diff options
Diffstat (limited to 'lib/Target/X86/X86Subtarget.cpp')
-rw-r--r-- | lib/Target/X86/X86Subtarget.cpp | 446 |
1 files changed, 446 insertions, 0 deletions
diff --git a/lib/Target/X86/X86Subtarget.cpp b/lib/Target/X86/X86Subtarget.cpp new file mode 100644 index 0000000..03ce1ae --- /dev/null +++ b/lib/Target/X86/X86Subtarget.cpp @@ -0,0 +1,446 @@ +//===-- X86Subtarget.cpp - X86 Subtarget Information ------------*- C++ -*-===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file implements the X86 specific subclass of TargetSubtarget. +// +//===----------------------------------------------------------------------===// + +#define DEBUG_TYPE "subtarget" +#include "X86Subtarget.h" +#include "X86GenSubtarget.inc" +#include "llvm/Module.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/Debug.h" +#include "llvm/Target/TargetMachine.h" +#include "llvm/Target/TargetOptions.h" +using namespace llvm; + +#if defined(_MSC_VER) + #include <intrin.h> +#endif + +static cl::opt<X86Subtarget::AsmWriterFlavorTy> +AsmWriterFlavor("x86-asm-syntax", cl::init(X86Subtarget::Unset), + cl::desc("Choose style of code to emit from X86 backend:"), + cl::values( + clEnumValN(X86Subtarget::ATT, "att", "Emit AT&T-style assembly"), + clEnumValN(X86Subtarget::Intel, "intel", "Emit Intel-style assembly"), + clEnumValEnd)); + + +/// True if accessing the GV requires an extra load. For Windows, dllimported +/// symbols are indirect, loading the value at address GV rather then the +/// value of GV itself. This means that the GlobalAddress must be in the base +/// or index register of the address, not the GV offset field. +bool X86Subtarget::GVRequiresExtraLoad(const GlobalValue* GV, + const TargetMachine& TM, + bool isDirectCall) const +{ + // FIXME: PIC + if (TM.getRelocationModel() != Reloc::Static && + TM.getCodeModel() != CodeModel::Large) { + if (isTargetDarwin()) { + if (isDirectCall) + return false; + bool isDecl = GV->isDeclaration() && !GV->hasNotBeenReadFromBitcode(); + if (GV->hasHiddenVisibility() && + (Is64Bit || (!isDecl && !GV->hasCommonLinkage()))) + // If symbol visibility is hidden, the extra load is not needed if + // target is x86-64 or the symbol is definitely defined in the current + // translation unit. + return false; + return !isDirectCall && (isDecl || GV->isWeakForLinker()); + } else if (isTargetELF()) { + // Extra load is needed for all externally visible. + if (isDirectCall) + return false; + if (GV->hasLocalLinkage() || GV->hasHiddenVisibility()) + return false; + return true; + } else if (isTargetCygMing() || isTargetWindows()) { + return (GV->hasDLLImportLinkage()); + } + } + return false; +} + +/// True if accessing the GV requires a register. This is a superset of the +/// cases where GVRequiresExtraLoad is true. Some variations of PIC require +/// a register, but not an extra load. +bool X86Subtarget::GVRequiresRegister(const GlobalValue *GV, + const TargetMachine& TM, + bool isDirectCall) const +{ + if (GVRequiresExtraLoad(GV, TM, isDirectCall)) + return true; + // Code below here need only consider cases where GVRequiresExtraLoad + // returns false. + if (TM.getRelocationModel() == Reloc::PIC_) + return !isDirectCall && + (GV->hasLocalLinkage() || GV->hasExternalLinkage()); + return false; +} + +/// getBZeroEntry - This function returns the