summaryrefslogtreecommitdiffstats
path: root/lib/Target/X86/X86MCCodeEmitter.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'lib/Target/X86/X86MCCodeEmitter.cpp')
-rw-r--r--lib/Target/X86/X86MCCodeEmitter.cpp1044
1 files changed, 0 insertions, 1044 deletions
diff --git a/lib/Target/X86/X86MCCodeEmitter.cpp b/lib/Target/X86/X86MCCodeEmitter.cpp
deleted file mode 100644
index ce8ef49..0000000
--- a/lib/Target/X86/X86MCCodeEmitter.cpp
+++ /dev/null
@@ -1,1044 +0,0 @@
-//===-- X86/X86MCCodeEmitter.cpp - Convert X86 code to machine code -------===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This file implements the X86MCCodeEmitter class.
-//
-//===----------------------------------------------------------------------===//
-
-#define DEBUG_TYPE "mccodeemitter"
-#include "X86.h"
-#include "X86InstrInfo.h"
-#include "X86FixupKinds.h"
-#include "llvm/MC/MCCodeEmitter.h"
-#include "llvm/MC/MCExpr.h"
-#include "llvm/MC/MCInst.h"
-#include "llvm/MC/MCSubtargetInfo.h"
-#include "llvm/MC/MCSymbol.h"
-#include "llvm/Support/raw_ostream.h"
-
-using namespace llvm;
-
-namespace {
-class X86MCCodeEmitter : public MCCodeEmitter {
- X86MCCodeEmitter(const X86MCCodeEmitter &); // DO NOT IMPLEMENT
- void operator=(const X86MCCodeEmitter &); // DO NOT IMPLEMENT
- const MCInstrInfo &MCII;
- const MCSubtargetInfo &STI;
- MCContext &Ctx;
-public:
- X86MCCodeEmitter(const MCInstrInfo &mcii, const MCSubtargetInfo &sti,
- MCContext &ctx)
- : MCII(mcii), STI(sti), Ctx(ctx) {
- }
-
- ~X86MCCodeEmitter() {}
-
- bool is64BitMode() const {
- // FIXME: Can tablegen auto-generate this?
- return (STI.getFeatureBits() & X86::Mode64Bit) != 0;
- }
-
- static unsigned GetX86RegNum(const MCOperand &MO) {
- return X86RegisterInfo::getX86RegNum(MO.getReg());
- }
-
- // On regular x86, both XMM0-XMM7 and XMM8-XMM15 are encoded in the range
- // 0-7 and the difference between the 2 groups is given by the REX prefix.
- // In the VEX prefix, registers are seen sequencially from 0-15 and encoded
- // in 1's complement form, example:
- //
- // ModRM field => XMM9 => 1
- // VEX.VVVV => XMM9 => ~9
- //
- // See table 4-35 of Intel AVX Programming Reference for details.
- static unsigned char getVEXRegisterEncoding(const MCInst &MI,
- unsigned OpNum) {
- unsigned SrcReg = MI.getOperand(OpNum).getReg();
- unsigned SrcRegNum = GetX86RegNum(MI.getOperand(OpNum));
- if ((SrcReg >= X86::XMM8 && SrcReg <= X86::XMM15) ||
- (SrcReg >= X86::YMM8 && SrcReg <= X86::YMM15))
- SrcRegNum += 8;
-
- // The registers represented through VEX_VVVV should
- // be encoded in 1's complement form.
- return (~SrcRegNum) & 0xf;
- }
-
- void EmitByte(unsigned char C, unsigned &CurByte, raw_ostream &OS) const {
- OS << (char)C;
- ++CurByte;
- }
-
- void EmitConstant(uint64_t Val, unsigned Size, unsigned &CurByte,
- raw_ostream &OS) const {
- // Output the constant in little endian byte order.
- for (unsigned i = 0; i != Size; ++i) {
- EmitByte(Val & 255, CurByte, OS);
- Val >>= 8;
- }
- }
-
- void EmitImmediate(const MCOperand &Disp,
- unsigned ImmSize, MCFixupKind FixupKind,
- unsigned &CurByte, raw_ostream &OS,
- SmallVectorImpl<MCFixup> &Fixups,
- int ImmOffset = 0) const;
-
- inline static unsigned char ModRMByte(unsigned Mod, unsigned RegOpcode,
- unsigned RM) {
- assert(Mod < 4 && RegOpcode < 8 && RM < 8 && "ModRM Fields out of range!");
- return RM | (RegOpcode << 3) | (Mod << 6);
- }
-
- void EmitRegModRMByte(const MCOperand &ModRMReg, unsigned RegOpcodeFld,
- unsigned &CurByte, raw_ostream &OS) const {
- EmitByte(ModRMByte(3, RegOpcodeFld, GetX86RegNum(ModRMReg)), CurByte, OS);
- }
-
- void EmitSIBByte(unsigned SS, unsigned Index, unsigned Base,
- unsigned &CurByte, raw_ostream &OS) const {
- // SIB byte is in the same format as the ModRMByte.
