diff options
Diffstat (limited to 'lib/Target/X86/X86MCCodeEmitter.cpp')
-rw-r--r-- | lib/Target/X86/X86MCCodeEmitter.cpp | 1044 |
1 files changed, 0 insertions, 1044 deletions
diff --git a/lib/Target/X86/X86MCCodeEmitter.cpp b/lib/Target/X86/X86MCCodeEmitter.cpp deleted file mode 100644 index ce8ef49..0000000 --- a/lib/Target/X86/X86MCCodeEmitter.cpp +++ /dev/null @@ -1,1044 +0,0 @@ -//===-- X86/X86MCCodeEmitter.cpp - Convert X86 code to machine code -------===// -// -// The LLVM Compiler Infrastructure -// -// This file is distributed under the University of Illinois Open Source -// License. See LICENSE.TXT for details. -// -//===----------------------------------------------------------------------===// -// -// This file implements the X86MCCodeEmitter class. -// -//===----------------------------------------------------------------------===// - -#define DEBUG_TYPE "mccodeemitter" -#include "X86.h" -#include "X86InstrInfo.h" -#include "X86FixupKinds.h" -#include "llvm/MC/MCCodeEmitter.h" -#include "llvm/MC/MCExpr.h" -#include "llvm/MC/MCInst.h" -#include "llvm/MC/MCSubtargetInfo.h" -#include "llvm/MC/MCSymbol.h" -#include "llvm/Support/raw_ostream.h" - -using namespace llvm; - -namespace { -class X86MCCodeEmitter : public MCCodeEmitter { - X86MCCodeEmitter(const X86MCCodeEmitter &); // DO NOT IMPLEMENT - void operator=(const X86MCCodeEmitter &); // DO NOT IMPLEMENT - const MCInstrInfo &MCII; - const MCSubtargetInfo &STI; - MCContext &Ctx; -public: - X86MCCodeEmitter(const MCInstrInfo &mcii, const MCSubtargetInfo &sti, - MCContext &ctx) - : MCII(mcii), STI(sti), Ctx(ctx) { - } - - ~X86MCCodeEmitter() {} - - bool is64BitMode() const { - // FIXME: Can tablegen auto-generate this? - return (STI.getFeatureBits() & X86::Mode64Bit) != 0; - } - - static unsigned GetX86RegNum(const MCOperand &MO) { - return X86RegisterInfo::getX86RegNum(MO.getReg()); - } - - // On regular x86, both XMM0-XMM7 and XMM8-XMM15 are encoded in the range - // 0-7 and the difference between the 2 groups is given by the REX prefix. - // In the VEX prefix, registers are seen sequencially from 0-15 and encoded - // in 1's complement form, example: - // - // ModRM field => XMM9 => 1 - // VEX.VVVV => XMM9 => ~9 - // - // See table 4-35 of Intel AVX Programming Reference for details. - static unsigned char getVEXRegisterEncoding(const MCInst &MI, - unsigned OpNum) { - unsigned SrcReg = MI.getOperand(OpNum).getReg(); - unsigned SrcRegNum = GetX86RegNum(MI.getOperand(OpNum)); - if ((SrcReg >= X86::XMM8 && SrcReg <= X86::XMM15) || - (SrcReg >= X86::YMM8 && SrcReg <= X86::YMM15)) - SrcRegNum += 8; - - // The registers represented through VEX_VVVV should - // be encoded in 1's complement form. - return (~SrcRegNum) & 0xf; - } - - void EmitByte(unsigned char C, unsigned &CurByte, raw_ostream &OS) const { - OS << (char)C; - ++CurByte; - } - - void EmitConstant(uint64_t Val, unsigned Size, unsigned &CurByte, - raw_ostream &OS) const { - // Output the constant in little endian byte order. - for (unsigned i = 0; i != Size; ++i) { - EmitByte(Val & 255, CurByte, OS); - Val >>= 8; - } - } - - void EmitImmediate(const MCOperand &Disp, - unsigned ImmSize, MCFixupKind FixupKind, - unsigned &CurByte, raw_ostream &OS, - SmallVectorImpl<MCFixup> &Fixups, - int ImmOffset = 0) const; - - inline static unsigned char ModRMByte(unsigned Mod, unsigned RegOpcode, - unsigned RM) { - assert(Mod < 4 && RegOpcode < 8 && RM < 8 && "ModRM Fields out of range!"); - return RM | (RegOpcode << 3) | (Mod << 6); - } - - void EmitRegModRMByte(const MCOperand &ModRMReg, unsigned RegOpcodeFld, - unsigned &CurByte, raw_ostream &OS) const { - EmitByte(ModRMByte(3, RegOpcodeFld, GetX86RegNum(ModRMReg)), CurByte, OS); - } - - void EmitSIBByte(unsigned SS, unsigned Index, unsigned Base, - unsigned &CurByte, raw_ostream &OS) const { - // SIB byte is in the same format as the ModRMByte. - EmitByte(ModRMByte(SS, Index, Base), CurByte, OS); - } - - - void EmitMemModRMByte(const MCInst &MI, unsigned Op, - unsigned RegOpcodeField, - uint64_t TSFlags, unsigned &CurByte, raw_ostream &OS, - SmallVectorImpl<MCFixup> &Fixups) const; - - void EncodeInstruction(const MCInst &MI, raw_ostream &OS, - SmallVectorImpl<MCFixup> &Fixups) const; - - void EmitVEXOpcodePrefix(uint64_t TSFlags, unsigned &CurByte, int MemOperand, - const MCInst &MI, const MCInstrDesc &Desc, - raw_ostream &OS) const; - - void EmitSegmentOverridePrefix(uint64_t TSFlags, unsigned &CurByte, - int MemOperand, const MCInst &MI, - raw_ostream &OS) const; - - void EmitOpcodePrefix(uint64_t TSFlags, unsigned &CurByte, int MemOperand, - const MCInst &MI, const MCInstrDesc &Desc, - raw_ostream &OS) const; -}; - -} // end anonymous namespace - - -MCCodeEmitter *llvm::createX86MCCodeEmitter(const MCInstrInfo &MCII, - const MCSubtargetInfo &STI, - MCContext &Ctx) { - return new X86MCCodeEmitter(MCII, STI, Ctx); -} - -/// isDisp8 - Return true if this signed displacement fits in a 8-bit -/// sign-extended field. -static bool isDisp8(int Value) { - return Value == (signed char)Value; -} - -/// getImmFixupKind - Return the appropriate fixup kind to use for an immediate -/// in an instruction with the specified TSFlags. -static MCFixupKind getImmFixupKind(uint64_t TSFlags) { - unsigned Size = X86II::getSizeOfImm(TSFlags); - bool isPCRel = X86II::isImmPCRel(TSFlags); - - return MCFixup::getKindForSize(Size, isPCRel); -} - -/// Is32BitMemOperand - Return true if the specified instruction with a memory -/// operand should emit the 0x67 prefix byte in 64-bit mode due to a 32-bit -/// memory operand. Op specifies the operand # of the memoperand. -static bool Is32BitMemOperand(const MCInst &MI, unsigned Op) { - const MCOperand &BaseReg = MI.getOperand(Op+X86::AddrBaseReg); - const MCOperand &IndexReg = MI.getOperand(Op+X86::AddrIndexReg); - - if ((BaseReg.getReg() != 0 && X86::GR32RegClass.contains(BaseReg.getReg())) || - (IndexReg.getReg() != 0 && X86::GR32RegClass.contains(IndexReg.getReg()))) - return true; - return false; -} - -/// StartsWithGlobalOffsetTable - Return true for the simple cases where this -/// expression starts with _GLOBAL_OFFSET_TABLE_. This is a needed to support -/// PIC on ELF i386 as that symbol is magic. We check only simple case that -/// are know to be used: _GLOBAL_OFFSET_TABLE_ by itself or at the start -/// of a binary expression. -static bool StartsWithGlobalOffsetTable(const MCExpr *Expr) { - if (Expr->getKind() == MCExpr::Binary) { - const MCBinaryExpr *BE = static_cast<const MCBinaryExpr *>(Expr); - Expr = BE->getLHS(); - } - - if (Expr->getKind() != MCExpr::SymbolRef) - return false; - - const MCSymbolRefExpr *Ref = static_cast<const MCSymbolRefExpr*>(Expr); - const MCSymbol &S = Ref->getSymbol(); - return S.getName() == "_GLOBAL_OFFSET_TABLE_"; -} - -void X86MCCodeEmitter:: -EmitImmediate(const MCOperand &DispOp, unsigned Size, MCFixupKind FixupKind, - unsigned &CurByte, raw_ostream &OS, - SmallVectorImpl<MCFixup> &Fixups, int ImmOffset) const { - const MCExpr *Expr = NULL; - if (DispOp.isImm()) { - // If this is a simple integer displacement that doesn't require a relocation, - // emit it now. - if (FixupKind != FK_PCRel_1 && - FixupKind != FK_PCRel_2 && - FixupKind != FK_PCRel_4) { - EmitConstant(DispOp.getImm()+ImmOffset, Size, CurByte, OS); - return; - } - Expr = MCConstantExpr::Create(DispOp.getImm(), Ctx); - } else { - Expr = DispOp.getExpr(); - } - - // If we have an immoffset, add it to the expression. - if (FixupKind == FK_Data_4 && StartsWithGlobalOffsetTable(Expr)) { - assert(ImmOffset == 0); - - FixupKind = MCFixupKind(X86::reloc_global_offset_table); - ImmOffset = CurByte; - } - - // If the fixup is pc-relative, we need to bias the value to be relative to - // the start of the field, not the end of the field. - if (FixupKind == FK_PCRel_4 || - FixupKind == MCFixupKind(X86::reloc_riprel_4byte) || - FixupKind == MCFixupKind(X86::reloc_riprel_4byte_movq_load)) - ImmOffset -= 4; - if (FixupKind == FK_PCRel_2) - ImmOffset -= 2; - if (FixupKind == FK_PCRel_1) - ImmOffset -= 1; - - if (ImmOffset) - Expr = MCBinaryExpr::CreateAdd(Expr, MCConstantExpr::Create(ImmOffset, Ctx), - Ctx); - - // Emit a symbolic constant as a fixup and 4 zeros. - Fixups.push_back(MCFixup::Create(CurByte, Expr, FixupKind)); - EmitConstant(0, Size, CurByte, OS); -} - -void X86MCCodeEmitter::EmitMemModRMByte(const MCInst &MI, unsigned Op, - unsigned RegOpcodeField, - uint64_t TSFlags, unsigned &CurByte, - raw_ostream &OS, - SmallVectorImpl<MCFixup> &Fixups) const{ - const MCOperand &Disp = MI.getOperand(Op+X86::AddrDisp); - const