int_x86_sse2_maskmov_dqu VR128:$src, VR128:$mask, RDI)]>, VEX; +} -// Alias instructions that map zero vector to pxor / xorp* for sse. -// We set canFoldAsLoad because this can be converted to a constant-pool -// load of an all-ones value if folding it would be beneficial. -let isReMaterializable = 1, isAsCheapAsAMove = 1, canFoldAsLoad = 1, - isCodeGenOnly = 1, ExeDomain = SSEPackedInt in - // FIXME: Change encoding to pseudo. - def V_SETALLONES : PDI<0x76, MRMInitReg, (outs VR128:$dst), (ins), "", - [(set VR128:$dst, (v4i32 immAllOnesV))]>; +let Uses = [EDI] in +def MASKMOVDQU : PDI<0xF7, MRMSrcReg, (outs), (ins VR128:$src, VR128:$mask), + "maskmovdqu\t{$mask, $src|$src, $mask}", + [(int_x86_sse2_maskmov_dqu VR128:$src, VR128:$mask, EDI)]>; +let Uses = [RDI] in +def MASKMOVDQU64 : PDI<0xF7, MRMSrcReg, (outs), (ins VR128:$src, VR128:$mask), + "maskmovdqu\t{$mask, $src|$src, $mask}", + [(int_x86_sse2_maskmov_dqu VR128:$src, VR128:$mask, RDI)]>; + +} // ExeDomain = SSEPackedInt + +//===---------------------------------------------------------------------===// +// SSE2 - Move Doubleword +//===---------------------------------------------------------------------===// +// Move Int Doubleword to Packed Double Int +let isAsmParserOnly = 1 in { +def VMOVDI2PDIrr : VPDI<0x6E, MRMSrcReg, (outs VR128:$dst), (ins GR32:$src), + "movd\t{$src, $dst|$dst, $src}", + [(set VR128:$dst, + (v4i32 (scalar_to_vector GR32:$src)))]>, VEX; +def VMOVDI2PDIrm : VPDI<0x6E, MRMSrcMem, (outs VR128:$dst), (ins i32mem:$src), + "movd\t{$src, $dst|$dst, $src}", + [(set VR128:$dst, + (v4i32 (scalar_to_vector (loadi32 addr:$src))))]>, + VEX; +} def MOVDI2PDIrr : PDI<0x6E, MRMSrcReg, (outs VR128:$dst), (ins GR32:$src), "movd\t{$src, $dst|$dst, $src}", [(set VR128:$dst, @@ -2489,6 +2680,18 @@ def MOVDI2PDIrm : PDI<0x6E, MRMSrcMem, (outs VR128:$dst), (ins i32mem:$src), [(set VR128:$dst, (v4i32 (scalar_to_vector (loadi32 addr:$src))))]>; + +// Move Int Doubleword to Single Scalar +let isAsmParserOnly = 1 in { +def VMOVDI2SSrr : VPDI<0x6E, MRMSrcReg, (outs FR32:$dst), (ins GR32:$src), + "movd\t{$src, $dst|$dst, $src}", + [(set FR32:$dst, (bitconvert GR32:$src))]>, VEX; + +def VMOVDI2SSrm : VPDI<0x6E, MRMSrcMem, (outs FR32:$dst), (ins i32mem:$src), + "movd\t{$src, $dst|$dst, $src}", + [(set FR32:$dst, (bitconvert (loadi32 addr:$src)))]>, + VEX; +} def MOVDI2SSrr : PDI<0x6E, MRMSrcReg, (outs FR32:$dst), (ins GR32:$src), "movd\t{$src, $dst|$dst, $src}", [(set FR32:$dst, (bitconvert GR32:$src))]>; @@ -2497,20 +2700,18 @@ def MOVDI2SSrm : PDI<0x6E, MRMSrcMem, (outs FR32:$dst), (ins i32mem:$src), "movd\t{$src, $dst|$dst, $src}", [(set FR32:$dst, (bitconvert (loadi32 addr:$src)))]>; -// SSE2 instructions with XS prefix -def MOVQI2PQIrm : I<0x7E, MRMSrcMem, (outs VR128:$dst), (ins i64mem:$src), - "movq\t{$src, $dst|$dst, $src}", - [(set VR128:$dst, - (v2i64 (scalar_to_vector (loadi64 addr:$src))))]>, XS, - Requires<[HasSSE2]>; -def MOVPQI2QImr : PDI<0xD6, MRMDestMem, (outs), (ins i64mem:$dst, VR128:$src), - "movq\t{$src, $dst|$dst, $src}", - [(store (i64 (vector_extract (v2i64 VR128:$src), - (iPTR 0))), addr:$dst)]>; - -def : Pat<(f64 (vector_extract (v2f64 VR128:$src), (iPTR 0))), - (f64 (EXTRACT_SUBREG (v2f64 VR128:$src), sub_sd))>; - +// Move Packed Doubleword Int to Packed Double Int +let isAsmParserOnly = 1 in { +def VMOVPDI2DIrr : VPDI<0x7E, MRMDestReg, (outs GR32:$dst), (ins VR128:$src), + "movd\t{$src, $dst|$dst, $src}", + [(set GR32:$dst, (vector_extract (v4i32 VR128:$src), + (iPTR 0)))]>, VEX; +def VMOVPDI2DImr : VPDI<0x7E, MRMDestMem, (outs), + (ins i32mem:$dst, VR128:$src), + "movd\t{$src, $dst|$dst, $src}", + [(store (i32 (vector_extract (v4i32 VR128:$src), + (iPTR 0))), addr:$dst)]>, VEX; +} def MOVPDI2DIrr : PDI<0x7E, MRMDestReg, (outs GR32:$dst), (ins VR128:$src), "movd\t{$src, $dst|$dst, $src}", [(set GR32:$dst, (vector_extract (v4i32 VR128:$src), @@ -2520,6 +2721,15 @@ def MOVPDI2DImr : PDI<0x7E, MRMDestMem, (outs), (ins i32mem:$dst, VR128:$src), [(store (i32 (vector_extract (v4i32 VR128:$src), (iPTR 0))), addr:$dst)]>; +// Move Scalar Single to Double Int +let isAsmParserOnly = 1 in { +def VMOVSS2DIrr : VPDI<0x7E, MRMDestReg, (outs GR32:$dst), (ins FR32:$src), + "movd\t{$src, $dst|$dst, $src}", + [(set GR32:$dst, (bitconvert FR32:$src))]>, VEX; +def VMOVSS2DImr : VPDI<0x7E, MRMDestMem, (outs), (ins i32mem:$dst, FR32:$src), + "movd\t{$src, $dst|$dst, $src}", + [(store (i32 (bitconvert FR32:$src)), addr:$dst)]>, VEX; +} def MOVSS2DIrr : PDI<0x7E, MRMDestReg, (outs GR32:$dst), (ins FR32:$src), "movd\t{$src, $dst|$dst, $src}", [(set GR32:$dst, (bitconvert FR32:$src))]>; @@ -2527,25 +2737,38 @@ def MOVSS2DImr : PDI<0x7E, MRMDestMem, (outs), (ins i32mem:$dst, FR32:$src), "movd\t{$src, $dst|$dst, $src}", [(store (i32 (bitconvert FR32:$src)), addr:$dst)]>; -// Store / copy lower 64-bits of a XMM register. -def MOVLQ128mr : PDI<0xD6, MRMDestMem, (outs), (ins i64mem:$dst, VR128:$src), - "movq\t{$src, $dst|$dst, $src}", - [(int_x86_sse2_storel_dq addr:$dst, VR128:$src)]>; - // movd / movq to XMM register zero-extends +let AddedComplexity = 15, isAsmParserOnly = 1 in { +def VMOVZDI2PDIrr : VPDI<0x6E, MRMSrcReg, (outs VR128:$dst), (ins GR32:$src), + "movd\t{$src, $dst|$dst, $src}", + [(set VR128:$dst, (v4i32 (X86vzmovl + (v4i32 (scalar_to_vector GR32:$src)))))]>, + VEX; +def VMOVZQI2PQIrr : VPDI<0x6E, MRMSrcReg, (outs VR128:$dst), (ins GR64:$src), + "mov{d|q}\t{$src, $dst|$dst, $src}", // X86-64 only + [(set VR128:$dst, (v2i64 (X86vzmovl + (v2i64 (scalar_to_vector GR64:$src)))))]>, + VEX, VEX_W; +} let AddedComplexity = 15 in { def MOVZDI2PDIrr : PDI<0x6E, MRMSrcReg, (outs VR128:$dst), (ins GR32:$src), "movd\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (v4i32 (X86vzmovl (v4i32 (scalar_to_vector GR32:$src)))))]>; -// This is X86-64 only. def MOVZQI2PQIrr : RPDI<0x6E, MRMSrcReg, (outs VR128:$dst), (ins GR64:$src), - "mov{d|q}\t{$src, $dst|$dst, $src}", + "mov{d|q}\t{$src, $dst|$dst, $src}", // X86-64 only [(set VR128:$dst, (v2i64 (X86vzmovl (v2i64 (scalar_to_vector GR64:$src)))))]>; } let AddedComplexity = 20 in { +let isAsmParserOnly = 1 in +def VMOVZDI2PDIrm : VPDI<0x6E, MRMSrcMem, (outs VR128:$dst), (ins i32mem:$src), + "movd\t{$src, $dst|$dst, $src}", + [(set VR128:$dst, + (v4i32 (X86vzmovl (v4i32 (scalar_to_vector + (loadi32 addr:$src))))))]>, + VEX; def MOVZDI2PDIrm : PDI<0x6E, MRMSrcMem, (outs VR128:$dst), (ins i32mem:$src), "movd\t{$src, $dst|$dst, $src}", [(set VR128:$dst, @@ -2558,13 +2781,63 @@ def : Pat<(v4i32 (X86vzmovl (bc_v4i32 (loadv4f32 addr:$src)))), (MOVZDI2PDIrm addr:$src)>; def : Pat<(v4i32 (X86vzmovl (bc_v4i32 (loadv2i64 addr:$src)))), (MOVZDI2PDIrm addr:$src)>; +} +//===---------------------------------------------------------------------===// +// SSE2 - Move Quadword +//===---------------------------------------------------------------------===// + +// Move Quadword Int to Packed Quadword Int +let isAsmParserOnly = 1 in +def VMOVQI2PQIrm : I<0x7E, MRMSrcMem, (outs VR128:$dst), (ins i64mem:$src), + "vmovq\t{$src, $dst|$dst, $src}", + [(set VR128:$dst, + (v2i64 (scalar_to_vector (loadi64 addr:$src))))]>, XS, + VEX, Requires<[HasAVX]>; +def MOVQI2PQIrm : I<0x7E, MRMSrcMem, (outs VR128:$dst), (ins i64mem:$src), + "movq\t{$src, $dst|$dst, $src}", + [(set VR128:$dst, + (v2i64 (scalar_to_vector (loadi64 addr:$src))))]>, XS, + Requires<[HasSSE2]>; // SSE2 instruction with XS Prefix + +// Move Packed Quadword Int to Quadword Int +let isAsmParserOnly = 1 in +def VMOVPQI2QImr : VPDI<0xD6, MRMDestMem, (outs), (ins i64mem:$dst, VR128:$src), + "movq\t{$src, $dst|$dst, $src}", + [(store (i64 (vector_extract (v2i64 VR128:$src), + (iPTR 0))), addr:$dst)]>, VEX; +def MOVPQI2QImr : PDI<0xD6, MRMDestMem, (outs), (ins i64mem:$dst, VR128:$src), + "movq\t{$src, $dst|$dst, $src}", + [(store (i64 (vector_extract (v2i64 VR128:$src), + (iPTR 0))), addr:$dst)]>; + +def : Pat<(f64 (vector_extract (v2f64 VR128:$src), (iPTR 0))), + (f64 (EXTRACT_SUBREG (v2f64 VR128:$src), sub_sd))>; + +// Store / copy lower 64-bits of a XMM register. +let isAsmParserOnly = 1 in +def VMOVLQ128mr : VPDI<0xD6, MRMDestMem, (outs), (ins i64mem:$dst, VR128:$src), + "movq\t{$src, $dst|$dst, $src}", + [(int_x86_sse2_storel_dq addr:$dst, VR128:$src)]>, VEX; +def MOVLQ128mr : PDI<0xD6, MRMDestMem, (outs), (ins i64mem:$dst, VR128:$src), + "movq\t{$src, $dst|$dst, $src}", + [(int_x86_sse2_storel_dq addr:$dst, VR128:$src)]>; + +let AddedComplexity = 20, isAsmParserOnly = 1 in +def VMOVZQI2PQIrm : I<0x7E, MRMSrcMem, (outs VR128:$dst), (ins i64mem:$src), + "vmovq\t{$src, $dst|$dst, $src}", + [(set VR128:$dst, + (v2i64 (X86vzmovl (v2i64 (scalar_to_vector + (loadi64 addr:$src))))))]>, + XS, VEX, Requires<[HasAVX]>; + +let AddedComplexity = 20 in { def MOVZQI2PQIrm : I<0x7E, MRMSrcMem, (outs VR128:$dst), (ins i64mem:$src), "movq\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (v2i64 (X86vzmovl (v2i64 (scalar_to_vector - (loadi64 addr:$src))))))]>, XS, - Requires<[HasSSE2]>; + (loadi64 addr:$src))))))]>, + XS, Requires<[HasSSE2]>; def : Pat<(v2i64 (X86vzmovl (loadv2i64 addr:$src))), (MOVZQI2PQIrm addr:$src)>; @@ -2575,12 +2848,23 @@ def : Pat<(v2i64 (X86vzload addr:$src)), (MOVZQI2PQIrm addr:$src)>; // Moving from XMM to XMM and clear upper 64 bits. Note, there is a bug in // IA32 document. movq xmm1, xmm2 does clear the high bits. +let isAsmParserOnly = 1, AddedComplexity = 15 in +def VMOVZPQILo2PQIrr : I<0x7E, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), + "vmovq\t{$src, $dst|$dst, $src}", + [(set VR128:$dst, (v2i64 (X86vzmovl (v2i64 VR128:$src))))]>, + XS, VEX, Requires<[HasAVX]>; let AddedComplexity = 15 in def MOVZPQILo2PQIrr : I<0x7E, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), "movq\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (v2i64 (X86vzmovl (v2i64 VR128:$src))))]>, XS, Requires<[HasSSE2]>; +let AddedComplexity = 20, isAsmParserOnly = 1 in +def VMOVZPQILo2PQIrm : I<0x7E, MRMSrcMem, (outs VR128:$dst), (ins i128mem:$src), + "vmovq\t{$src, $dst|$dst, $src}", + [(set VR128:$dst, (v2i64 (X86vzmovl + (loadv2i64 addr:$src))))]>, + XS, VEX, Requires<[HasAVX]>; let AddedComplexity = 20 in { def MOVZPQILo2PQIrm : I<0x7E, MRMSrcMem, (outs VR128:$dst), (ins i128mem:$src), "movq\t{$src, $dst|$dst, $src}", @@ -2592,49 +2876,136 @@ def : Pat<(v2i64 (X86vzmovl (bc_v2i64 (loadv4i32 addr:$src)))), (MOVZPQILo2PQIrm addr:$src)>; } +// Instructions to match in the assembler +let isAsmParserOnly = 1 in { +// This instructions is in fact an alias to movd with 64 bit dst +def VMOVQs64rr : VPDI<0x6E, MRMSrcReg, (outs VR128:$dst), (ins GR64:$src), + "movq\t{$src, $dst|$dst, $src}", []>, VEX, VEX_W; +def VMOVQd64rr : VPDI<0x7E, MRMDestReg, (outs GR64:$dst), (ins VR128:$src), + "movq\t{$src, $dst|$dst, $src}", []>, VEX, VEX_W; +} + // Instructions for the disassembler // xr = XMM register // xm = mem64 +let isAsmParserOnly = 1 in +def VMOVQxrxr: I<0x7E, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), + "vmovq\t{$src, $dst|$dst, $src}", []>, VEX, XS; def MOVQxrxr : I<0x7E, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), "movq\t{$src, $dst|$dst, $src}", []>, XS; //===---------------------------------------------------------------------===// -// SSE3 Instructions +// SSE2 - Misc Instructions //===---------------------------------------------------------------------===// -// Move Instructions -def MOVSHDUPrr : S3SI<0x16, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), - "movshdup\t{$src, $dst|$dst, $src}", - [(set VR128:$dst, (v4f32 (movshdup - VR128:$src, (undef))))]>; -def MOVSHDUPrm : S3SI<0x16, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src), - "movshdup\t{$src, $dst|$dst, $src}", - [(set VR128:$dst, (movshdup - (memopv4f32 addr:$src), (undef)))]>; +// Flush cache +def CLFLUSH : I<0xAE, MRM7m, (outs), (ins i8mem:$src), + "clflush\t$src", [(int_x86_sse2_clflush addr:$src)]>, + TB, Requires<[HasSSE2]>; + +// Load, store, and memory fence +def LFENCE : I<0xAE, MRM_E8, (outs), (ins), + "lfence", [(int_x86_sse2_lfence)]>, TB, Requires<[HasSSE2]>; +def MFENCE : I<0xAE, MRM_F0, (outs), (ins), + "mfence", [(int_x86_sse2_mfence)]>, TB, Requires<[HasSSE2]>; + +// Pause. This "instruction" is encoded as "rep; nop", so even though it +// was introduced with SSE2, it's backward compatible. +def PAUSE : I<0x90, RawFrm, (outs), (ins), "pause", []>, REP; + +//TODO: custom lower this so as to never even generate the noop +def : Pat<(membarrier (i8 imm), (i8 imm), (i8 imm), (i8 imm), + (i8 0)), (NOOP)>; +def : Pat<(membarrier (i8 0), (i8 0), (i8 0), (i8 1), (i8 1)), (SFENCE)>; +def : Pat<(membarrier (i8 1), (i8 0), (i8 0), (i8 0), (i8 1)), (LFENCE)>; +def : Pat<(membarrier (i8 imm), (i8 imm), (i8 imm), (i8 imm), + (i8 1)), (MFENCE)>; + +// Alias instructions that map zero vector to pxor / xorp* for sse. +// We set canFoldAsLoad because this can be converted to a constant-pool +// load of an all-ones value if folding it would be beneficial. +let isReMaterializable = 1, isAsCheapAsAMove = 1, canFoldAsLoad = 1, + isCodeGenOnly = 1, ExeDomain = SSEPackedInt in + // FIXME: Change encoding to pseudo. + def V_SETALLONES : PDI<0x76, MRMInitReg, (outs VR128:$dst), (ins), "", + [(set VR128:$dst, (v4i32 immAllOnesV))]>; -def MOVSLDUPrr : S3SI<0x12, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), - "movsldup\t{$src, $dst|$dst, $src}", - [(set VR128:$dst, (v4f32 (movsldup +//===---------------------------------------------------------------------===// +// SSE3 - Conversion Instructions +//===---------------------------------------------------------------------===// + +let isAsmParserOnly = 1, Predicates = [HasAVX] in { +def VCVTPD2DQrr : S3DI<0xE6, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), + "vcvtpd2dq\t{$src, $dst|$dst, $src}", []>, VEX; +def VCVTDQ2PDrm : S3SI<0xE6, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src), + "vcvtdq2pd\t{$src, $dst|$dst, $src}", []>, VEX; +def VCVTDQ2PDrr : S3SI<0xE6, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), + "vcvtdq2pd\t{$src, $dst|$dst, $src}", []>, VEX; +} + +def CVTPD2DQrm : S3DI<0xE6, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src), + "cvtpd2dq\t{$src, $dst|$dst, $src}", []>; +def CVTPD2DQrr : S3DI<0xE6, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), + "cvtpd2dq\t{$src, $dst|$dst, $src}", []>; +def CVTDQ2PDrm : S3SI<0xE6, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src), + "cvtdq2pd\t{$src, $dst|$dst, $src}", []>; +def CVTDQ2PDrr : S3SI<0xE6, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), + "cvtdq2pd\t{$src, $dst|$dst, $src}", []>; + +//===---------------------------------------------------------------------===// +// SSE3 - Move Instructions +//===---------------------------------------------------------------------===// + +// Replicate Single FP +multiclass sse3_replicate_sfp<bits<8> op, PatFrag rep_frag, string OpcodeStr> { +def rr : S3SI<op, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), + !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"), + [(set VR128:$dst, (v4f32 (rep_frag VR128:$src, (undef))))]>; -def MOVSLDUPrm : S3SI<0x12, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src), - "movsldup\t{$src, $dst|$dst, $src}", - [(set VR128:$dst, (movsldup +def rm : S3SI<op, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src), + !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"), + [(set VR128:$dst, (rep_frag (memopv4f32 addr:$src), (undef)))]>; +} -def MOVDDUPrr : S3DI<0x12, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), - "movddup\t{$src, $dst|$dst, $src}", - [(set VR128:$dst,(v2f64 (movddup VR128:$src, (undef))))]>; -def MOVDDUPrm : S3DI<0x12, MRMSrcMem, (outs VR128:$dst), (ins f64mem:$src), - "movddup\t{$src, $dst|$dst, $src}", +let isAsmParserOnly = 1, Predicates = [HasAVX] in { +defm VMOVSHDUP : sse3_replicate_sfp<0x16, movshdup, "vmovshdup">, VEX; +defm VMOVSLDUP : sse3_replicate_sfp<0x12, movsldup, "vmovsldup">, VEX; +} +defm MOVSHDUP : sse3_replicate_sfp<0x16, movshdup, "movshdup">; +defm MOVSLDUP : sse3_replicate_sfp<0x12, movsldup, "movsldup">; + +// Replicate Double FP +multiclass sse3_replicate_dfp<string OpcodeStr> { +def rr : S3DI<0x12, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), + !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"), + [(set VR128:$dst,(v2f64 (movddup VR128:$src, (undef))))]>; +def rm : S3DI<0x12, MRMSrcMem, (outs VR128:$dst), (ins f64mem:$src), + !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"), [(set VR128:$dst, (v2f64 (movddup (scalar_to_vector (loadf64 addr:$src)), (undef))))]>; +} + +let isAsmParserOnly = 1, Predicates = [HasAVX] in + defm VMOVDDUP : sse3_replicate_dfp<"vmovddup">, VEX; +defm MOVDDUP : sse3_replicate_dfp<"movddup">; + +// Move Unaligned Integer +let isAsmParserOnly = 1 in + def VLDDQUrm : S3DI<0xF0, MRMSrcMem, (outs VR128:$dst), (ins i128mem:$src), + "vlddqu\t{$src, $dst|$dst, $src}", + [(set VR128:$dst, (int_x86_sse3_ldu_dq addr:$src))]>, VEX; +def LDDQUrm : S3DI<0xF0, MRMSrcMem, (outs VR128:$dst), (ins i128mem:$src), + "lddqu\t{$src, $dst|$dst, $src}", + [(set VR128:$dst, (int_x86_sse3_ldu_dq addr:$src))]>; def : Pat<(movddup (bc_v2f64 (v2i64 (scalar_to_vector (loadi64 addr:$src)))), (undef)), (MOVDDUPrm addr:$src)>, Requires<[HasSSE3]>; +// Several Move patterns let AddedComplexity = 5 in { def : Pat<(movddup (memopv2f64 addr:$src), (undef)), (MOVDDUPrm addr:$src)>, Requires<[HasSSE3]>; @@ -2646,52 +3017,98 @@ def : Pat<(movddup (bc_v4i32 (memopv2i64 addr:$src)), (undef)), (MOVDDUPrm addr:$src)>, Requires<[HasSSE3]>; } -// Arithmetic -let Constraints = "$src1 = $dst" in { - def ADDSUBPSrr : S3DI<0xD0, MRMSrcReg, - (outs VR128:$dst), (ins VR128:$src1, VR128:$src2), - "addsubps\t{$src2, $dst|$dst, $src2}", - [(set VR128:$dst, (int_x86_sse3_addsub_ps VR128:$src1, - VR128:$src2))]>; - def ADDSUBPSrm : S3DI<0xD0, MRMSrcMem, - (outs VR128:$dst), (ins VR128:$src1, f128mem:$src2), - "addsubps\t{$src2, $dst|$dst, $src2}", - [(set VR128:$dst, (int_x86_sse3_addsub_ps VR128:$src1, - (memop addr:$src2)))]>; - def ADDSUBPDrr : S3I<0xD0, MRMSrcReg, - (outs VR128:$dst), (ins VR128:$src1, VR128:$src2), - "addsubpd\t{$src2, $dst|$dst, $src2}", - [(set VR128:$dst, (int_x86_sse3_addsub_pd VR128:$src1, - VR128:$src2))]>; - def ADDSUBPDrm : S3I<0xD0, MRMSrcMem, - (outs VR128:$dst), (ins VR128:$src1, f128mem:$src2), - "addsubpd\t{$src2, $dst|$dst, $src2}", - [(set VR128:$dst, (int_x86_sse3_addsub_pd VR128:$src1, - (memop addr:$src2)))]>; +// vector_shuffle v1, <undef> <1, 1, 3, 3> +let AddedComplexity = 15 in +def : Pat<(v4i32 (movshdup VR128:$src, (undef))), + (MOVSHDUPrr VR128:$src)>, Requires<[HasSSE3]>; +let AddedComplexity = 20 in +def : Pat<(v4i32 (movshdup (bc_v4i32 (memopv2i64 addr:$src)), (undef))), + (MOVSHDUPrm addr:$src)>, Requires<[HasSSE3]>; + +// vector_shuffle v1, <undef> <0, 0, 2, 2> +let AddedComplexity = 15 in + def : Pat<(v4i32 (movsldup VR128:$src, (undef))), + (MOVSLDUPrr VR128:$src)>, Requires<[HasSSE3]>; +let AddedComplexity = 20 in + def : Pat<(v4i32 (movsldup (bc_v4i32 (memopv2i64 addr:$src)), (undef))), + (MOVSLDUPrm addr:$src)>, Requires<[HasSSE3]>; + +//===---------------------------------------------------------------------===// +// SSE3 - Arithmetic +//===---------------------------------------------------------------------===// + +multiclass sse3_addsub<Intrinsic Int, string OpcodeStr, bit Is2Addr = 1> { + def rr : I<0xD0, MRMSrcReg, + (outs VR128:$dst), (ins VR128:$src1, VR128:$src2), + !if(Is2Addr, + !