summaryrefslogtreecommitdiffstats
path: root/lib/Target/X86/X86MCCodeEmitter.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'lib/Target/X86/X86MCCodeEmitter.cpp')
-rw-r--r--lib/Target/X86/X86MCCodeEmitter.cpp543
1 files changed, 421 insertions, 122 deletions
diff --git a/lib/Target/X86/X86MCCodeEmitter.cpp b/lib/Target/X86/X86MCCodeEmitter.cpp
index a9681e6..633ddd4 100644
--- a/lib/Target/X86/X86MCCodeEmitter.cpp
+++ b/lib/Target/X86/X86MCCodeEmitter.cpp
@@ -30,7 +30,7 @@ class X86MCCodeEmitter : public MCCodeEmitter {
MCContext &Ctx;
bool Is64BitMode;
public:
- X86MCCodeEmitter(TargetMachine &tm, MCContext &ctx, bool is64Bit)
+ X86MCCodeEmitter(TargetMachine &tm, MCContext &ctx, bool is64Bit)
: TM(tm), TII(*TM.getInstrInfo()), Ctx(ctx) {
Is64BitMode = is64Bit;
}
@@ -38,17 +38,18 @@ public:
~X86MCCodeEmitter() {}
unsigned getNumFixupKinds() const {
- return 4;
+ return 5;
}
const MCFixupKindInfo &getFixupKindInfo(MCFixupKind Kind) const {
const static MCFixupKindInfo Infos[] = {
{ "reloc_pcrel_4byte", 0, 4 * 8, MCFixupKindInfo::FKF_IsPCRel },
{ "reloc_pcrel_1byte", 0, 1 * 8, MCFixupKindInfo::FKF_IsPCRel },
+ { "reloc_pcrel_2byte", 0, 2 * 8, MCFixupKindInfo::FKF_IsPCRel },
{ "reloc_riprel_4byte", 0, 4 * 8, MCFixupKindInfo::FKF_IsPCRel },
{ "reloc_riprel_4byte_movq_load", 0, 4 * 8, MCFixupKindInfo::FKF_IsPCRel }
};
-
+
if (Kind < FirstTargetFixupKind)
return MCCodeEmitter::getFixupKindInfo(Kind);
@@ -56,16 +57,38 @@ public:
"Invalid kind!");
return Infos[Kind - FirstTargetFixupKind];
}
-
+
static unsigned GetX86RegNum(const MCOperand &MO) {
return X86RegisterInfo::getX86RegNum(MO.getReg());
}
-
+
+ // On regular x86, both XMM0-XMM7 and XMM8-XMM15 are encoded in the range
+ // 0-7 and the difference between the 2 groups is given by the REX prefix.
+ // In the VEX prefix, registers are seen sequencially from 0-15 and encoded
+ // in 1's complement form, example:
+ //
+ // ModRM field => XMM9 => 1
+ // VEX.VVVV => XMM9 => ~9
+ //
+ // See table 4-35 of Intel AVX Programming Reference for details.
+ static unsigned char getVEXRegisterEncoding(const MCInst &MI,
+ unsigned OpNum) {
+ unsigned SrcReg = MI.getOperand(OpNum).getReg();
+ unsigned SrcRegNum = GetX86RegNum(MI.getOperand(OpNum));
+ if ((SrcReg >= X86::XMM8 && SrcReg <= X86::XMM15) ||
+ (SrcReg >= X86::YMM8 && SrcReg <= X86::YMM15))
+ SrcRegNum += 8;
+
+ // The registers represented through VEX_VVVV should
+ // be encoded in 1's complement form.
+ return (~SrcRegNum) & 0xf;
+ }
+
void EmitByte(unsigned char C, unsigned &CurByte, raw_ostream &OS) const {
OS << (char)C;
++CurByte;
}
-
+
void EmitConstant(uint64_t Val, unsigned Size, unsigned &CurByte,
raw_ostream &OS) const {
// Output the constant in little endian byte order.
@@ -75,38 +98,49 @@ public:
}
}
- void EmitImmediate(const MCOperand &Disp,
+ void EmitImmediate(const MCOperand &Disp,
unsigned ImmSize, MCFixupKind FixupKind,
unsigned &CurByte, raw_ostream &OS,
SmallVectorImpl<MCFixup> &Fixups,
int ImmOffset = 0) const;
-
+
inline static unsigned char ModRMByte(unsigned Mod, unsigned RegOpcode,
unsigned RM) {
assert(Mod < 4 && RegOpcode < 8 && RM < 8 && "ModRM Fields out of range!");
return RM | (RegOpcode << 3) | (Mod << 6);
}
-
+
void EmitRegModRMByte(const MCOperand &ModRMReg, unsigned RegOpcodeFld,
unsigned &CurByte, raw_ostream &OS) const {
EmitByte(ModRMByte(3, RegOpcodeFld, GetX86RegNum(ModRMReg)), CurByte, OS);
}
-
+
void EmitSIBByte(unsigned SS, unsigned Index, unsigned Base,
unsigned &CurByte, raw_ostream &OS) const {
// SIB byte is in the same format as the ModRMByte.