MCOperand &Base = MI.getOperand(Op+X86::AddrBaseReg); - const MCOperand &Scale = MI.getOperand(Op+X86::AddrScaleAmt); - const MCOperand &IndexReg = MI.getOperand(Op+X86::AddrIndexReg); - unsigned BaseReg = Base.getReg(); - - // Handle %rip relative addressing. - if (BaseReg == X86::RIP) { // [disp32+RIP] in X86-64 mode - assert(is64BitMode() && "Rip-relative addressing requires 64-bit mode"); - assert(IndexReg.getReg() == 0 && "Invalid rip-relative address"); - EmitByte(ModRMByte(0, RegOpcodeField, 5), CurByte, OS); - - unsigned FixupKind = X86::reloc_riprel_4byte; - - // movq loads are handled with a special relocation form which allows the - // linker to eliminate some loads for GOT references which end up in the - // same linkage unit. - if (MI.getOpcode() == X86::MOV64rm) - FixupKind = X86::reloc_riprel_4byte_movq_load; - - // rip-relative addressing is actually relative to the *next* instruction. - // Since an immediate can follow the mod/rm byte for an instruction, this - // means that we need to bias the immediate field of the instruction with - // the size of the immediate field. If we have this case, add it into the - // expression to emit. - int ImmSize = X86II::hasImm(TSFlags) ? X86II::getSizeOfImm(TSFlags) : 0; - - EmitImmediate(Disp, 4, MCFixupKind(FixupKind), - CurByte, OS, Fixups, -ImmSize); - return; - } - - unsigned BaseRegNo = BaseReg ? GetX86RegNum(Base) : -1U; - - // Determine whether a SIB byte is needed. - // If no BaseReg, issue a RIP relative instruction only if the MCE can - // resolve addresses on-the-fly, otherwise use SIB (Intel Manual 2A, table - // 2-7) and absolute references. - - if (// The SIB byte must be used if there is an index register. - IndexReg.getReg() == 0 && - // The SIB byte must be used if the base is ESP/RSP/R12, all of which - // encode to an R/M value of 4, which indicates that a SIB byte is - // present. - BaseRegNo != N86::ESP && - // If there is no base register and we're in 64-bit mode, we need a SIB - // byte to emit an addr that is just 'disp32' (the non-RIP relative form). - (!is64BitMode() || BaseReg != 0)) { - - if (BaseReg == 0) { // [disp32] in X86-32 mode - EmitByte(ModRMByte(0, RegOpcodeField, 5), CurByte, OS); - EmitImmediate(Disp, 4, FK_Data_4, CurByte, OS, Fixups); - return; - } - - // If the base is not EBP/ESP and there is no displacement, use simple - // indirect register encoding, this handles addresses like [EAX]. The - // encoding for [EBP] with no displacement means [disp32] so we handle it - // by emitting a displacement of 0 below. - if (Disp.isImm() && Disp.getImm() == 0 && BaseRegNo != N86::EBP) { - EmitByte(ModRMByte(0, RegOpcodeField, BaseRegNo), CurByte, OS); - return; - } - - // Otherwise, if the displacement fits in a byte, encode as [REG+disp8]. - if (Disp.isImm() && isDisp8(Disp.getImm())) { - EmitByte(ModRMByte(1, RegOpcodeField, BaseRegNo), CurByte, OS); - EmitImmediate(Disp, 1, FK_Data_1, CurByte, OS, Fixups); - return; - } - - // Otherwise, emit the most general non-SIB encoding: [REG+disp32] - EmitByte(ModRMByte(2, RegOpcodeField, BaseRegNo), CurByte, OS); - EmitImmediate(Disp, 4, MCFixupKind(X86::reloc_signed_4byte), CurByte, OS, - Fixups); - return; - } - - // We need a SIB byte, so start by outputting the ModR/M byte first - assert(IndexReg.getReg() != X86::ESP && - IndexReg.getReg() != X86::RSP && "Cannot use ESP as index reg!"); - - bool ForceDisp32 = false; - bool ForceDisp8 = false; - if (BaseReg == 0) { - // If there is no base register, we emit the special case SIB byte with - // MOD=0, BASE=5, to JUST get the index, scale, and displacement. - EmitByte(ModRMByte(0, RegOpcodeField, 4), CurByte, OS); - ForceDisp32 = true; - } else if (!Disp.isImm()) { - // Emit the normal disp32 encoding. - EmitByte(ModRMByte(2, RegOpcodeField, 4), CurByte, OS); - ForceDisp32 = true; - } else if (Disp.getImm() == 0 && - // Base reg can't be anything that ends up with '5' as the base - // reg, it is the magic [*] nomenclature that indicates no base. - BaseRegNo != N86::EBP) { - // Emit no displacement ModR/M byte - EmitByte(ModRMByte(0, RegOpcodeField, 4), CurByte, OS); - } else if (isDisp8(Disp.getImm())) { - // Emit the disp8 encoding. - EmitByte(ModRMByte(1, RegOpcodeField, 4), CurByte, OS); - ForceDisp8 = true; // Make sure to force 8 bit disp if Base=EBP - } else { - // Emit the normal disp32 encoding. - EmitByte(ModRMByte(2, RegOpcodeField, 4), CurByte, OS); - } - - // Calculate what the SS field value should be... - static const unsigned SSTable[] = { ~0, 0, 1, ~0, 2, ~0, ~0, ~0, 3 }; - unsigned SS = SSTable[Scale.getImm()]; - - if (BaseReg == 0) { - // Handle the SIB byte for the case where there is no base, see Intel - // Manual 2A, table 2-7. The displacement has already been output. - unsigned IndexRegNo; - if (IndexReg.getReg()) - IndexRegNo = GetX86RegNum(IndexReg); - else // Examples: [ESP+1*<noreg>+4] or [scaled idx]+disp32 (MOD=0,BASE=5) - IndexRegNo = 4; - EmitSIBByte(SS, IndexRegNo, 5, CurByte, OS); - } else { - unsigned IndexRegNo; - if (IndexReg.getReg()) - IndexRegNo = GetX86RegNum(IndexReg); - else - IndexRegNo = 4; // For example [ESP+1*<noreg>+4] - EmitSIBByte(SS, IndexRegNo, GetX86RegNum(Base), CurByte, OS); - } - - // Do we need to output a displacement? - if (ForceDisp8) - EmitImmediate(Disp, 1, FK_Data_1, CurByte, OS, Fixups); - else if (ForceDisp32 || Disp.getImm() != 0) - EmitImmediate(Disp, 4, MCFixupKind(X86::reloc_signed_4byte), CurByte, OS, - Fixups); -} - -/// EmitVEXOpcodePrefix - AVX instructions are encoded using a opcode prefix -/// called VEX. -void X86MCCodeEmitter::EmitVEXOpcodePrefix(uint64_t TSFlags, unsigned &CurByte, - int MemOperand, const MCInst &MI, - const MCInstrDesc &Desc, - raw_ostream &OS) const { - bool HasVEX_4V = false; - if ((TSFlags >> X86II::VEXShift) & X86II::VEX_4V) - HasVEX_4V = true; - - // VEX_R: opcode externsion equivalent to REX.R in - // 1's complement (inverted) form - // - // 1: Same as REX_R=0 (must be 1 in 32-bit mode) - // 0: Same as REX_R=1 (64 bit mode only) - // - unsigned char VEX_R = 0x1; - - // VEX_X: equivalent to REX.X, only used when a - // register is used for index in SIB Byte. - // - // 1: Same as REX.X=0 (must be 1 in 32-bit mode) - // 0: Same as REX.X=1 (64-bit mode only) - unsigned char VEX_X = 0x1; - - // VEX_B: - // - // 1: Same as REX_B=0 (ignored in 32-bit mode) - // 0: Same as REX_B=1 (64 bit mode only) - // - unsigned char VEX_B = 0x1; - - // VEX_W: opcode specific (use like REX.W, or used for - // opcode extension, or ignored, depending on the opcode byte) - unsigned char VEX_W = 0; - - // VEX_5M (VEX m-mmmmm field): - // - // 0b00000: Reserved for future use - // 0b00001: implied 0F leading opcode - // 0b00010: implied 0F 38 leading opcode bytes - // 0b00011: implied 0F 3A leading opcode bytes - // 0b00100-0b11111: Reserved for future use - // - unsigned char VEX_5M = 0x1; - - // VEX_4V (VEX vvvv field): a register specifier - // (in 1's complement form) or 1111 if unused. - unsigned char VEX_4V = 0xf; - - // VEX_L (Vector Length): - // - // 0: scalar or 128-bit vector - // 1: 256-bit vector - // - unsigned char VEX_L = 0; - - // VEX_PP: opcode extension providing equivalent - // functionality of a SIMD prefix - // - // 0b00: None - // 0b01: 66 - // 0b10: F3 - // 0b11: F2 - // - unsigned char VEX_PP = 0; - - // Encode the operand size opcode prefix as needed. - if (TSFlags & X86II::OpSize) - VEX_PP = 0x01; - - if ((TSFlags >> X86II::VEXShift) & X86II::VEX_W) - VEX_W = 1; - - if ((TSFlags >> X86II::VEXShift) & X86II::VEX_L) - VEX_L = 1; - - switch (TSFlags & X86II::Op0Mask) { - default: assert(0 && "Invalid prefix!"); - case X86II::T8: // 0F 38 - VEX_5M = 0x2; - break; - case X86II::TA: // 0F 3A - VEX_5M = 0x3; - break; - case X86II::TF: // F2 0F 38 - VEX_PP = 0x3; - VEX_5M = 0x2; - break; - case X86II::XS: // F3 0F - VEX_PP = 0x2; - break; - case X86II::XD: // F2 0F - VEX_PP = 0x3; - break; - case X86II::A6: // Bypass: Not used by VEX - case X86II::A7: // Bypass: Not used by VEX - case X86II::TB: // Bypass: Not used by VEX - case 0: - break; // No prefix! - } - - // Set the vector length to 256-bit if YMM0-YMM15 is used - for (unsigned i = 0; i != MI.getNumOperands(); ++i) { - if (!MI.getOperand(i).isReg()) - continue; - unsigned SrcReg = MI.getOperand(i).getReg(); - if (SrcReg >= X86::YMM0 && SrcReg <= X86::YMM15) - VEX_L = 1; - } - - unsigned NumOps = MI.getNumOperands(); - unsigned CurOp = 0; - bool IsDestMem = false; - - switch (TSFlags & X86II::FormMask) { - case X86II::MRMInitReg: assert(0 && "FIXME: Remove this!"); - case X86II::MRMDestMem: - IsDestMem = true; - // The important info for the VEX prefix is never beyond the address - // registers. Don't check beyond that. - NumOps = CurOp = X86::AddrNumOperands; - case X86II::MRM0m: case X86II::MRM1m: - case X86II::MRM2m: case X86II::MRM3m: - case X86II::MRM4m: case X86II::MRM5m: - case X86II::MRM6m: case X86II::MRM7m: - case X86II::MRMSrcMem: - case X86II::MRMSrcReg: - if (MI.getNumOperands() > CurOp && MI.getOperand(CurOp).isReg() && - X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg())) - VEX_R = 0x0; - CurOp++; - - if (HasVEX_4V) { - VEX_4V = getVEXRegisterEncoding(MI, IsDestMem ? CurOp-1 : CurOp); - CurOp++; - } - - // To only check operands before the memory address ones, start - // the search from the beginning - if (IsDestMem) - CurOp = 0; - - // If the last register should be encoded in the immediate field - // do not use any bit from VEX prefix to this register, ignore it - if ((TSFlags >> X86II::VEXShift) & X86II::VEX_I8IMM) - NumOps--; - - for (; CurOp != NumOps; ++CurOp) { - const MCOperand &MO = MI.getOperand(CurOp); - if (MO.isReg() && X86InstrInfo::isX86_64ExtendedReg(MO.getReg())) - VEX_B = 0x0; - if (!VEX_B && MO.isReg() && - ((TSFlags & X86II::FormMask) == X86II::MRMSrcMem) && - X86InstrInfo::isX86_64ExtendedReg(MO.getReg())) - VEX_X = 0x0; - } - break; - default: // MRMDestReg, MRM0r-MRM7r, RawFrm - if (!MI.getNumOperands()) - break; - - if (MI.getOperand(CurOp).isReg() && - X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg())) - VEX_B = 0; - - if (HasVEX_4V) - VEX_4V = getVEXRegisterEncoding(MI, CurOp); - - CurOp++; - for (; CurOp != NumOps; ++CurOp) { - const MCOperand &MO = MI.getOperand(CurOp); - if (MO.isReg() && !HasVEX_4V && - X86InstrInfo::isX86_64ExtendedReg(MO.getReg())) - VEX_R = 0x0; - } - break; - } - - // Emit segment override opcode prefix as needed. - EmitSegmentOverridePrefix(TSFlags, CurByte, MemOperand, MI, OS); - - // VEX opcode prefix can have 2 or 3 bytes - // - // 3 bytes: - // +-----+ +--------------+ +-------------------+ - // | C4h | | RXB | m-mmmm | | W | vvvv | L | pp | - // +-----+ +--------------+ +-------------------+ - // 2 bytes: - // +-----+ +-------------------+ - // | C5h | | R | vvvv | L | pp | - // +-----+ +-------------------+ - // - unsigned char LastByte = VEX_PP | (VEX_L << 2) | (VEX_4V << 3); - - if (VEX_B && VEX_X && !VEX_W && (VEX_5M == 1)) { // 2 byte VEX prefix - EmitByte(0xC5, CurByte, OS); - EmitByte(LastByte | (VEX_R << 7), CurByte, OS); - return; - } - - // 3 byte VEX prefix - EmitByte(0xC4, CurByte, OS); - EmitByte(VEX_R << 7 | VEX_X << 6 | VEX_B << 5 | VEX_5M, CurByte, OS); - EmitByte(LastByte | (VEX_W << 7), CurByte, OS); -} - -/// DetermineREXPrefix - Determine if the MCInst has to be encoded with a X86-64 -/// REX prefix which specifies 1) 64-bit instructions, 2) non-default operand -/// size, and 3) use of X86-64 extended registers. -static unsigned DetermineREXPrefix(const MCInst &MI, uint64_t TSFlags, - const MCInstrDesc &Desc) { - unsigned REX = 0; - if (TSFlags & X86II::REX_W) - REX |= 1 << 3; // set REX.W - - if (MI.getNumOperands() == 0) return REX; - - unsigned NumOps = MI.getNumOperands(); - // FIXME: MCInst should explicitize the two-addrness. - bool isTwoAddr = NumOps > 1 && - Desc.getOperandConstraint(1, MCOI::TIED_TO) != -1; - - // If it accesses SPL, BPL, SIL, or DIL, then it requires a 0x40 REX prefix. - unsigned i = isTwoAddr ? 1 : 0; - for (; i != NumOps; ++i) { - const MCOperand &MO = MI.getOperand(i); - if (!MO.isReg()) continue; - unsigned Reg = MO.getReg(); - if (!X86InstrInfo::isX86_64NonExtLowByteReg(Reg)) continue; - // FIXME: The caller of DetermineREXPrefix slaps this prefix onto anything - // that returns non-zero. - REX |= 0x40; // REX fixed encoding prefix - break; - } - - switch (TSFlags & X86II::FormMask) { - case X86II::MRMInitReg: assert(0 && "FIXME: Remove this!"); - case X86II::MRMSrcReg: - if (MI.getOperand(0).isReg() && - X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0).getReg())) - REX |= 1 << 2; // set REX.R - i = isTwoAddr ? 