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"), + !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")), + [(set VR128:$dst, (Int VR128:$src1, + VR128:$src2))]>; + def rm : I<0xD0, MRMSrcMem, + (outs VR128:$dst), (ins VR128:$src1, f128mem:$src2), + !if(Is2Addr, + !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"), + !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")), + [(set VR128:$dst, (Int VR128:$src1, + (memop addr:$src2)))]>; + } -def LDDQUrm : S3DI<0xF0, MRMSrcMem, (outs VR128:$dst), (ins i128mem:$src), - "lddqu\t{$src, $dst|$dst, $src}", - [(set VR128:$dst, (int_x86_sse3_ldu_dq addr:$src))]>; +let isAsmParserOnly = 1, Predicates = [HasAVX], + ExeDomain = SSEPackedDouble in { + defm VADDSUBPS : sse3_addsub<int_x86_sse3_addsub_ps, "vaddsubps", 0>, XD, + VEX_4V; + defm VADDSUBPD : sse3_addsub<int_x86_sse3_addsub_pd, "vaddsubpd", 0>, OpSize, + VEX_4V; +} +let Constraints = "$src1 = $dst", Predicates = [HasSSE3], + ExeDomain = SSEPackedDouble in { + defm ADDSUBPS : sse3_addsub<int_x86_sse3_addsub_ps, "addsubps">, XD; + defm ADDSUBPD : sse3_addsub<int_x86_sse3_addsub_pd, "addsubpd">, TB, OpSize; +} + +//===---------------------------------------------------------------------===// +// SSE3 Instructions +//===---------------------------------------------------------------------===// // Horizontal ops -class S3D_Intrr<bits<8> o, string OpcodeStr, Intrinsic IntId> +class S3D_Intrr<bits<8> o, string OpcodeStr, Intrinsic IntId, bit Is2Addr = 1> : S3DI<o, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src1, VR128:$src2), + !if(Is2Addr, !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"), + !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")), [(set VR128:$dst, (v4f32 (IntId VR128:$src1, VR128:$src2)))]>; -class S3D_Intrm<bits<8> o, string OpcodeStr, Intrinsic IntId> +class S3D_Intrm<bits<8> o, string OpcodeStr, Intrinsic IntId, bit Is2Addr = 1> : S3DI<o, MRMSrcMem, (outs VR128:$dst), (ins VR128:$src1, f128mem:$src2), + !if(Is2Addr, !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"), + !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")), [(set VR128:$dst, (v4f32 (IntId VR128:$src1, (memop addr:$src2))))]>; -class S3_Intrr<bits<8> o, string OpcodeStr, Intrinsic IntId> +class S3_Intrr<bits<8> o, string OpcodeStr, Intrinsic IntId, bit Is2Addr = 1> : S3I<o, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src1, VR128:$src2), - !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"), + !if(Is2Addr, + !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"), + !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")), [(set VR128:$dst, (v2f64 (IntId VR128:$src1, VR128:$src2)))]>; -class S3_Intrm<bits<8> o, string OpcodeStr, Intrinsic IntId> +class S3_Intrm<bits<8> o, string OpcodeStr, Intrinsic IntId, bit Is2Addr = 1> : S3I<o, MRMSrcMem, (outs VR128:$dst), (ins VR128:$src1, f128mem:$src2), - !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"), + !if(Is2Addr, + !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"), + !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")), [(set VR128:$dst, (v2f64 (IntId VR128:$src1, (memopv2f64 addr:$src2))))]>; +let isAsmParserOnly = 1, Predicates = [HasAVX] in { + def VHADDPSrr : S3D_Intrr<0x7C, "vhaddps", int_x86_sse3_hadd_ps, 0>, VEX_4V; + def VHADDPSrm : S3D_Intrm<0x7C, "vhaddps", int_x86_sse3_hadd_ps, 0>, VEX_4V; + def VHADDPDrr : S3_Intrr <0x7C, "vhaddpd", int_x86_sse3_hadd_pd, 0>, VEX_4V; + def VHADDPDrm : S3_Intrm <0x7C, "vhaddpd", int_x86_sse3_hadd_pd, 0>, VEX_4V; + def VHSUBPSrr : S3D_Intrr<0x7D, "vhsubps", int_x86_sse3_hsub_ps, 0>, VEX_4V; + def VHSUBPSrm : S3D_Intrm<0x7D, "vhsubps", int_x86_sse3_hsub_ps, 0>, VEX_4V; + def VHSUBPDrr : S3_Intrr <0x7D, "vhsubpd", int_x86_sse3_hsub_pd, 0>, VEX_4V; + def VHSUBPDrm : S3_Intrm <0x7D, "vhsubpd", int_x86_sse3_hsub_pd, 0>, VEX_4V; +} + let Constraints = "$src1 = $dst" in { def HADDPSrr : S3D_Intrr<0x7C, "haddps", int_x86_sse3_hadd_ps>; def HADDPSrm : S3D_Intrm<0x7C, "haddps", int_x86_sse3_hadd_ps>; @@ -2703,35 +3120,14 @@ let Constraints = "$src1 = $dst" in { def HSUBPDrm : S3_Intrm <0x7D, "hsubpd", int_x86_sse3_hsub_pd>; } -// Thread synchronization -def MONITOR : I<0x01, MRM_C8, (outs), (ins), "monitor", - [(int_x86_sse3_monitor EAX, ECX, EDX)]>,TB, Requires<[HasSSE3]>; -def MWAIT : I<0x01, MRM_C9, (outs), (ins), "mwait", - [(int_x86_sse3_mwait ECX, EAX)]>, TB, Requires<[HasSSE3]>; - -// vector_shuffle v1, <undef> <1, 1, 3, 3> -let AddedComplexity = 15 in -def : Pat<(v4i32 (movshdup VR128:$src, (undef))), - (MOVSHDUPrr VR128:$src)>, Requires<[HasSSE3]>; -let AddedComplexity = 20 in -def : Pat<(v4i32 (movshdup (bc_v4i32 (memopv2i64 addr:$src)), (undef))), - (MOVSHDUPrm addr:$src)>, Requires<[HasSSE3]>; - -// vector_shuffle v1, <undef> <0, 0, 2, 2> -let AddedComplexity = 15 in - def : Pat<(v4i32 (movsldup VR128:$src, (undef))), - (MOVSLDUPrr VR128:$src)>, Requires<[HasSSE3]>; -let AddedComplexity = 20 in - def : Pat<(v4i32 (movsldup (bc_v4i32 (memopv2i64 addr:$src)), (undef))), - (MOVSLDUPrm addr:$src)>, Requires<[HasSSE3]>; - //===---------------------------------------------------------------------===// -// SSSE3 Instructions +// SSSE3 - Packed Absolute Instructions //===---------------------------------------------------------------------===// -/// SS3I_unop_rm_int_8 - Simple SSSE3 unary operator whose type is v*i8. -multiclass SS3I_unop_rm_int_8<bits<8> opc, string OpcodeStr, - Intrinsic IntId64, Intrinsic IntId128> { +/// SS3I_unop_rm_int - Simple SSSE3 unary op whose type can be v*{i8,i16,i32}. +multiclass SS3I_unop_rm_int<bits<8> opc, string OpcodeStr, + PatFrag mem_frag64, PatFrag mem_frag128, + Intrinsic IntId64, Intrinsic IntId128> { def rr64 : SS38I<opc, MRMSrcReg, (outs VR64:$dst), (ins VR64:$src), !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"), [(set VR64:$dst, (IntId64 VR64:$src))]>; @@ -2739,7 +3135,7 @@ multiclass SS3I_unop_rm_int_8<bits<8> opc, string OpcodeStr, def rm64 : SS38I<opc, MRMSrcMem, (outs VR64:$dst), (ins i64mem:$src), !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"), [(set VR64:$dst, - (IntId64 (bitconvert (memopv8i8 addr:$src))))]>; + (IntId64 (bitconvert (mem_frag64 addr:$src))))]>; def rr128 : SS38I<opc, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), @@ -2752,240 +3148,203 @@ multiclass SS3I_unop_rm_int_8<bits<8> opc, string OpcodeStr, !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"), [(set VR128:$dst, (IntId128 - (bitconvert (memopv16i8 addr:$src))))]>, OpSize; + (bitconvert (mem_frag128 addr:$src))))]>, OpSize; } -/// SS3I_unop_rm_int_16 - Simple SSSE3 unary operator whose type is v*i16. -multiclass SS3I_unop_rm_int_16<bits<8> opc, string OpcodeStr, - Intrinsic IntId64, Intrinsic IntId128> { - def rr64 : SS38I<opc, MRMSrcReg, (outs VR64:$dst), - (ins VR64:$src), - !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"), - [(set VR64:$dst, (IntId64 VR64:$src))]>; - - def rm64 : SS38I<opc, MRMSrcMem, (outs VR64:$dst), - (ins i64mem:$src), - !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"), - [(set VR64:$dst, - (IntId64 - (bitconvert (memopv4i16 addr:$src))))]>; +let isAsmParserOnly = 1, Predicates = [HasAVX] in { + defm VPABSB : SS3I_unop_rm_int<0x1C, "vpabsb", memopv8i8, memopv16i8, + int_x86_ssse3_pabs_b, + int_x86_ssse3_pabs_b_128>, VEX; + defm VPABSW : SS3I_unop_rm_int<0x1D, "vpabsw", memopv4i16, memopv8i16, + int_x86_ssse3_pabs_w, + int_x86_ssse3_pabs_w_128>, VEX; + defm VPABSD : SS3I_unop_rm_int<0x1E, "vpabsd", memopv2i32, memopv4i32, + int_x86_ssse3_pabs_d, + int_x86_ssse3_pabs_d_128>, VEX; +} - def rr128 : SS38I<opc, MRMSrcReg, (outs VR128:$dst), - (ins VR128:$src), - !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"), - [(set VR128:$dst, (IntId128 VR128:$src))]>, - OpSize; +defm PABSB : SS3I_unop_rm_int<0x1C, "pabsb", memopv8i8, memopv16i8, + int_x86_ssse3_pabs_b, + int_x86_ssse3_pabs_b_128>; +defm PABSW : SS3I_unop_rm_int<0x1D, "pabsw", memopv4i16, memopv8i16, + int_x86_ssse3_pabs_w, + int_x86_ssse3_pabs_w_128>; +defm PABSD : SS3I_unop_rm_int<0x1E, "pabsd", memopv2i32, memopv4i32, + int_x86_ssse3_pabs_d, + int_x86_ssse3_pabs_d_128>; - def rm128 : SS38I<opc, MRMSrcMem, (outs VR128:$dst), - (ins i128mem:$src), - !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"), - [(set VR128:$dst, - (IntId128 - (bitconvert (memopv8i16 addr:$src))))]>, OpSize; -} +//===---------------------------------------------------------------------===// +// SSSE3 - Packed Binary Operator Instructions +//===---------------------------------------------------------------------===// -/// SS3I_unop_rm_int_32 - Simple SSSE3 unary operator whose type is v*i32. -multiclass SS3I_unop_rm_int_32<bits<8> opc, string OpcodeStr, - Intrinsic IntId64, Intrinsic IntId128> { +/// SS3I_binop_rm_int - Simple SSSE3 bin op whose type can be v*{i8,i16,i32}. +multiclass SS3I_binop_rm_int<bits<8> opc, string OpcodeStr, + PatFrag mem_frag64, PatFrag mem_frag128, + Intrinsic IntId64, Intrinsic IntId128, + bit Is2Addr = 1> { + let isCommutable = 1 in def rr64 : SS38I<opc, MRMSrcReg, (outs VR64:$dst), - (ins VR64:$src), - !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"), - [(set VR64:$dst, (IntId64 VR64:$src))]>; - + (ins VR64:$src1, VR64:$src2), + !if(Is2Addr, + !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"), + !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")), + [(set VR64:$dst, (IntId64 VR64:$src1, VR64:$src2))]>; def rm64 : SS38I<opc, MRMSrcMem, (outs VR64:$dst), - (ins i64mem:$src), - !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"), - [(set VR64:$dst, - (IntId64 - (bitconvert (memopv2i32 addr:$src))))]>; + (ins VR64:$src1, i64mem:$src2), + !if(Is2Addr, + !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"), + !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")), + [(set VR64:$dst, + (IntId64 VR64:$src1, + (bitconvert (memopv8i8 addr:$src2))))]>; + let isCommutable = 1 in def rr128 : SS38I<opc, MRMSrcReg, (outs VR128:$dst), - (ins VR128:$src), - !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"), - [(set VR128:$dst, (IntId128 VR128:$src))]>, - OpSize; - + (ins VR128:$src1, VR128:$src2), + !if(Is2Addr, + !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"), + !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")), + [(set VR128:$dst, (IntId128 VR128:$src1, VR128:$src2))]>, + OpSize; def rm128 : SS38I<opc, MRMSrcMem, (outs VR128:$dst), - (ins i128mem:$src), - !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"), - [(set VR128:$dst, - (IntId128 - (bitconvert (memopv4i32 addr:$src))))]>, OpSize; + (ins VR128:$src1, i128mem:$src2), + !if(Is2Addr, + !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"), + !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")), + [(set VR128:$dst, + (IntId128 VR128:$src1, + (bitconvert (memopv16i8 addr:$src2))))]>, OpSize; } -defm PABSB : SS3I_unop_rm_int_8 <0x1C, "pabsb", - int_x86_ssse3_pabs_b, - int_x86_ssse3_pabs_b_128>; -defm PABSW : SS3I_unop_rm_int_16<0x1D, "pabsw", - int_x86_ssse3_pabs_w, - int_x86_ssse3_pabs_w_128>; -defm PABSD : SS3I_unop_rm_int_32<0x1E, "pabsd", - int_x86_ssse3_pabs_d, - int_x86_ssse3_pabs_d_128>; - -/// SS3I_binop_rm_int_8 - Simple SSSE3 binary operator whose type is v*i8. -let Constraints = "$src1 = $dst" in { - multiclass SS3I_binop_rm_int_8<bits<8> opc, string OpcodeStr, - Intrinsic IntId64, Intrinsic IntId128, - bit Commutable = 0> { - def rr64 : SS38I<opc, MRMSrcReg, (outs VR64:$dst), - (ins VR64:$src1, VR64:$src2), - !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"), - [(set VR64:$dst, (IntId64 VR64:$src1, VR64:$src2))]> { - let isCommutable = Commutable; - } - def rm64 : SS38I<opc, MRMSrcMem, (outs VR64:$dst), - (ins VR64:$src1, i64mem:$src2), - !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"), - [(set VR64:$dst, - (IntId64 VR64:$src1, - (bitconvert (memopv8i8 addr:$src2))))]>; - - def rr128 : SS38I<opc, MRMSrcReg, (outs VR128:$dst), - (ins VR128:$src1, VR128:$src2), - !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"), - [(set VR128:$dst, (IntId128 VR128:$src1, VR128:$src2))]>, - OpSize { - let isCommutable = Commutable; - } - def rm128 : SS38I<opc, MRMSrcMem, (outs VR128:$dst), - (ins VR128:$src1, i128mem:$src2), - !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"), - [(set VR128:$dst, - (IntId128 VR128:$src1, - (bitconvert (memopv16i8 addr:$src2))))]>, OpSize; - } +let isAsmParserOnly = 1, Predicates = [HasAVX] in { +let isCommutable = 0 in { + defm VPHADDW : SS3I_binop_rm_int<0x01, "vphaddw", memopv4i16, memopv8i16, + int_x86_ssse3_phadd_w, + int_x86_ssse3_phadd_w_128, 0>, VEX_4V; + defm VPHADDD : SS3I_binop_rm_int<0x02, "vphaddd", memopv2i32, memopv4i32, + int_x86_ssse3_phadd_d, + int_x86_ssse3_phadd_d_128, 0>, VEX_4V; + defm VPHADDSW : SS3I_binop_rm_int<0x03, "vphaddsw", memopv4i16, memopv8i16, + int_x86_ssse3_phadd_sw, + int_x86_ssse3_phadd_sw_128, 0>, VEX_4V; + defm VPHSUBW : SS3I_binop_rm_int<0x05, "vphsubw", memopv4i16, memopv8i16, + int_x86_ssse3_phsub_w, + int_x86_ssse3_phsub_w_128, 0>, VEX_4V; + defm VPHSUBD : SS3I_binop_rm_int<0x06, "vphsubd", memopv2i32, memopv4i32, + int_x86_ssse3_phsub_d, + int_x86_ssse3_phsub_d_128, 0>, VEX_4V; + defm VPHSUBSW : SS3I_binop_rm_int<0x07, "vphsubsw", memopv4i16, memopv8i16, + int_x86_ssse3_phsub_sw, + int_x86_ssse3_phsub_sw_128, 0>, VEX_4V; + defm VPMADDUBSW : SS3I_binop_rm_int<0x04, "vpmaddubsw", memopv8i8, memopv16i8, + int_x86_ssse3_pmadd_ub_sw, + int_x86_ssse3_pmadd_ub_sw_128, 0>, VEX_4V; + defm VPSHUFB : SS3I_binop_rm_int<0x00, "vpshufb", memopv8i8, memopv16i8, + int_x86_ssse3_pshuf_b, + int_x86_ssse3_pshuf_b_128, 0>, VEX_4V; + defm VPSIGNB : SS3I_binop_rm_int<0x08, "vpsignb", memopv8i8, memopv16i8, + int_x86_ssse3_psign_b, + int_x86_ssse3_psign_b_128, 0>, VEX_4V; + defm VPSIGNW : SS3I_binop_rm_int<0x09, "vpsignw", memopv4i16, memopv8i16, + int_x86_ssse3_psign_w, + int_x86_ssse3_psign_w_128, 0>, VEX_4V; + defm VPSIGND : SS3I_binop_rm_int<0x0A, "vpsignd", memopv2i32, memopv4i32, + int_x86_ssse3_psign_d, + int_x86_ssse3_psign_d_128, 0>, VEX_4V; } - -/// SS3I_binop_rm_int_16 - Simple SSSE3 binary operator whose type is v*i16. -let Constraints = "$src1 = $dst" in { - multiclass SS3I_binop_rm_int_16<bits<8> opc, string OpcodeStr, - Intrinsic IntId64, Intrinsic IntId128, - bit Commutable = 0> { - def rr64 : SS38I<opc, MRMSrcReg, (outs VR64:$dst), - (ins VR64:$src1, VR64:$src2), - !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"), - [(set VR64:$dst, (IntId64 VR64:$src1, VR64:$src2))]> { - let isCommutable = Commutable; - } - def rm64 : SS38I<opc, MRMSrcMem, (outs VR64:$dst), - (ins VR64:$src1, i64mem:$src2), - !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"), - [(set VR64:$dst, - (IntId64 VR64:$src1, - (bitconvert (memopv4i16 addr:$src2))))]>; - - def rr128 : SS38I<opc, MRMSrcReg, (outs VR128:$dst), - (ins VR128:$src1, VR128:$src2), - !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"), - [(set VR128:$dst, (IntId128 VR128:$src1, VR128:$src2))]>, - OpSize { - let isCommutable = Commutable; - } - def rm128 : SS38I<opc, MRMSrcMem, (outs VR128:$dst), - (ins VR128:$src1, i128mem:$src2), - !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"), - [(set VR128:$dst, - (IntId128 VR128:$src1, - (bitconvert (memopv8i16 addr:$src2))))]>, OpSize; - } +defm VPMULHRSW : SS3I_binop_rm_int<0x0B, "vpmulhrsw", memopv4i16, memopv8i16, + int_x86_ssse3_pmul_hr_sw, + int_x86_ssse3_pmul_hr_sw_128, 0>, VEX_4V; } -/// SS3I_binop_rm_int_32 - Simple SSSE3 binary operator whose type is v*i32. -let Constraints = "$src1 = $dst" in { - multiclass SS3I_binop_rm_int_32<bits<8> opc, string OpcodeStr, - Intrinsic IntId64, Intrinsic IntId128, - bit Commutable = 0> { - def rr64 : SS38I<opc, MRMSrcReg, (outs VR64:$dst), - (ins VR64:$src1, VR64:$src2), - !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"), - [(set VR64:$dst, (IntId64 VR64:$src1, VR64:$src2))]> { - let isCommutable = Commutable; - } - def rm64 : SS38I<opc, MRMSrcMem, (outs VR64:$dst), - (ins VR64:$src1, i64mem:$src2), - !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"), - [(set VR64:$dst, - (IntId64 VR64:$src1, - (bitconvert (memopv2i32 addr:$src2))))]>; - - def rr128 : SS38I<opc, MRMSrcReg, (outs VR128:$dst), - (ins VR128:$src1, VR128:$src2), - !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"), - [(set VR128:$dst, (IntId128 VR128:$src1, VR128:$src2))]>, - OpSize { - let isCommutable = Commutable; - } - def rm128 : SS38I<opc, MRMSrcMem, (outs VR128:$dst), - (ins VR128:$src1, i128mem:$src2), - !