EmitByte(ModRMByte(SS, Index, Base), CurByte, OS);
}
-
-
+
+
void EmitMemModRMByte(const MCInst &MI, unsigned Op,
- unsigned RegOpcodeField,
- unsigned TSFlags, unsigned &CurByte, raw_ostream &OS,
+ unsigned RegOpcodeField,
+ uint64_t TSFlags, unsigned &CurByte, raw_ostream &OS,
SmallVectorImpl<MCFixup> &Fixups) const;
-
+
void EncodeInstruction(const MCInst &MI, raw_ostream &OS,
SmallVectorImpl<MCFixup> &Fixups) const;
-
+
+ void EmitVEXOpcodePrefix(uint64_t TSFlags, unsigned &CurByte, int MemOperand,
+ const MCInst &MI, const TargetInstrDesc &Desc,
+ raw_ostream &OS) const;
+
+ void EmitSegmentOverridePrefix(uint64_t TSFlags, unsigned &CurByte,
+ int MemOperand, const MCInst &MI,
+ raw_ostream &OS) const;
+
+ void EmitOpcodePrefix(uint64_t TSFlags, unsigned &CurByte, int MemOperand,
+ const MCInst &MI, const TargetInstrDesc &Desc,
+ raw_ostream &OS) const;
};
} // end anonymous namespace
@@ -124,24 +158,23 @@ MCCodeEmitter *llvm::createX86_64MCCodeEmitter(const Target &,
return new X86MCCodeEmitter(TM, Ctx, true);
}
-
-/// isDisp8 - Return true if this signed displacement fits in a 8-bit
-/// sign-extended field.
+/// isDisp8 - Return true if this signed displacement fits in a 8-bit
+/// sign-extended field.
static bool isDisp8(int Value) {
return Value == (signed char)Value;
}
/// getImmFixupKind - Return the appropriate fixup kind to use for an immediate
/// in an instruction with the specified TSFlags.
-static MCFixupKind getImmFixupKind(unsigned TSFlags) {
+static MCFixupKind getImmFixupKind(uint64_t TSFlags) {
unsigned Size = X86II::getSizeOfImm(TSFlags);
bool isPCRel = X86II::isImmPCRel(TSFlags);
-
+
switch (Size) {
default: assert(0 && "Unknown immediate size");
case 1: return isPCRel ? MCFixupKind(X86::reloc_pcrel_1byte) : FK_Data_1;
+ case 2: return isPCRel ? MCFixupKind(X86::reloc_pcrel_2byte) : FK_Data_2;
case 4: return isPCRel ? MCFixupKind(X86::reloc_pcrel_4byte) : FK_Data_4;
- case 2: assert(!isPCRel); return FK_Data_2;
case 8: assert(!isPCRel); return FK_Data_8;
}
}
@@ -162,29 +195,30 @@ EmitImmediate(const MCOperand &DispOp, unsigned Size, MCFixupKind FixupKind,
// If we have an immoffset, add it to the expression.
const MCExpr *Expr = DispOp.getExpr();
-
+
// If the fixup is pc-relative, we need to bias the value to be relative to
// the start of the field, not the end of the field.
if (FixupKind == MCFixupKind(X86::reloc_pcrel_4byte) ||
FixupKind == MCFixupKind(X86::reloc_riprel_4byte) ||
FixupKind == MCFixupKind(X86::reloc_riprel_4byte_movq_load))
ImmOffset -= 4;
+ if (FixupKind == MCFixupKind(X86::reloc_pcrel_2byte))
+ ImmOffset -= 2;
if (FixupKind == MCFixupKind(X86::reloc_pcrel_1byte))
ImmOffset -= 1;
-
+
if (ImmOffset)
Expr = MCBinaryExpr::CreateAdd(Expr, MCConstantExpr::Create(ImmOffset, Ctx),
Ctx);
-
+
// Emit a symbolic constant as a fixup and 4 zeros.