- EmitByte(ModRMByte(SS, Index, Base), CurByte, OS);
- }
-
-
- void EmitMemModRMByte(const MCInst &MI, unsigned Op,
- unsigned RegOpcodeField,
- uint64_t TSFlags, unsigned &CurByte, raw_ostream &OS,
- SmallVectorImpl<MCFixup> &Fixups) const;
-
- void EncodeInstruction(const MCInst &MI, raw_ostream &OS,
- SmallVectorImpl<MCFixup> &Fixups) const;
-
- void EmitVEXOpcodePrefix(uint64_t TSFlags, unsigned &CurByte, int MemOperand,
- const MCInst &MI, const MCInstrDesc &Desc,
- raw_ostream &OS) const;
-
- void EmitSegmentOverridePrefix(uint64_t TSFlags, unsigned &CurByte,
- int MemOperand, const MCInst &MI,
- raw_ostream &OS) const;
-
- void EmitOpcodePrefix(uint64_t TSFlags, unsigned &CurByte, int MemOperand,
- const MCInst &MI, const MCInstrDesc &Desc,
- raw_ostream &OS) const;
-};
-
-} // end anonymous namespace
-
-
-MCCodeEmitter *llvm::createX86MCCodeEmitter(const MCInstrInfo &MCII,
- const MCSubtargetInfo &STI,
- MCContext &Ctx) {
- return new X86MCCodeEmitter(MCII, STI, Ctx);
-}
-
-/// isDisp8 - Return true if this signed displacement fits in a 8-bit
-/// sign-extended field.
-static bool isDisp8(int Value) {
- return Value == (signed char)Value;
-}
-
-/// getImmFixupKind - Return the appropriate fixup kind to use for an immediate
-/// in an instruction with the specified TSFlags.
-static MCFixupKind getImmFixupKind(uint64_t TSFlags) {
- unsigned Size = X86II::getSizeOfImm(TSFlags);
- bool isPCRel = X86II::isImmPCRel(TSFlags);
-
- return MCFixup::getKindForSize(Size, isPCRel);
-}
-
-/// Is32BitMemOperand - Return true if the specified instruction with a memory
-/// operand should emit the 0x67 prefix byte in 64-bit mode due to a 32-bit
-/// memory operand. Op specifies the operand # of the memoperand.
-static bool Is32BitMemOperand(const MCInst &MI, unsigned Op) {
- const MCOperand &BaseReg = MI.getOperand(Op+X86::AddrBaseReg);
- const MCOperand &IndexReg = MI.getOperand(Op+X86::AddrIndexReg);
-
- if ((BaseReg.getReg() != 0 && X86::GR32RegClass.contains(BaseReg.getReg())) ||
- (IndexReg.getReg() != 0 && X86::GR32RegClass.contains(IndexReg.getReg())))
- return true;
- return false;
-}
-
-/// StartsWithGlobalOffsetTable - Return true for the simple cases where this
-/// expression starts with _GLOBAL_OFFSET_TABLE_. This is a needed to support
-/// PIC on ELF i386 as that symbol is magic. We check only simple case that
-/// are know to be used: _GLOBAL_OFFSET_TABLE_ by itself or at the start
-/// of a binary expression.
-static bool StartsWithGlobalOffsetTable(const MCExpr *Expr) {
- if (Expr->getKind() == MCExpr::Binary) {
- const MCBinaryExpr *BE = static_cast<const MCBinaryExpr *>(Expr);
- Expr = BE->getLHS();
- }
-
- if (Expr->getKind() != MCExpr::SymbolRef)
- return false;
-
- const MCSymbolRefExpr *Ref = static_cast<const MCSymbolRefExpr*>(Expr);
- const MCSymbol &S = Ref->getSymbol();
- return S.getName() == "_GLOBAL_OFFSET_TABLE_";
-}
-
-void X86MCCodeEmitter::
-EmitImmediate(const MCOperand &DispOp, unsigned Size, MCFixupKind FixupKind,
- unsigned &CurByte, raw_ostream &OS,
- SmallVectorImpl<MCFixup> &Fixups, int ImmOffset) const {
- const MCExpr *Expr = NULL;
- if (DispOp.isImm()) {
- // If this is a simple integer displacement that doesn't require a relocation,
- // emit it now.
- if (FixupKind != FK_PCRel_1 &&
- FixupKind != FK_PCRel_2 &&
- FixupKind != FK_PCRel_4) {
- EmitConstant(DispOp.getImm()+ImmOffset, Size, CurByte, OS);
- return;
- }
- Expr = MCConstantExpr::Create(DispOp.getImm(), Ctx);
- } else {
- Expr = DispOp.getExpr();
- }
-
- // If we have an immoffset, add it to the expression.
- if (FixupKind == FK_Data_4 && StartsWithGlobalOffsetTable(Expr)) {
- assert(ImmOffset == 0);
-
- FixupKind = MCFixupKind(X86::reloc_global_offset_table);
- ImmOffset = CurByte;
- }
-
- // If the fixup is pc-relative, we need to bias the value to be relative to
- // the start of the field, not the end of the field.
- if (FixupKind == FK_PCRel_4 ||
- FixupKind == MCFixupKind(X86::reloc_riprel_4byte) ||
- FixupKind == MCFixupKind(X86::reloc_riprel_4byte_movq_load))
- ImmOffset -= 4;
- if (FixupKind == FK_PCRel_2)
- ImmOffset -= 2;
- if (FixupKind == FK_PCRel_1)
- ImmOffset -= 1;
-
- if (ImmOffset)
- Expr = MCBinaryExpr::CreateAdd(Expr, MCConstantExpr::Create(ImmOffset, Ctx),
- Ctx);
-
- // Emit a symbolic constant as a fixup and 4 zeros.
- Fixups.push_back(MCFixup::Create(CurByte, Expr, FixupKind));
- EmitConstant(0, Size, CurByte, OS);
-}
-
-void X86MCCodeEmitter::EmitMemModRMByte(const MCInst &MI, unsigned Op,
- unsigned RegOpcodeField,
- uint64_t TSFlags, unsigned &CurByte,
- raw_ostream &OS,
- SmallVectorImpl<MCFixup> &Fixups) const{
- const MCOperand &Disp = MI.getOperand(Op+X86::AddrDisp);
- const MCOperand &Base = MI.getOperand(Op+X86::AddrBaseReg);
- const MCOperand &Scale = MI.getOperand(Op+X86::AddrScaleAmt);
- const MCOperand &IndexReg = MI.getOperand(Op+X86::AddrIndexReg);
- unsigned BaseReg = Base.getReg();
-
- // Handle %rip relative addressing.