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"), - [(set VR128:$dst, - (IntId128 VR128:$src1, - (bitconvert (memopv4i32 addr:$src2))))]>, OpSize; - } +// None of these have i8 immediate fields. +let ImmT = NoImm, Constraints = "$src1 = $dst" in { +let isCommutable = 0 in { + defm PHADDW : SS3I_binop_rm_int<0x01, "phaddw", memopv4i16, memopv8i16, + int_x86_ssse3_phadd_w, + int_x86_ssse3_phadd_w_128>; + defm PHADDD : SS3I_binop_rm_int<0x02, "phaddd", memopv2i32, memopv4i32, + int_x86_ssse3_phadd_d, + int_x86_ssse3_phadd_d_128>; + defm PHADDSW : SS3I_binop_rm_int<0x03, "phaddsw", memopv4i16, memopv8i16, + int_x86_ssse3_phadd_sw, + int_x86_ssse3_phadd_sw_128>; + defm PHSUBW : SS3I_binop_rm_int<0x05, "phsubw", memopv4i16, memopv8i16, + int_x86_ssse3_phsub_w, + int_x86_ssse3_phsub_w_128>; + defm PHSUBD : SS3I_binop_rm_int<0x06, "phsubd", memopv2i32, memopv4i32, + int_x86_ssse3_phsub_d, + int_x86_ssse3_phsub_d_128>; + defm PHSUBSW : SS3I_binop_rm_int<0x07, "phsubsw", memopv4i16, memopv8i16, + int_x86_ssse3_phsub_sw, + int_x86_ssse3_phsub_sw_128>; + defm PMADDUBSW : SS3I_binop_rm_int<0x04, "pmaddubsw", memopv8i8, memopv16i8, + int_x86_ssse3_pmadd_ub_sw, + int_x86_ssse3_pmadd_ub_sw_128>; + defm PSHUFB : SS3I_binop_rm_int<0x00, "pshufb", memopv8i8, memopv16i8, + int_x86_ssse3_pshuf_b, + int_x86_ssse3_pshuf_b_128>; + defm PSIGNB : SS3I_binop_rm_int<0x08, "psignb", memopv8i8, memopv16i8, + int_x86_ssse3_psign_b, + int_x86_ssse3_psign_b_128>; + defm PSIGNW : SS3I_binop_rm_int<0x09, "psignw", memopv4i16, memopv8i16, + int_x86_ssse3_psign_w, + int_x86_ssse3_psign_w_128>; + defm PSIGND : SS3I_binop_rm_int<0x0A, "psignd", memopv2i32, memopv4i32, + int_x86_ssse3_psign_d, + int_x86_ssse3_psign_d_128>; +} +defm PMULHRSW : SS3I_binop_rm_int<0x0B, "pmulhrsw", memopv4i16, memopv8i16, + int_x86_ssse3_pmul_hr_sw, + int_x86_ssse3_pmul_hr_sw_128>; } -let ImmT = NoImm in { // None of these have i8 immediate fields. -defm PHADDW : SS3I_binop_rm_int_16<0x01, "phaddw", - int_x86_ssse3_phadd_w, - int_x86_ssse3_phadd_w_128>; -defm PHADDD : SS3I_binop_rm_int_32<0x02, "phaddd", - int_x86_ssse3_phadd_d, - int_x86_ssse3_phadd_d_128>; -defm PHADDSW : SS3I_binop_rm_int_16<0x03, "phaddsw", - int_x86_ssse3_phadd_sw, - int_x86_ssse3_phadd_sw_128>; -defm PHSUBW : SS3I_binop_rm_int_16<0x05, "phsubw", - int_x86_ssse3_phsub_w, - int_x86_ssse3_phsub_w_128>; -defm PHSUBD : SS3I_binop_rm_int_32<0x06, "phsubd", - int_x86_ssse3_phsub_d, - int_x86_ssse3_phsub_d_128>; -defm PHSUBSW : SS3I_binop_rm_int_16<0x07, "phsubsw", - int_x86_ssse3_phsub_sw, - int_x86_ssse3_phsub_sw_128>; -defm PMADDUBSW : SS3I_binop_rm_int_8 <0x04, "pmaddubsw", - int_x86_ssse3_pmadd_ub_sw, - int_x86_ssse3_pmadd_ub_sw_128>; -defm PMULHRSW : SS3I_binop_rm_int_16<0x0B, "pmulhrsw", - int_x86_ssse3_pmul_hr_sw, - int_x86_ssse3_pmul_hr_sw_128, 1>; - -defm PSHUFB : SS3I_binop_rm_int_8 <0x00, "pshufb", - int_x86_ssse3_pshuf_b, - int_x86_ssse3_pshuf_b_128>; -defm PSIGNB : SS3I_binop_rm_int_8 <0x08, "psignb", - int_x86_ssse3_psign_b, - int_x86_ssse3_psign_b_128>; -defm PSIGNW : SS3I_binop_rm_int_16<0x09, "psignw", - int_x86_ssse3_psign_w, - int_x86_ssse3_psign_w_128>; -defm PSIGND : SS3I_binop_rm_int_32<0x0A, "psignd", - int_x86_ssse3_psign_d, - int_x86_ssse3_psign_d_128>; -} - -// palignr patterns. -let Constraints = "$src1 = $dst" in { - def PALIGNR64rr : SS3AI<0x0F, MRMSrcReg, (outs VR64:$dst), - (ins VR64:$src1, VR64:$src2, i8imm:$src3), - "palignr\t{$src3, $src2, $dst|$dst, $src2, $src3}", - []>; - def PALIGNR64rm : SS3AI<0x0F, MRMSrcMem, (outs VR64:$dst), - (ins VR64:$src1, i64mem:$src2, i8imm:$src3), - "palignr\t{$src3, $src2, $dst|$dst, $src2, $src3}", - []>; - - def PALIGNR128rr : SS3AI<0x0F, MRMSrcReg, (outs VR128:$dst), - (ins VR128:$src1, VR128:$src2, i8imm:$src3), - "palignr\t{$src3, $src2, $dst|$dst, $src2, $src3}", - []>, OpSize; - def PALIGNR128rm : SS3AI<0x0F, MRMSrcMem, (outs VR128:$dst), - (ins VR128:$src1, i128mem:$src2, i8imm:$src3), - "palignr\t{$src3, $src2, $dst|$dst, $src2, $src3}", - []>, OpSize; +def : Pat<(X86pshufb VR128:$src, VR128:$mask), + (PSHUFBrr128 VR128:$src, VR128:$mask)>, Requires<[HasSSSE3]>; +def : Pat<(X86pshufb VR128:$src, (bc_v16i8 (memopv2i64 addr:$mask))), + (PSHUFBrm128 VR128:$src, addr:$mask)>, Requires<[HasSSSE3]>; + +//===---------------------------------------------------------------------===// +// SSSE3 - Packed Align Instruction Patterns +//===---------------------------------------------------------------------===// + +multiclass sse3_palign<string asm, bit Is2Addr = 1> { + def R64rr : SS3AI<0x0F, MRMSrcReg, (outs VR64:$dst), + (ins VR64:$src1, VR64:$src2, i8imm:$src3), + !if(Is2Addr, + !strconcat(asm, "\t{$src3, $src2, $dst|$dst, $src2, $src3}"), + !strconcat(asm, + "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}")), + []>; + def R64rm : SS3AI<0x0F, MRMSrcMem, (outs VR64:$dst), + (ins VR64:$src1, i64mem:$src2, i8imm:$src3), + !if(Is2Addr, + !strconcat(asm, "\t{$src3, $src2, $dst|$dst, $src2, $src3}"), + !strconcat(asm, + "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}")), + []>; + + def R128rr : SS3AI<0x0F, MRMSrcReg, (outs VR128:$dst), + (ins VR128:$src1, VR128:$src2, i8imm:$src3), + !if(Is2Addr, + !strconcat(asm, "\t{$src3, $src2, $dst|$dst, $src2, $src3}"), + !strconcat(asm, + "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}")), + []>, OpSize; + def R128rm : SS3AI<0x0F, MRMSrcMem, (outs VR128:$dst), + (ins VR128:$src1, i128mem:$src2, i8imm:$src3), + !if(Is2Addr, + !strconcat(asm, "\t{$src3, $src2, $dst|$dst, $src2, $src3}"), + !strconcat(asm, + "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}")), + []>, OpSize; } +let isAsmParserOnly = 1, Predicates = [HasAVX] in + defm VPALIGN : sse3_palign<"vpalignr", 0>, VEX_4V; +let Constraints = "$src1 = $dst" in + defm PALIGN : sse3_palign<"palignr">; + let AddedComplexity = 5 in { def : Pat<(v1i64 (palign:$src3 VR64:$src1, VR64:$src2)), @@ -2996,10 +3355,6 @@ def : Pat<(v2i32 (palign:$src3 VR64:$src1, VR64:$src2)), (PALIGNR64rr VR64:$src2, VR64:$src1, (SHUFFLE_get_palign_imm VR64:$src3))>, Requires<[HasSSSE3]>; -def : Pat<(v2f32 (palign:$src3 VR64:$src1, VR64:$src2)), - (PALIGNR64rr VR64:$src2, VR64:$src1, - (SHUFFLE_get_palign_imm VR64:$src3))>, - Requires<[HasSSSE3]>; def : Pat<(v4i16 (palign:$src3 VR64:$src1, VR64:$src2)), (PALIGNR64rr VR64:$src2, VR64:$src1, (SHUFFLE_get_palign_imm VR64:$src3))>, @@ -3027,10 +3382,15 @@ def : Pat<(v16i8 (palign:$src3 VR128:$src1, VR128:$src2)), Requires<[HasSSSE3]>; } -def : Pat<(X86pshufb VR128:$src, VR128:$mask), - (PSHUFBrr128 VR128:$src, VR128:$mask)>, Requires<[HasSSSE3]>; -def : Pat<(X86pshufb VR128:$src, (bc_v16i8 (memopv2i64 addr:$mask))), - (PSHUFBrm128 VR128:$src, addr:$mask)>, Requires<[HasSSSE3]>; +//===---------------------------------------------------------------------===// +// SSSE3 Misc Instructions +//===---------------------------------------------------------------------===// + +// Thread synchronization +def MONITOR : I<0x01, MRM_C8, (outs), (ins), "monitor", + [(int_x86_sse3_monitor EAX, ECX, EDX)]>,TB, Requires<[HasSSE3]>; +def MWAIT : I<0x01, MRM_C9, (outs), (ins), "mwait", + [(int_x86_sse3_mwait ECX, EAX)]>, TB, Requires<[HasSSE3]>; //===---------------------------------------------------------------------===// // Non-Instruction Patterns @@ -3311,287 +3671,9 @@ def : Pat<(store (v16i8 VR128:$src), addr:$dst), (MOVUPSmr addr:$dst, VR128:$src)>; //===----------------------------------------------------------------------===// -// SSE4.1 Instructions +// SSE4.1 - Packed Move with Sign/Zero Extend //===----------------------------------------------------------------------===// -multiclass sse41_fp_unop_rm<bits<8> opcps, bits<8> opcpd, - string OpcodeStr, - Intrinsic V4F32Int, - Intrinsic V2F64Int> { - // Intrinsic operation, reg. - // Vector intrinsic operation, reg - def PSr_Int : SS4AIi8<opcps, MRMSrcReg, - (outs VR128:$dst), (ins VR128:$src1, i32i8imm:$src2), - !strconcat(OpcodeStr, - "ps\t{$src2, $src1, $dst|$dst, $src1, $src2}"), - [(set VR128:$dst, (V4F32Int VR128:$src1, imm:$src2))]>, - OpSize; - - // Vector intrinsic operation, mem - def PSm_Int : Ii8<opcps, MRMSrcMem, - (outs VR128:$dst), (ins f128mem:$src1, i32i8imm:$src2), - !strconcat(OpcodeStr, - "ps\t{$src2, $src1, $dst|$dst, $src1, $src2}"), - [(set VR128:$dst, - (V4F32Int (memopv4f32 addr:$src1),imm:$src2))]>, - TA, OpSize, - Requires<[HasSSE41]>; - - // Vector intrinsic operation, reg - def PDr_Int : SS4AIi8<opcpd, MRMSrcReg, - (outs VR128:$dst), (ins VR128:$src1, i32i8imm:$src2), - !strconcat(OpcodeStr, - "pd\t{$src2, $src1, $dst|$dst, $src1, $src2}"), - [(set VR128:$dst, (V2F64Int VR128:$src1, imm:$src2))]>, - OpSize; - - // Vector intrinsic operation, mem - def PDm_Int : SS4AIi8<opcpd, MRMSrcMem, - (outs VR128:$dst), (ins f128mem:$src1, i32i8imm:$src2), - !strconcat(OpcodeStr, - "pd\t{$src2, $src1, $dst|$dst, $src1, $src2}"), - [(set VR128:$dst, - (V2F64Int (memopv2f64 addr:$src1),imm:$src2))]>, - OpSize; -} - -let Constraints = "$src1 = $dst" in { -multiclass sse41_fp_binop_rm<bits<8> opcss, bits<8> opcsd, - string OpcodeStr, - Intrinsic F32Int, - Intrinsic F64Int> { - // Intrinsic operation, reg. - def SSr_Int : SS4AIi8<opcss, MRMSrcReg, - (outs VR128:$dst), - (ins VR128:$src1, VR128:$src2, i32i8imm:$src3), - !strconcat(OpcodeStr, - "ss\t{$src3, $src2, $dst|$dst, $src2, $src3}"), - [(set VR128:$dst, - (F32Int VR128:$src1, VR128:$src2, imm:$src3))]>, - OpSize; - - // Intrinsic operation, mem. - def SSm_Int : SS4AIi8<opcss, MRMSrcMem, - (outs VR128:$dst), - (ins VR128:$src1, ssmem:$src2, i32i8imm:$src3), - !strconcat(OpcodeStr, - "ss\t{$src3, $src2, $dst|$dst, $src2, $src3}"), - [(set VR128:$dst, - (F32Int VR128:$src1, sse_load_f32:$src2, imm:$src3))]>, - OpSize; - - // Intrinsic operation, reg. - def SDr_Int : SS4AIi8<opcsd, MRMSrcReg, - (outs VR128:$dst), - (ins VR128:$src1, VR128:$src2, i32i8imm:$src3), - !strconcat(OpcodeStr, - "sd\t{$src3, $src2, $dst|$dst, $src2, $src3}"), - [(set VR128:$dst, - (F64Int VR128:$src1, VR128:$src2, imm:$src3))]>, - OpSize; - - // Intrinsic operation, mem. - def SDm_Int : SS4AIi8<opcsd, MRMSrcMem, - (outs VR128:$dst), - (ins VR128:$src1, sdmem:$src2, i32i8imm:$src3), - !strconcat(OpcodeStr, - "sd\t{$src3, $src2, $dst|$dst, $src2, $src3}"), - [(set VR128:$dst, - (F64Int VR128:$src1, sse_load_f64:$src2, imm:$src3))]>, - OpSize; -} -} - -// FP round - roundss, roundps, roundsd, roundpd -defm ROUND : sse41_fp_unop_rm<0x08, 0x09, "round", - int_x86_sse41_round_ps, int_x86_sse41_round_pd>; -defm ROUND : sse41_fp_binop_rm<0x0A, 0x0B, "round", - int_x86_sse41_round_ss, int_x86_sse41_round_sd>; - -// SS41I_unop_rm_int_v16 - SSE 4.1 unary operator whose type is v8i16. -multiclass SS41I_unop_rm_int_v16<bits<8> opc, string OpcodeStr, - Intrinsic IntId128> { - def rr128 : SS48I<opc, MRMSrcReg, (outs VR128:$dst), - (ins VR128:$src), - !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"), - [(set VR128:$dst, (IntId128 VR128:$src))]>, OpSize; - def rm128 : SS48I<opc, MRMSrcMem, (outs VR128:$dst), - (ins i128mem:$src), - !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"), - [(set VR128:$dst, - (IntId128 - (bitconvert (memopv8i16 addr:$src))))]>, OpSize; -} - -defm PHMINPOSUW : SS41I_unop_rm_int_v16 <0x41, "phminposuw", - int_x86_sse41_phminposuw>; - -/// SS41I_binop_rm_int - Simple SSE 4.1 binary operator -let Constraints = "$src1 = $dst" in { - multiclass SS41I_binop_rm_int<bits<8> opc, string OpcodeStr, - Intrinsic IntId128, bit Commutable = 0> { - def rr : SS48I<opc, MRMSrcReg, (outs VR128:$dst), - (ins VR128:$src1, VR128:$src2), - !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"), - [(set VR128:$dst, (IntId128 VR128:$src1, VR128:$src2))]>, - OpSize { - let isCommutable = Commutable; - } - def rm : SS48I<opc, MRMSrcMem, (outs VR128:$dst), - (ins VR128:$src1, i128mem:$src2), - !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"), - [(set VR128:$dst, - (IntId128 VR128:$src1, - (bitconvert (memopv16i8 addr:$src2))))]>, OpSize; - } -} - -defm PCMPEQQ : SS41I_binop_rm_int<0x29, "pcmpeqq", - int_x86_sse41_pcmpeqq, 1>; -defm PACKUSDW : SS41I_binop_rm_int<0x2B, "packusdw", - int_x86_sse41_packusdw, 0>; -defm PMINSB : SS41I_binop_rm_int<0x38, "pminsb", - int_x86_sse41_pminsb, 1>; -defm PMINSD : SS41I_binop_rm_int<0x39, "pminsd", - int_x86_sse41_pminsd, 1>; -defm PMINUD : SS41I_binop_rm_int<0x3B, "pminud", - int_x86_sse41_pminud, 1>; -defm PMINUW : SS41I_binop_rm_int<0x3A, "pminuw", - int_x86_sse41_pminuw, 1>; -defm PMAXSB : SS41I_binop_rm_int<0x3C, "pmaxsb", - int_x86_sse41_pmaxsb, 1>; -defm PMAXSD : SS41I_binop_rm_int<0x3D, "pmaxsd", - int_x86_sse41_pmaxsd, 1>; -defm PMAXUD : SS41I_binop_rm_int<0x3F, "pmaxud", - int_x86_sse41_pmaxud, 1>; -defm PMAXUW : SS41I_binop_rm_int<0x3E, "pmaxuw", - int_x86_sse41_pmaxuw, 1>; - -defm PMULDQ : SS41I_binop_rm_int<0x28, "pmuldq", int_x86_sse41_pmuldq, 1>; - -def : Pat<(v2i64 (X86pcmpeqq VR128:$src1, VR128:$src2)), - (PCMPEQQrr VR128:$src1, VR128:$src2)>; -def : Pat<(v2i64 (X86pcmpeqq VR128:$src1, (memop addr:$src2))), - (PCMPEQQrm VR128:$src1, addr:$src2)>; - -/// SS41I_binop_rm_int - Simple SSE 4.1 binary operator -let Constraints = "$src1 = $dst" in { - multiclass SS41I_binop_patint<bits<8> opc, string OpcodeStr, ValueType OpVT, - SDNode OpNode, Intrinsic IntId128, - bit Commutable = 0> { - def rr : SS48I<opc, MRMSrcReg, (outs VR128:$dst), - (ins VR128:$src1, VR128:$src2), - !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"), - [(set VR128:$dst, (OpNode (OpVT VR128:$src1), - VR128:$src2))]>, OpSize { - let isCommutable = Commutable; - } - def rr_int : SS48I<opc, MRMSrcReg, (outs VR128:$dst), - (ins VR128:$src1, VR128:$src2), - !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"), - [(set VR128:$dst, (IntId128 VR128:$src1, VR128:$src2))]>, - OpSize { - let isCommutable = Commutable; - } - def rm : SS48I<opc, MRMSrcMem, (outs VR128:$dst), - (ins VR128:$src1, i128mem:$src2), - !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"), - [(set VR128:$dst, - (OpVT (OpNode VR128:$src1, (memop addr:$src2))))]>, OpSize; - def rm_int : SS48I<opc, MRMSrcMem, (outs VR128:$dst), - (ins VR128:$src1, i128mem:$src2), - !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"), - [(set VR128:$dst, - (IntId128 VR128:$src1, (memop addr:$src2)))]>, - OpSize; - } -} - -/// SS48I_binop_rm - Simple SSE41 binary operator. -let Constraints = "$src1 = $dst" in { -multiclass SS48I_binop_rm<bits<8> opc, string OpcodeStr, SDNode OpNode, - ValueType OpVT, bit Commutable = 0> { - def rr : SS48I<opc, MRMSrcReg, (outs VR128:$dst), - (ins VR128:$src1, VR128:$src2), - !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"), - [(set VR128:$dst, (OpVT (OpNode VR128:$src1, VR128:$src2)))]>, - OpSize { - let isCommutable = Commutable; - } - def rm : SS48I<opc, MRMSrcMem, (outs VR128:$dst), - (ins VR128:$src1, i128mem:$src2), - !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"), - [(set VR128:$dst, (OpNode VR128:$src1, - (bc_v4i32 (memopv2i64 addr:$src2))))]>, - OpSize; -} -} - -defm PMULLD : SS48I_binop_rm<0x40, "pmulld", mul, v4i32, 1>; - -/// SS41I_binop_rmi_int - SSE 4.1 binary operator with 8-bit immediate -let Constraints = "$src1 = $dst" in { - multiclass SS41I_binop_rmi_int<bits<8> opc, string OpcodeStr, - Intrinsic IntId128, bit Commutable = 0> { - def rri : SS4AIi8<opc, MRMSrcReg, (outs VR128:$dst), - (ins VR128:$src1, VR128:$src2, i32i8imm:$src3), - !strconcat(OpcodeStr, - "\t{$src3, $src2, $dst|$dst, $src2, $src3}"), - [(set VR128:$dst, - (IntId128 VR128:$src1, VR128:$src2, imm:$src3))]>, - OpSize { - let isCommutable = Commutable; - } - def rmi : SS4AIi8<opc, MRMSrcMem, (outs VR128:$dst), - (ins VR128:$src1, i128mem:$src2, i32i8imm:$src3), - !strconcat(OpcodeStr, - "\t{$src3, $src2, $dst|$dst, $src2, $src3}"), - [(set VR128:$dst, - (IntId128 VR128:$src1, - (bitconvert (memopv16i8 addr:$src2)), imm:$src3))]>, - OpSize; - } -} - -defm BLENDPS : SS41I_binop_rmi_int<0x0C, "blendps", - int_x86_sse41_blendps, 0>; -defm BLENDPD : SS41I_binop_rmi_int<0x0D, "blendpd", - int_x86_sse41_blendpd, 0>; -defm PBLENDW : SS41I_binop_rmi_int<0x0E, "pblendw", - int_x86_sse41_pblendw, 0>; -defm DPPS : SS41I_binop_rmi_int<0x40, "dpps", - int_x86_sse41_dpps, 1>; -defm DPPD : SS41I_binop_rmi_int<0x41, "dppd", - int_x86_sse41_dppd, 1>; -defm MPSADBW : SS41I_binop_rmi_int<0x42, "mpsadbw", - int_x86_sse41_mpsadbw, 0>; - - -/// SS41I_ternary_int - SSE 4.1 ternary operator -let Uses = [XMM0], Constraints = "$src1 = $dst" in { - multiclass SS41I_ternary_int<bits<8> opc, string OpcodeStr, Intrinsic IntId> { - def rr0 : SS48I<opc, MRMSrcReg, (outs VR128:$dst), - (ins VR128:$src1, VR128:$src2), - !strconcat(OpcodeStr, - "\t{%xmm0, $src2, $dst|$dst, $src2, %xmm0}"), - [(set VR128:$dst, (IntId VR128:$src1, VR128:$src2, XMM0))]>, - OpSize; - - def rm0 : SS48I<opc, MRMSrcMem, (outs VR128:$dst), - (ins VR128:$src1, i128mem:$src2), - !strconcat(OpcodeStr, - "\t{%xmm0, $src2, $dst|$dst, $src2, %xmm0}"), - [(set VR128:$dst, - (IntId VR128:$src1, - (bitconvert (memopv16i8 addr:$src2)), XMM0))]>, OpSize; - } -} - -defm BLENDVPD : SS41I_ternary_int<0x15, "blendvpd", int_x86_sse41_blendvpd>; -defm BLENDVPS : SS41I_ternary_int<0x14, "blendvps", int_x86_sse41_blendvps>; -defm PBLENDVB : SS41I_ternary_int<0x10, "pblendvb", int_x86_sse41_pblendvb>; - - multiclass SS41I_binop_rm_int8<bits<8> opc, string OpcodeStr, Intrinsic IntId> { def rr : SS48I<opc, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"), @@ -3604,6 +3686,21 @@ multiclass SS41I_binop_rm_int8<bits<8> opc, string OpcodeStr, Intrinsic IntId> { OpSize; } +let isAsmParserOnly = 1, Predicates = [HasAVX] in { +defm VPMOVSXBW : SS41I_binop_rm_int8<0x20, "vpmovsxbw", int_x86_sse41_pmovsxbw>, + VEX; +defm VPMOVSXWD : SS41I_binop_rm_int8<0x23, "vpmovsxwd", int_x86_sse41_pmovsxwd>, + VEX; +defm VPMOVSXDQ : SS41I_binop_rm_int8<0x25, "vpmovsxdq", int_x86_sse41_pmovsxdq>, + VEX; +defm VPMOVZXBW : SS41I_binop_rm_int8<0x30, "vpmovzxbw", int_x86_sse41_pmovzxbw>, + VEX; +defm VPMOVZXWD : SS41I_binop_rm_int8<0x33, "vpmovzxwd", int_x86_sse41_pmovzxwd>, + VEX; +defm VPMOVZXDQ : SS41I_binop_rm_int8<0x35, "vpmovzxdq", int_x86_sse41_pmovzxdq>, + VEX; +} + defm PMOVSXBW : SS41I_binop_rm_int8<0x20, "pmovsxbw", int_x86_sse41_pmovsxbw>; defm PMOVSXWD : SS41I_binop_rm_int8<0x23, "pmovsxwd", int_x86_sse41_pmovsxwd>; defm PMOVSXDQ : SS41I_binop_rm_int8<0x25, "pmovsxdq", int_x86_sse41_pmovsxdq>; @@ -3655,6 +3752,17 @@ multiclass SS41I_binop_rm_int4<bits<8> opc, string OpcodeStr, Intrinsic IntId> { OpSize; } +let isAsmParserOnly = 1, Predicates = [HasAVX] in { +defm VPMOVSXBD : SS41I_binop_rm_int4<0x21, "vpmovsxbd", int_x86_sse41_pmovsxbd>, + VEX; +defm VPMOVSXWQ : SS41I_binop_rm_int4<0x24, "vpmovsxwq", int_x86_sse41_pmovsxwq>, + VEX; +defm VPMOVZXBD : SS41I_binop_rm_int4<0x31, "vpmovzxbd", int_x86_sse41_pmovzxbd>, + VEX; +defm VPMOVZXWQ : SS41I_binop_rm_int4<0x34, "vpmovzxwq", int_x86_sse41_pmovzxwq>, + VEX; +} + defm PMOVSXBD : SS41I_binop_rm_int4<0x21, "pmovsxbd", int_x86_sse41_pmovsxbd>; defm PMOVSXWQ : SS41I_binop_rm_int4<0x24, "pmovsxwq", int_x86_sse41_pmovsxwq>; defm PMOVZXBD : SS41I_binop_rm_int4<0x31, "pmovzxbd", int_x86_sse41_pmovzxbd>; @@ -3685,6 +3793,12 @@ multiclass SS41I_binop_rm_int2<bits<8> opc, string OpcodeStr, Intrinsic IntId> { OpSize; } +let isAsmParserOnly = 1, Predicates = [HasAVX] in { +defm VPMOVSXBQ : SS41I_binop_rm_int2<0x22, "vpmovsxbq", int_x86_sse41_pmovsxbq>, + VEX; +defm VPMOVZXBQ : SS41I_binop_rm_int2<0x32, "vpmovzxbq", int_x86_sse41_pmovzxbq>, + VEX; +} defm PMOVSXBQ : SS41I_binop_rm_int2<0x22, "pmovsxbq", int_x86_sse41_pmovsxbq>; defm PMOVZXBQ : SS41I_binop_rm_int2<0x32, "pmovzxbq", int_x86_sse41_pmovzxbq>; @@ -3699,6 +3813,9 @@ def : Pat<(int_x86_sse41_pmovzxbq (v4i32 (scalar_to_vector (loadi32 addr:$src))))))), (PMOVZXBQrm addr:$src)>, Requires<[HasSSE41]>; +//===----------------------------------------------------------------------===// +// SSE4.1 - Extract Instructions +//===----------------------------------------------------------------------===// /// SS41I_binop_ext8 - SSE 4.1 extract 8 bits to 32 bit reg or 8 bit mem multiclass SS41I_extract8<bits<8> opc, string OpcodeStr> { @@ -3718,6 +3835,9 @@ multiclass SS41I_extract8<bits<8> opc, string OpcodeStr> { // (store (i8 (trunc (X86pextrb (v16i8 VR128:$src1), imm:$src2))), addr:$dst) } +let isAsmParserOnly = 1, Predicates = [HasAVX] in + defm VPEXTRB : SS41I_extract8<0x14, "vpextrb">, VEX; + defm PEXTRB : SS41I_extract8<0x14, "pextrb">; @@ -3733,6 +3853,9 @@ multiclass SS41I_extract16<bits<8> opc, string OpcodeStr> { // (store (i16 (trunc (X86pextrw (v16i8 VR128:$src1), imm:$src2))), addr:$dst) } +let isAsmParserOnly = 1, Predicates = [HasAVX] in + defm VPEXTRW : SS41I_extract16<0x15, "vpextrw">, VEX; + defm PEXTRW : SS41I_extract16<0x15, "pextrw">; @@ -3752,8 +3875,31 @@ multiclass SS41I_extract32<bits<8> opc, string OpcodeStr> { addr:$dst)]>, OpSize; } +let isAsmParserOnly = 1, Predicates = [HasAVX] in + defm VPEXTRD : SS41I_extract32<0x16, "vpextrd">, VEX; + defm PEXTRD : SS41I_extract32<0x16, "pextrd">; +/// SS41I_extract32 - SSE 4.1 extract 32 bits to int reg or memory destination +multiclass SS41I_extract64<bits<8> opc, string OpcodeStr> { + def rr : SS4AIi8<opc, MRMDestReg, (outs GR64:$dst), + (ins VR128:$src1, i32i8imm:$src2), + !strconcat(OpcodeStr, + "\t{$src2, $src1, $dst|$dst, $src1, $src2}"), + [(set GR64:$dst, + (extractelt (v2i64 VR128:$src1), imm:$src2))]>, OpSize, REX_W; + def mr : SS4AIi8<opc, MRMDestMem, (outs), + (ins i64mem:$dst, VR128:$src1, i32i8imm:$src2), + !strconcat(OpcodeStr, + "\t{$src2, $src1, $dst|$dst, $src1, $src2}"), + [(store (extractelt (v2i64 VR128:$src1), imm:$src2), + addr:$dst)]>, OpSize, REX_W; +} + +let isAsmParserOnly = 1, Predicates = [HasAVX] in + defm VPEXTRQ : SS41I_extract64<0x16, "vpextrq">, VEX, VEX_W; + +defm PEXTRQ : SS41I_extract64<0x16, "pextrq">; /// SS41I_extractf32 - SSE 4.1 extract 32 bits fp value to int reg or memory /// destination @@ -3773,6 +3919,8 @@ multiclass SS41I_extractf32<bits<8> opc, string OpcodeStr> { addr:$dst)]>, OpSize; } +let isAsmParserOnly = 1, Predicates = [HasAVX] in + defm VEXTRACTPS : SS41I_extractf32<0x17, "vextractps">, VEX; defm EXTRACTPS : SS41I_extractf32<0x17, "extractps">; // Also match an EXTRACTPS store when the store is done as f32 instead of i32. @@ -3782,78 +3930,530 @@ def : Pat<(store (f32 (bitconvert (extractelt (bc_v4i32 (v4f32 VR128:$src1)), (EXTRACTPSmr addr:$dst, VR128:$src1, imm:$src2)>, Requires<[HasSSE41]>; -let Constraints = "$src1 = $dst" in { - multiclass SS41I_insert8<bits<8> opc, string OpcodeStr> { - def rr : SS4AIi8<opc, MRMSrcReg, (outs VR128:$dst), - (ins VR128:$src1, GR32:$src2, i32i8imm:$src3), - !strconcat(OpcodeStr, - "\t{$src3, $src2, $dst|$dst, $src2, $src3}"), - [(set VR128:$dst, - (X86pinsrb VR128:$src1, GR32:$src2, imm:$src3))]>, OpSize; - def rm : SS4AIi8<opc, MRMSrcMem, (outs VR128:$dst), - (ins VR128:$src1, i8mem:$src2, i32i8imm:$src3), - !strconcat(OpcodeStr, - "\t{$src3, $src2, $dst|$dst, $src2, $src3}"), - [(set VR128:$dst, - (X86pinsrb VR128:$src1, (extloadi8 addr:$src2), - imm:$src3))]>, OpSize; - } +//===----------------------------------------------------------------------===// +// SSE4.1 - Insert Instructions +//===----------------------------------------------------------------------===// + +multiclass SS41I_insert8<bits<8> opc, string asm, bit Is2Addr = 1> { + def rr : SS4AIi8<opc, MRMSrcReg, (outs VR128:$dst), + (ins VR128:$src1, GR32:$src2, i32i8imm:$src3), + !if(Is2Addr, + !strconcat(asm, "\t{$src3, $src2, $dst|$dst, $src2, $src3}"), + !strconcat(asm, + "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}")), + [(set VR128:$dst, + (X86pinsrb VR128:$src1, GR32:$src2, imm:$src3))]>, OpSize; + def rm : SS4AIi8<opc, MRMSrcMem, (outs VR128:$dst), + (ins VR128:$src1, i8mem:$src2, i32i8imm:$src3), + !if(Is2Addr, + !strconcat(asm, "\t{$src3, $src2, $dst|$dst, $src2, $src3}"), + !strconcat(asm, + "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}")), + [(set VR128:$dst, + (X86pinsrb VR128:$src1, (extloadi8 addr:$src2), + imm:$src3))]>, OpSize; } -defm PINSRB : SS41I_insert8<0x20, "pinsrb">; +let isAsmParserOnly = 1, Predicates = [HasAVX] in + defm VPINSRB : SS41I_insert8<0x20, "vpinsrb", 0>, VEX_4V; +let Constraints = "$src1 = $dst" in + defm PINSRB : SS41I_insert8<0x20, "pinsrb">; + +multiclass SS41I_insert32<bits<8> opc, string asm, bit Is2Addr = 1> { + def rr : SS4AIi8<opc, MRMSrcReg, (outs VR128:$dst), + (ins VR128:$src1, GR32:$src2, i32i8imm:$src3), + !if(Is2Addr, + !strconcat(asm, "\t{$src3, $src2, $dst|$dst, $src2, $src3}"), + !strconcat(asm, + "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}")), + [(set VR128:$dst, + (v4i32 (insertelt VR128:$src1, GR32:$src2, imm:$src3)))]>, + OpSize; + def rm : SS4AIi8<opc, MRMSrcMem, (outs VR128:$dst), + (ins VR128:$src1, i32mem:$src2, i32i8imm:$src3), + !if(Is2Addr, + !strconcat(asm, "\t{$src3, $src2, $dst|$dst, $src2, $src3}"), + !strconcat(asm, + "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}")), + [(set VR128:$dst, + (v4i32 (insertelt VR128:$src1, (loadi32 addr:$src2), + imm:$src3)))]>, OpSize; +} -let Constraints = "$src1 = $dst" in { - multiclass SS41I_insert32<bits<8> opc, string OpcodeStr> { - def rr : SS4AIi8<opc, MRMSrcReg, (outs VR128:$dst), - (ins VR128:$src1, GR32:$src2, i32i8imm:$src3), - !strconcat(OpcodeStr, - "\t{$src3, $src2, $dst|$dst, $src2, $src3}"), - [(set VR128:$dst, - (v4i32 (insertelt VR128:$src1, GR32:$src2, imm:$src3)))]>, - OpSize; - def rm : SS4AIi8<opc, MRMSrcMem, (outs VR128:$dst), - (ins VR128:$src1, i32mem:$src2, i32i8imm:$src3), - !strconcat(OpcodeStr, - "\t{$src3, $src2, $dst|$dst, $src2, $src3}"), - [(set VR128:$dst, - (v4i32 (insertelt VR128:$src1, (loadi32 addr:$src2), - imm:$src3)))]>, OpSize; - } +let isAsmParserOnly = 1, Predicates = [HasAVX] in + defm VPINSRD : SS41I_insert32<0x22, "vpinsrd", 0>, VEX_4V; +let Constraints = "$src1 = $dst" in + defm PINSRD : SS41I_insert32<0x22, "pinsrd">; + +multiclass SS41I_insert64<bits<8> opc, string asm, bit Is2Addr = 1> { + def rr : SS4AIi8<opc, MRMSrcReg, (outs VR128:$dst), + (ins VR128:$src1, GR64:$src2, i32i8imm:$src3), + !if(Is2Addr, + !strconcat(asm, "\t{$src3, $src2, $dst|$dst, $src2, $src3}"), + !strconcat(asm, + "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}")), + [(set VR128:$dst, + (v2i64 (insertelt VR128:$src1, GR64:$src2, imm:$src3)))]>, + OpSize; + def rm : SS4AIi8<opc, MRMSrcMem, (outs VR128:$dst), + (ins VR128:$src1, i64mem:$src2, i32i8imm:$src3), + !if(Is2Addr, + !strconcat(asm, "\t{$src3, $src2, $dst|$dst, $src2, $src3}"), + !strconcat(asm, + "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}")), + [(set VR128:$dst, + (v2i64 (insertelt VR128:$src1, (loadi64 addr:$src2), + imm:$src3)))]>, OpSize; } -defm PINSRD : SS41I_insert32<0x22, "pinsrd">; +let isAsmParserOnly = 1, Predicates = [HasAVX] in + defm VPINSRQ : SS41I_insert64<0x22, "vpinsrq", 0>, VEX_4V, VEX_W; +let Constraints = "$src1 = $dst" in + defm PINSRQ : SS41I_insert64<0x22, "pinsrq">, REX_W; // insertps has a few different modes, there's the first two here below which // are optimized inserts that won't zero arbitrary elements in the destination // vector. The next one matches the intrinsic and could zero arbitrary elements // in the target vector. -let Constraints = "$src1 = $dst" in { - multiclass SS41I_insertf32<bits<8> opc, string OpcodeStr> { - def rr : SS4AIi8<opc, MRMSrcReg, (outs VR128:$dst), - (ins VR128:$src1, VR128:$src2, i32i8imm:$src3), - !strconcat(OpcodeStr, - "\t{$src3, $src2, $dst|$dst, $src2, $src3}"), - [(set VR128:$dst, - (X86insrtps VR128:$src1, VR128:$src2, imm:$src3))]>, +multiclass SS41I_insertf32<bits<8> opc, string asm, bit Is2Addr = 1> { + def rr : SS4AIi8<opc, MRMSrcReg, (outs VR128:$dst), + (ins VR128:$src1, VR128:$src2, i32i8imm:$src3), + !if(Is2Addr, + !strconcat(asm, "\t{$src3, $src2, $dst|$dst, $src2, $src3}"), + !strconcat(asm, + "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}")), + [(set VR128:$dst, + (X86insrtps VR128:$src1, VR128:$src2, imm:$src3))]>, OpSize; - def rm : SS4AIi8<opc, MRMSrcMem, (outs VR128:$dst), - (ins VR128:$src1, f32mem:$src2, i32i8imm:$src3), - !strconcat(OpcodeStr, - "\t{$src3, $src2, $dst|$dst, $src2, $src3}"), - [(set VR128:$dst, - (X86insrtps VR128:$src1, - (v4f32 (scalar_to_vector (loadf32 addr:$src2))), - imm:$src3))]>, OpSize; - } + def rm : SS4AIi8<opc, MRMSrcMem, (outs VR128:$dst), + (ins VR128:$src1, f32mem:$src2, i32i8imm:$src3), + !if(Is2Addr, + !strconcat(asm, "\t{$src3, $src2, $dst|$dst, $src2, $src3}"), + !strconcat(asm, + "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}")), + [(set VR128:$dst, + (X86insrtps VR128:$src1, + (v4f32 (scalar_to_vector (loadf32 addr:$src2))), + imm:$src3))]>, OpSize; } -defm INSERTPS : SS41I_insertf32<0x21, "insertps">; +let Constraints = "$src1 = $dst" in + defm INSERTPS : SS41I_insertf32<0x21, "insertps">; +let isAsmParserOnly = 1, Predicates = [HasAVX] in + defm VINSERTPS : SS41I_insertf32<0x21, "vinsertps", 0>, VEX_4V; def : Pat<(int_x86_sse41_insertps VR128:$src1, VR128:$src2, imm:$src3), (INSERTPSrr VR128:$src1, VR128:$src2, imm:$src3)>; +//===----------------------------------------------------------------------===// +// SSE4.1 - Round Instructions +//===----------------------------------------------------------------------===// + +multiclass sse41_fp_unop_rm<bits<8> opcps, bits<8> opcpd, + string OpcodeStr, + Intrinsic V4F32Int, + Intrinsic V2F64Int> { + // Intrinsic operation, reg. + // Vector intrinsic operation, reg + def PSr_Int : SS4AIi8<opcps, MRMSrcReg, + (outs VR128:$dst), (ins VR128:$src1, i32i8imm:$src2), + !strconcat(OpcodeStr, + "ps\t{$src2, $src1, $dst|$dst, $src1, $src2}"), + [(set VR128:$dst, (V4F32Int VR128:$src1, imm:$src2))]>, + OpSize; + + // Vector intrinsic operation, mem + def PSm_Int : Ii8<opcps, MRMSrcMem, + (outs VR128:$dst), (ins f128mem:$src1, i32i8imm:$src2), + !strconcat(OpcodeStr, + "ps\t{$src2, $src1, $dst|$dst, $src1, $src2}"), + [(set VR128:$dst, + (V4F32Int (memopv4f32 addr:$src1),imm:$src2))]>, + TA, OpSize, + Requires<[HasSSE41]>; + + // Vector intrinsic operation, reg + def PDr_Int : SS4AIi8<opcpd, MRMSrcReg, + (outs VR128:$dst), (ins VR128:$src1, i32i8imm:$src2), + !strconcat(OpcodeStr, + "pd\t{$src2, $src1, $dst|$dst, $src1, $src2}"), + [(set VR128:$dst, (V2F64Int VR128:$src1, imm:$src2))]>, + OpSize; + + // Vector intrinsic operation, mem + def PDm_Int : SS4AIi8<opcpd, MRMSrcMem, + (outs VR128:$dst), (ins f128mem:$src1, i32i8imm:$src2), + !strconcat(OpcodeStr, + "pd\t{$src2, $src1, $dst|$dst, $src1, $src2}"), + [(set VR128:$dst, + (V2F64Int (memopv2f64 addr:$src1),imm:$src2))]>, + OpSize; +} + +multiclass sse41_fp_unop_rm_avx<bits<8> opcps, bits<8> opcpd, + string OpcodeStr> { + // Intrinsic operation, reg. + // Vector intrinsic operation, reg + def PSr : SS4AIi8<opcps, MRMSrcReg, + (outs VR128:$dst), (ins VR128:$src1, i32i8imm:$src2), + !strconcat(OpcodeStr, + "ps\t{$src2, $src1, $dst|$dst, $src1, $src2}"), + []>, OpSize; + + // Vector intrinsic operation, mem + def PSm : Ii8<opcps, MRMSrcMem, + (outs VR128:$dst), (ins f128mem:$src1, i32i8imm:$src2), + !strconcat(OpcodeStr, + "ps\t{$src2, $src1, $dst|$dst, $src1, $src2}"), + []>, TA, OpSize, Requires<[HasSSE41]>; + + // Vector intrinsic operation, reg + def PDr : SS4AIi8<opcpd, MRMSrcReg, + (outs VR128:$dst), (ins VR128:$src1, i32i8imm:$src2), + !strconcat(OpcodeStr, + "pd\t{$src2, $src1, $dst|$dst, $src1, $src2}"), + []>, OpSize; + + // Vector intrinsic operation, mem + def PDm : SS4AIi8<opcpd, MRMSrcMem, + (outs VR128:$dst), (ins f128mem:$src1, i32i8imm:$src2), + !strconcat(OpcodeStr, + "pd\t{$src2, $src1, $dst|$dst, $src1, $src2}"), + []>, OpSize; +} + +multiclass sse41_fp_binop_rm<bits<8> opcss, bits<8> opcsd, + string OpcodeStr, + Intrinsic F32Int, + Intrinsic F64Int, bit Is2Addr = 1> { + // Intrinsic operation, reg. + def SSr_Int : SS4AIi8<opcss, MRMSrcReg, + (outs VR128:$dst), (ins VR128:$src1, VR128:$src2, i32i8imm:$src3), + !if(Is2Addr, + !strconcat(OpcodeStr, + "ss\t{$src3, $src2, $dst|$dst, $src2, $src3}"), + !strconcat(OpcodeStr, + "ss\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}")), + [(set VR128:$dst, (F32Int VR128:$src1, VR128:$src2, imm:$src3))]>, + OpSize; + + // Intrinsic operation, mem. + def SSm_Int : SS4AIi8<opcss, MRMSrcMem, + (outs VR128:$dst), (ins VR128:$src1, ssmem:$src2, i32i8imm:$src3), + !if(Is2Addr, + !strconcat(OpcodeStr, + "ss\t{$src3, $src2, $dst|$dst, $src2, $src3}"), + !strconcat(OpcodeStr, + "ss\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}")), + [(set VR128:$dst, + (F32Int VR128:$src1, sse_load_f32:$src2, imm:$src3))]>, + OpSize; + + // Intrinsic operation, reg. + def SDr_Int : SS4AIi8<opcsd, MRMSrcReg, + (outs VR128:$dst), (ins VR128:$src1, VR128:$src2, i32i8imm:$src3), + !if(Is2Addr, + !strconcat(OpcodeStr, + "sd\t{$src3, $src2, $dst|$dst, $src2, $src3}"), + !strconcat(OpcodeStr, + "sd\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}")), + [(set VR128:$dst, (F64Int VR128:$src1, VR128:$src2, imm:$src3))]>, + OpSize; + + // Intrinsic operation, mem. + def SDm_Int : SS4AIi8<opcsd, MRMSrcMem, + (outs VR128:$dst), (ins VR128:$src1, sdmem:$src2, i32i8imm:$src3), + !if(Is2Addr, + !strconcat(OpcodeStr, + "sd\t{$src3, $src2, $dst|$dst, $src2, $src3}"), + !strconcat(OpcodeStr, + "sd\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}")), + [(set VR128:$dst, + (F64Int VR128:$src1, sse_load_f64:$src2, imm:$src3))]>, + OpSize; +} + +multiclass sse41_fp_binop_rm_avx<bits<8> opcss, bits<8> opcsd, + string OpcodeStr> { + // Intrinsic operation, reg. + def SSr : SS4AIi8<opcss, MRMSrcReg, + (outs VR128:$dst), (ins VR128:$src1, VR128:$src2, i32i8imm:$src3), + !strconcat(OpcodeStr, + "ss\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"), + []>, OpSize; + + // Intrinsic operation, mem. + def SSm : SS4AIi8<opcss, MRMSrcMem, + (outs VR128:$dst), (ins VR128:$src1, ssmem:$src2, i32i8imm:$src3), + !strconcat(OpcodeStr, + "ss\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"), + []>, OpSize; + + // Intrinsic operation, reg. + def SDr : SS4AIi8<opcsd, MRMSrcReg, + (outs VR128:$dst), (ins VR128:$src1, VR128:$src2, i32i8imm:$src3), + !strconcat(OpcodeStr, + "sd\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"), + []>, OpSize; + + // Intrinsic operation, mem. + def SDm : SS4AIi8<opcsd, MRMSrcMem, + (outs VR128:$dst), (ins VR128:$src1, sdmem:$src2, i32i8imm:$src3), + !strconcat(OpcodeStr, + "sd\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"), + []>, OpSize; +} + +// FP round - roundss, roundps, roundsd, roundpd +let isAsmParserOnly = 1, Predicates = [HasAVX] in { + // Intrinsic form + defm VROUND : sse41_fp_unop_rm<0x08, 0x09, "vround", + int_x86_sse41_round_ps, int_x86_sse41_round_pd>, + VEX; + defm VROUND : sse41_fp_binop_rm<0x0A, 0x0B, "vround", + int_x86_sse41_round_ss, int_x86_sse41_round_sd, + 0>, VEX_4V; + // Instructions for the assembler + defm VROUND : sse41_fp_unop_rm_avx<0x08, 0x09, "vround">, VEX; + defm VROUND : sse41_fp_binop_rm_avx<0x0A, 0x0B, "vround">, VEX_4V; +} + +defm ROUND : sse41_fp_unop_rm<0x08, 0x09, "round", + int_x86_sse41_round_ps, int_x86_sse41_round_pd>; +let Constraints = "$src1 = $dst" in +defm ROUND : sse41_fp_binop_rm<0x0A, 0x0B, "round", + int_x86_sse41_round_ss, int_x86_sse41_round_sd>; + +//===----------------------------------------------------------------------===// +// SSE4.1 - Misc Instructions +//===----------------------------------------------------------------------===// + +// SS41I_unop_rm_int_v16 - SSE 4.1 unary operator whose type is v8i16. +multiclass SS41I_unop_rm_int_v16<bits<8> opc, string OpcodeStr, + Intrinsic IntId128> { + def rr128 : SS48I<opc, MRMSrcReg, (outs VR128:$dst), + (ins VR128:$src), + !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"), + [(set VR128:$dst, (IntId128 VR128:$src))]>, OpSize; + def rm128 : SS48I<opc, MRMSrcMem, (outs VR128:$dst), + (ins i128mem:$src), + !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"), + [(set VR128:$dst, + (IntId128 + (bitconvert (memopv8i16 addr:$src))))]>, OpSize; +} + +let isAsmParserOnly = 1, Predicates = [HasAVX] in +defm VPHMINPOSUW : SS41I_unop_rm_int_v16 <0x41, "vphminposuw", + int_x86_sse41_phminposuw>, VEX; +defm PHMINPOSUW : SS41I_unop_rm_int_v16 <0x41, "phminposuw", + int_x86_sse41_phminposuw>; + +/// SS41I_binop_rm_int - Simple SSE 4.1 binary operator +multiclass SS41I_binop_rm_int<bits<8> opc, string OpcodeStr, + Intrinsic IntId128, bit Is2Addr = 1> { + let isCommutable = 1 in + def rr : SS48I<opc, MRMSrcReg, (outs VR128:$dst), + (ins VR128:$src1, VR128:$src2), + !if(Is2Addr, + !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"), + !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")), + [(set VR128:$dst, (IntId128 VR128:$src1, VR128:$src2))]>, OpSize; + def rm : SS48I<opc, MRMSrcMem, (outs VR128:$dst), + (ins VR128:$src1, i128mem:$src2), + !if(Is2Addr, + !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"), + !