Fixups.push_back(MCFixup::Create(CurByte, Expr, FixupKind));
EmitConstant(0, Size, CurByte, OS);
}
-
void X86MCCodeEmitter::EmitMemModRMByte(const MCInst &MI, unsigned Op,
unsigned RegOpcodeField,
- unsigned TSFlags, unsigned &CurByte,
+ uint64_t TSFlags, unsigned &CurByte,
raw_ostream &OS,
SmallVectorImpl<MCFixup> &Fixups) const{
const MCOperand &Disp = MI.getOperand(Op+3);
@@ -192,43 +226,43 @@ void X86MCCodeEmitter::EmitMemModRMByte(const MCInst &MI, unsigned Op,
const MCOperand &Scale = MI.getOperand(Op+1);
const MCOperand &IndexReg = MI.getOperand(Op+2);
unsigned BaseReg = Base.getReg();
-
+
// Handle %rip relative addressing.
if (BaseReg == X86::RIP) { // [disp32+RIP] in X86-64 mode
- assert(IndexReg.getReg() == 0 && Is64BitMode &&
- "Invalid rip-relative address");
+ assert(Is64BitMode && "Rip-relative addressing requires 64-bit mode");
+ assert(IndexReg.getReg() == 0 && "Invalid rip-relative address");
EmitByte(ModRMByte(0, RegOpcodeField, 5), CurByte, OS);
-
+
unsigned FixupKind = X86::reloc_riprel_4byte;
-
+
// movq loads are handled with a special relocation form which allows the
// linker to eliminate some loads for GOT references which end up in the
// same linkage unit.
if (MI.getOpcode() == X86::MOV64rm ||
MI.getOpcode() == X86::MOV64rm_TC)
FixupKind = X86::reloc_riprel_4byte_movq_load;
-
+
// rip-relative addressing is actually relative to the *next* instruction.
// Since an immediate can follow the mod/rm byte for an instruction, this
// means that we need to bias the immediate field of the instruction with
// the size of the immediate field. If we have this case, add it into the
// expression to emit.
int ImmSize = X86II::hasImm(TSFlags) ? X86II::getSizeOfImm(TSFlags) : 0;
-
+
EmitImmediate(Disp, 4, MCFixupKind(FixupKind),
CurByte, OS, Fixups, -ImmSize);
return;
}
-
+
unsigned BaseRegNo = BaseReg ? GetX86RegNum(Base) : -1U;
-
+
// Determine whether a SIB byte is needed.
- // If no BaseReg, issue a RIP relative instruction only if the MCE can
+ // If no BaseReg, issue a RIP relative instruction only if the MCE can
// resolve addresses on-the-fly, otherwise use SIB (Intel Manual 2A, table
// 2-7) and absolute references.
if (// The SIB byte must be used if there is an index register.
- IndexReg.getReg() == 0 &&
+ IndexReg.getReg() == 0 &&
// The SIB byte must be used if the base is ESP/RSP/R12, all of which
// encode to an R/M value of 4, which indicates that a SIB byte is
// present.
@@ -242,7 +276,7 @@ void X86MCCodeEmitter::EmitMemModRMByte(const MCInst &MI, unsigned Op,
EmitImmediate(Disp, 4, FK_Data_4, CurByte, OS, Fixups);
return;
}
-
+
// If the base is not EBP/ESP and there is no displacement, use simple
// indirect register encoding, this handles addresses like [EAX]. The
// encoding for [EBP] with no displacement means [disp32] so we handle it
@@ -251,24 +285,24 @@ void X86MCCodeEmitter::EmitMemModRMByte(const MCInst &MI, unsigned Op,
EmitByte(ModRMByte(0, RegOpcodeField, BaseRegNo), CurByte, OS);
return;
}
-
+
// Otherwise, if the displacement fits in a byte, encode as [REG+disp8].
if (Disp.isImm() && isDisp8(Disp.getImm())) {
EmitByte(ModRMByte(1, RegOpcodeField, BaseRegNo), CurByte, OS);
EmitImmediate(Disp, 1, FK_Data_1, CurByte, OS, Fixups);
return;
}
-
+
// Otherwise, emit the most general non-SIB encoding: [REG+disp32]
EmitByte(ModRMByte(2, RegOpcodeField, BaseRegNo), CurByte, OS);
EmitImmediate(Disp, 4, FK_Data_4, CurByte, OS, Fixups);
return;
}
-
+
// We need a SIB byte, so start by outputting the ModR/M byte first
assert(IndexReg.getReg() != X86::ESP &&
IndexReg.getReg() != X86::RSP && "Cannot use ESP as index reg!");
-
+
bool ForceDisp32 = false;
bool ForceDisp8 = false;
if (BaseReg == 0) {
@@ -294,13 +328,13 @@ void X86MCCodeEmitter::EmitMemModRMByte(const MCInst &MI, unsigned Op,
// Emit the normal disp32 encoding.