2 : 1; - for (; i != NumOps; ++i) { - const MCOperand &MO = MI.getOperand(i); - if (MO.isReg() && X86InstrInfo::isX86_64ExtendedReg(MO.getReg())) - REX |= 1 << 0; // set REX.B - } - break; - case X86II::MRMSrcMem: { - if (MI.getOperand(0).isReg() && - X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0).getReg())) - REX |= 1 << 2; // set REX.R - unsigned Bit = 0; - i = isTwoAddr ? 2 : 1; - for (; i != NumOps; ++i) { - const MCOperand &MO = MI.getOperand(i); - if (MO.isReg()) { - if (X86InstrInfo::isX86_64ExtendedReg(MO.getReg())) - REX |= 1 << Bit; // set REX.B (Bit=0) and REX.X (Bit=1) - Bit++; - } - } - break; - } - case X86II::MRM0m: case X86II::MRM1m: - case X86II::MRM2m: case X86II::MRM3m: - case X86II::MRM4m: case X86II::MRM5m: - case X86II::MRM6m: case X86II::MRM7m: - case X86II::MRMDestMem: { - unsigned e = (isTwoAddr ? X86::AddrNumOperands+1 : X86::AddrNumOperands); - i = isTwoAddr ? 1 : 0; - if (NumOps > e && MI.getOperand(e).isReg() && - X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(e).getReg())) - REX |= 1 << 2; // set REX.R - unsigned Bit = 0; - for (; i != e; ++i) { - const MCOperand &MO = MI.getOperand(i); - if (MO.isReg()) { - if (X86InstrInfo::isX86_64ExtendedReg(MO.getReg())) - REX |= 1 << Bit; // REX.B (Bit=0) and REX.X (Bit=1) - Bit++; - } - } - break; - } - default: - if (MI.getOperand(0).isReg() && - X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0).getReg())) - REX |= 1 << 0; // set REX.B - i = isTwoAddr ? 2 : 1; - for (unsigned e = NumOps; i != e; ++i) { - const MCOperand &MO = MI.getOperand(i); - if (MO.isReg() && X86InstrInfo::isX86_64ExtendedReg(MO.getReg())) - REX |= 1 << 2; // set REX.R - } - break; - } - return REX; -} - -/// EmitSegmentOverridePrefix - Emit segment override opcode prefix as needed -void X86MCCodeEmitter::EmitSegmentOverridePrefix(uint64_t TSFlags, - unsigned &CurByte, int MemOperand, - const MCInst &MI, - raw_ostream &OS) const { - switch (TSFlags & X86II::SegOvrMask) { - default: assert(0 && "Invalid segment!"); - case 0: - // No segment override, check for explicit one on memory operand. - if (MemOperand != -1) { // If the instruction has a memory operand. - switch (MI.getOperand(MemOperand+X86::AddrSegmentReg).getReg()) { - default: assert(0 && "Unknown segment register!"); - case 0: break; - case X86::CS: EmitByte(0x2E, CurByte, OS); break; - case X86::SS: EmitByte(0x36, CurByte, OS); break; - case X86::DS: EmitByte(0x3E, CurByte, OS); break; - case X86::ES: EmitByte(0x26, CurByte, OS); break; - case X86::FS: EmitByte(0x64, CurByte, OS); break; - case X86::GS: EmitByte(0x65, CurByte, OS); break; - } - } - break; - case X86II::FS: - EmitByte(0x64, CurByte, OS); - break; - case X86II::GS: - EmitByte(0x65, CurByte, OS); - break; - } -} - -/// EmitOpcodePrefix - Emit all instruction prefixes prior to the opcode. -/// -/// MemOperand is the operand # of the start of a memory operand if present. If -/// Not present, it is -1. -void X86MCCodeEmitter::EmitOpcodePrefix(uint64_t TSFlags, unsigned &CurByte, - int MemOperand, const MCInst &MI, - const MCInstrDesc &Desc, - raw_ostream &OS) const { - - // Emit the lock opcode prefix as needed. - if (TSFlags & X86II::LOCK) - EmitByte(0xF0, CurByte, OS); - - // Emit segment override opcode prefix as needed. - EmitSegmentOverridePrefix(TSFlags, CurByte, MemOperand, MI, OS); - - // Emit the repeat opcode prefix as needed. - if ((TSFlags & X86II::Op0Mask) == X86II::REP) - EmitByte(0xF3, CurByte, OS); - - // Emit the address size opcode prefix as needed. - if ((TSFlags & X86II::AdSize) || - (MemOperand != -1 && is64BitMode() && Is32BitMemOperand(MI, MemOperand))) - EmitByte(0x67, CurByte, OS); - - // Emit the operand size opcode prefix as needed. - if (TSFlags & X86II::OpSize) - EmitByte(0x66, CurByte, OS); - - bool Need0FPrefix = false; - switch (TSFlags & X86II::Op0Mask) { - default: assert(0 && "Invalid prefix!"); - case 0: break; // No prefix! - case X86II::REP: break; // already handled. - case X86II::TB: // Two-byte opcode prefix - case X86II::T8: // 0F 38 - case X86II::TA: // 0F 3A - case X86II::A6: // 0F A6 - case X86II::A7: // 0F A7 - Need0FPrefix = true; - break; - case X86II::TF: // F2 0F 38 - EmitByte(0xF2, CurByte, OS); - Need0FPrefix = true; - break; - case X86II::XS: // F3 0F - EmitByte(0xF3, CurByte, OS); - Need0FPrefix = true; - break; - case X86II::XD: // F2 0F - EmitByte(0xF2, CurByte, OS); - Need0FPrefix = true; - break; - case X86II::D8: EmitByte(0xD8, CurByte, OS); break; - case X86II::D9: EmitByte(0xD9, CurByte, OS); break; - case X86II::DA: EmitByte(0xDA, CurByte, OS); break; - case X86II::DB: EmitByte(0xDB, CurByte, OS); break; - case X86II::DC: EmitByte(0xDC, CurByte, OS); break; - case X86II::DD: EmitByte(0xDD, CurByte, OS); break; - case X86II::DE: EmitByte(0xDE, CurByte, OS); break; - case X86II::DF: EmitByte(0xDF, CurByte, OS); break; - } - - // Handle REX prefix. - // FIXME: Can this come before F2 etc to simplify emission? - if (is64BitMode()) { - if (unsigned REX = DetermineREXPrefix(MI, TSFlags, Desc)) - EmitByte(0x40 | REX, CurByte, OS); - } - - // 0x0F escape code must be emitted just before the opcode. - if (Need0FPrefix) - EmitByte(0x0F, CurByte, OS); - - // FIXME: Pull this up into previous switch if REX can be moved earlier. - switch (TSFlags & X86II::Op0Mask) { - case X86II::TF: // F2 0F 38 - case X86II::T8: // 0F 38 - EmitByte(0x38, CurByte, OS); - break; - case X86II::TA: // 0F 3A - EmitByte(0x3A, CurByte, OS); - break; - case X86II::A6: // 0F A6 - EmitByte(0xA6, CurByte, OS); - break; - case X86II::A7: // 0F A7 - EmitByte(0xA7, CurByte, OS); - break; - } -} - -void X86MCCodeEmitter:: -EncodeInstruction(const MCInst &MI, raw_ostream &OS, - SmallVectorImpl<MCFixup> &Fixups) const { - unsigned Opcode = MI.getOpcode(); - const MCInstrDesc &Desc = MCII.get(Opcode); - uint64_t TSFlags = Desc.TSFlags; - - // Pseudo instructions don't get encoded. - if ((TSFlags & X86II::FormMask) == X86II::Pseudo) - return; - - // If this is a two-address instruction, skip one of the register operands. - // FIXME: This should be handled during MCInst lowering. - unsigned NumOps = Desc.getNumOperands(); - unsigned CurOp = 0; - if (NumOps > 1 && Desc.getOperandConstraint(1, MCOI::TIED_TO) != -1) - ++CurOp; - else if (NumOps > 2 && Desc.getOperandConstraint(NumOps-1, MCOI::TIED_TO)== 0) - // Skip the last source operand that is tied_to the dest reg. e.g. LXADD32 - --NumOps; - - // Keep track of the current byte being emitted. - unsigned CurByte = 0; - - // Is this instruction encoded using the AVX VEX prefix? - bool HasVEXPrefix = false; - - // It uses the VEX.VVVV field? - bool HasVEX_4V = false; - - if ((TSFlags >> X86II::VEXShift) & X86II::VEX) - HasVEXPrefix = true; - if ((TSFlags >> X86II::VEXShift) & X86II::VEX_4V) - HasVEX_4V = true; - - - // Determine where the memory operand starts, if present. - int MemoryOperand = X86II::getMemoryOperandNo(TSFlags); - if (MemoryOperand != -1) MemoryOperand += CurOp; - - if (!HasVEXPrefix) - EmitOpcodePrefix(TSFlags, CurByte, MemoryOperand, MI, Desc, OS); - else - EmitVEXOpcodePrefix(TSFlags, CurByte, MemoryOperand, MI, Desc, OS); - - - unsigned char BaseOpcode = X86II::getBaseOpcodeFor(TSFlags); - - if ((TSFlags >> X86II::VEXShift) & X86II::Has3DNow0F0FOpcode) - BaseOpcode = 0x0F; // Weird 3DNow! encoding. - - unsigned SrcRegNum = 0; - switch (TSFlags & X86II::FormMask) { - case X86II::MRMInitReg: - assert(0 && "FIXME: Remove this form when the JIT moves to MCCodeEmitter!"); - default: errs() << "FORM: " << (TSFlags & X86II::FormMask) << "\n"; - assert(0 && "Unknown FormMask value in X86MCCodeEmitter!"); - case X86II::Pseudo: - assert(0 && "Pseudo instruction shouldn't be emitted"); - case X86II::RawFrm: - EmitByte(BaseOpcode, CurByte, OS); - break; - - case X86II::RawFrmImm8: - EmitByte(BaseOpcode, CurByte, OS); - EmitImmediate(MI.getOperand(CurOp++), - X86II::getSizeOfImm(TSFlags), getImmFixupKind(TSFlags), - CurByte, OS, Fixups); - EmitImmediate(MI.getOperand(CurOp++), 1, FK_Data_1, CurByte, OS, Fixups); - break; - case X86II::RawFrmImm16: - EmitByte(BaseOpcode, CurByte, OS); - EmitImmediate(MI.getOperand(CurOp++), - X86II::getSizeOfImm(TSFlags), getImmFixupKind(TSFlags), - CurByte, OS, Fixups); - EmitImmediate(MI.getOperand(CurOp++), 2, FK_Data_2, CurByte, OS, Fixups); - break; - - case X86II::AddRegFrm: - EmitByte(BaseOpcode + GetX86RegNum(MI.getOperand(CurOp++)), CurByte, OS); - break; - - case X86II::MRMDestReg: - EmitByte(BaseOpcode, CurByte, OS); - EmitRegModRMByte(MI.getOperand(CurOp), - GetX86RegNum(MI.getOperand(CurOp+1)), CurByte, OS); - CurOp += 2; - break; - - case X86II::MRMDestMem: - EmitByte(BaseOpcode, CurByte, OS); - SrcRegNum = CurOp + X86::AddrNumOperands; - - if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV) - SrcRegNum++; - - EmitMemModRMByte(MI, CurOp, - GetX86RegNum(MI.getOperand(SrcRegNum)), - TSFlags, CurByte, OS, Fixups); - CurOp = SrcRegNum + 1; - break; - - case X86II::MRMSrcReg: - EmitByte(BaseOpcode, CurByte, OS); - SrcRegNum = CurOp + 1; - - if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV) - SrcRegNum++; - - EmitRegModRMByte(MI.getOperand(SrcRegNum), - GetX86RegNum(MI.getOperand(CurOp)), CurByte, OS); - CurOp = SrcRegNum + 1; - break; - - case X86II::MRMSrcMem: { - int AddrOperands = X86::AddrNumOperands; - unsigned FirstMemOp = CurOp+1; - if (HasVEX_4V) { - ++AddrOperands; - ++FirstMemOp; // Skip the register source (which is encoded in VEX_VVVV). - } - - EmitByte(BaseOpcode, CurByte, OS); - - EmitMemModRMByte(MI, FirstMemOp, GetX86RegNum(MI.getOperand(CurOp)), - TSFlags, CurByte, OS, Fixups); - CurOp += AddrOperands + 1; - break; - } - - case X86II::MRM0r: case X86II::MRM1r: - case X86II::MRM2r: case X86II::MRM3r: - case X86II::MRM4r: case X86II::MRM5r: - case X86II::MRM6r: case X86II::MRM7r: - if (HasVEX_4V) // Skip the register dst (which is encoded in VEX_VVVV). - CurOp++; - EmitByte(BaseOpcode, CurByte, OS); - EmitRegModRMByte(MI.getOperand(CurOp++), - (TSFlags & X86II::FormMask)-X86II::MRM0r, - CurByte, OS); - break; - case X86II::MRM0m: case X86II::MRM1m: - case X86II::MRM2m: case X86II::MRM3m: - case X86II::MRM4m: case X86II::MRM5m: - case X86II::MRM6m: case X86II::MRM7m: - EmitByte(BaseOpcode, CurByte, OS); - EmitMemModRMByte(MI, CurOp, (TSFlags & X86II::FormMask)-X86II::MRM0m, - TSFlags, CurByte, OS, Fixups); - CurOp += X86::AddrNumOperands; - break; - case X86II::MRM_C1: - EmitByte(BaseOpcode, CurByte, OS); - EmitByte(0xC1, CurByte, OS); - break; - case X86II::MRM_C2: - EmitByte(BaseOpcode, CurByte, OS); - EmitByte(0xC2, CurByte, OS); - break; - case X86II::MRM_C3: - EmitByte(BaseOpcode, CurByte, OS); - EmitByte(0xC3, CurByte, OS); - break; - case X86II::MRM_C4: - EmitByte(BaseOpcode, CurByte, OS); - EmitByte(0xC4, CurByte, OS); - break; - case X86II::MRM_C8: - EmitByte(BaseOpcode, CurByte, OS); - EmitByte(0xC8, CurByte, OS); - break; - case X86II::MRM_C9: - EmitByte(BaseOpcode, CurByte, OS); - EmitByte(0xC9, CurByte, OS); - break; - case X86II::MRM_E8: - EmitByte(BaseOpcode, CurByte, OS); - EmitByte(0xE8, CurByte, OS); - break; - case X86II::MRM_F0: - EmitByte(BaseOpcode, CurByte, OS); - EmitByte(0xF0, CurByte, OS); - break; - case X86II::MRM_F8: - EmitByte(BaseOpcode, CurByte, OS); - EmitByte(0xF8, CurByte, OS); - break; - case X86II::MRM_F9: - EmitByte(BaseOpcode, CurByte, OS); - EmitByte(0xF9, CurByte, OS); - break; - case X86II::MRM_D0: - EmitByte(BaseOpcode, CurByte, OS); - EmitByte(0xD0, CurByte, OS); - break; - case X86II::MRM_D1: - EmitByte(BaseOpcode, CurByte, OS); - EmitByte(0xD1, CurByte, OS); - break; - } - - // If there is a remaining operand, it must be a trailing immediate. Emit it - // according to the right size for the instruction. - if (CurOp != NumOps) { - // The last source register of a 4 operand instruction in AVX is encoded - // in bits[7:4] of a immediate byte, and bits[3:0] are ignored. - if ((TSFlags >> X86II::VEXShift) & X86II::VEX_I8IMM) { - const MCOperand &MO = MI.getOperand(CurOp++); - bool IsExtReg = - X86InstrInfo::isX86_64ExtendedReg(MO.getReg()); - unsigned RegNum = (IsExtReg ? (1 << 7) : 0); - RegNum |= GetX86RegNum(MO) << 4; - EmitImmediate(MCOperand::CreateImm(RegNum), 1, FK_Data_1, CurByte, OS, - Fixups); - } else { - unsigned FixupKind; - // FIXME: Is there a better way to know that we need a signed relocation? - if (MI.getOpcode() == X86::ADD64ri32 || - MI.getOpcode() == X86::MOV64ri32 || - MI.getOpcode() == X86::MOV64mi32 || - MI.getOpcode() == X86::PUSH64i32) - FixupKind = X86::reloc_signed_4byte; - else - FixupKind = getImmFixupKind(TSFlags); - EmitImmediate(MI.getOperand(CurOp++), - X86II::getSizeOfImm(TSFlags), MCFixupKind(FixupKind), - CurByte, OS, Fixups); - } - } - - if ((TSFlags >> X86II::VEXShift) & X86II::Has3DNow0F0FOpcode) - EmitByte(X86II::getBaseOpcodeFor(TSFlags), CurByte, OS); - - -#ifndef NDEBUG - // FIXME: Verify. - if (/*!Desc.isVariadic() &&*/ CurOp != NumOps) { - errs() << "Cannot encode all operands of: "; - MI.dump(); - errs() << '\n'; - abort(); - } -#endif -} |