- if (BaseReg == X86::RIP) { // [disp32+RIP] in X86-64 mode
- assert(is64BitMode() && "Rip-relative addressing requires 64-bit mode");
- assert(IndexReg.getReg() == 0 && "Invalid rip-relative address");
- EmitByte(ModRMByte(0, RegOpcodeField, 5), CurByte, OS);
-
- unsigned FixupKind = X86::reloc_riprel_4byte;
-
- // movq loads are handled with a special relocation form which allows the
- // linker to eliminate some loads for GOT references which end up in the
- // same linkage unit.
- if (MI.getOpcode() == X86::MOV64rm)
- FixupKind = X86::reloc_riprel_4byte_movq_load;
-
- // rip-relative addressing is actually relative to the *next* instruction.
- // Since an immediate can follow the mod/rm byte for an instruction, this
- // means that we need to bias the immediate field of the instruction with
- // the size of the immediate field. If we have this case, add it into the
- // expression to emit.
- int ImmSize = X86II::hasImm(TSFlags) ? X86II::getSizeOfImm(TSFlags) : 0;
-
- EmitImmediate(Disp, 4, MCFixupKind(FixupKind),
- CurByte, OS, Fixups, -ImmSize);
- return;
- }
-
- unsigned BaseRegNo = BaseReg ? GetX86RegNum(Base) : -1U;
-
- // Determine whether a SIB byte is needed.
- // If no BaseReg, issue a RIP relative instruction only if the MCE can
- // resolve addresses on-the-fly, otherwise use SIB (Intel Manual 2A, table
- // 2-7) and absolute references.
-
- if (// The SIB byte must be used if there is an index register.
- IndexReg.getReg() == 0 &&
- // The SIB byte must be used if the base is ESP/RSP/R12, all of which
- // encode to an R/M value of 4, which indicates that a SIB byte is
- // present.
- BaseRegNo != N86::ESP &&
- // If there is no base register and we're in 64-bit mode, we need a SIB
- // byte to emit an addr that is just 'disp32' (the non-RIP relative form).
- (!is64BitMode() || BaseReg != 0)) {
-
- if (BaseReg == 0) { // [disp32] in X86-32 mode
- EmitByte(ModRMByte(0, RegOpcodeField, 5), CurByte, OS);
- EmitImmediate(Disp, 4, FK_Data_4, CurByte, OS, Fixups);
- return;
- }
-
- // If the base is not EBP/ESP and there is no displacement, use simple
- // indirect register encoding, this handles addresses like [EAX]. The
- // encoding for [EBP] with no displacement means [disp32] so we handle it
- // by emitting a displacement of 0 below.
- if (Disp.isImm() && Disp.getImm() == 0 && BaseRegNo != N86::EBP) {
- EmitByte(ModRMByte(0, RegOpcodeField, BaseRegNo), CurByte, OS);
- return;
- }
-
- // Otherwise, if the displacement fits in a byte, encode as [REG+disp8].
- if (Disp.isImm() && isDisp8(Disp.getImm())) {
- EmitByte(ModRMByte(1, RegOpcodeField, BaseRegNo), CurByte, OS);
- EmitImmediate(Disp, 1, FK_Data_1, CurByte, OS, Fixups);
- return;
- }
-
- // Otherwise, emit the most general non-SIB encoding: [REG+disp32]
- EmitByte(ModRMByte(2, RegOpcodeField, BaseRegNo), CurByte, OS);
- EmitImmediate(Disp, 4, MCFixupKind(X86::reloc_signed_4byte), CurByte, OS,
- Fixups);
- return;
- }
-
- // We need a SIB byte, so start by outputting the ModR/M byte first
- assert(IndexReg.getReg() != X86::ESP &&
- IndexReg.getReg() != X86::RSP && "Cannot use ESP as index reg!");
-
- bool ForceDisp32 = false;
- bool ForceDisp8 = false;
- if (BaseReg == 0) {
- // If there is no base register, we emit the special case SIB byte with
- // MOD=0, BASE=5, to JUST get the index, scale, and displacement.
- EmitByte(ModRMByte(0, RegOpcodeField, 4), CurByte, OS);
- ForceDisp32 = true;
- } else if (!Disp.isImm()) {
- // Emit the normal disp32 encoding.
- EmitByte(ModRMByte(2, RegOpcodeField, 4), CurByte, OS);
- ForceDisp32 = true;
- } else if (Disp.getImm() == 0 &&
- // Base reg can't be anything that ends up with '5' as the base
- // reg, it is the magic [*] nomenclature that indicates no base.
- BaseRegNo != N86::EBP) {
- // Emit no displacement ModR/M byte
- EmitByte(ModRMByte(0, RegOpcodeField, 4), CurByte, OS);
- } else if (isDisp8(Disp.getImm())) {
- // Emit the disp8 encoding.
- EmitByte(ModRMByte(1, RegOpcodeField, 4), CurByte, OS);
- ForceDisp8 = true; // Make sure to force 8 bit disp if Base=EBP
- } else {
- // Emit the normal disp32 encoding.
- EmitByte(ModRMByte(2, RegOpcodeField, 4), CurByte, OS);
- }
-
- // Calculate what the SS field value should be...
- static const unsigned SSTable[] = { ~0, 0, 1, ~0, 2, ~0, ~0, ~0, 3 };
- unsigned SS = SSTable[Scale.getImm()];
-
- if (BaseReg == 0) {
- // Handle the SIB byte for the case where there is no base, see Intel
- // Manual 2A, table 2-7. The displacement has already been output.