EmitByte(ModRMByte(2, RegOpcodeField, 4), CurByte, OS);
}
-
+
// Calculate what the SS field value should be...
static const unsigned SSTable[] = { ~0, 0, 1, ~0, 2, ~0, ~0, ~0, 3 };
unsigned SS = SSTable[Scale.getImm()];
-
+
if (BaseReg == 0) {
- // Handle the SIB byte for the case where there is no base, see Intel
+ // Handle the SIB byte for the case where there is no base, see Intel
// Manual 2A, table 2-7. The displacement has already been output.
unsigned IndexRegNo;
if (IndexReg.getReg())
@@ -316,7 +350,7 @@ void X86MCCodeEmitter::EmitMemModRMByte(const MCInst &MI, unsigned Op,
IndexRegNo = 4; // For example [ESP+1*<noreg>+4]
EmitSIBByte(SS, IndexRegNo, GetX86RegNum(Base), CurByte, OS);
}
-
+
// Do we need to output a displacement?
if (ForceDisp8)
EmitImmediate(Disp, 1, FK_Data_1, CurByte, OS, Fixups);
@@ -324,26 +358,216 @@ void X86MCCodeEmitter::EmitMemModRMByte(const MCInst &MI, unsigned Op,
EmitImmediate(Disp, 4, FK_Data_4, CurByte, OS, Fixups);
}
+/// EmitVEXOpcodePrefix - AVX instructions are encoded using a opcode prefix
+/// called VEX.
+void X86MCCodeEmitter::EmitVEXOpcodePrefix(uint64_t TSFlags, unsigned &CurByte,
+ int MemOperand, const MCInst &MI,
+ const TargetInstrDesc &Desc,
+ raw_ostream &OS) const {
+ bool HasVEX_4V = false;
+ if (TSFlags & X86II::VEX_4V)
+ HasVEX_4V = true;
+
+ // VEX_R: opcode externsion equivalent to REX.R in
+ // 1's complement (inverted) form
+ //
+ // 1: Same as REX_R=0 (must be 1 in 32-bit mode)
+ // 0: Same as REX_R=1 (64 bit mode only)
+ //
+ unsigned char VEX_R = 0x1;
+
+ // VEX_X: equivalent to REX.X, only used when a
+ // register is used for index in SIB Byte.
+ //
+ // 1: Same as REX.X=0 (must be 1 in 32-bit mode)
+ // 0: Same as REX.X=1 (64-bit mode only)
+ unsigned char VEX_X = 0x1;
+
+ // VEX_B:
+ //
+ // 1: Same as REX_B=0 (ignored in 32-bit mode)
+ // 0: Same as REX_B=1 (64 bit mode only)
+ //
+ unsigned char VEX_B = 0x1;
+
+ // VEX_W: opcode specific (use like REX.W, or used for
+ // opcode extension, or ignored, depending on the opcode byte)
+ unsigned char VEX_W = 0;
+
+ // VEX_5M (VEX m-mmmmm field):
+ //
+ // 0b00000: Reserved for future use
+ // 0b00001: implied 0F leading opcode
+ // 0b00010: implied 0F 38 leading opcode bytes
+ // 0b00011: implied 0F 3A leading opcode bytes
+ // 0b00100-0b11111: Reserved for future use
+ //
+ unsigned char VEX_5M = 0x1;
+
+ // VEX_4V (VEX vvvv field): a register specifier
+ // (in 1's complement form) or 1111 if unused.
+ unsigned char VEX_4V = 0xf;
+
+ // VEX_L (Vector Length):
+ //
+ // 0: scalar or 128-bit vector
+ // 1: 256-bit vector
+ //
+ unsigned char VEX_L = 0;
+
+ // VEX_PP: opcode extension providing equivalent
+ // functionality of a SIMD prefix
+ //
+ // 0b00: None
+ // 0b01: 66
+ // 0b10: F3
+ // 0b11: F2
+ //
+ unsigned char VEX_PP = 0;
+
+ // Encode the operand size opcode prefix as needed.
+ if (TSFlags & X86II::OpSize)
+ VEX_PP = 0x01;
+
+ if (TSFlags & X86II::VEX_W)
+ VEX_W = 1;
+
+ switch (TSFlags & X86II::Op0Mask) {
+ default: assert(0 && "Invalid prefix!");
+ case X86II::T8: // 0F 38
+ VEX_5M = 0x2;
+ break;
+ case X86II::TA: // 0F 3A
+ VEX_5M = 0x3;
+ break;
+ case X86II::TF: // F2 0F 38
+ VEX_PP = 0x3;
+ VEX_5M = 0x2;
+ break;
+ case X86II::XS: // F3 0F
+ VEX_PP = 0x2;
+ break;
+ case X86II::XD: // F2 0F
+ VEX_PP = 0x3;
+ break;
+ case X86II::TB: // Bypass: Not used by VEX
+ case 0:
+ break; // No prefix!