name of a function which has an +/// interface like the non-standard bzero function, if such a function exists on +/// the current subtarget and it is considered prefereable over memset with zero +/// passed as the second argument. Otherwise it returns null. +const char *X86Subtarget::getBZeroEntry() const { + // Darwin 10 has a __bzero entry point for this purpose. + if (getDarwinVers() >= 10) + return "__bzero"; + + return 0; +} + +/// IsLegalToCallImmediateAddr - Return true if the subtarget allows calls +/// to immediate address. +bool X86Subtarget::IsLegalToCallImmediateAddr(const TargetMachine &TM) const { + if (Is64Bit) + return false; + return isTargetELF() || TM.getRelocationModel() == Reloc::Static; +} + +/// getSpecialAddressLatency - For targets where it is beneficial to +/// backschedule instructions that compute addresses, return a value +/// indicating the number of scheduling cycles of backscheduling that +/// should be attempted. +unsigned X86Subtarget::getSpecialAddressLatency() const { + // For x86 out-of-order targets, back-schedule address computations so + // that loads and stores aren't blocked. + // This value was chosen arbitrarily. + return 200; +} + +/// GetCpuIDAndInfo - Execute the specified cpuid and return the 4 values in the +/// specified arguments. If we can't run cpuid on the host, return true. +bool X86::GetCpuIDAndInfo(unsigned value, unsigned *rEAX, unsigned *rEBX, + unsigned *rECX, unsigned *rEDX) { +#if defined(__x86_64__) || defined(_M_AMD64) + #if defined(__GNUC__) + // gcc doesn't know cpuid would clobber ebx/rbx. Preseve it manually. + asm ("movq\t%%rbx, %%rsi\n\t" + "cpuid\n\t" + "xchgq\t%%rbx, %%rsi\n\t" + : "=a" (*rEAX), + "=S" (*rEBX), + "=c" (*rECX), + "=d" (*rEDX) + : "a" (value)); + return false; + #elif defined(_MSC_VER) + int registers[4]; + __cpuid(registers, value); + *rEAX = registers[0]; + *rEBX = registers[1]; + *rECX = registers[2]; + *rEDX = registers[3]; + return false; + #endif +#elif defined(i386) || defined(__i386__) || defined(__x86__) || defined(_M_IX86) + #if defined(__GNUC__) + asm ("movl\t%%ebx, %%esi\n\t" + "cpuid\n\t" + "xchgl\t%%ebx, %%esi\n\t" + : "=a" (*rEAX), + "=S" (*rEBX), + "=c" (*rECX), + "=d" (*rEDX) + : "a" (value)); + return false; + #elif defined(_MSC_VER) + __asm { + mov eax,value + cpuid + mov esi,rEAX + mov dword ptr [esi],eax + mov esi,rEBX + mov dword ptr [esi],ebx + mov esi,rECX + mov dword ptr [esi],ecx + mov esi,rEDX + mov dword ptr [esi],edx + } + return false; + #endif +#endif + return true; +} + +static void DetectFamilyModel(unsigned EAX, unsigned &Family, unsigned &Model) { + Family = (EAX >> 8) & 0xf; // Bits 8 - 11 + Model = (EAX >> 4) & 0xf; // Bits 4 - 7 + if (Family == 6 || Family == 0xf) { + if (Family == 0xf) + // Examine extended family ID if family ID is F. + Family += (EAX >> 20) & 0xff; // Bits 20 - 27 + // Examine extended model ID if family ID is 6 or F. + Model += ((EAX >> 16) & 0xf) << 4; // Bits 16 - 19 + } +} + +void X86Subtarget::AutoDetectSubtargetFeatures() { + unsigned EAX = 0, EBX = 0, ECX = 0, EDX = 0; + union { + unsigned u[3]; + char c[12]; + } text; + + if (X86::GetCpuIDAndInfo(0, &EAX, text.u+0, text.u+2, text.u+1)) + return; + + X86::GetCpuIDAndInfo(0x1, &EAX, &EBX, &ECX, &EDX); + + if ((EDX >> 23) & 0x1) X86SSELevel = MMX; + if ((EDX >> 