- unsigned IndexRegNo;
- if (IndexReg.getReg())
- IndexRegNo = GetX86RegNum(IndexReg);
- else // Examples: [ESP+1*<noreg>+4] or [scaled idx]+disp32 (MOD=0,BASE=5)
- IndexRegNo = 4;
- EmitSIBByte(SS, IndexRegNo, 5, CurByte, OS);
- } else {
- unsigned IndexRegNo;
- if (IndexReg.getReg())
- IndexRegNo = GetX86RegNum(IndexReg);
- else
- IndexRegNo = 4; // For example [ESP+1*<noreg>+4]
- EmitSIBByte(SS, IndexRegNo, GetX86RegNum(Base), CurByte, OS);
- }
-
- // Do we need to output a displacement?
- if (ForceDisp8)
- EmitImmediate(Disp, 1, FK_Data_1, CurByte, OS, Fixups);
- else if (ForceDisp32 || Disp.getImm() != 0)
- EmitImmediate(Disp, 4, MCFixupKind(X86::reloc_signed_4byte), CurByte, OS,
- Fixups);
-}
-
-/// EmitVEXOpcodePrefix - AVX instructions are encoded using a opcode prefix
-/// called VEX.
-void X86MCCodeEmitter::EmitVEXOpcodePrefix(uint64_t TSFlags, unsigned &CurByte,
- int MemOperand, const MCInst &MI,
- const MCInstrDesc &Desc,
- raw_ostream &OS) const {
- bool HasVEX_4V = false;
- if ((TSFlags >> X86II::VEXShift) & X86II::VEX_4V)
- HasVEX_4V = true;
-
- // VEX_R: opcode externsion equivalent to REX.R in
- // 1's complement (inverted) form
- //
- // 1: Same as REX_R=0 (must be 1 in 32-bit mode)
- // 0: Same as REX_R=1 (64 bit mode only)
- //
- unsigned char VEX_R = 0x1;
-
- // VEX_X: equivalent to REX.X, only used when a
- // register is used for index in SIB Byte.
- //
- // 1: Same as REX.X=0 (must be 1 in 32-bit mode)
- // 0: Same as REX.X=1 (64-bit mode only)
- unsigned char VEX_X = 0x1;
-
- // VEX_B:
- //
- // 1: Same as REX_B=0 (ignored in 32-bit mode)
- // 0: Same as REX_B=1 (64 bit mode only)
- //
- unsigned char VEX_B = 0x1;
-
- // VEX_W: opcode specific (use like REX.W, or used for
- // opcode extension, or ignored, depending on the opcode byte)
- unsigned char VEX_W = 0;
-
- // VEX_5M (VEX m-mmmmm field):
- //
- // 0b00000: Reserved for future use
- // 0b00001: implied 0F leading opcode
- // 0b00010: implied 0F 38 leading opcode bytes
- // 0b00011: implied 0F 3A leading opcode bytes
- // 0b00100-0b11111: Reserved for future use
- //
- unsigned char VEX_5M = 0x1;
-
- // VEX_4V (VEX vvvv field): a register specifier
- // (in 1's complement form) or 1111 if unused.
- unsigned char VEX_4V = 0xf;
-
- // VEX_L (Vector Length):
- //
- // 0: scalar or 128-bit vector
- // 1: 256-bit vector
- //
- unsigned char VEX_L = 0;
-
- // VEX_PP: opcode extension providing equivalent
- // functionality of a SIMD prefix
- //
- // 0b00: None
- // 0b01: 66
- // 0b10: F3
- // 0b11: F2
- //
- unsigned char VEX_PP = 0;
-
- // Encode the operand size opcode prefix as needed.
- if (TSFlags & X86II::OpSize)
- VEX_PP = 0x01;
-
- if ((TSFlags >> X86II::VEXShift) & X86II::VEX_W)
- VEX_W = 1;
-
- if ((TSFlags >> X86II::VEXShift) & X86II::VEX_L)
- VEX_L = 1;
-
- switch (TSFlags & X86II::Op0Mask) {
- default: assert(0 && "Invalid prefix!");
- case X86II::T8: // 0F 38
- VEX_5M = 0x2;
- break;
- case X86II::TA: // 0F 3A
- VEX_5M = 0x3;
- break;
- case X86II::TF: // F2 0F 38
- VEX_PP = 0x3;
- VEX_5M = 0x2;
- break;
- case X86II::XS: // F3 0F
- VEX_PP = 0x2;
- break;
- case X86II::XD: // F2 0F
- VEX_PP = 0x3;
- break;
- case X86II::A6: // Bypass: Not used by VEX
- case X86II::A7: // Bypass: Not used by VEX
- case X86II::TB: // Bypass: Not used by VEX
- case 0:
- break; // No prefix!
- }
-
- // Set the vector length to 256-bit if YMM0-YMM15 is used
- for (unsigned i = 0; i != MI.getNumOperands(); ++i) {
- if (!MI.getOperand(i).isReg())
- continue;
- unsigned SrcReg = MI.getOperand(i).getReg();
- if (SrcReg >= X86::YMM0 && SrcReg <= X86::YMM15)
- VEX_L = 1;
- }
-
- unsigned NumOps = MI.getNumOperands();
- unsigned CurOp = 0;
- bool IsDestMem = false;
-
- switch (TSFlags & X86II::FormMask) {
- case X86II::MRMInitReg: assert(0 && "FIXME: Remove this!");
- case X86II::MRMDestMem:
- IsDestMem = true;
- // The important info for the VEX prefix is never beyond the address
- // registers. Don't check beyond that.