+ }
+
+ // Set the vector length to 256-bit if YMM0-YMM15 is used
+ for (unsigned i = 0; i != MI.getNumOperands(); ++i) {
+ if (!MI.getOperand(i).isReg())
+ continue;
+ unsigned SrcReg = MI.getOperand(i).getReg();
+ if (SrcReg >= X86::YMM0 && SrcReg <= X86::YMM15)
+ VEX_L = 1;
+ }
+
+ unsigned NumOps = MI.getNumOperands();
+ unsigned CurOp = 0;
+
+ switch (TSFlags & X86II::FormMask) {
+ case X86II::MRMInitReg: assert(0 && "FIXME: Remove this!");
+ case X86II::MRM0m: case X86II::MRM1m:
+ case X86II::MRM2m: case X86II::MRM3m:
+ case X86II::MRM4m: case X86II::MRM5m:
+ case X86II::MRM6m: case X86II::MRM7m:
+ case X86II::MRMDestMem:
+ NumOps = CurOp = X86::AddrNumOperands;
+ case X86II::MRMSrcMem:
+ case X86II::MRMSrcReg:
+ if (MI.getNumOperands() > CurOp && MI.getOperand(CurOp).isReg() &&
+ X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
+ VEX_R = 0x0;
+
+ // CurOp and NumOps are equal when VEX_R represents a register used
+ // to index a memory destination (which is the last operand)
+ CurOp = (CurOp == NumOps) ? 0 : CurOp+1;
+
+ if (HasVEX_4V) {
+ VEX_4V = getVEXRegisterEncoding(MI, CurOp);
+ CurOp++;
+ }
+
+ // If the last register should be encoded in the immediate field
+ // do not use any bit from VEX prefix to this register, ignore it
+ if (TSFlags & X86II::VEX_I8IMM)
+ NumOps--;
+
+ for (; CurOp != NumOps; ++CurOp) {
+ const MCOperand &MO = MI.getOperand(CurOp);
+ if (MO.isReg() && X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
+ VEX_B = 0x0;
+ if (!VEX_B && MO.isReg() &&
+ ((TSFlags & X86II::FormMask) == X86II::MRMSrcMem) &&
+ X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
+ VEX_X = 0x0;
+ }
+ break;
+ default: // MRMDestReg, MRM0r-MRM7r
+ if (MI.getOperand(CurOp).isReg() &&
+ X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
+ VEX_B = 0;
+
+ if (HasVEX_4V)
+ VEX_4V = getVEXRegisterEncoding(MI, CurOp);
+
+ CurOp++;
+ for (; CurOp != NumOps; ++CurOp) {
+ const MCOperand &MO = MI.getOperand(CurOp);
+ if (MO.isReg() && !HasVEX_4V &&
+ X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
+ VEX_R = 0x0;
+ }
+ break;
+ assert(0 && "Not implemented!");
+ }
+
+ // Emit segment override opcode prefix as needed.
+ EmitSegmentOverridePrefix(TSFlags, CurByte, MemOperand, MI, OS);
+
+ // VEX opcode prefix can have 2 or 3 bytes
+ //
+ // 3 bytes:
+ // +-----+ +--------------+ +-------------------+
+ // | C4h | | RXB | m-mmmm | | W | vvvv | L | pp |
+ // +-----+ +--------------+ +-------------------+
+ // 2 bytes:
+ // +-----+ +-------------------+
+ // | C5h | | R | vvvv | L | pp |
+ // +-----+ +-------------------+
+ //
+ unsigned char LastByte = VEX_PP | (VEX_L << 2) | (VEX_4V << 3);
+
+ if (VEX_B && VEX_X && !VEX_W && (VEX_5M == 1)) { // 2 byte VEX prefix
+ EmitByte(0xC5, CurByte, OS);
+ EmitByte(LastByte | (VEX_R << 7), CurByte, OS);
+ return;
+ }
+
+ // 3 byte VEX prefix
+ EmitByte(0xC4, CurByte, OS);
+ EmitByte(VEX_R << 7 | VEX_X << 6 | VEX_B << 5 | VEX_5M, CurByte, OS);
+ EmitByte(LastByte | (VEX_W << 7), CurByte, OS);
+}
+
/// DetermineREXPrefix - Determine if the MCInst has to be encoded with a X86-64
/// REX prefix which specifies 1) 64-bit instructions, 2) non-default operand
/// size, and 3) use of X86-64 extended registers.
-static unsigned DetermineREXPrefix(const MCInst &MI, unsigned TSFlags,
+static unsigned DetermineREXPrefix(const MCInst &MI, uint64_t TSFlags,
const TargetInstrDesc &Desc) {
- // Pseudo instructions never have a rex byte.