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")), + [(set VR128:$dst, + (IntId128 VR128:$src1, + (bitconvert (memopv16i8 addr:$src2))))]>, OpSize; +} + +let isAsmParserOnly = 1, Predicates = [HasAVX] in { + let isCommutable = 0 in + defm VPACKUSDW : SS41I_binop_rm_int<0x2B, "vpackusdw", int_x86_sse41_packusdw, + 0>, VEX_4V; + defm VPCMPEQQ : SS41I_binop_rm_int<0x29, "vpcmpeqq", int_x86_sse41_pcmpeqq, + 0>, VEX_4V; + defm VPMINSB : SS41I_binop_rm_int<0x38, "vpminsb", int_x86_sse41_pminsb, + 0>, VEX_4V; + defm VPMINSD : SS41I_binop_rm_int<0x39, "vpminsd", int_x86_sse41_pminsd, + 0>, VEX_4V; + defm VPMINUD : SS41I_binop_rm_int<0x3B, "vpminud", int_x86_sse41_pminud, + 0>, VEX_4V; + defm VPMINUW : SS41I_binop_rm_int<0x3A, "vpminuw", int_x86_sse41_pminuw, + 0>, VEX_4V; + defm VPMAXSB : SS41I_binop_rm_int<0x3C, "vpmaxsb", int_x86_sse41_pmaxsb, + 0>, VEX_4V; + defm VPMAXSD : SS41I_binop_rm_int<0x3D, "vpmaxsd", int_x86_sse41_pmaxsd, + 0>, VEX_4V; + defm VPMAXUD : SS41I_binop_rm_int<0x3F, "vpmaxud", int_x86_sse41_pmaxud, + 0>, VEX_4V; + defm VPMAXUW : SS41I_binop_rm_int<0x3E, "vpmaxuw", int_x86_sse41_pmaxuw, + 0>, VEX_4V; + defm VPMULDQ : SS41I_binop_rm_int<0x28, "vpmuldq", int_x86_sse41_pmuldq, + 0>, VEX_4V; +} + +let Constraints = "$src1 = $dst" in { + let isCommutable = 0 in + defm PACKUSDW : SS41I_binop_rm_int<0x2B, "packusdw", int_x86_sse41_packusdw>; + defm PCMPEQQ : SS41I_binop_rm_int<0x29, "pcmpeqq", int_x86_sse41_pcmpeqq>; + defm PMINSB : SS41I_binop_rm_int<0x38, "pminsb", int_x86_sse41_pminsb>; + defm PMINSD : SS41I_binop_rm_int<0x39, "pminsd", int_x86_sse41_pminsd>; + defm PMINUD : SS41I_binop_rm_int<0x3B, "pminud", int_x86_sse41_pminud>; + defm PMINUW : SS41I_binop_rm_int<0x3A, "pminuw", int_x86_sse41_pminuw>; + defm PMAXSB : SS41I_binop_rm_int<0x3C, "pmaxsb", int_x86_sse41_pmaxsb>; + defm PMAXSD : SS41I_binop_rm_int<0x3D, "pmaxsd", int_x86_sse41_pmaxsd>; + defm PMAXUD : SS41I_binop_rm_int<0x3F, "pmaxud", int_x86_sse41_pmaxud>; + defm PMAXUW : SS41I_binop_rm_int<0x3E, "pmaxuw", int_x86_sse41_pmaxuw>; + defm PMULDQ : SS41I_binop_rm_int<0x28, "pmuldq", int_x86_sse41_pmuldq>; +} + +def : Pat<(v2i64 (X86pcmpeqq VR128:$src1, VR128:$src2)), + (PCMPEQQrr VR128:$src1, VR128:$src2)>; +def : Pat<(v2i64 (X86pcmpeqq VR128:$src1, (memop addr:$src2))), + (PCMPEQQrm VR128:$src1, addr:$src2)>; + +/// SS48I_binop_rm - Simple SSE41 binary operator. +multiclass SS48I_binop_rm<bits<8> opc, string OpcodeStr, SDNode OpNode, + ValueType OpVT, bit Is2Addr = 1> { + let isCommutable = 1 in + def rr : SS48I<opc, MRMSrcReg, (outs VR128:$dst), + (ins VR128:$src1, VR128:$src2), + !if(Is2Addr, + !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"), + !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")), + [(set VR128:$dst, (OpVT (OpNode VR128:$src1, VR128:$src2)))]>, + OpSize; + def rm : SS48I<opc, MRMSrcMem, (outs VR128:$dst), + (ins VR128:$src1, i128mem:$src2), + !if(Is2Addr, + !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"), + !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")), + [(set VR128:$dst, (OpNode VR128:$src1, + (bc_v4i32 (memopv2i64 addr:$src2))))]>, + OpSize; +} + +let isAsmParserOnly = 1, Predicates = [HasAVX] in + defm VPMULLD : SS48I_binop_rm<0x40, "vpmulld", mul, v4i32, 0>, VEX_4V; +let Constraints = "$src1 = $dst" in + defm PMULLD : SS48I_binop_rm<0x40, "pmulld", mul, v4i32>; + +/// SS41I_binop_rmi_int - SSE 4.1 binary operator with 8-bit immediate +multiclass SS41I_binop_rmi_int<bits<8> opc, string OpcodeStr, + Intrinsic IntId128, bit Is2Addr = 1> { + let isCommutable = 1 in + def rri : SS4AIi8<opc, MRMSrcReg, (outs VR128:$dst), + (ins VR128:$src1, VR128:$src2, i32i8imm:$src3), + !if(Is2Addr, + !strconcat(OpcodeStr, + "\t{$src3, $src2, $dst|$dst, $src2, $src3}"), + !strconcat(OpcodeStr, + "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}")), + [(set VR128:$dst, + (IntId128 VR128:$src1, VR128:$src2, imm:$src3))]>, + OpSize; + def rmi : SS4AIi8<opc, MRMSrcMem, (outs VR128:$dst), + (ins VR128:$src1, i128mem:$src2, i32i8imm:$src3), + !if(Is2Addr, + !strconcat(OpcodeStr, + "\t{$src3, $src2, $dst|$dst, $src2, $src3}"), + !strconcat(OpcodeStr, + "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}")), + [(set VR128:$dst, + (IntId128 VR128:$src1, + (bitconvert (memopv16i8 addr:$src2)), imm:$src3))]>, + OpSize; +} + +let isAsmParserOnly = 1, Predicates = [HasAVX] in { + let isCommutable = 0 in { + defm VBLENDPS : SS41I_binop_rmi_int<0x0C, "vblendps", int_x86_sse41_blendps, + 0>, VEX_4V; + defm VBLENDPD : SS41I_binop_rmi_int<0x0D, "vblendpd", int_x86_sse41_blendpd, + 0>, VEX_4V; + defm VPBLENDW : SS41I_binop_rmi_int<0x0E, "vpblendw", int_x86_sse41_pblendw, + 0>, VEX_4V; + defm VMPSADBW : SS41I_binop_rmi_int<0x42, "vmpsadbw", int_x86_sse41_mpsadbw, + 0>, VEX_4V; + } + defm VDPPS : SS41I_binop_rmi_int<0x40, "vdpps", int_x86_sse41_dpps, + 0>, VEX_4V; + defm VDPPD : SS41I_binop_rmi_int<0x41, "vdppd", int_x86_sse41_dppd, + 0>, VEX_4V; +} + +let Constraints = "$src1 = $dst" in { + let isCommutable = 0 in { + defm BLENDPS : SS41I_binop_rmi_int<0x0C, "blendps", int_x86_sse41_blendps>; + defm BLENDPD : SS41I_binop_rmi_int<0x0D, "blendpd", int_x86_sse41_blendpd>; + defm PBLENDW : SS41I_binop_rmi_int<0x0E, "pblendw", int_x86_sse41_pblendw>; + defm MPSADBW : SS41I_binop_rmi_int<0x42, "mpsadbw", int_x86_sse41_mpsadbw>; + } + defm DPPS : SS41I_binop_rmi_int<0x40, "dpps", int_x86_sse41_dpps>; + defm DPPD : SS41I_binop_rmi_int<0x41, "dppd", int_x86_sse41_dppd>; +} + +/// SS41I_quaternary_int_avx - AVX SSE 4.1 with 4 operators +let isAsmParserOnly = 1, Predicates = [HasAVX] in { + multiclass SS41I_quaternary_int_avx<bits<8> opc, string OpcodeStr> { + def rr : I<opc, MRMSrcReg, (outs VR128:$dst), + (ins VR128:$src1, VR128:$src2, VR128:$src3), + !strconcat(OpcodeStr, + "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"), + [], SSEPackedInt>, OpSize, TA, VEX_4V, VEX_I8IMM; + + def rm : I<opc, MRMSrcMem, (outs VR128:$dst), + (ins VR128:$src1, i128mem:$src2, VR128:$src3), + !strconcat(OpcodeStr, + "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"), + [], SSEPackedInt>, OpSize, TA, VEX_4V, VEX_I8IMM; + } +} + +defm VBLENDVPD : SS41I_quaternary_int_avx<0x4B, "vblendvpd">; +defm VBLENDVPS : SS41I_quaternary_int_avx<0x4A, "vblendvps">; +defm VPBLENDVB : SS41I_quaternary_int_avx<0x4C, "vpblendvb">; + +/// SS41I_ternary_int - SSE 4.1 ternary operator +let Uses = [XMM0], Constraints = "$src1 = $dst" in { + multiclass SS41I_ternary_int<bits<8> opc, string OpcodeStr, Intrinsic IntId> { + def rr0 : SS48I<opc, MRMSrcReg, (outs VR128:$dst), + (ins VR128:$src1, VR128:$src2), + !strconcat(OpcodeStr, + "\t{%xmm0, $src2, $dst|$dst, $src2, %xmm0}"), + [(set VR128:$dst, (IntId VR128:$src1, VR128:$src2, XMM0))]>, + OpSize; + + def rm0 : SS48I<opc, MRMSrcMem, (outs VR128:$dst), + (ins VR128:$src1, i128mem:$src2), + !strconcat(OpcodeStr, + "\t{%xmm0, $src2, $dst|$dst, $src2, %xmm0}"), + [(set VR128:$dst, + (IntId VR128:$src1, + (bitconvert (memopv16i8 addr:$src2)), XMM0))]>, OpSize; + } +} + +defm BLENDVPD : SS41I_ternary_int<0x15, "blendvpd", int_x86_sse41_blendvpd>; +defm BLENDVPS : SS41I_ternary_int<0x14, "blendvps", int_x86_sse41_blendvps>; +defm PBLENDVB : SS41I_ternary_int<0x10, "pblendvb", int_x86_sse41_pblendvb>; + // ptest instruction we'll lower to this in X86ISelLowering primarily from // the intel intrinsic that corresponds to this. +let Defs = [EFLAGS], isAsmParserOnly = 1, Predicates = [HasAVX] in { +def VPTESTrr : SS48I<0x17, MRMSrcReg, (outs), (ins VR128:$src1, VR128:$src2), + "vptest\t{$src2, $src1|$src1, $src2}", + [(set EFLAGS, (X86ptest VR128:$src1, VR128:$src2))]>, + OpSize, VEX; +def VPTESTrm : SS48I<0x17, MRMSrcMem, (outs), (ins VR128:$src1, i128mem:$src2), + "vptest\t{$src2, $src1|$src1, $src2}", + [(set EFLAGS, (X86ptest VR128:$src1, (load addr:$src2)))]>, + OpSize, VEX; +} + let Defs = [EFLAGS] in { def PTESTrr : SS48I<0x17, MRMSrcReg, (outs), (ins VR128:$src1, VR128:$src2), "ptest \t{$src2, $src1|$src1, $src2}", @@ -3865,43 +4465,207 @@ def PTESTrm : SS48I<0x17, MRMSrcMem, (outs), (ins VR128:$src1, i128mem:$src2), OpSize; } +let isAsmParserOnly = 1, Predicates = [HasAVX] in +def VMOVNTDQArm : SS48I<0x2A, MRMSrcMem, (outs VR128:$dst), (ins i128mem:$src), + "vmovntdqa\t{$src, $dst|$dst, $src}", + [(set VR128:$dst, (int_x86_sse41_movntdqa addr:$src))]>, + OpSize, VEX; def MOVNTDQArm : SS48I<0x2A, MRMSrcMem, (outs VR128:$dst), (ins i128mem:$src), "movntdqa\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (int_x86_sse41_movntdqa addr:$src))]>, OpSize; - //===----------------------------------------------------------------------===// -// SSE4.2 Instructions +// SSE4.2 - Compare Instructions //===----------------------------------------------------------------------===// /// SS42I_binop_rm_int - Simple SSE 4.2 binary operator -let Constraints = "$src1 = $dst" in { - multiclass SS42I_binop_rm_int<bits<8> opc, string OpcodeStr, - Intrinsic IntId128, bit Commutable = 0> { - def rr : SS428I<opc, MRMSrcReg, (outs VR128:$dst), - (ins VR128:$src1, VR128:$src2), - !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"), - [(set VR128:$dst, (IntId128 VR128:$src1, VR128:$src2))]>, - OpSize { - let isCommutable = Commutable; - } - def rm : SS428I<opc, MRMSrcMem, (outs VR128:$dst), - (ins VR128:$src1, i128mem:$src2), - !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"), - [(set VR128:$dst, - (IntId128 VR128:$src1, - (bitconvert (memopv16i8 addr:$src2))))]>, OpSize; - } +multiclass SS42I_binop_rm_int<bits<8> opc, string OpcodeStr, + Intrinsic IntId128, bit Is2Addr = 1> { + def rr : SS428I<opc, MRMSrcReg, (outs VR128:$dst), + (ins VR128:$src1, VR128:$src2), + !if(Is2Addr, + !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"), + !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")), + [(set VR128:$dst, (IntId128 VR128:$src1, VR128:$src2))]>, + OpSize; + def rm : SS428I<opc, MRMSrcMem, (outs VR128:$dst), + (ins VR128:$src1, i128mem:$src2), + !if(Is2Addr, + !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"), + !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")), + [(set VR128:$dst, + (IntId128 VR128:$src1, + (bitconvert (memopv16i8 addr:$src2))))]>, OpSize; } -defm PCMPGTQ : SS42I_binop_rm_int<0x37, "pcmpgtq", int_x86_sse42_pcmpgtq>; +let isAsmParserOnly = 1, Predicates = [HasAVX] in + defm VPCMPGTQ : SS42I_binop_rm_int<0x37, "vpcmpgtq", int_x86_sse42_pcmpgtq, + 0>, VEX_4V; +let Constraints = "$src1 = $dst" in + defm PCMPGTQ : SS42I_binop_rm_int<0x37, "pcmpgtq", int_x86_sse42_pcmpgtq>; def : Pat<(v2i64 (X86pcmpgtq VR128:$src1, VR128:$src2)), (PCMPGTQrr VR128:$src1, VR128:$src2)>; def : Pat<(v2i64 (X86pcmpgtq VR128:$src1, (memop addr:$src2))), (PCMPGTQrm VR128:$src1, addr:$src2)>; +//===----------------------------------------------------------------------===// +// SSE4.2 - String/text Processing Instructions +//===----------------------------------------------------------------------===// + +// Packed Compare Implicit Length Strings, Return Mask +let Defs = [EFLAGS], usesCustomInserter = 1 in { + def PCMPISTRM128REG : SS42AI<0, Pseudo, (outs VR128:$dst), + (ins VR128:$src1, VR128:$src2, i8imm:$src3), + "#PCMPISTRM128rr PSEUDO!", + [(set VR128:$dst, (int_x86_sse42_pcmpistrm128 VR128:$src1, VR128:$src2, + imm:$src3))]>, OpSize; + def PCMPISTRM128MEM : SS42AI<0, Pseudo, (outs VR128:$dst), + (ins VR128:$src1, i128mem:$src2, i8imm:$src3), + "#PCMPISTRM128rm PSEUDO!", + [(set VR128:$dst, (int_x86_sse42_pcmpistrm128 + VR128:$src1, (load addr:$src2), imm:$src3))]>, OpSize; +} + +let Defs = [XMM0, EFLAGS], isAsmParserOnly = 1, + Predicates = [HasAVX] in { + def VPCMPISTRM128rr : SS42AI<0x62, MRMSrcReg, (outs), + (ins VR128:$src1, VR128:$src2, i8imm:$src3), + "vpcmpistrm\t{$src3, $src2, $src1|$src1, $src2, $src3}", []>, OpSize, VEX; + def VPCMPISTRM128rm : SS42AI<0x62, MRMSrcMem, (outs), + (ins VR128:$src1, i128mem:$src2, i8imm:$src3), + "vpcmpistrm\t{$src3, $src2, $src1|$src1, $src2, $src3}", []>, OpSize, VEX; +} + +let Defs = [XMM0, EFLAGS] in { + def PCMPISTRM128rr : SS42AI<0x62, MRMSrcReg, (outs), + (ins VR128:$src1, VR128:$src2, i8imm:$src3), + "pcmpistrm\t{$src3, $src2, $src1|$src1, $src2, $src3}", []>, OpSize; + def PCMPISTRM128rm : SS42AI<0x62, MRMSrcMem, (outs), + (ins VR128:$src1, i128mem:$src2, i8imm:$src3), + "pcmpistrm\t{$src3, $src2, $src1|$src1, $src2, $src3}", []>, OpSize; +} + +// Packed Compare Explicit Length Strings, Return Mask +let Defs = [EFLAGS], Uses = [EAX, EDX], usesCustomInserter = 1 in { + def PCMPESTRM128REG : SS42AI<0, Pseudo, (outs VR128:$dst), + (ins VR128:$src1, VR128:$src3, i8imm:$src5), + "#PCMPESTRM128rr PSEUDO!", + [(set VR128:$dst, + (int_x86_sse42_pcmpestrm128 + VR128:$src1, EAX, VR128:$src3, EDX, imm:$src5))]>, OpSize; + + def PCMPESTRM128MEM : SS42AI<0, Pseudo, (outs VR128:$dst), + (ins VR128:$src1, i128mem:$src3, i8imm:$src5), + "#PCMPESTRM128rm PSEUDO!", + [(set VR128:$dst, (int_x86_sse42_pcmpestrm128 + VR128:$src1, EAX, (load addr:$src3), EDX, imm:$src5))]>, + OpSize; +} + +let isAsmParserOnly = 1, Predicates = [HasAVX], + Defs = [XMM0, EFLAGS], Uses = [EAX, EDX] in { + def VPCMPESTRM128rr : SS42AI<0x60, MRMSrcReg, (outs), + (ins VR128:$src1, VR128:$src3, i8imm:$src5), + "vpcmpestrm\t{$src5, $src3, $src1|$src1, $src3, $src5}", []>, OpSize, VEX; + def VPCMPESTRM128rm : SS42AI<0x60, MRMSrcMem, (outs), + (ins VR128:$src1, i128mem:$src3, i8imm:$src5), + "vpcmpestrm\t{$src5, $src3, $src1|$src1, $src3, $src5}", []>, OpSize, VEX; +} + +let Defs = [XMM0, EFLAGS], Uses = [EAX, EDX] in { + def PCMPESTRM128rr : SS42AI<0x60, MRMSrcReg, (outs), + (ins VR128:$src1, VR128:$src3, i8imm:$src5), + "pcmpestrm\t{$src5, $src3, $src1|$src1, $src3, $src5}", []>, OpSize; + def PCMPESTRM128rm : SS42AI<0x60, MRMSrcMem, (outs), + (ins VR128:$src1, i128mem:$src3, i8imm:$src5), + "pcmpestrm\t{$src5, $src3, $src1|$src1, $src3, $src5}", []>, OpSize; +} + +// Packed Compare Implicit Length Strings, Return Index +let Defs = [ECX, EFLAGS] in { + multiclass SS42AI_pcmpistri<Intrinsic IntId128, string asm = "pcmpistri"> { + def rr : SS42AI<0x63, MRMSrcReg, (outs), + (ins VR128:$src1, VR128:$src2, i8imm:$src3), + !strconcat(asm, "\t{$src3, $src2, $src1|$src1, $src2, $src3}"), + [(set ECX, (IntId128 VR128:$src1, VR128:$src2, imm:$src3)), + (implicit EFLAGS)]>, OpSize; + def rm : SS42AI<0x63, MRMSrcMem, (outs), + (ins VR128:$src1, i128mem:$src2, i8imm:$src3), + !strconcat(asm, "\t{$src3, $src2, $src1|$src1, $src2, $src3}"), + [(set ECX, (IntId128 VR128:$src1, (load addr:$src2), imm:$src3)), + (implicit EFLAGS)]>, OpSize; + } +} + +let isAsmParserOnly = 1, Predicates = [HasAVX] in { +defm VPCMPISTRI : SS42AI_pcmpistri<int_x86_sse42_pcmpistri128, "vpcmpistri">, + VEX; +defm VPCMPISTRIA : SS42AI_pcmpistri<int_x86_sse42_pcmpistria128, "vpcmpistri">, + VEX; +defm VPCMPISTRIC : SS42AI_pcmpistri<int_x86_sse42_pcmpistric128, "vpcmpistri">, + VEX; +defm VPCMPISTRIO : SS42AI_pcmpistri<int_x86_sse42_pcmpistrio128, "vpcmpistri">, + VEX; +defm VPCMPISTRIS : SS42AI_pcmpistri<int_x86_sse42_pcmpistris128, "vpcmpistri">, + VEX; +defm VPCMPISTRIZ : SS42AI_pcmpistri<int_x86_sse42_pcmpistriz128, "vpcmpistri">, + VEX; +} + +defm PCMPISTRI : SS42AI_pcmpistri<int_x86_sse42_pcmpistri128>; +defm PCMPISTRIA : SS42AI_pcmpistri<int_x86_sse42_pcmpistria128>; +defm PCMPISTRIC : SS42AI_pcmpistri<int_x86_sse42_pcmpistric128>; +defm PCMPISTRIO : SS42AI_pcmpistri<int_x86_sse42_pcmpistrio128>; +defm PCMPISTRIS : SS42AI_pcmpistri<int_x86_sse42_pcmpistris128>; +defm PCMPISTRIZ : SS42AI_pcmpistri<int_x86_sse42_pcmpistriz128>; + +// Packed Compare Explicit Length Strings, Return Index +let Defs = [ECX, EFLAGS], Uses = [EAX, EDX] in { + multiclass SS42AI_pcmpestri<Intrinsic IntId128, string asm = "pcmpestri"> { + def rr : SS42AI<0x61, MRMSrcReg, (outs), + (ins VR128:$src1, VR128:$src3, i8imm:$src5), + !strconcat(asm, "\t{$src5, $src3, $src1|$src1, $src3, $src5}"), + [(set ECX, (IntId128 VR128:$src1, EAX, VR128:$src3, EDX, imm:$src5)), + (implicit EFLAGS)]>, OpSize; + def rm : SS42AI<0x61, MRMSrcMem, (outs), + (ins VR128:$src1, i128mem:$src3, i8imm:$src5), + !strconcat(asm, "\t{$src5, $src3, $src1|$src1, $src3, $src5}"), + [(set ECX, + (IntId128 VR128:$src1, EAX, (load addr:$src3), EDX, imm:$src5)), + (implicit EFLAGS)]>, OpSize; + } +} + +let isAsmParserOnly = 1, Predicates = [HasAVX] in { +defm VPCMPESTRI : SS42AI_pcmpestri<int_x86_sse42_pcmpestri128, "vpcmpestri">, + VEX; +defm VPCMPESTRIA : SS42AI_pcmpestri<int_x86_sse42_pcmpestria128, "vpcmpestri">, + VEX; +defm VPCMPESTRIC : SS42AI_pcmpestri<int_x86_sse42_pcmpestric128, "vpcmpestri">, + VEX; +defm VPCMPESTRIO : SS42AI_pcmpestri<int_x86_sse42_pcmpestrio128, "vpcmpestri">, + VEX; +defm VPCMPESTRIS : SS42AI_pcmpestri<int_x86_sse42_pcmpestris128, "vpcmpestri">, + VEX; +defm VPCMPESTRIZ : SS42AI_pcmpestri<int_x86_sse42_pcmpestriz128, "vpcmpestri">, + VEX; +} + +defm PCMPESTRI : SS42AI_pcmpestri<int_x86_sse42_pcmpestri128>; +defm PCMPESTRIA : SS42AI_pcmpestri<int_x86_sse42_pcmpestria128>; +defm PCMPESTRIC : SS42AI_pcmpestri<int_x86_sse42_pcmpestric128>; +defm PCMPESTRIO : SS42AI_pcmpestri<int_x86_sse42_pcmpestrio128>; +defm PCMPESTRIS : SS42AI_pcmpestri<int_x86_sse42_pcmpestris128>; +defm PCMPESTRIZ : SS42AI_pcmpestri<int_x86_sse42_pcmpestriz128>; + +//===----------------------------------------------------------------------===// +// SSE4.2 - CRC Instructions +//===----------------------------------------------------------------------===// + +// No CRC instructions have AVX equivalents + // crc intrinsic instruction // This set of instructions are only rm, the only difference is the size // of r and m. @@ -3969,133 +4733,52 @@ let Constraints = "$src1 = $dst" in { REX_W; } -// String/text processing instructions. -let Defs = [EFLAGS], usesCustomInserter = 1 in { -def PCMPISTRM128REG : SS42AI<0, Pseudo, (outs VR128:$dst), - (ins VR128:$src1, VR128:$src2, i8imm:$src3), - "#PCMPISTRM128rr PSEUDO!", - [(set VR128:$dst, (int_x86_sse42_pcmpistrm128 VR128:$src1, VR128:$src2, - imm:$src3))]>, OpSize; -def PCMPISTRM128MEM : SS42AI<0, Pseudo, (outs VR128:$dst), - (ins VR128:$src1, i128mem:$src2, i8imm:$src3), - "#PCMPISTRM128rm PSEUDO!", - [(set VR128:$dst, (int_x86_sse42_pcmpistrm128 VR128:$src1, (load addr:$src2), - imm:$src3))]>, OpSize; -} - -let Defs = [XMM0, EFLAGS] in { -def PCMPISTRM128rr : SS42AI<0x62, MRMSrcReg, (outs), - (ins VR128:$src1, VR128:$src2, i8imm:$src3), - "pcmpistrm\t{$src3, $src2, $src1|$src1, $src2, $src3}", []>, OpSize; -def PCMPISTRM128rm : SS42AI<0x62, MRMSrcMem, (outs), - (ins VR128:$src1, i128mem:$src2, i8imm:$src3), - "pcmpistrm\t{$src3, $src2, $src1|$src1, $src2, $src3}", []>, OpSize; -} +//===----------------------------------------------------------------------===// +// AES-NI Instructions +//===----------------------------------------------------------------------===// -let Defs = [EFLAGS], Uses = [EAX, EDX], usesCustomInserter = 1 in { -def PCMPESTRM128REG : SS42AI<0, Pseudo, (outs VR128:$dst), - (ins VR128:$src1, VR128:$src3, i8imm:$src5), - "#PCMPESTRM128rr PSEUDO!", - [(set VR128:$dst, - (int_x86_sse42_pcmpestrm128 - VR128:$src1, EAX, VR128:$src3, EDX, imm:$src5))]>, OpSize; - -def PCMPESTRM128MEM : SS42AI<0, Pseudo, (outs VR128:$dst), - (ins VR128:$src1, i128mem:$src3, i8imm:$src5), - "#PCMPESTRM128rm PSEUDO!", - [(set VR128:$dst, (int_x86_sse42_pcmpestrm128 - VR128:$src1, EAX, (load addr:$src3), EDX, imm:$src5))]>, - OpSize; +multiclass AESI_binop_rm_int<bits<8> opc, string OpcodeStr, + Intrinsic IntId128, bit Is2Addr = 1> { + def rr : AES8I<opc, MRMSrcReg, (outs VR128:$dst), + (ins VR128:$src1, VR128:$src2), + !if(Is2Addr, + !