- NumOps = CurOp = X86::AddrNumOperands;
- case X86II::MRM0m: case X86II::MRM1m:
- case X86II::MRM2m: case X86II::MRM3m:
- case X86II::MRM4m: case X86II::MRM5m:
- case X86II::MRM6m: case X86II::MRM7m:
- case X86II::MRMSrcMem:
- case X86II::MRMSrcReg:
- if (MI.getNumOperands() > CurOp && MI.getOperand(CurOp).isReg() &&
- X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
- VEX_R = 0x0;
- CurOp++;
-
- if (HasVEX_4V) {
- VEX_4V = getVEXRegisterEncoding(MI, IsDestMem ? CurOp-1 : CurOp);
- CurOp++;
- }
-
- // To only check operands before the memory address ones, start
- // the search from the beginning
- if (IsDestMem)
- CurOp = 0;
-
- // If the last register should be encoded in the immediate field
- // do not use any bit from VEX prefix to this register, ignore it
- if ((TSFlags >> X86II::VEXShift) & X86II::VEX_I8IMM)
- NumOps--;
-
- for (; CurOp != NumOps; ++CurOp) {
- const MCOperand &MO = MI.getOperand(CurOp);
- if (MO.isReg() && X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
- VEX_B = 0x0;
- if (!VEX_B && MO.isReg() &&
- ((TSFlags & X86II::FormMask) == X86II::MRMSrcMem) &&
- X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
- VEX_X = 0x0;
- }
- break;
- default: // MRMDestReg, MRM0r-MRM7r, RawFrm
- if (!MI.getNumOperands())
- break;
-
- if (MI.getOperand(CurOp).isReg() &&
- X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
- VEX_B = 0;
-
- if (HasVEX_4V)
- VEX_4V = getVEXRegisterEncoding(MI, CurOp);
-
- CurOp++;
- for (; CurOp != NumOps; ++CurOp) {
- const MCOperand &MO = MI.getOperand(CurOp);
- if (MO.isReg() && !HasVEX_4V &&
- X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
- VEX_R = 0x0;
- }
- break;
- }
-
- // Emit segment override opcode prefix as needed.
- EmitSegmentOverridePrefix(TSFlags, CurByte, MemOperand, MI, OS);
-
- // VEX opcode prefix can have 2 or 3 bytes
- //
- // 3 bytes:
- // +-----+ +--------------+ +-------------------+
- // | C4h | | RXB | m-mmmm | | W | vvvv | L | pp |
- // +-----+ +--------------+ +-------------------+
- // 2 bytes:
- // +-----+ +-------------------+
- // | C5h | | R | vvvv | L | pp |
- // +-----+ +-------------------+
- //
- unsigned char LastByte = VEX_PP | (VEX_L << 2) | (VEX_4V << 3);
-
- if (VEX_B && VEX_X && !VEX_W && (VEX_5M == 1)) { // 2 byte VEX prefix
- EmitByte(0xC5, CurByte, OS);
- EmitByte(LastByte | (VEX_R << 7), CurByte, OS);
- return;
- }
-
- // 3 byte VEX prefix
- EmitByte(0xC4, CurByte, OS);
- EmitByte(VEX_R << 7 | VEX_X << 6 | VEX_B << 5 | VEX_5M, CurByte, OS);
- EmitByte(LastByte | (VEX_W << 7), CurByte, OS);
-}
-
-/// DetermineREXPrefix - Determine if the MCInst has to be encoded with a X86-64
-/// REX prefix which specifies 1) 64-bit instructions, 2) non-default operand
-/// size, and 3) use of X86-64 extended registers.
-static unsigned DetermineREXPrefix(const MCInst &MI, uint64_t TSFlags,
- const MCInstrDesc &Desc) {
- unsigned REX = 0;
- if (TSFlags & X86II::REX_W)
- REX |= 1 << 3; // set REX.W
-
- if (MI.getNumOperands() == 0) return REX;
-
- unsigned NumOps = MI.getNumOperands();
- // FIXME: MCInst should explicitize the two-addrness.
- bool isTwoAddr = NumOps > 1 &&
- Desc.getOperandConstraint(1, MCOI::TIED_TO) != -1;
-
- // If it accesses SPL, BPL, SIL, or DIL, then it requires a 0x40 REX prefix.
- unsigned i = isTwoAddr ? 1 : 0;
- for (; i != NumOps; ++i) {
- const MCOperand &MO = MI.getOperand(i);
- if (!MO.isReg()) continue;
- unsigned Reg = MO.getReg();
- if (!X86InstrInfo::isX86_64NonExtLowByteReg(Reg)) continue;
- // FIXME: The caller of DetermineREXPrefix slaps this prefix onto anything
- // that returns non-zero.