- if ((TSFlags & X86II::FormMask) == X86II::Pseudo)
- return 0;
-
unsigned REX = 0;
if (TSFlags & X86II::REX_W)
- REX |= 1 << 3;
-
+ REX |= 1 << 3; // set REX.W
+
if (MI.getNumOperands() == 0) return REX;
-
+
unsigned NumOps = MI.getNumOperands();
// FIXME: MCInst should explicitize the two-addrness.
bool isTwoAddr = NumOps > 1 &&
Desc.getOperandConstraint(1, TOI::TIED_TO) != -1;
-
+
// If it accesses SPL, BPL, SIL, or DIL, then it requires a 0x40 REX prefix.
unsigned i = isTwoAddr ? 1 : 0;
for (; i != NumOps; ++i) {
@@ -353,34 +577,34 @@ static unsigned DetermineREXPrefix(const MCInst &MI, unsigned TSFlags,
if (!X86InstrInfo::isX86_64NonExtLowByteReg(Reg)) continue;
// FIXME: The caller of DetermineREXPrefix slaps this prefix onto anything
// that returns non-zero.
- REX |= 0x40;
+ REX |= 0x40; // REX fixed encoding prefix
break;
}
-
+
switch (TSFlags & X86II::FormMask) {
case X86II::MRMInitReg: assert(0 && "FIXME: Remove this!");
case X86II::MRMSrcReg:
if (MI.getOperand(0).isReg() &&
X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
- REX |= 1 << 2;
+ REX |= 1 << 2; // set REX.R
i = isTwoAddr ? 2 : 1;
for (; i != NumOps; ++i) {
const MCOperand &MO = MI.getOperand(i);
if (MO.isReg() && X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
- REX |= 1 << 0;
+ REX |= 1 << 0; // set REX.B
}
break;
case X86II::MRMSrcMem: {
if (MI.getOperand(0).isReg() &&
X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
- REX |= 1 << 2;
+ REX |= 1 << 2; // set REX.R
unsigned Bit = 0;
i = isTwoAddr ? 2 : 1;
for (; i != NumOps; ++i) {
const MCOperand &MO = MI.getOperand(i);
if (MO.isReg()) {
if (X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
- REX |= 1 << Bit;
+ REX |= 1 << Bit; // set REX.B (Bit=0) and REX.X (Bit=1)
Bit++;
}
}
@@ -391,17 +615,17 @@ static unsigned DetermineREXPrefix(const MCInst &MI, unsigned TSFlags,
case X86II::MRM4m: case X86II::MRM5m:
case X86II::MRM6m: case X86II::MRM7m:
case X86II::MRMDestMem: {
- unsigned e = (isTwoAddr ? X86AddrNumOperands+1 : X86AddrNumOperands);
+ unsigned e = (isTwoAddr ? X86::AddrNumOperands+1 : X86::AddrNumOperands);
i = isTwoAddr ? 1 : 0;
if (NumOps > e && MI.getOperand(e).isReg() &&
X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(e).getReg()))
- REX |= 1 << 2;
+ REX |= 1 << 2; // set REX.R
unsigned Bit = 0;
for (; i != e; ++i) {
const MCOperand &MO = MI.getOperand(i);
if (MO.isReg()) {
if (X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
- REX |= 1 << Bit;
+ REX |= 1 << Bit; // REX.B (Bit=0) and REX.X (Bit=1)
Bit++;
}
}
@@ -410,39 +634,40 @@ static unsigned DetermineREXPrefix(const MCInst &MI, unsigned TSFlags,
default:
if (MI.getOperand(0).isReg() &&
X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
- REX |= 1 << 0;
+ REX |= 1 << 0; // set REX.B
i = isTwoAddr ? 2 : 1;
for (unsigned e = NumOps; i != e; ++i) {
const MCOperand &MO = MI.getOperand(i);
if (MO.isReg() && X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
- REX |= 1 << 2;
+ REX |= 1 << 2; // set REX.R
}
break;
}
return REX;
}
-void X86MCCodeEmitter::
-EncodeInstruction(const MCInst &MI, raw_ostream &OS,
- SmallVectorImpl<MCFixup> &Fixups) const {
- unsigned Opcode = MI.getOpcode();
- const TargetInstrDesc &Desc = TII.get(Opcode);
- unsigned TSFlags = Desc.TSFlags;
-
- // Keep track of the current byte being emitted.
- unsigned CurByte = 0;
-
- // FIXME: We should emit the prefixes in exactly the same order as GAS does,
- // in order to provide diffability.
-
- // Emit the lock opcode prefix as needed.
- if (TSFlags & X86II::LOCK)
- EmitByte(0xF0, CurByte, OS);
-
- // Emit segment override opcode prefix as needed.
+/// EmitSegmentOverridePrefix - Emit segment override opcode prefix as needed
+void X86MCCodeEmitter::EmitSegmentOverridePrefix(uint64_t TSFlags,
+ unsigned &CurByte, int MemOperand,
+ const MCInst &MI,
+ raw_ostream &OS) const {
switch (TSFlags & X86II::SegOvrMask) {
default: assert(0 && "Invalid segment!");
- case 0: break; // No segment override!