25) & 0x1) X86SSELevel = SSE1; + if ((EDX >> 26) & 0x1) X86SSELevel = SSE2; + if (ECX & 0x1) X86SSELevel = SSE3; + if ((ECX >> 9) & 0x1) X86SSELevel = SSSE3; + if ((ECX >> 19) & 0x1) X86SSELevel = SSE41; + if ((ECX >> 20) & 0x1) X86SSELevel = SSE42; + + bool IsIntel = memcmp(text.c, "GenuineIntel", 12) == 0; + bool IsAMD = !IsIntel && memcmp(text.c, "AuthenticAMD", 12) == 0; + if (IsIntel || IsAMD) { + // Determine if bit test memory instructions are slow. + unsigned Family = 0; + unsigned Model = 0; + DetectFamilyModel(EAX, Family, Model); + IsBTMemSlow = IsAMD || (Family == 6 && Model >= 13); + + X86::GetCpuIDAndInfo(0x80000001, &EAX, &EBX, &ECX, &EDX); + HasX86_64 = (EDX >> 29) & 0x1; + HasSSE4A = IsAMD && ((ECX >> 6) & 0x1); + } +} + +static const char *GetCurrentX86CPU() { + unsigned EAX = 0, EBX = 0, ECX = 0, EDX = 0; + if (X86::GetCpuIDAndInfo(0x1, &EAX, &EBX, &ECX, &EDX)) + return "generic"; + unsigned Family = 0; + unsigned Model = 0; + DetectFamilyModel(EAX, Family, Model); + + X86::GetCpuIDAndInfo(0x80000001, &EAX, &EBX, &ECX, &EDX); + bool Em64T = (EDX >> 29) & 0x1; + bool HasSSE3 = (ECX & 0x1); + + union { + unsigned u[3]; + char c[12]; + } text; + + X86::GetCpuIDAndInfo(0, &EAX, text.u+0, text.u+2, text.u+1); + if (memcmp(text.c, "GenuineIntel", 12) == 0) { + switch (Family) { + case 3: + return "i386"; + case 4: + return "i486"; + case 5: + switch (Model) { + case 4: return "pentium-mmx"; + default: return "pentium"; + } + case 6: + switch (Model) { + case 1: return "pentiumpro"; + case 3: + case 5: + case 6: return "pentium2"; + case 7: + case 8: + case 10: + case 11: return "pentium3"; + case 9: + case 13: return "pentium-m"; + case 14: return "yonah"; + case 15: + case 22: // Celeron M 540 + return "core2"; + case 23: // 45nm: Penryn , Wolfdale, Yorkfield (XE) + return "penryn"; + default: return "i686"; + } + case 15: { + switch (Model) { + case 3: + case 4: + case 6: // same as 4, but 65nm + return (Em64T) ? "nocona" : "prescott"; + case 26: + return "corei7"; + case 28: + return "atom"; + default: + return (Em64T) ? "x86-64" : "pentium4"; + } + } + + default: + return "generic"; + } + } else if (memcmp(text.c, "AuthenticAMD", 12) == 0) { + // FIXME: this poorly matches the generated SubtargetFeatureKV table. There + // appears to be no way to generate the wide variety of AMD-specific targets + // from the information returned from CPUID. + switch (Family) { + case 4: + return "i486"; + case 5: + switch (Model) { + case 6: + case 7: return "k6"; + case 8: return "k6-2"; + case 9: + case 13: return "k6-3"; + default: return "pentium"; + } + case 6: + switch (Model) { + case 4: return "athlon-tbird"; + case 6: + case 7: + case 8: return "athlon-mp"; + case 10: return "athlon-xp"; + default: return "athlon"; + } + case 15: + if (HasSSE3) { + switch (Model) { + default: return "k8-sse3"; + } + } else { + switch (Model) { + case 1: return "opteron"; + case 5: return "athlon-fx"; // also opteron + default: return "athlon64"; + } + } + case 16: + switch (Model) { + default: return "amdfam10"; + } + default: + return "generic"; + } + } else { + return "generic"; + } +} + +X86Subtarget::X86Subtarget(const Module &M, const std::string &FS, bool