- REX |= 0x40; // REX fixed encoding prefix
- break;
- }
-
- switch (TSFlags & X86II::FormMask) {
- case X86II::MRMInitReg: assert(0 && "FIXME: Remove this!");
- case X86II::MRMSrcReg:
- if (MI.getOperand(0).isReg() &&
- X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
- REX |= 1 << 2; // set REX.R
- i = isTwoAddr ? 2 : 1;
- for (; i != NumOps; ++i) {
- const MCOperand &MO = MI.getOperand(i);
- if (MO.isReg() && X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
- REX |= 1 << 0; // set REX.B
- }
- break;
- case X86II::MRMSrcMem: {
- if (MI.getOperand(0).isReg() &&
- X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
- REX |= 1 << 2; // set REX.R
- unsigned Bit = 0;
- i = isTwoAddr ? 2 : 1;
- for (; i != NumOps; ++i) {
- const MCOperand &MO = MI.getOperand(i);
- if (MO.isReg()) {
- if (X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
- REX |= 1 << Bit; // set REX.B (Bit=0) and REX.X (Bit=1)
- Bit++;
- }
- }
- break;
- }
- case X86II::MRM0m: case X86II::MRM1m:
- case X86II::MRM2m: case X86II::MRM3m:
- case X86II::MRM4m: case X86II::MRM5m:
- case X86II::MRM6m: case X86II::MRM7m:
- case X86II::MRMDestMem: {
- unsigned e = (isTwoAddr ? X86::AddrNumOperands+1 : X86::AddrNumOperands);
- i = isTwoAddr ? 1 : 0;
- if (NumOps > e && MI.getOperand(e).isReg() &&
- X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(e).getReg()))
- REX |= 1 << 2; // set REX.R
- unsigned Bit = 0;
- for (; i != e; ++i) {
- const MCOperand &MO = MI.getOperand(i);
- if (MO.isReg()) {
- if (X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
- REX |= 1 << Bit; // REX.B (Bit=0) and REX.X (Bit=1)
- Bit++;
- }
- }
- break;
- }
- default:
- if (MI.getOperand(0).isReg() &&
- X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
- REX |= 1 << 0; // set REX.B
- i = isTwoAddr ? 2 : 1;
- for (unsigned e = NumOps; i != e; ++i) {
- const MCOperand &MO = MI.getOperand(i);
- if (MO.isReg() && X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
- REX |= 1 << 2; // set REX.R
- }
- break;
- }
- return REX;
-}
-
-/// EmitSegmentOverridePrefix - Emit segment override opcode prefix as needed
-void X86MCCodeEmitter::EmitSegmentOverridePrefix(uint64_t TSFlags,
- unsigned &CurByte, int MemOperand,
- const MCInst &MI,
- raw_ostream &OS) const {
- switch (TSFlags & X86II::SegOvrMask) {
- default: assert(0 && "Invalid segment!");
- case 0:
- // No segment override, check for explicit one on memory operand.
- if (MemOperand != -1) { // If the instruction has a memory operand.
- switch (MI.getOperand(MemOperand+X86::AddrSegmentReg).getReg()) {
- default: assert(0 && "Unknown segment register!");
- case 0: break;
- case X86::CS: EmitByte(0x2E, CurByte, OS); break;
- case X86::SS: EmitByte(0x36, CurByte, OS); break;
- case X86::DS: EmitByte(0x3E, CurByte, OS); break;
- case X86::ES: EmitByte(0x26, CurByte, OS); break;
- case X86::FS: EmitByte(0x64, CurByte, OS); break;
- case X86::GS: EmitByte(0x65, CurByte, OS); break;
- }
- }
- break;
- case X86II::FS:
- EmitByte(0x64, CurByte, OS);
- break;
- case X86II::GS:
- EmitByte(0x65, CurByte, OS);
- break;
- }
-}
-
-/// EmitOpcodePrefix - Emit all instruction prefixes prior to the opcode.
-///
-/// MemOperand is the operand # of the start of a memory operand if present. If
-/// Not present, it is -1.
-void X86MCCodeEmitter::EmitOpcodePrefix(uint64_t TSFlags, unsigned &CurByte,
- int MemOperand, const MCInst &MI,
- const MCInstrDesc &Desc,
- raw_ostream &OS) const {
-
- // Emit the lock opcode prefix as needed.
- if (TSFlags & X86II::LOCK)
- EmitByte(0xF0, CurByte, OS);
-
- // Emit segment override opcode prefix as needed.
- EmitSegmentOverridePrefix(TSFlags, CurByte, MemOperand, MI, OS);
-
- // Emit the repeat opcode prefix as needed.
- if ((TSFlags & X86II::Op0Mask) == X86II::REP)
- EmitByte(0xF3, CurByte, OS);
-
- // Emit the address size opcode prefix as needed.
- if ((TSFlags & X86II::AdSize) ||
- (MemOperand != -1 && is64BitMode() && Is32BitMemOperand(MI, MemOperand)))
- EmitByte(0x67, CurByte, OS);
-
- // Emit the operand size opcode prefix as needed.
- if (TSFlags & X86II::OpSize)
- EmitByte(0x66, CurByte, OS);
-
- bool Need0FPrefix = false;
- switch (TSFlags & X86II::Op0Mask) {
- default: assert(0 && "Invalid prefix!");
- case 0: break; // No prefix!
- case X86II::REP: break; // already handled.
- case X86II::TB: // Two-byte opcode prefix
- case X86II::T8: // 0F 38
- case X86II::TA: // 0F 3A
- case X86II::A6: // 0F A6
- case X86II::A7: // 0F A7
- Need0FPrefix = true;
- break;
- case X86II::TF: // F2 0F 38
- EmitByte(0xF2, CurByte, OS);
- Need0FPrefix = true;
- break;
- case X86II::XS: // F3 0F
- EmitByte(0xF3, CurByte, OS);
- Need0FPrefix = true;
- break;
- case X86II::XD: // F2 0F
- EmitByte(0xF2, CurByte, OS);
- Need0FPrefix = true;
- break;
- case X86II::D8: EmitByte(0xD8, CurByte, OS); break;
- case X86II::D9: EmitByte(0xD9, CurByte, OS); break;
- case X86II::DA: EmitByte(0xDA, CurByte, OS); break;
- case X86II::DB: EmitByte(0xDB, CurByte, OS); break;
- case X86II::DC: EmitByte(0xDC, CurByte, OS); break;
- case X86II::DD: EmitByte(0xDD, CurByte, OS); break;
- case X86II::DE: EmitByte(0xDE, CurByte, OS); break;
- case X86II::DF: EmitByte(0xDF, CurByte, OS); break;
- }
-
- // Handle REX prefix.
- // FIXME: Can this come before F2 etc to simplify emission?
- if (is64BitMode()) {
- if (unsigned REX = DetermineREXPrefix(MI, TSFlags, Desc))
- EmitByte(0x40 | REX, CurByte, OS);
- }
-
- // 0x0F escape code must be emitted just before the opcode.