+ case 0:
+ // No segment override, check for explicit one on memory operand.
+ if (MemOperand != -1) { // If the instruction has a memory operand.
+ switch (MI.getOperand(MemOperand+X86::AddrSegmentReg).getReg()) {
+ default: assert(0 && "Unknown segment register!");
+ case 0: break;
+ case X86::CS: EmitByte(0x2E, CurByte, OS); break;
+ case X86::SS: EmitByte(0x36, CurByte, OS); break;
+ case X86::DS: EmitByte(0x3E, CurByte, OS); break;
+ case X86::ES: EmitByte(0x26, CurByte, OS); break;
+ case X86::FS: EmitByte(0x64, CurByte, OS); break;
+ case X86::GS: EmitByte(0x65, CurByte, OS); break;
+ }
+ }
+ break;
case X86II::FS:
EmitByte(0x64, CurByte, OS);
break;
@@ -450,19 +675,36 @@ EncodeInstruction(const MCInst &MI, raw_ostream &OS,
EmitByte(0x65, CurByte, OS);
break;
}
-
+}
+
+/// EmitOpcodePrefix - Emit all instruction prefixes prior to the opcode.
+///
+/// MemOperand is the operand # of the start of a memory operand if present. If
+/// Not present, it is -1.
+void X86MCCodeEmitter::EmitOpcodePrefix(uint64_t TSFlags, unsigned &CurByte,
+ int MemOperand, const MCInst &MI,
+ const TargetInstrDesc &Desc,
+ raw_ostream &OS) const {
+
+ // Emit the lock opcode prefix as needed.
+ if (TSFlags & X86II::LOCK)
+ EmitByte(0xF0, CurByte, OS);
+
+ // Emit segment override opcode prefix as needed.
+ EmitSegmentOverridePrefix(TSFlags, CurByte, MemOperand, MI, OS);
+
// Emit the repeat opcode prefix as needed.
if ((TSFlags & X86II::Op0Mask) == X86II::REP)
EmitByte(0xF3, CurByte, OS);
-
+
// Emit the operand size opcode prefix as needed.
if (TSFlags & X86II::OpSize)
EmitByte(0x66, CurByte, OS);
-
+
// Emit the address size opcode prefix as needed.
if (TSFlags & X86II::AdSize)
EmitByte(0x67, CurByte, OS);
-
+
bool Need0FPrefix = false;
switch (TSFlags & X86II::Op0Mask) {
default: assert(0 && "Invalid prefix!");
@@ -494,18 +736,18 @@ EncodeInstruction(const MCInst &MI, raw_ostream &OS,
case X86II::DE: EmitByte(0xDE, CurByte, OS); break;
case X86II::DF: EmitByte(0xDF, CurByte, OS); break;
}
-
+
// Handle REX prefix.
// FIXME: Can this come before F2 etc to simplify emission?
if (Is64BitMode) {
if (unsigned REX = DetermineREXPrefix(MI, TSFlags, Desc))
EmitByte(0x40 | REX, CurByte, OS);
}
-
+
// 0x0F escape code must be emitted just before the opcode.
if (Need0FPrefix)
EmitByte(0x0F, CurByte, OS);
-
+
// FIXME: Pull this up into previous switch if REX can be moved earlier.
switch (TSFlags & X86II::Op0Mask) {
case X86II::TF: // F2 0F 38
@@ -516,8 +758,21 @@ EncodeInstruction(const MCInst &MI, raw_ostream &OS,
EmitByte(0x3A, CurByte, OS);
break;
}
-
+}
+
+void X86MCCodeEmitter::
+EncodeInstruction(const MCInst &MI, raw_ostream &OS,
+ SmallVectorImpl<MCFixup> &Fixups) const {
+ unsigned Opcode = MI.getOpcode();
+ const TargetInstrDesc &Desc = TII.get(Opcode);
+ uint64_t TSFlags = Desc.TSFlags;
+
+ // Pseudo instructions don't get encoded.
+ if ((TSFlags & X86II::FormMask) == X86II::Pseudo)
+ return;
+
// If this is a two-address instruction, skip one of the register operands.
+ // FIXME: This should be handled during MCInst lowering.
unsigned NumOps = Desc.getNumOperands();
unsigned CurOp = 0;
if (NumOps > 1 && Desc.getOperandConstraint(1, TOI::TIED_TO) != -1)
@@ -525,56 +780,85 @@ EncodeInstruction(const MCInst &MI, raw_ostream &OS,
else if (NumOps > 2 && Desc.getOperandConstraint(NumOps-1, TOI::TIED_TO)== 0)
// Skip the last source operand that is tied_to the dest reg. e.g. LXADD32
--NumOps;
-
+
+ // Keep track of the current byte being emitted.