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"), + !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")), + [(set VR128:$dst, (IntId128 VR128:$src1, VR128:$src2))]>, + OpSize; + def rm : AES8I<opc, MRMSrcMem, (outs VR128:$dst), + (ins VR128:$src1, i128mem:$src2), + !if(Is2Addr, + !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"), + !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")), + [(set VR128:$dst, + (IntId128 VR128:$src1, + (bitconvert (memopv16i8 addr:$src2))))]>, OpSize; } -let Defs = [XMM0, EFLAGS], Uses = [EAX, EDX] in { -def PCMPESTRM128rr : SS42AI<0x60, MRMSrcReg, (outs), - (ins VR128:$src1, VR128:$src3, i8imm:$src5), - "pcmpestrm\t{$src5, $src3, $src1|$src1, $src3, $src5}", []>, OpSize; -def PCMPESTRM128rm : SS42AI<0x60, MRMSrcMem, (outs), - (ins VR128:$src1, i128mem:$src3, i8imm:$src5), - "pcmpestrm\t{$src5, $src3, $src1|$src1, $src3, $src5}", []>, OpSize; +// Perform One Round of an AES Encryption/Decryption Flow +let isAsmParserOnly = 1, Predicates = [HasAVX, HasAES] in { + defm VAESENC : AESI_binop_rm_int<0xDC, "vaesenc", + int_x86_aesni_aesenc, 0>, VEX_4V; + defm VAESENCLAST : AESI_binop_rm_int<0xDD, "vaesenclast", + int_x86_aesni_aesenclast, 0>, VEX_4V; + defm VAESDEC : AESI_binop_rm_int<0xDE, "vaesdec", + int_x86_aesni_aesdec, 0>, VEX_4V; + defm VAESDECLAST : AESI_binop_rm_int<0xDF, "vaesdeclast", + int_x86_aesni_aesdeclast, 0>, VEX_4V; } -let Defs = [ECX, EFLAGS] in { - multiclass SS42AI_pcmpistri<Intrinsic IntId128> { - def rr : SS42AI<0x63, MRMSrcReg, (outs), - (ins VR128:$src1, VR128:$src2, i8imm:$src3), - "pcmpistri\t{$src3, $src2, $src1|$src1, $src2, $src3}", - [(set ECX, (IntId128 VR128:$src1, VR128:$src2, imm:$src3)), - (implicit EFLAGS)]>, OpSize; - def rm : SS42AI<0x63, MRMSrcMem, (outs), - (ins VR128:$src1, i128mem:$src2, i8imm:$src3), - "pcmpistri\t{$src3, $src2, $src1|$src1, $src2, $src3}", - [(set ECX, (IntId128 VR128:$src1, (load addr:$src2), imm:$src3)), - (implicit EFLAGS)]>, OpSize; - } -} - -defm PCMPISTRI : SS42AI_pcmpistri<int_x86_sse42_pcmpistri128>; -defm PCMPISTRIA : SS42AI_pcmpistri<int_x86_sse42_pcmpistria128>; -defm PCMPISTRIC : SS42AI_pcmpistri<int_x86_sse42_pcmpistric128>; -defm PCMPISTRIO : SS42AI_pcmpistri<int_x86_sse42_pcmpistrio128>; -defm PCMPISTRIS : SS42AI_pcmpistri<int_x86_sse42_pcmpistris128>; -defm PCMPISTRIZ : SS42AI_pcmpistri<int_x86_sse42_pcmpistriz128>; - -let Defs = [ECX, EFLAGS] in { -let Uses = [EAX, EDX] in { - multiclass SS42AI_pcmpestri<Intrinsic IntId128> { - def rr : SS42AI<0x61, MRMSrcReg, (outs), - (ins VR128:$src1, VR128:$src3, i8imm:$src5), - "pcmpestri\t{$src5, $src3, $src1|$src1, $src3, $src5}", - [(set ECX, (IntId128 VR128:$src1, EAX, VR128:$src3, EDX, imm:$src5)), - (implicit EFLAGS)]>, OpSize; - def rm : SS42AI<0x61, MRMSrcMem, (outs), - (ins VR128:$src1, i128mem:$src3, i8imm:$src5), - "pcmpestri\t{$src5, $src3, $src1|$src1, $src3, $src5}", - [(set ECX, - (IntId128 VR128:$src1, EAX, (load addr:$src3), EDX, imm:$src5)), - (implicit EFLAGS)]>, OpSize; - } -} -} - -defm PCMPESTRI : SS42AI_pcmpestri<int_x86_sse42_pcmpestri128>; -defm PCMPESTRIA : SS42AI_pcmpestri<int_x86_sse42_pcmpestria128>; -defm PCMPESTRIC : SS42AI_pcmpestri<int_x86_sse42_pcmpestric128>; -defm PCMPESTRIO : SS42AI_pcmpestri<int_x86_sse42_pcmpestrio128>; -defm PCMPESTRIS : SS42AI_pcmpestri<int_x86_sse42_pcmpestris128>; -defm PCMPESTRIZ : SS42AI_pcmpestri<int_x86_sse42_pcmpestriz128>; - -//===----------------------------------------------------------------------===// -// AES-NI Instructions -//===----------------------------------------------------------------------===// - let Constraints = "$src1 = $dst" in { - multiclass AESI_binop_rm_int<bits<8> opc, string OpcodeStr, - Intrinsic IntId128, bit Commutable = 0> { - def rr : AES8I<opc, MRMSrcReg, (outs VR128:$dst), - (ins VR128:$src1, VR128:$src2), - !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"), - [(set VR128:$dst, (IntId128 VR128:$src1, VR128:$src2))]>, - OpSize { - let isCommutable = Commutable; - } - def rm : AES8I<opc, MRMSrcMem, (outs VR128:$dst), - (ins VR128:$src1, i128mem:$src2), - !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"), - [(set VR128:$dst, - (IntId128 VR128:$src1, - (bitconvert (memopv16i8 addr:$src2))))]>, OpSize; - } + defm AESENC : AESI_binop_rm_int<0xDC, "aesenc", + int_x86_aesni_aesenc>; + defm AESENCLAST : AESI_binop_rm_int<0xDD, "aesenclast", + int_x86_aesni_aesenclast>; + defm AESDEC : AESI_binop_rm_int<0xDE, "aesdec", + int_x86_aesni_aesdec>; + defm AESDECLAST : AESI_binop_rm_int<0xDF, "aesdeclast", + int_x86_aesni_aesdeclast>; } -defm AESENC : AESI_binop_rm_int<0xDC, "aesenc", - int_x86_aesni_aesenc>; -defm AESENCLAST : AESI_binop_rm_int<0xDD, "aesenclast", - int_x86_aesni_aesenclast>; -defm AESDEC : AESI_binop_rm_int<0xDE, "aesdec", - int_x86_aesni_aesdec>; -defm AESDECLAST : AESI_binop_rm_int<0xDF, "aesdeclast", - int_x86_aesni_aesdeclast>; - def : Pat<(v2i64 (int_x86_aesni_aesenc VR128:$src1, VR128:$src2)), (AESENCrr VR128:$src1, VR128:$src2)>; def : Pat<(v2i64 (int_x86_aesni_aesenc VR128:$src1, (memop addr:$src2))), @@ -4113,13 +4796,27 @@ def : Pat<(v2i64 (int_x86_aesni_aesdeclast VR128:$src1, VR128:$src2)), def : Pat<(v2i64 (int_x86_aesni_aesdeclast VR128:$src1, (memop addr:$src2))), (AESDECLASTrm VR128:$src1, addr:$src2)>; +// Perform the AES InvMixColumn Transformation +let isAsmParserOnly = 1, Predicates = [HasAVX, HasAES] in { + def VAESIMCrr : AES8I<0xDB, MRMSrcReg, (outs VR128:$dst), + (ins VR128:$src1), + "vaesimc\t{$src1, $dst|$dst, $src1}", + [(set VR128:$dst, + (int_x86_aesni_aesimc VR128:$src1))]>, + OpSize, VEX; + def VAESIMCrm : AES8I<0xDB, MRMSrcMem, (outs VR128:$dst), + (ins i128mem:$src1), + "vaesimc\t{$src1, $dst|$dst, $src1}", + [(set VR128:$dst, + (int_x86_aesni_aesimc (bitconvert (memopv2i64 addr:$src1))))]>, + OpSize, VEX; +} def AESIMCrr : AES8I<0xDB, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src1), "aesimc\t{$src1, $dst|$dst, $src1}", [(set VR128:$dst, (int_x86_aesni_aesimc VR128:$src1))]>, OpSize; - def AESIMCrm : AES8I<0xDB, MRMSrcMem, (outs VR128:$dst), (ins i128mem:$src1), "aesimc\t{$src1, $dst|$dst, $src1}", @@ -4127,6 +4824,22 @@ def AESIMCrm : AES8I<0xDB, MRMSrcMem, (outs VR128:$dst), (int_x86_aesni_aesimc (bitconvert (memopv2i64 addr:$src1))))]>, OpSize; +// AES Round Key Generation Assist +let isAsmParserOnly = 1, Predicates = [HasAVX, HasAES] in { + def VAESKEYGENASSIST128rr : AESAI<0xDF, MRMSrcReg, (outs VR128:$dst), + (ins VR128:$src1, i8imm:$src2), + "vaeskeygenassist\t{$src2, $src1, $dst|$dst, $src1, $src2}", + [(set VR128:$dst, + (int_x86_aesni_aeskeygenassist VR128:$src1, imm:$src2))]>, + OpSize, VEX; + def VAESKEYGENASSIST128rm : AESAI<0xDF, MRMSrcMem, (outs VR128:$dst), + (ins i128mem:$src1, i8imm:$src2), + "vaeskeygenassist\t{$src2, $src1, $dst|$dst, $src1, $src2}", + [(set VR128:$dst, + (int_x86_aesni_aeskeygenassist (bitconvert (memopv2i64 addr:$src1)), + imm:$src2))]>, + OpSize, VEX; +} def AESKEYGENASSIST128rr : AESAI<0xDF, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src1, i8imm:$src2), "aeskeygenassist\t{$src2, $src1, $dst|$dst, $src1, $src2}", diff --git a/lib/Target/X86/X86MCCodeEmitter.cpp b/lib/Target/X86/X86MCCodeEmitter.cpp index a9681e6..633ddd4 100644 --- a/lib/Target/X86/X86MCCodeEmitter.cpp +++ b/lib/Target/X86/X86MCCodeEmitter.cpp @@ -30,7 +30,7 @@ class X86MCCodeEmitter : public MCCodeEmitter { MCContext &Ctx; bool Is64BitMode; public: - X86MCCodeEmitter(TargetMachine &tm, MCContext &ctx, bool is64Bit) + X86MCCodeEmitter(TargetMachine &tm, MCContext &ctx, bool is64Bit) : TM(tm), TII(*TM.getInstrInfo()), Ctx(ctx) { Is64BitMode = is64Bit; } @@ -38,17 +38,18 @@ public: ~X86MCCodeEmitter() {} unsigned getNumFixupKinds() const { - return 4; + return 5; } const MCFixupKindInfo &getFixupKindInfo(MCFixupKind Kind) const { const static MCFixupKindInfo Infos[] = { { "reloc_pcrel_4byte", 0, 4 * 8, MCFixupKindInfo::FKF_IsPCRel }, { "reloc_pcrel_1byte", 0, 1 * 8, MCFixupKindInfo::FKF_IsPCRel }, + { "reloc_pcrel_2byte", 0, 2 * 8, MCFixupKindInfo::FKF_IsPCRel }, { "reloc_riprel_4byte", 0, 4 * 8, MCFixupKindInfo::FKF_IsPCRel }, { "reloc_riprel_4byte_movq_load", 0, 4 * 8, MCFixupKindInfo::FKF_IsPCRel } }; - + if (Kind < FirstTargetFixupKind) return MCCodeEmitter::getFixupKindInfo(Kind); @@ -56,16 +57,38 @@ public: "Invalid kind!"); return Infos[Kind - FirstTargetFixupKind]; } - + static unsigned GetX86RegNum(const MCOperand &MO) { return X86RegisterInfo::getX86RegNum(MO.getReg()); } - + + // On regular x86, both XMM0-XMM7 and XMM8-XMM15 are encoded in the range + // 0-7 and the difference between the 2 groups is given by the REX prefix. + // In the VEX prefix, registers are seen sequencially from 0-15 and encoded + // in 1's complement form, example: + // + // ModRM field => XMM9 => 1 + // VEX.VVVV => XMM9 => ~9 + // + // See table 4-35 of Intel AVX Programming Reference for details. + static unsigned char getVEXRegisterEncoding(const MCInst &MI, + unsigned OpNum) { + unsigned SrcReg = MI.getOperand(OpNum).getReg(); + unsigned SrcRegNum = GetX86RegNum(MI.getOperand(OpNum)); + if ((SrcReg >= X86::XMM8 && SrcReg <= X86::XMM15) || + (SrcReg >= X86::YMM8 && SrcReg <= X86::YMM15)) + SrcRegNum += 8; + + // The registers represented through VEX_VVVV should + // be encoded in 1's complement form. + return (~SrcRegNum) & 0xf; + } + void EmitByte(unsigned char C, unsigned &CurByte, raw_ostream &OS) const { OS << (char)C; ++CurByte; } - + void EmitConstant(uint64_t Val, unsigned Size, unsigned &CurByte, raw_ostream &OS) const { // Output the constant in little endian byte order. @@ -75,38 +98,49 @@ public: } } - void EmitImmediate(const MCOperand &Disp, + void EmitImmediate(const MCOperand &Disp, unsigned ImmSize, MCFixupKind FixupKind, unsigned &CurByte, raw_ostream &OS, SmallVectorImpl<MCFixup> &Fixups, int ImmOffset = 0) const; - + inline static unsigned char ModRMByte(unsigned Mod, unsigned RegOpcode, unsigned RM) { assert(Mod < 4 && RegOpcode < 8 && RM < 8 && "ModRM Fields out of range!"); return RM | (RegOpcode << 3) | (Mod << 6); } - + void EmitRegModRMByte(const MCOperand &ModRMReg, unsigned RegOpcodeFld, unsigned &CurByte, raw_ostream &OS) const { EmitByte(ModRMByte(3, RegOpcodeFld, GetX86RegNum(ModRMReg)), CurByte, OS); } - + void EmitSIBByte(unsigned SS, unsigned Index, unsigned Base, unsigned &CurByte, raw_ostream &OS) const { // SIB byte is in the same format as the ModRMByte. EmitByte(ModRMByte(SS, Index, Base), CurByte, OS); } - - + + void EmitMemModRMByte(const MCInst &MI, unsigned Op, - unsigned RegOpcodeField, - unsigned TSFlags, unsigned &CurByte, raw_ostream &OS, + unsigned RegOpcodeField, + uint64_t TSFlags, unsigned &CurByte, raw_ostream &OS, SmallVectorImpl<MCFixup> &Fixups) const; - + void EncodeInstruction(const MCInst &MI, raw_ostream &OS, SmallVectorImpl<MCFixup> &Fixups) const; - + + void EmitVEXOpcodePrefix(uint64_t TSFlags, unsigned &CurByte, int MemOperand, + const MCInst &MI, const TargetInstrDesc &Desc, + raw_ostream &OS) const; + + void EmitSegmentOverridePrefix(uint64_t TSFlags, unsigned &CurByte, + int MemOperand, const MCInst &MI, + raw_ostream &OS) const; + + void EmitOpcodePrefix(uint64_t TSFlags, unsigned &CurByte, int MemOperand, + const MCInst &MI, const TargetInstrDesc &Desc, + raw_ostream &OS) const; }; } // end anonymous namespace @@ -124,24 +158,23 @@ MCCodeEmitter *llvm::createX86_64MCCodeEmitter(const Target &, return new X86MCCodeEmitter(TM, Ctx, true); } - -/// isDisp8 - Return true if this signed displacement fits in a 8-bit -/// sign-extended field. +/// isDisp8 - Return true if this signed displacement fits in a 8-bit +/// sign-extended field. static bool isDisp8(int Value) { return Value == (signed char)Value; } /// getImmFixupKind - Return the appropriate fixup kind to use for an immediate /// in an instruction with the specified TSFlags. -static MCFixupKind getImmFixupKind(unsigned TSFlags) { +static MCFixupKind getImmFixupKind(uint64_t TSFlags) { unsigned Size = X86II::getSizeOfImm(TSFlags); bool isPCRel = X86II::isImmPCRel(TSFlags); - + switch (Size) { default: assert(0 && "Unknown immediate size"); case 1: return isPCRel ? MCFixupKind(X86::reloc_pcrel_1byte) : FK_Data_1; + case 2: return isPCRel ? MCFixupKind(X86::reloc_pcrel_2byte) : FK_Data_2; case 4: return isPCRel ? MCFixupKind(X86::reloc_pcrel_4byte) : FK_Data_4; - case 2: assert(!isPCRel); return FK_Data_2; case 8: assert(!isPCRel); return FK_Data_8; } } @@ -162,29 +195,30 @@ EmitImmediate(const MCOperand &DispOp, unsigned Size, MCFixupKind FixupKind, // If we have an immoffset, add it to the expression. const MCExpr *Expr = DispOp.getExpr(); - + // If the fixup is pc-relative, we need to bias the value to be relative to // the start of the field, not the end of the field. if (FixupKind == MCFixupKind(X86::reloc_pcrel_4byte) || FixupKind == MCFixupKind(X86::reloc_riprel_4byte) || FixupKind == MCFixupKind(X86::reloc_riprel_4byte_movq_load)) ImmOffset -= 4; + if (FixupKind == MCFixupKind(X86::reloc_pcrel_2byte)) + ImmOffset -= 2; if (FixupKind == MCFixupKind(X86::reloc_pcrel_1byte)) ImmOffset -= 1; - + if (ImmOffset) Expr = MCBinaryExpr::CreateAdd(Expr, MCConstantExpr::Create(ImmOffset, Ctx), Ctx); - + // Emit a symbolic constant as a fixup and 4 zeros. Fixups.push_back(MCFixup::Create(CurByte, Expr, FixupKind)); EmitConstant(0, Size, CurByte, OS); } - void X86MCCodeEmitter::EmitMemModRMByte(const MCInst &MI, unsigned Op, unsigned RegOpcodeField, - unsigned TSFlags, unsigned &CurByte, + uint64_t TSFlags, unsigned &CurByte, raw_ostream &OS, SmallVectorImpl<MCFixup> &Fixups) const{ const MCOperand &Disp = MI.getOperand(Op+3); @@ -192,43 +226,43 @@ void X86MCCodeEmitter::EmitMemModRMByte(const MCInst &MI, unsigned Op, const MCOperand &Scale = MI.getOperand(Op+1); const MCOperand &IndexReg = MI.getOperand(Op+2); unsigned BaseReg = Base.getReg(); - + // Handle %rip relative addressing. if (BaseReg == X86::RIP) { // [disp32+RIP] in X86-64 mode - assert(IndexReg.getReg() == 0 && Is64BitMode && - "Invalid rip-relative address"); + assert(Is64BitMode && "Rip-relative addressing requires 64-bit mode"); + assert(IndexReg.getReg() == 0 && "Invalid rip-relative address"); EmitByte(ModRMByte(0, RegOpcodeField, 5), CurByte, OS); - + unsigned FixupKind = X86::reloc_riprel_4byte; - + // movq loads are handled with a special relocation form which allows the // linker to eliminate some loads for GOT references which end up in the // same linkage unit. if (MI.getOpcode() == X86::MOV64rm || MI.getOpcode() == X86::MOV64rm_TC) FixupKind = X86::reloc_riprel_4byte_movq_load; - + // rip-relative addressing is actually relative to the *next* instruction. // Since an immediate can follow the mod/rm byte for an instruction, this // means that we need to bias the immediate field of the instruction with // the size of the immediate field. If we have this case, add it into the // expression to emit. int ImmSize = X86II::hasImm(TSFlags) ? X86II::getSizeOfImm(TSFlags) : 0; - + EmitImmediate(Disp, 4, MCFixupKind(FixupKind), CurByte, OS, Fixups, -ImmSize); return; } - + unsigned BaseRegNo = BaseReg ? GetX86RegNum(Base) : -1U; - + // Determine whether a SIB byte is needed. - // If no BaseReg, issue a RIP relative instruction only if the MCE can + // If no BaseReg, issue a RIP relative instruction only if the MCE can // resolve addresses on-the-fly, otherwise use SIB (Intel Manual 2A, table // 2-7) and absolute references. if (// The SIB byte must be used if there is an index register. - IndexReg.getReg() == 0 && + IndexReg.getReg() == 0 && // The SIB byte must be used if the base is ESP/RSP/R12, all of which // encode to an R/M value of 4, which indicates that a SIB byte is // present. @@ -242,7 +276,7 @@ void X86MCCodeEmitter::EmitMemModRMByte(const MCInst &MI, unsigned Op, EmitImmediate(Disp, 4, FK_Data_4, CurByte, OS, Fixups); return; } - + // If the base is not EBP/ESP and there is no displacement, use simple // indirect register encoding, this handles addresses like [EAX]. The // encoding for [EBP] with no displacement means [disp32] so we handle it @@ -251,24 +285,24 @@ void X86MCCodeEmitter::EmitMemModRMByte(const MCInst &MI, unsigned Op, EmitByte(ModRMByte(0, RegOpcodeField, BaseRegNo), CurByte, OS); return; } - + // Otherwise, if the displacement fits in a byte, encode as [REG+disp8]. if (Disp.isImm() && isDisp8(Disp.getImm())) { EmitByte(ModRMByte(1, RegOpcodeField, BaseRegNo), CurByte, OS); EmitImmediate(Disp, 1, FK_Data_1, CurByte, OS, Fixups); return; } - + // Otherwise, emit the most general non-SIB encoding: [REG+disp32] EmitByte(ModRMByte(2, RegOpcodeField, BaseRegNo), CurByte, OS); EmitImmediate(Disp, 4, FK_Data_4, CurByte, OS, Fixups); return; } - + // We need a SIB byte, so start by outputting the ModR/M byte first assert(IndexReg.getReg() != X86::ESP && IndexReg.getReg() != X86::RSP && "Cannot use ESP as index reg!"); - + bool ForceDisp32 = false; bool ForceDisp8 = false; if (BaseReg == 0) { @@ -294,13 +328,13 @@ void X86MCCodeEmitter::EmitMemModRMByte(const MCInst &MI, unsigned Op, // Emit the normal disp32 encoding. EmitByte(ModRMByte(2, RegOpcodeField, 4), CurByte, OS); } - + // Calculate what the SS field value should be... static const unsigned SSTable[] = { ~0, 0, 1, ~0, 2, ~0, ~0, ~0, 3 }; unsigned SS = SSTable[Scale.getImm()]; - + if (BaseReg == 0) { - // Handle the SIB byte for the case where there is no base, see Intel + // Handle the SIB byte for the case where there is no base, see Intel // Manual 2A, table 2-7. The displacement has already been output. unsigned IndexRegNo; if (IndexReg.getReg()) @@ -316,7 +350,7 @@ void X86MCCodeEmitter::EmitMemModRMByte(const MCInst &MI, unsigned Op, IndexRegNo = 4; // For example [ESP+1*<noreg>+4] EmitSIBByte(SS, IndexRegNo, GetX86RegNum(Base), CurByte, OS); } - + // Do we need to output a displacement? if (ForceDisp8) EmitImmediate(Disp, 1, FK_Data_1, CurByte, OS, Fixups); @@ -324,26 +358,216 @@ void X86MCCodeEmitter::EmitMemModRMByte(const MCInst &MI, unsigned