- if (Need0FPrefix)
- EmitByte(0x0F, CurByte, OS);
-
- // FIXME: Pull this up into previous switch if REX can be moved earlier.
- switch (TSFlags & X86II::Op0Mask) {
- case X86II::TF: // F2 0F 38
- case X86II::T8: // 0F 38
- EmitByte(0x38, CurByte, OS);
- break;
- case X86II::TA: // 0F 3A
- EmitByte(0x3A, CurByte, OS);
- break;
- case X86II::A6: // 0F A6
- EmitByte(0xA6, CurByte, OS);
- break;
- case X86II::A7: // 0F A7
- EmitByte(0xA7, CurByte, OS);
- break;
- }
-}
-
-void X86MCCodeEmitter::
-EncodeInstruction(const MCInst &MI, raw_ostream &OS,
- SmallVectorImpl<MCFixup> &Fixups) const {
- unsigned Opcode = MI.getOpcode();
- const MCInstrDesc &Desc = MCII.get(Opcode);
- uint64_t TSFlags = Desc.TSFlags;
-
- // Pseudo instructions don't get encoded.
- if ((TSFlags & X86II::FormMask) == X86II::Pseudo)
- return;
-
- // If this is a two-address instruction, skip one of the register operands.
- // FIXME: This should be handled during MCInst lowering.
- unsigned NumOps = Desc.getNumOperands();
- unsigned CurOp = 0;
- if (NumOps > 1 && Desc.getOperandConstraint(1, MCOI::TIED_TO) != -1)
- ++CurOp;
- else if (NumOps > 2 && Desc.getOperandConstraint(NumOps-1, MCOI::TIED_TO)== 0)
- // Skip the last source operand that is tied_to the dest reg. e.g. LXADD32
- --NumOps;
-
- // Keep track of the current byte being emitted.
- unsigned CurByte = 0;
-
- // Is this instruction encoded using the AVX VEX prefix?
- bool HasVEXPrefix = false;
-
- // It uses the VEX.VVVV field?
- bool HasVEX_4V = false;
-
- if ((TSFlags >> X86II::VEXShift) & X86II::VEX)
- HasVEXPrefix = true;
- if ((TSFlags >> X86II::VEXShift) & X86II::VEX_4V)
- HasVEX_4V = true;
-
-
- // Determine where the memory operand starts, if present.
- int MemoryOperand = X86II::getMemoryOperandNo(TSFlags);
- if (MemoryOperand != -1) MemoryOperand += CurOp;
-
- if (!HasVEXPrefix)
- EmitOpcodePrefix(TSFlags, CurByte, MemoryOperand, MI, Desc, OS);
- else
- EmitVEXOpcodePrefix(TSFlags, CurByte, MemoryOperand, MI, Desc, OS);
-
-
- unsigned char BaseOpcode = X86II::getBaseOpcodeFor(TSFlags);
-
- if ((TSFlags >> X86II::VEXShift) & X86II::Has3DNow0F0FOpcode)
- BaseOpcode = 0x0F; // Weird 3DNow! encoding.
-
- unsigned SrcRegNum = 0;
- switch (TSFlags & X86II::FormMask) {
- case X86II::MRMInitReg:
- assert(0 && "FIXME: Remove this form when the JIT moves to MCCodeEmitter!");
- default: errs() << "FORM: " << (TSFlags & X86II::FormMask) << "\n";
- assert(0 && "Unknown FormMask value in X86MCCodeEmitter!");
- case X86II::Pseudo:
- assert(0 && "Pseudo instruction shouldn't be emitted");
- case X86II::RawFrm:
- EmitByte(BaseOpcode, CurByte, OS);
- break;
-
- case X86II::RawFrmImm8:
- EmitByte(BaseOpcode, CurByte, OS);
- EmitImmediate(MI.getOperand(CurOp++),
- X86II::getSizeOfImm(TSFlags), getImmFixupKind(TSFlags),
- CurByte, OS, Fixups);
- EmitImmediate(MI.getOperand(CurOp++), 1, FK_Data_1, CurByte, OS, Fixups);
- break;
- case X86II::RawFrmImm16:
- EmitByte(BaseOpcode, CurByte, OS);
- EmitImmediate(MI.getOperand(CurOp++),
- X86II::getSizeOfImm(TSFlags), getImmFixupKind(TSFlags),
- CurByte, OS, Fixups);
- EmitImmediate(MI.getOperand(CurOp++), 2, FK_Data_2, CurByte, OS, Fixups);
- break;
-
- case X86II::AddRegFrm:
- EmitByte(BaseOpcode + GetX86RegNum(MI.getOperand(CurOp++)), CurByte, OS);
- break;
-
- case X86II::MRMDestReg:
- EmitByte(BaseOpcode, CurByte, OS);
- EmitRegModRMByte(MI.getOperand(CurOp),
- GetX86RegNum(MI.getOperand(CurOp+1)), CurByte, OS);
- CurOp += 2;
- break;
-
- case X86II::MRMDestMem:
- EmitByte(BaseOpcode, CurByte, OS);
- SrcRegNum = CurOp + X86::AddrNumOperands;
-
- if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV)
- SrcRegNum++;
-
- EmitMemModRMByte(MI, CurOp,
- GetX86RegNum(MI.getOperand(SrcRegNum)),
- TSFlags, CurByte, OS, Fixups);
- CurOp = SrcRegNum + 1;
- break;
-
- case X86II::MRMSrcReg:
- EmitByte(BaseOpcode, CurByte, OS);
- SrcRegNum = CurOp + 1;
-
- if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV)
- SrcRegNum++;
-
- EmitRegModRMByte(MI.getOperand(SrcRegNum),
- GetX86RegNum(MI.getOperand(CurOp)), CurByte, OS);
- CurOp = SrcRegNum + 1;
- break;
-
- case X86II::MRMSrcMem: {
- int AddrOperands = X86::AddrNumOperands;
- unsigned FirstMemOp = CurOp+1;
- if (HasVEX_4V) {
- ++AddrOperands;
- ++FirstMemOp; // Skip the register source (which is encoded in VEX_VVVV).