is64Bit) + : AsmFlavor(AsmWriterFlavor) + , PICStyle(PICStyles::None) + , X86SSELevel(NoMMXSSE) + , X863DNowLevel(NoThreeDNow) + , HasX86_64(false) + , IsBTMemSlow(false) + , DarwinVers(0) + , IsLinux(false) + , stackAlignment(8) + // FIXME: this is a known good value for Yonah. How about others? + , MaxInlineSizeThreshold(128) + , Is64Bit(is64Bit) + , TargetType(isELF) { // Default to ELF unless otherwise specified. + + // Determine default and user specified characteristics + if (!FS.empty()) { + // If feature string is not empty, parse features string. + std::string CPU = GetCurrentX86CPU(); + ParseSubtargetFeatures(FS, CPU); + // All X86-64 CPUs also have SSE2, however user might request no SSE via + // -mattr, so don't force SSELevel here. + } else { + // Otherwise, use CPUID to auto-detect feature set. + AutoDetectSubtargetFeatures(); + // Make sure SSE2 is enabled; it is available on all X86-64 CPUs. + if (Is64Bit && X86SSELevel < SSE2) + X86SSELevel = SSE2; + } + + // If requesting codegen for X86-64, make sure that 64-bit features + // are enabled. + if (Is64Bit) + HasX86_64 = true; + + DOUT << "Subtarget features: SSELevel " << X86SSELevel + << ", 3DNowLevel " << X863DNowLevel + << ", 64bit " << HasX86_64 << "\n"; + assert((!Is64Bit || HasX86_64) && + "64-bit code requested on a subtarget that doesn't support it!"); + + // Set the boolean corresponding to the current target triple, or the default + // if one cannot be determined, to true. + const std::string& TT = M.getTargetTriple(); + if (TT.length() > 5) { + size_t Pos; + if ((Pos = TT.find("-darwin")) != std::string::npos) { + TargetType = isDarwin; + + // Compute the darwin version number. + if (isdigit(TT[Pos+7])) + DarwinVers = atoi(&TT[Pos+7]); + else + DarwinVers = 8; // Minimum supported darwin is Tiger. + } else if (TT.find("linux") != std::string::npos) { + // Linux doesn't imply ELF, but we don't currently support anything else. + TargetType = isELF; + IsLinux = true; + } else if (TT.find("cygwin") != std::string::npos) { + TargetType = isCygwin; + } else if (TT.find("mingw") != std::string::npos) { + TargetType = isMingw; + } else if (TT.find("win32") != std::string::npos) { + TargetType = isWindows; + } else if (TT.find("windows") != std::string::npos) { + TargetType = isWindows; + } + else if (TT.find("-cl") != std::string::npos) { + TargetType = isDarwin; + DarwinVers = 9; + } + } else if (TT.empty()) { +#if defined(__CYGWIN__) + TargetType = isCygwin; +#elif defined(__MINGW32__) || defined(__MINGW64__) + TargetType = isMingw; +#elif defined(__APPLE__) + TargetType = isDarwin; +#if __APPLE_CC__ > 5400 + DarwinVers = 9; // GCC 5400+ is Leopard. +#else + DarwinVers = 8; // Minimum supported darwin is Tiger. +#endif + +#elif defined(_WIN32) || defined(_WIN64) + TargetType = isWindows; +#elif defined(__linux__) + // Linux doesn't imply ELF, but we don't currently support anything else. + TargetType = isELF; + IsLinux = true; +#endif + } + + // If the asm syntax hasn't been overridden on the command line, use whatever + // the target wants. + if (AsmFlavor == X86Subtarget::Unset) { + AsmFlavor = (TargetType == isWindows) + ? X86Subtarget::Intel : X86Subtarget::ATT; + } + + // Stack alignment is 16 bytes on Darwin (both 32 and 64 bit) and for all 64 + // bit targets. + if (TargetType == isDarwin || Is64Bit) + stackAlignment = 16; + + if (StackAlignment) + stackAlignment = StackAlignment; +} |