Op, EmitImmediate(Disp, 4, FK_Data_4, CurByte, OS, Fixups); } +/// EmitVEXOpcodePrefix - AVX instructions are encoded using a opcode prefix +/// called VEX. +void X86MCCodeEmitter::EmitVEXOpcodePrefix(uint64_t TSFlags, unsigned &CurByte, + int MemOperand, const MCInst &MI, + const TargetInstrDesc &Desc, + raw_ostream &OS) const { + bool HasVEX_4V = false; + if (TSFlags & X86II::VEX_4V) + HasVEX_4V = true; + + // VEX_R: opcode externsion equivalent to REX.R in + // 1's complement (inverted) form + // + // 1: Same as REX_R=0 (must be 1 in 32-bit mode) + // 0: Same as REX_R=1 (64 bit mode only) + // + unsigned char VEX_R = 0x1; + + // VEX_X: equivalent to REX.X, only used when a + // register is used for index in SIB Byte. + // + // 1: Same as REX.X=0 (must be 1 in 32-bit mode) + // 0: Same as REX.X=1 (64-bit mode only) + unsigned char VEX_X = 0x1; + + // VEX_B: + // + // 1: Same as REX_B=0 (ignored in 32-bit mode) + // 0: Same as REX_B=1 (64 bit mode only) + // + unsigned char VEX_B = 0x1; + + // VEX_W: opcode specific (use like REX.W, or used for + // opcode extension, or ignored, depending on the opcode byte) + unsigned char VEX_W = 0; + + // VEX_5M (VEX m-mmmmm field): + // + // 0b00000: Reserved for future use + // 0b00001: implied 0F leading opcode + // 0b00010: implied 0F 38 leading opcode bytes + // 0b00011: implied 0F 3A leading opcode bytes + // 0b00100-0b11111: Reserved for future use + // + unsigned char VEX_5M = 0x1; + + // VEX_4V (VEX vvvv field): a register specifier + // (in 1's complement form) or 1111 if unused. + unsigned char VEX_4V = 0xf; + + // VEX_L (Vector Length): + // + // 0: scalar or 128-bit vector + // 1: 256-bit vector + // + unsigned char VEX_L = 0; + + // VEX_PP: opcode extension providing equivalent + // functionality of a SIMD prefix + // + // 0b00: None + // 0b01: 66 + // 0b10: F3 + // 0b11: F2 + // + unsigned char VEX_PP = 0; + + // Encode the operand size opcode prefix as needed. + if (TSFlags & X86II::OpSize) + VEX_PP = 0x01; + + if (TSFlags & X86II::VEX_W) + VEX_W = 1; + + switch (TSFlags & X86II::Op0Mask) { + default: assert(0 && "Invalid prefix!"); + case X86II::T8: // 0F 38 + VEX_5M = 0x2; + break; + case X86II::TA: // 0F 3A + VEX_5M = 0x3; + break; + case X86II::TF: // F2 0F 38 + VEX_PP = 0x3; + VEX_5M = 0x2; + break; + case X86II::XS: // F3 0F + VEX_PP = 0x2; + break; + case X86II::XD: // F2 0F + VEX_PP = 0x3; + break; + case X86II::TB: // Bypass: Not used by VEX + case 0: + break; // No prefix! + } + + // Set the vector length to 256-bit if YMM0-YMM15 is used + for (unsigned i = 0; i != MI.getNumOperands(); ++i) { + if (!MI.getOperand(i).isReg()) + continue; + unsigned SrcReg = MI.getOperand(i).getReg(); + if (SrcReg >= X86::YMM0 && SrcReg <= X86::YMM15) + VEX_L = 1; + } + + unsigned NumOps = MI.getNumOperands(); + unsigned CurOp = 0; + + switch (TSFlags & X86II::FormMask) { + case X86II::MRMInitReg: assert(0 && "FIXME: Remove this!"); + case X86II::MRM0m: case X86II::MRM1m: + case X86II::MRM2m: case X86II::MRM3m: + case X86II::MRM4m: case X86II::MRM5m: + case X86II::MRM6m: case X86II::MRM7m: + case X86II::MRMDestMem: + NumOps = CurOp = X86::AddrNumOperands; + case X86II::MRMSrcMem: + case X86II::MRMSrcReg: + if (MI.getNumOperands() > CurOp && MI.getOperand(CurOp).isReg() && + X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg())) + VEX_R = 0x0; + + // CurOp and NumOps are equal when VEX_R represents a register used + // to index a memory destination (which is the last operand) + CurOp = (CurOp == NumOps) ? 0 : CurOp+1; + + if (HasVEX_4V) { + VEX_4V = getVEXRegisterEncoding(MI, CurOp); + CurOp++; + } + + // If the last register should be encoded in the immediate field + // do not use any bit from VEX prefix to this register, ignore it + if (TSFlags & X86II::VEX_I8IMM) + NumOps--; + + for (; CurOp != NumOps; ++CurOp) { + const MCOperand &MO = MI.getOperand(CurOp); + if (MO.isReg() && X86InstrInfo::isX86_64ExtendedReg(MO.getReg())) + VEX_B = 0x0; + if (!VEX_B && MO.isReg() && + ((TSFlags & X86II::FormMask) == X86II::MRMSrcMem) && + X86InstrInfo::isX86_64ExtendedReg(MO.getReg())) + VEX_X = 0x0; + } + break; + default: // MRMDestReg, MRM0r-MRM7r + if (MI.getOperand(CurOp).isReg() && + X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg())) + VEX_B = 0; + + if (HasVEX_4V) + VEX_4V = getVEXRegisterEncoding(MI, CurOp); + + CurOp++; + for (; CurOp != NumOps; ++CurOp) { + const MCOperand &MO = MI.getOperand(CurOp); + if (MO.isReg() && !HasVEX_4V && + X86InstrInfo::isX86_64ExtendedReg(MO.getReg())) + VEX_R = 0x0; + } + break; + assert(0 && "Not implemented!"); + } + + // Emit segment override opcode prefix as needed. + EmitSegmentOverridePrefix(TSFlags, CurByte, MemOperand, MI, OS); + + // VEX opcode prefix can have 2 or 3 bytes + // + // 3 bytes: + // +-----+ +--------------+ +-------------------+ + // | C4h | | RXB | m-mmmm | | W | vvvv | L | pp | + // +-----+ +--------------+ +-------------------+ + // 2 bytes: + // +-----+ +-------------------+ + // | C5h | | R | vvvv | L | pp | + // +-----+ +-------------------+ + // + unsigned char LastByte = VEX_PP | (VEX_L << 2) | (VEX_4V << 3); + + if (VEX_B && VEX_X && !VEX_W && (VEX_5M == 1)) { // 2 byte VEX prefix + EmitByte(0xC5, CurByte, OS); + EmitByte(LastByte | (VEX_R << 7), CurByte, OS); + return; + } + + // 3 byte VEX prefix + EmitByte(0xC4, CurByte, OS); + EmitByte(VEX_R << 7 | VEX_X << 6 | VEX_B << 5 | VEX_5M, CurByte, OS); + EmitByte(LastByte | (VEX_W << 7), CurByte, OS); +} + /// DetermineREXPrefix - Determine if the MCInst has to be encoded with a X86-64 /// REX prefix which specifies 1) 64-bit instructions, 2) non-default operand /// size, and 3) use of X86-64 extended registers. -static unsigned DetermineREXPrefix(const MCInst &MI, unsigned TSFlags, +static unsigned DetermineREXPrefix(const MCInst &MI, uint64_t TSFlags, const TargetInstrDesc &Desc) { - // Pseudo instructions never have a rex byte. - if ((TSFlags & X86II::FormMask) == X86II::Pseudo) - return 0; - unsigned REX = 0; if (TSFlags & X86II::REX_W) - REX |= 1 << 3; - + REX |= 1 << 3; // set REX.W + if (MI.getNumOperands() == 0) return REX; - + unsigned NumOps = MI.getNumOperands(); // FIXME: MCInst should explicitize the two-addrness. bool isTwoAddr = NumOps > 1 && Desc.getOperandConstraint(1, TOI::TIED_TO) != -1; - + // If it accesses SPL, BPL, SIL, or DIL, then it requires a 0x40 REX prefix. unsigned i = isTwoAddr ? 1 : 0; for (; i != NumOps; ++i) { @@ -353,34 +577,34 @@ static unsigned DetermineREXPrefix(const MCInst &MI, unsigned TSFlags, if (!X86InstrInfo::isX86_64NonExtLowByteReg(Reg)) continue; // FIXME: The caller of DetermineREXPrefix slaps this prefix onto anything // that returns non-zero. - REX |= 0x40; + REX |= 0x40; // REX fixed encoding prefix break; } - + switch (TSFlags & X86II::FormMask) { case X86II::MRMInitReg: assert(0 && "FIXME: Remove this!"); case X86II::MRMSrcReg: if (MI.getOperand(0).isReg() && X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0).getReg())) - REX |= 1 << 2; + REX |= 1 << 2; // set REX.R i = isTwoAddr ? 2 : 1; for (; i != NumOps; ++i) { const MCOperand &MO = MI.getOperand(i); if (MO.isReg() && X86InstrInfo::isX86_64ExtendedReg(MO.getReg())) - REX |= 1 << 0; + REX |= 1 << 0; // set REX.B } break; case X86II::MRMSrcMem: { if (MI.getOperand(0).isReg() && X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0).getReg())) - REX |= 1 << 2; + REX |= 1 << 2; // set REX.R unsigned Bit = 0; i = isTwoAddr ? 2 : 1; for (; i != NumOps; ++i) { const MCOperand &MO = MI.getOperand(i); if (MO.isReg()) { if (X86InstrInfo::isX86_64ExtendedReg(MO.getReg())) - REX |= 1 << Bit; + REX |= 1 << Bit; // set REX.B (Bit=0) and REX.X (Bit=1) Bit++; } } @@ -391,17 +615,17 @@ static unsigned DetermineREXPrefix(const MCInst &MI, unsigned TSFlags, case X86II::MRM4m: case X86II::MRM5m: case X86II::MRM6m: case X86II::MRM7m: case X86II::MRMDestMem: { - unsigned e = (isTwoAddr ? X86AddrNumOperands+1 : X86AddrNumOperands); + unsigned e = (isTwoAddr ? X86::AddrNumOperands+1 : X86::AddrNumOperands); i = isTwoAddr ? 1 : 0; if (NumOps > e && MI.getOperand(e).isReg() && X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(e).getReg())) - REX |= 1 << 2; + REX |= 1 << 2; // set REX.R unsigned Bit = 0; for (; i != e; ++i) { const MCOperand &MO = MI.getOperand(i); if (MO.isReg()) { if (X86InstrInfo::isX86_64ExtendedReg(MO.getReg())) - REX |= 1 << Bit; + REX |= 1 << Bit; // REX.B (Bit=0) and REX.X (Bit=1) Bit++; } } @@ -410,39 +634,40 @@ static unsigned DetermineREXPrefix(const MCInst &MI, unsigned TSFlags, default: if (MI.getOperand(0).isReg() && X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0).getReg())) - REX |= 1 << 0; + REX |= 1 << 0; // set REX.B i = isTwoAddr ? 2 : 1; for (unsigned e = NumOps; i != e; ++i) { const MCOperand &MO = MI.getOperand(i); if (MO.isReg() && X86InstrInfo::isX86_64ExtendedReg(MO.getReg())) - REX |= 1 << 2; + REX |= 1 << 2; // set REX.R } break; } return REX; } -void X86MCCodeEmitter:: -EncodeInstruction(const MCInst &MI, raw_ostream &OS, - SmallVectorImpl<MCFixup> &Fixups) const { - unsigned Opcode = MI.getOpcode(); - const TargetInstrDesc &Desc = TII.get(Opcode); - unsigned TSFlags = Desc.TSFlags; - - // Keep track of the current byte being emitted. - unsigned CurByte = 0; - - // FIXME: We should emit the prefixes in exactly the same order as GAS does, - // in order to provide diffability. - - // Emit the lock opcode prefix as needed. - if (TSFlags & X86II::LOCK) - EmitByte(0xF0, CurByte, OS); - - // Emit segment override opcode prefix as needed. +/// EmitSegmentOverridePrefix - Emit segment override opcode prefix as needed +void X86MCCodeEmitter::EmitSegmentOverridePrefix(uint64_t TSFlags, + unsigned &CurByte, int MemOperand, + const MCInst &MI, + raw_ostream &OS) const { switch (TSFlags & X86II::SegOvrMask) { default: assert(0 && "Invalid segment!"); - case 0: break; // No segment override! + case 0: + // No segment override, check for explicit one on memory operand. + if (MemOperand != -1) { // If the instruction has a memory operand. + switch (MI.getOperand(MemOperand+X86::AddrSegmentReg).getReg()) { + default: assert(0 && "Unknown segment register!"); + case 0: break; + case X86::CS: EmitByte(0x2E, CurByte, OS); break; + case X86::SS: EmitByte(0x36, CurByte, OS); break; + case X86::DS: EmitByte(0x3E, CurByte, OS); break; + case X86::ES: EmitByte(0x26, CurByte, OS); break; + case X86::FS: EmitByte(0x64, CurByte, OS); break; + case X86::GS: EmitByte(0x65, CurByte, OS); break; + } + } + break; case X86II::FS: EmitByte(0x64, CurByte, OS); break; @@ -450,19 +675,36 @@ EncodeInstruction(const MCInst &MI, raw_ostream &OS, EmitByte(0x65, CurByte, OS); break; } - +} + +/// EmitOpcodePrefix - Emit all instruction prefixes prior to the opcode. +/// +/// MemOperand is the operand # of the start of a memory operand if present. If +/// Not present, it is -1. +void X86MCCodeEmitter::EmitOpcodePrefix(uint64_t TSFlags, unsigned &CurByte, + int MemOperand, const MCInst &MI, + const TargetInstrDesc &Desc, + raw_ostream &OS) const { + + // Emit the lock opcode prefix as needed. + if (TSFlags & X86II::LOCK) + EmitByte(0xF0, CurByte, OS); + + // Emit segment override opcode prefix as needed. + EmitSegmentOverridePrefix(TSFlags, CurByte, MemOperand, MI, OS); + // Emit the repeat opcode prefix as needed. if ((TSFlags & X86II::Op0Mask) == X86II::REP) EmitByte(0xF3, CurByte, OS); - + // Emit the operand size opcode prefix as needed. if (TSFlags & X86II::OpSize) EmitByte(0x66, CurByte, OS); - + // Emit the address size opcode prefix as needed. if (TSFlags & X86II::AdSize) EmitByte(0x67, CurByte, OS); - + bool Need0FPrefix = false; switch (TSFlags & X86II::Op0Mask) { default: assert(0 && "Invalid prefix!"); @@ -494,18 +736,18 @@ EncodeInstruction(const MCInst &MI, raw_ostream &OS, case X86II::DE: EmitByte(0xDE, CurByte, OS); break; case X86II::DF: EmitByte(0xDF, CurByte, OS); break; } - + // Handle REX prefix. // FIXME: Can this come before F2 etc to simplify emission? if (Is64BitMode) { if (unsigned REX = DetermineREXPrefix(MI, TSFlags, Desc)) EmitByte(0x40 | REX, CurByte, OS); } - + // 0x0F escape code must be emitted just before the opcode. if (Need0FPrefix) EmitByte(0x0F, CurByte, OS); - + // FIXME: Pull this up into previous switch if REX can be moved earlier. switch (TSFlags & X86II::Op0Mask) { case X86II::TF: // F2 0F 38 @@ -516,8 +758,21 @@ EncodeInstruction(const MCInst &MI, raw_ostream &OS, EmitByte(0x3A, CurByte, OS); break; } - +} + +void X86MCCodeEmitter:: +EncodeInstruction(const MCInst &MI, raw_ostream &OS, + SmallVectorImpl<MCFixup> &Fixups) const { + unsigned Opcode = MI.getOpcode(); + const TargetInstrDesc &Desc = TII.get(Opcode); + uint64_t TSFlags = Desc.TSFlags; + + // Pseudo instructions don't get encoded. + if ((TSFlags & X86II::FormMask) == X86II::Pseudo) + return; + // If this is a two-address instruction, skip one of the register operands. + // FIXME: This should be handled during MCInst lowering. unsigned NumOps = Desc.getNumOperands(); unsigned CurOp = 0; if (NumOps > 1 && Desc.getOperandConstraint(1, TOI::TIED_TO) != -1) @@ -525,56 +780,85 @@ EncodeInstruction(const MCInst &MI, raw_ostream &OS, else if (NumOps > 2 && Desc.getOperandConstraint(NumOps-1, TOI::TIED_TO)== 0) // Skip the last source operand that is tied_to the dest reg. e.g. LXADD32 --NumOps; - + + // Keep track of the current byte being emitted. + unsigned CurByte = 0; + + // Is this instruction encoded using the AVX VEX prefix? + bool HasVEXPrefix = false; + + // It uses the VEX.VVVV field? + bool HasVEX_4V = false; + + if (TSFlags & X86II::VEX) + HasVEXPrefix = true; + if (TSFlags & X86II::VEX_4V) + HasVEX_4V = true; + + // Determine where the memory operand starts, if present. + int MemoryOperand = X86II::getMemoryOperandNo(TSFlags); + if (MemoryOperand != -1) MemoryOperand += CurOp; + + if (!HasVEXPrefix) + EmitOpcodePrefix(TSFlags, CurByte, MemoryOperand, MI, Desc, OS); + else + EmitVEXOpcodePrefix(TSFlags, CurByte, MemoryOperand, MI, Desc, OS); + unsigned char BaseOpcode = X86II::getBaseOpcodeFor(TSFlags); + unsigned SrcRegNum = 0; switch (TSFlags & X86II::FormMask) { case X86II::MRMInitReg: assert(0 && "FIXME: Remove this form when the JIT moves to MCCodeEmitter!"); default: errs() << "FORM: " << (TSFlags & X86II::FormMask) << "\n"; assert(0 && "Unknown FormMask value in X86MCCodeEmitter!"); - case X86II::Pseudo: return; // Pseudo instructions encode to nothing. + case X86II::Pseudo: + assert(0 && "Pseudo instruction shouldn't be emitted"); case X86II::RawFrm: EmitByte(BaseOpcode, CurByte, OS); break; - + case X86II::AddRegFrm: EmitByte(BaseOpcode + GetX86RegNum(MI.getOperand(CurOp++)), CurByte, OS); break; - + case X86II::MRMDestReg: EmitByte(BaseOpcode, CurByte, OS); EmitRegModRMByte(MI.getOperand(CurOp), GetX86RegNum(MI.getOperand(CurOp+1)), CurByte, OS); CurOp += 2; break; - + case X86II::MRMDestMem: EmitByte(BaseOpcode, CurByte, OS); EmitMemModRMByte(MI, CurOp, - GetX86RegNum(MI.getOperand(CurOp + X86AddrNumOperands)), + GetX86RegNum(MI.getOperand(CurOp + X86::AddrNumOperands)), TSFlags, CurByte, OS, Fixups); - CurOp += X86AddrNumOperands + 1; + CurOp += X86::AddrNumOperands + 1; break; - + case X86II::MRMSrcReg: EmitByte(BaseOpcode, CurByte, OS); - EmitRegModRMByte(MI.getOperand(CurOp+1), GetX86RegNum(MI.getOperand(CurOp)), - CurByte, OS); - CurOp += 2; + SrcRegNum = CurOp + 1; + + if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV) + SrcRegNum++; + + EmitRegModRMByte(MI.getOperand(SrcRegNum), + GetX86RegNum(MI.getOperand(CurOp)), CurByte, OS); + CurOp = SrcRegNum + 1; break; - + case X86II::MRMSrcMem: { + int AddrOperands = X86::AddrNumOperands; + unsigned FirstMemOp = CurOp+1; + if (HasVEX_4V) { + ++AddrOperands; + ++FirstMemOp; // Skip the register source (which is encoded in VEX_VVVV). + } + EmitByte(BaseOpcode, CurByte, OS); - // FIXME: Maybe lea should have its own form? This is a horrible hack. - int AddrOperands; - if (Opcode == X86::LEA64r || Opcode == X86::LEA64_32r || - Opcode == X86::LEA16r || Opcode == X86::LEA32r) - AddrOperands = X86AddrNumOperands - 1; // No segment register - else - AddrOperands = X86AddrNumOperands; - - EmitMemModRMByte(MI, CurOp+1, GetX86RegNum(MI.getOperand(CurOp)), + EmitMemModRMByte(MI, FirstMemOp, GetX86RegNum(MI.getOperand(CurOp)), TSFlags, CurByte, OS, Fixups); CurOp += AddrOperands + 1; break; @@ -584,6 +868,8 @@ EncodeInstruction(const MCInst &MI, raw_ostream &OS, case X86II::MRM2r: case X86II::MRM3r: case X86II::MRM4r: case X86II::MRM5r: case X86II::MRM6r: case X86II::MRM7r: + if (HasVEX_4V) // Skip the register dst (which is encoded in VEX_VVVV). + CurOp++; EmitByte(BaseOpcode, CurByte, OS); EmitRegModRMByte(MI.getOperand(CurOp++), (TSFlags & X86II::FormMask)-X86II::MRM0r, @@ -596,7 +882,7 @@ EncodeInstruction(const MCInst &MI, raw_ostream &OS, EmitByte(BaseOpcode, CurByte, OS); EmitMemModRMByte(MI, CurOp, (TSFlags & X86II::FormMask)-X86II::MRM0m, TSFlags, CurByte, OS, Fixups); - CurOp += X86AddrNumOperands; + CurOp += X86::AddrNumOperands; break; case X86II::MRM_C1: EmitByte(BaseOpcode, CurByte, OS); @@ -639,14 +925,27 @@ EncodeInstruction(const MCInst &MI, raw_ostream &OS, EmitByte(0xF9, CurByte, OS); break; } - + // If there is a remaining operand, it must be a trailing immediate. Emit it // according to the right size for the instruction. - if (CurOp != NumOps) - EmitImmediate(MI.getOperand(CurOp++), - X86II::getSizeOfImm(TSFlags), getImmFixupKind(TSFlags), - CurByte, OS, Fixups); - + if (CurOp != NumOps) { + // The last source register of a 4 operand instruction in AVX is encoded + // in bits[7:4] of a immediate byte, and bits[3:0] are ignored. + if (TSFlags & X86II::VEX_I8IMM) { + const MCOperand &MO = MI.getOperand(CurOp++); + bool IsExtReg = + X86InstrInfo::isX86_64ExtendedReg(MO.getReg()); + unsigned RegNum = (IsExtReg ? (1 << 7) : 0); + RegNum |= GetX86RegNum(MO) << 4; + EmitImmediate(MCOperand::CreateImm(RegNum), 1, FK_Data_1, CurByte, OS, + Fixups); + } else + EmitImmediate(MI.getOperand(CurOp++), + X86II::getSizeOfImm(TSFlags), getImmFixupKind(TSFlags), + CurByte, OS, Fixups); + } + + #ifndef NDEBUG // FIXME: Verify. if (/*!Desc.isVariadic() &&*/ CurOp != NumOps) { diff --git a/lib/Target/X86/X86RegisterInfo.cpp b/lib/Target/X86/X86RegisterInfo.cpp index 98975ea..5f31e00 100644 --- a/lib/Target/X86/X86RegisterInfo.cpp +++ b/lib/Target/X86/X86RegisterInfo.cpp @@ -127,21 +127,29 @@ unsigned