- }
-
- EmitByte(BaseOpcode, CurByte, OS);
-
- EmitMemModRMByte(MI, FirstMemOp, GetX86RegNum(MI.getOperand(CurOp)),
- TSFlags, CurByte, OS, Fixups);
- CurOp += AddrOperands + 1;
- break;
- }
-
- case X86II::MRM0r: case X86II::MRM1r:
- case X86II::MRM2r: case X86II::MRM3r:
- case X86II::MRM4r: case X86II::MRM5r:
- case X86II::MRM6r: case X86II::MRM7r:
- if (HasVEX_4V) // Skip the register dst (which is encoded in VEX_VVVV).
- CurOp++;
- EmitByte(BaseOpcode, CurByte, OS);
- EmitRegModRMByte(MI.getOperand(CurOp++),
- (TSFlags & X86II::FormMask)-X86II::MRM0r,
- CurByte, OS);
- break;
- case X86II::MRM0m: case X86II::MRM1m:
- case X86II::MRM2m: case X86II::MRM3m:
- case X86II::MRM4m: case X86II::MRM5m:
- case X86II::MRM6m: case X86II::MRM7m:
- EmitByte(BaseOpcode, CurByte, OS);
- EmitMemModRMByte(MI, CurOp, (TSFlags & X86II::FormMask)-X86II::MRM0m,
- TSFlags, CurByte, OS, Fixups);
- CurOp += X86::AddrNumOperands;
- break;
- case X86II::MRM_C1:
- EmitByte(BaseOpcode, CurByte, OS);
- EmitByte(0xC1, CurByte, OS);
- break;
- case X86II::MRM_C2:
- EmitByte(BaseOpcode, CurByte, OS);
- EmitByte(0xC2, CurByte, OS);
- break;
- case X86II::MRM_C3:
- EmitByte(BaseOpcode, CurByte, OS);
- EmitByte(0xC3, CurByte, OS);
- break;
- case X86II::MRM_C4:
- EmitByte(BaseOpcode, CurByte, OS);
- EmitByte(0xC4, CurByte, OS);
- break;
- case X86II::MRM_C8:
- EmitByte(BaseOpcode, CurByte, OS);
- EmitByte(0xC8, CurByte, OS);
- break;
- case X86II::MRM_C9:
- EmitByte(BaseOpcode, CurByte, OS);
- EmitByte(0xC9, CurByte, OS);
- break;
- case X86II::MRM_E8:
- EmitByte(BaseOpcode, CurByte, OS);
- EmitByte(0xE8, CurByte, OS);
- break;
- case X86II::MRM_F0:
- EmitByte(BaseOpcode, CurByte, OS);
- EmitByte(0xF0, CurByte, OS);
- break;
- case X86II::MRM_F8:
- EmitByte(BaseOpcode, CurByte, OS);
- EmitByte(0xF8, CurByte, OS);
- break;
- case X86II::MRM_F9:
- EmitByte(BaseOpcode, CurByte, OS);
- EmitByte(0xF9, CurByte, OS);
- break;
- case X86II::MRM_D0:
- EmitByte(BaseOpcode, CurByte, OS);
- EmitByte(0xD0, CurByte, OS);
- break;
- case X86II::MRM_D1:
- EmitByte(BaseOpcode, CurByte, OS);
- EmitByte(0xD1, CurByte, OS);
- break;
- }
-
- // If there is a remaining operand, it must be a trailing immediate. Emit it
- // according to the right size for the instruction.
- if (CurOp != NumOps) {
- // The last source register of a 4 operand instruction in AVX is encoded
- // in bits[7:4] of a immediate byte, and bits[3:0] are ignored.
- if ((TSFlags >> X86II::VEXShift) & X86II::VEX_I8IMM) {
- const MCOperand &MO = MI.getOperand(CurOp++);
- bool IsExtReg =
- X86InstrInfo::isX86_64ExtendedReg(MO.getReg());
- unsigned RegNum = (IsExtReg ? (1 << 7) : 0);
- RegNum |= GetX86RegNum(MO) << 4;
- EmitImmediate(MCOperand::CreateImm(RegNum), 1, FK_Data_1, CurByte, OS,
- Fixups);
- } else {
- unsigned FixupKind;
- // FIXME: Is there a better way to know that we need a signed relocation?
- if (MI.getOpcode() == X86::ADD64ri32 ||
- MI.getOpcode() == X86::MOV64ri32 ||
- MI.getOpcode() == X86::MOV64mi32 ||
- MI.getOpcode() == X86::PUSH64i32)
- FixupKind = X86::reloc_signed_4byte;
- else
- FixupKind = getImmFixupKind(TSFlags);
- EmitImmediate(MI.getOperand(CurOp++),
- X86II::getSizeOfImm(TSFlags), MCFixupKind(FixupKind),
- CurByte, OS, Fixups);
- }
- }
-
- if ((TSFlags >> X86II::VEXShift) & X86II::Has3DNow0F0FOpcode)
- EmitByte(X86II::getBaseOpcodeFor(TSFlags), CurByte, OS);
-
-
-#ifndef NDEBUG
- // FIXME: Verify.
- if (/*!Desc.isVariadic() &&*/ CurOp != NumOps) {
- errs() << "Cannot encode all operands of: ";
- MI.dump();
- errs() << '\n';
- abort();
- }
-#endif
-}
OpenPOWER on IntegriCloud