X86RegisterInfo::getX86RegNum(unsigned RegNo) { case X86::ST4: case X86::ST5: case X86::ST6: case X86::ST7: return RegNo-X86::ST0; - case X86::XMM0: case X86::XMM8: case X86::MM0: + case X86::XMM0: case X86::XMM8: + case X86::YMM0: case X86::YMM8: case X86::MM0: return 0; - case X86::XMM1: case X86::XMM9: case X86::MM1: + case X86::XMM1: case X86::XMM9: + case X86::YMM1: case X86::YMM9: case X86::MM1: return 1; - case X86::XMM2: case X86::XMM10: case X86::MM2: + case X86::XMM2: case X86::XMM10: + case X86::YMM2: case X86::YMM10: case X86::MM2: return 2; - case X86::XMM3: case X86::XMM11: case X86::MM3: + case X86::XMM3: case X86::XMM11: + case X86::YMM3: case X86::YMM11: case X86::MM3: return 3; - case X86::XMM4: case X86::XMM12: case X86::MM4: + case X86::XMM4: case X86::XMM12: + case X86::YMM4: case X86::YMM12: case X86::MM4: return 4; - case X86::XMM5: case X86::XMM13: case X86::MM5: + case X86::XMM5: case X86::XMM13: + case X86::YMM5: case X86::YMM13: case X86::MM5: return 5; - case X86::XMM6: case X86::XMM14: case X86::MM6: + case X86::XMM6: case X86::XMM14: + case X86::YMM6: case X86::YMM14: case X86::MM6: return 6; - case X86::XMM7: case X86::XMM15: case X86::MM7: + case X86::XMM7: case X86::XMM15: + case X86::YMM7: case X86::YMM15: case X86::MM7: return 7; case X86::ES: @@ -157,6 +165,34 @@ unsigned X86RegisterInfo::getX86RegNum(unsigned RegNo) { case X86::GS: return 5; + case X86::CR0: + return 0; + case X86::CR1: + return 1; + case X86::CR2: + return 2; + case X86::CR3: + return 3; + case X86::CR4: + return 4; + + case X86::DR0: + return 0; + case X86::DR1: + return 1; + case X86::DR2: + return 2; + case X86::DR3: + return 3; + case X86::DR4: + return 4; + case X86::DR5: + return 5; + case X86::DR6: + return 6; + case X86::DR7: + return 7; + default: assert(isVirtualRegister(RegNo) && "Unknown physical register!"); llvm_unreachable("Register allocator hasn't allocated reg correctly yet!"); @@ -357,56 +393,6 @@ X86RegisterInfo::getCalleeSavedRegs(const MachineFunction *MF) const { } } -const TargetRegisterClass* const* -X86RegisterInfo::getCalleeSavedRegClasses(const MachineFunction *MF) const { - bool callsEHReturn = false; - if (MF) - callsEHReturn = MF->getMMI().callsEHReturn(); - - static const TargetRegisterClass * const CalleeSavedRegClasses32Bit[] = { - &X86::GR32RegClass, &X86::GR32RegClass, - &X86::GR32RegClass, &X86::GR32RegClass, 0 - }; - static const TargetRegisterClass * const CalleeSavedRegClasses32EHRet[] = { - &X86::GR32RegClass, &X86::GR32RegClass, - &X86::GR32RegClass, &X86::GR32RegClass, - &X86::GR32RegClass, &X86::GR32RegClass, 0 - }; - static const TargetRegisterClass * const CalleeSavedRegClasses64Bit[] = { - &X86::GR64RegClass, &X86::GR64RegClass, - &X86::GR64RegClass, &X86::GR64RegClass, - &X86::GR64RegClass, &X86::GR64RegClass, 0 - }; - static const TargetRegisterClass * const CalleeSavedRegClasses64EHRet[] = { - &X86::GR64RegClass, &X86::GR64RegClass, - &X86::GR64RegClass, &X86::GR64RegClass, - &X86::GR64RegClass, &X86::GR64RegClass, - &X86::GR64RegClass, &X86::GR64RegClass, 0 - }; - static const TargetRegisterClass * const CalleeSavedRegClassesWin64[] = { - &X86::GR64RegClass, &X86::GR64RegClass, - &X86::GR64RegClass, &X86::GR64RegClass, - &X86::GR64RegClass, &X86::GR64RegClass, - &X86::GR64RegClass, &X86::GR64RegClass, - &X86::VR128RegClass, &X86::VR128RegClass, - &X86::VR128RegClass, &X86::VR128RegClass, - &X86::VR128RegClass, &X86::VR128RegClass, - &X86::VR128RegClass, &X86::VR128RegClass, - &X86::VR128RegClass, &X86::VR128RegClass, 0 - }; - - if (Is64Bit) { - if (IsWin64) - return CalleeSavedRegClassesWin64; - else - return (callsEHReturn ? - CalleeSavedRegClasses64EHRet : CalleeSavedRegClasses64Bit); - } else { - return (callsEHReturn ? - CalleeSavedRegClasses32EHRet : CalleeSavedRegClasses32Bit); - } -} - BitVector X86RegisterInfo::getReservedRegs(const MachineFunction &MF) const { BitVector Reserved(getNumRegs()); // Set the stack-pointer register and its aliases as reserved. @@ -696,8 +682,7 @@ X86RegisterInfo::processFunctionBeforeCalleeSavedScan(MachineFunction &MF, // } // [EBP] MFI->CreateFixedObject(-TailCallReturnAddrDelta, - (-1U*SlotSize)+TailCallReturnAddrDelta, - true, false); + (-1U*SlotSize)+TailCallReturnAddrDelta, true); } if (hasFP(MF)) { @@ -710,7 +695,7 @@ X86RegisterInfo::processFunctionBeforeCalleeSavedScan(MachineFunction &MF, -(int)SlotSize + TFI.getOffsetOfLocalArea() + TailCallReturnAddrDelta, - true, false); + true); assert(FrameIdx == MFI->getObjectIndexBegin() && "Slot for EBP register must be last in order to be found!"); FrameIdx = 0; @@ -1240,8 +1225,8 @@ void X86RegisterInfo::emitEpilogue(MachineFunction &MF, if (CSSize) { unsigned Opc = Is64Bit ? X86::LEA64r : X86::LEA32r; MachineInstr *MI = - addLeaRegOffset(BuildMI(MF, DL, TII.get(Opc), StackPtr), - FramePtr, false, -CSSize); + addRegOffset(BuildMI(MF, DL, TII.get(Opc), StackPtr), + FramePtr, false, -CSSize); MBB.insert(MBBI, MI); } else { BuildMI(MBB, MBBI, DL, @@ -1301,9 +1286,11 @@ void X86RegisterInfo::emitEpilogue(MachineFunction &MF, for (unsigned i = 0; i != 5; ++i) MIB.addOperand(MBBI->getOperand(i)); } else if (RetOpcode == X86::TCRETURNri64) { - BuildMI(MBB, MBBI, DL, TII.get(X86::TAILJMPr64), JumpTarget.getReg()); + BuildMI(MBB, MBBI, DL, TII.get(X86::TAILJMPr64)). + addReg(JumpTarget.getReg(), RegState::Kill); } else { - BuildMI(MBB, MBBI, DL, TII.get(X86::TAILJMPr), JumpTarget.getReg()); + BuildMI(MBB, MBBI, DL, TII.get(X86::TAILJMPr)). + addReg(JumpTarget.getReg(), RegState::Kill); } MachineInstr *NewMI = prior(MBBI); diff --git a/lib/Target/X86/X86RegisterInfo.h b/lib/Target/X86/X86RegisterInfo.h index d0b82e2..d852bcd 100644 --- a/lib/Target/X86/X86RegisterInfo.h +++ b/lib/Target/X86/X86RegisterInfo.h @@ -105,12 +105,6 @@ public: /// callee-save registers on this target. const unsigned *getCalleeSavedRegs(const MachineFunction* MF = 0) const; - /// getCalleeSavedRegClasses - Return a null-terminated list of the preferred - /// register classes to spill each callee-saved register with. The order and - /// length of this list match the getCalleeSavedRegs() list. - const TargetRegisterClass* const* - getCalleeSavedRegClasses(const MachineFunction *MF = 0) const; - /// getReservedRegs - Returns a bitset indexed by physical register number /// indicating if a register is a special register that has particular uses and /// should be considered unavailable at all times, e.g. SP, RA. This is used by diff --git a/lib/Target/X86/X86RegisterInfo.td b/lib/Target/X86/X86RegisterInfo.td index 91cfaa9..9f0382e 100644 --- a/lib/Target/X86/X86RegisterInfo.td +++ b/lib/Target/X86/X86RegisterInfo.td @@ -147,7 +147,7 @@ let Namespace = "X86" in { def MM5 : Register<"mm5">, DwarfRegNum<[46, 34, 34]>; def MM6 : Register<"mm6">, DwarfRegNum<[47, 35, 35]>; def MM7 : Register<"mm7">, DwarfRegNum<[48, 36, 36]>; - + // Pseudo Floating Point registers def FP0 : Register<"fp0">; def FP1 : Register<"fp1">; @@ -155,7 +155,7 @@ let Namespace = "X86" in { def FP3 : Register<"fp3">; def FP4 : Register<"fp4">; def FP5 : Register<"fp5">; - def FP6 : Register<"fp6">; + def FP6 : Register<"fp6">; // XMM Registers, used by the various SSE instruction set extensions. // The sub_ss and sub_sd subregs are the same registers with another regclass. @@ -357,7 +357,7 @@ def GR16 : RegisterClass<"X86", [i16], 16, }]; } -def GR32 : RegisterClass<"X86", [i32], 32, +def GR32 : RegisterClass<"X86", [i32], 32, [EAX, ECX, EDX, ESI, EDI, EBX, EBP, ESP, R8D, R9D, R10D, R11D, R14D, R15D, R12D, R13D]> { let SubRegClasses = [(GR8 sub_8bit, sub_8bit_hi), (GR16 sub_16bit)]; @@ -412,7 +412,7 @@ def GR32 : RegisterClass<"X86", [i32], 32, // GR64 - 64-bit GPRs. This oddly includes RIP, which isn't accurate, since // RIP isn't really a register and it can't be used anywhere except in an // address, but it doesn't cause trouble. -def GR64 : RegisterClass<"X86", [i64], 64, +def GR64 : RegisterClass<"X86", [i64], 64, [RAX, RCX, RDX, RSI, RDI, R8, R9, R10, R11, RBX, R14, R15, R12, R13, RBP, RSP, RIP]> { let SubRegClasses = [(GR8 sub_8bit, sub_8bit_hi), @@ -446,7 +446,7 @@ def SEGMENT_REG : RegisterClass<"X86", [i16], 16, [CS, DS, SS, ES, FS, GS]> { } // Debug registers. -def DEBUG_REG : RegisterClass<"X86", [i32], 32, +def DEBUG_REG : RegisterClass<"X86", [i32], 32, [DR0, DR1, DR2, DR3, DR4, DR5, DR6, DR7]> { } @@ -780,14 +780,14 @@ def RST : RegisterClass<"X86", [f80, f64, f32], 32, } // Generic vector registers: VR64 and VR128. -def VR64 : RegisterClass<"X86", [v8i8, v4i16, v2i32, v1i64, v2f32], 64, +def VR64 : RegisterClass<"X86", [v8i8, v4i16, v2i32, v1i64], 64, [MM0, MM1, MM2, MM3, MM4, MM5, MM6, MM7]>; def VR128 : RegisterClass<"X86", [v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],128, [XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7, XMM8, XMM9, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15]> { let SubRegClasses = [(FR32 sub_ss), (FR64 sub_sd)]; - + let MethodProtos = [{ iterator allocation_order_end(const MachineFunction &MF) const; }]; @@ -803,11 +803,27 @@ def VR128 : RegisterClass<"X86", [v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],128, } }]; } -def VR256 : RegisterClass<"X86", [ v8i32, v4i64, v8f32, v4f64],256, + +def VR256 : RegisterClass<"X86", [v8i32, v4i64, v8f32, v4f64], 256, [YMM0, YMM1, YMM2, YMM3, YMM4, YMM5, YMM6, YMM7, YMM8, YMM9, YMM10, YMM11, YMM12, YMM13, YMM14, YMM15]> { let SubRegClasses = [(FR32 sub_ss), (FR64 sub_sd), (VR128 sub_xmm)]; + + let MethodProtos = [{ + iterator allocation_order_end(const MachineFunction &MF) const; + }]; + let MethodBodies = [{ + VR256Class::iterator + VR256Class::allocation_order_end(const MachineFunction &MF) const { + const TargetMachine &TM = MF.getTarget(); + const X86Subtarget &Subtarget = TM.getSubtarget<X86Subtarget>(); + if (!Subtarget.is64Bit()) + return end()-8; // Only YMM0 to YMM7 are available in 32-bit mode. + else + return end(); + } + }]; } // Status flags registers. diff --git a/lib/Target/X86/X86Subtarget.cpp b/lib/Target/X86/X86Subtarget.cpp index 09a2685..4a10be5 100644 --- a/lib/Target/X86/X86Subtarget.cpp +++ b/lib/Target/X86/X86Subtarget.cpp @@ -53,9 +53,12 @@ ClassifyGlobalReference(const GlobalValue *GV, const TargetMachine &TM) const { if (GV->hasDLLImportLinkage()) return X86II::MO_DLLIMPORT; - // Materializable GVs (in JIT lazy compilation mode) do not require an - // extra load from stub. - bool isDecl = GV->isDeclaration() && !GV->isMaterializable(); + // Determine whether this is a reference to a definition or a declaration. + // Materializable GVs (in JIT lazy compilation mode) do not require an extra + // load from stub. + bool isDecl = GV->hasAvailableExternallyLinkage(); + if (GV->isDeclaration() && !GV->isMaterializable()) + isDecl = true; // X86-64 in PIC mode. if (isPICStyleRIPRel()) { @@ -293,12 +296,11 @@ X86Subtarget::X86Subtarget(const std::string &TT, const std::string &FS, , IsBTMemSlow(false) , IsUAMemFast(false) , HasVectorUAMem(false) - , DarwinVers(0) , stackAlignment(8) // FIXME: this is a known good value for Yonah. How about others? , MaxInlineSizeThreshold(128) - , Is64Bit(is64Bit) - , TargetType(isELF) { // Default to ELF unless otherwise specified. + , TargetTriple(TT) + , Is64Bit(is64Bit) { // default to hard float ABI if (FloatABIType == FloatABI::Default) @@ -328,47 +330,40 @@ X86Subtarget::X86Subtarget(const std::string &TT, const std::string &FS, HasCMov = true; } - DEBUG(dbgs() << "Subtarget features: SSELevel " << X86SSELevel << ", 3DNowLevel " << X863DNowLevel << ", 64bit " << HasX86_64 << "\n"); assert((!Is64Bit || HasX86_64) && "64-bit code requested on a subtarget that doesn't support it!"); - // Set the boolean corresponding to the current target triple, or the default - // if one cannot be determined, to true. - if (TT.length() > 5) { - size_t Pos; - if ((Pos = TT.find("-darwin")) != std::string::npos) { - TargetType = isDarwin; - - // Compute the darwin version number. - if (isdigit(TT[Pos+7])) - DarwinVers = atoi(&TT[Pos+7]); - else - DarwinVers = 8; // Minimum supported darwin is Tiger. - } else if (TT.find("linux") != std::string::npos) { - // Linux doesn't imply ELF, but we don't currently support anything else. - TargetType = isELF; - } else if (TT.find("cygwin") != std::string::npos) { - TargetType = isCygwin; - } else if (TT.find("mingw") != std::string::npos) { - TargetType = isMingw; - } else if (TT.find("win32") != std::string::npos) { - TargetType = isWindows; - } else if (TT.find("windows") != std::string::npos) { - TargetType = isWindows; - } else if (TT.find("-cl") != std::string::npos) { - TargetType = isDarwin; - DarwinVers = 9; - } - } - // Stack alignment is 16 bytes on Darwin (both 32 and 64 bit) and for all 64 // bit targets. - if (TargetType == isDarwin || Is64Bit) + if (isTargetDarwin() || Is64Bit) stackAlignment = 16; if (StackAlignment) stackAlignment = StackAlignment; } + +/// IsCalleePop - Determines whether the callee is required to pop its +/// own arguments. Callee pop is necessary to support tail calls. +bool X86Subtarget::IsCalleePop(bool IsVarArg, + CallingConv::ID CallingConv) const { + if (IsVarArg) + return false; + + switch (CallingConv) { + default: + return false; + case CallingConv::X86_StdCall: + return !is64Bit(); + case CallingConv::X86_FastCall: + return !is64Bit(); + case CallingConv::X86_ThisCall: + return !is64Bit(); + case CallingConv::Fast: + return GuaranteedTailCallOpt; + case CallingConv::GHC: + return GuaranteedTailCallOpt; + } +} diff --git a/lib/Target/X86/X86Subtarget.h b/lib/Target/X86/X86Subtarget.h index 646af91..486dbc4 100644 --- a/lib/Target/X86/X86Subtarget.h +++ b/lib/Target/X86/X86Subtarget.h @@ -14,7 +14,9 @@ #ifndef X86SUBTARGET_H #define X86SUBTARGET_H +#include "llvm/ADT/Triple.h" #include "llvm/Target/TargetSubtarget.h" +#include "llvm/CallingConv.h" #include <string> namespace llvm { @@ -88,10 +90,6 @@ protected: /// operands. This may require setting a feature bit in the processor. bool HasVectorUAMem; - /// DarwinVers - Nonzero if this is a darwin platform: the numeric - /// version of the platform, e.g. 8 = 10.4 (Tiger), 9 = 10.5 (Leopard), etc. - unsigned char DarwinVers; // Is any darwin-x86 platform. - /// stackAlignment - The minimum alignment known to hold of the stack frame on /// entry to the function and which must be maintained by every function. unsigned stackAlignment; @@ -99,6 +97,9 @@ protected: /// Max. memset / memcpy size that is turned into rep/movs, rep/stos ops. /// unsigned MaxInlineSizeThreshold; + + /// TargetTriple - What processor and OS we're targeting. + Triple TargetTriple; private: /// Is64Bit - True if the processor supports 64-bit instructions and @@ -106,9 +107,6 @@ private: bool Is64Bit; public: - enum { - isELF, isCygwin, isDarwin, isWindows, isMingw - } TargetType; /// This constructor initializes the data members to match that /// of the specified triple. @@ -157,24 +155,31 @@ public: bool isUnalignedMemAccessFast() const { return IsUAMemFast; } bool hasVectorUAMem() const { return HasVectorUAMem; } - bool isTargetDarwin() const { return TargetType == isDarwin; } - bool isTargetELF() const { return TargetType == isELF; } + bool isTargetDarwin() const { return TargetTriple.getOS() == Triple::Darwin; } + + // ELF is a reasonably sane default and the only other X86 targets we + // support are Darwin and Windows. Just use "not those". + bool isTargetELF() const { + return !isTargetDarwin() && !isTargetWindows() && !isTargetCygMing(); + } + bool isTargetLinux() const { return TargetTriple.getOS() == Triple::Linux; } - bool isTargetWindows() const { return TargetType == isWindows; } - bool isTargetMingw() const { return TargetType == isMingw; } - bool isTargetCygwin() const { return TargetType == isCygwin; } + bool isTargetWindows() const { return TargetTriple.getOS() == Triple::Win32; } + bool isTargetMingw() const { + return TargetTriple.getOS() == Triple::MinGW32 || + TargetTriple.getOS() == Triple::MinGW64; } + bool isTargetCygwin() const { return TargetTriple.getOS() == Triple::Cygwin; } bool isTargetCygMing() const { - return TargetType == isMingw || TargetType == isCygwin; + return isTargetMingw() || isTargetCygwin(); } - + /// isTargetCOFF - Return true if this is any COFF/Windows target variant. bool isTargetCOFF() const { - return TargetType == isMingw || TargetType == isCygwin || - TargetType == isWindows; + return isTargetMingw() || isTargetCygwin() || isTargetWindows(); } bool isTargetWin64() const { - return Is64Bit && (TargetType == isMingw || TargetType == isWindows); + return Is64Bit && (isTargetMingw() || isTargetWindows()); } std::string getDataLayout() const { @@ -208,7 +213,10 @@ public: /// getDarwinVers - Return the darwin version number, 8 = Tiger, 9 = Leopard, /// 10 = Snow Leopard, etc. - unsigned getDarwinVers() const { return DarwinVers; } + unsigned getDarwinVers() const { + if (isTargetDarwin()) return TargetTriple.getDarwinMajorNumber(); + return 0; + } /// ClassifyGlobalReference - Classify a global variable reference for the /// current subtarget according to how we should reference it in a non-pcrel @@ -237,6 +245,9 @@ public: /// indicating the number of scheduling cycles of backscheduling that /// should be attempted. unsigned getSpecialAddressLatency() const; + + /// IsCalleePop - Test whether a function should pop its own arguments. + bool IsCalleePop(bool isVarArg, CallingConv::ID CallConv) const; }; } // End llvm namespace diff --git a/lib/Target/X86/X86TargetMachine.cpp b/lib/Target/X86/X86TargetMachine.cpp index f2c5058..df00d3f 100644 --- a/lib/Target/X86/X86TargetMachine.cpp +++ b/lib/Target/X86/X86TargetMachine.cpp @@ -173,14 +173,18 @@ bool X86TargetMachine::addInstSelector(PassManagerBase &PM, // Install an instruction selector. PM.add(createX86ISelDag(*this, OptLevel)); - // Install a pass to insert x87 FP_REG_KILL instructions, as needed. - PM.add(createX87FPRegKillInserterPass()); + // For 32-bit, prepend instructions to set the "global base reg" for PIC. + if (!Subtarget.is64Bit()) + PM.add(createGlobalBaseRegPass()); return false; } bool X86TargetMachine::addPreRegAlloc(PassManagerBase &PM, CodeGenOpt::Level OptLevel) { + // Install a pass to insert x87 FP_REG_KILL instructions, as needed. + PM.add(createX87FPRegKillInserterPass()); + PM.add(createX86MaxStackAlignmentHeuristicPass()); return false; // -print-machineinstr shouldn't print after this. } |