+ unsigned CurByte = 0;
+
+ // Is this instruction encoded using the AVX VEX prefix?
+ bool HasVEXPrefix = false;
+
+ // It uses the VEX.VVVV field?
+ bool HasVEX_4V = false;
+
+ if (TSFlags & X86II::VEX)
+ HasVEXPrefix = true;
+ if (TSFlags & X86II::VEX_4V)
+ HasVEX_4V = true;
+
+ // Determine where the memory operand starts, if present.
+ int MemoryOperand = X86II::getMemoryOperandNo(TSFlags);
+ if (MemoryOperand != -1) MemoryOperand += CurOp;
+
+ if (!HasVEXPrefix)
+ EmitOpcodePrefix(TSFlags, CurByte, MemoryOperand, MI, Desc, OS);
+ else
+ EmitVEXOpcodePrefix(TSFlags, CurByte, MemoryOperand, MI, Desc, OS);
+
unsigned char BaseOpcode = X86II::getBaseOpcodeFor(TSFlags);
+ unsigned SrcRegNum = 0;
switch (TSFlags & X86II::FormMask) {
case X86II::MRMInitReg:
assert(0 && "FIXME: Remove this form when the JIT moves to MCCodeEmitter!");
default: errs() << "FORM: " << (TSFlags & X86II::FormMask) << "\n";
assert(0 && "Unknown FormMask value in X86MCCodeEmitter!");
- case X86II::Pseudo: return; // Pseudo instructions encode to nothing.
+ case X86II::Pseudo:
+ assert(0 && "Pseudo instruction shouldn't be emitted");
case X86II::RawFrm:
EmitByte(BaseOpcode, CurByte, OS);
break;
-
+
case X86II::AddRegFrm:
EmitByte(BaseOpcode + GetX86RegNum(MI.getOperand(CurOp++)), CurByte, OS);
break;
-
+
case X86II::MRMDestReg:
EmitByte(BaseOpcode, CurByte, OS);
EmitRegModRMByte(MI.getOperand(CurOp),
GetX86RegNum(MI.getOperand(CurOp+1)), CurByte, OS);
CurOp += 2;
break;
-
+
case X86II::MRMDestMem:
EmitByte(BaseOpcode, CurByte, OS);
EmitMemModRMByte(MI, CurOp,
- GetX86RegNum(MI.getOperand(CurOp + X86AddrNumOperands)),
+ GetX86RegNum(MI.getOperand(CurOp + X86::AddrNumOperands)),
TSFlags, CurByte, OS, Fixups);
- CurOp += X86AddrNumOperands + 1;
+ CurOp += X86::AddrNumOperands + 1;
break;
-
+
case X86II::MRMSrcReg:
EmitByte(BaseOpcode, CurByte, OS);
- EmitRegModRMByte(MI.getOperand(CurOp+1), GetX86RegNum(MI.getOperand(CurOp)),
- CurByte, OS);
- CurOp += 2;
+ SrcRegNum = CurOp + 1;
+
+ if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV)
+ SrcRegNum++;
+
+ EmitRegModRMByte(MI.getOperand(SrcRegNum),
+ GetX86RegNum(MI.getOperand(CurOp)), CurByte, OS);
+ CurOp = SrcRegNum + 1;
break;
-
+
case X86II::MRMSrcMem: {
+ int AddrOperands = X86::AddrNumOperands;
+ unsigned FirstMemOp = CurOp+1;
+ if (HasVEX_4V) {
+ ++AddrOperands;
+ ++FirstMemOp; // Skip the register source (which is encoded in VEX_VVVV).
+ }
+
EmitByte(BaseOpcode, CurByte, OS);
- // FIXME: Maybe lea should have its own form? This is a horrible hack.
- int AddrOperands;
- if (Opcode == X86::LEA64r || Opcode == X86::LEA64_32r ||
- Opcode == X86::LEA16r || Opcode == X86::LEA32r)
- AddrOperands = X86AddrNumOperands - 1; // No segment register
- else
- AddrOperands = X86AddrNumOperands;
-
- EmitMemModRMByte(MI, CurOp+1, GetX86RegNum(MI.getOperand(CurOp)),
+ EmitMemModRMByte(MI, FirstMemOp, GetX86RegNum(MI.getOperand(CurOp)),
TSFlags, CurByte, OS, Fixups);
CurOp += AddrOperands + 1;
break;
@@ -584,6 +868,8 @@ EncodeInstruction(const MCInst &MI, raw_ostream &OS,
case X86II::MRM2r: case X86II::MRM3r:
case X86II::MRM4r: case X86II::MRM5r:
case X86II::MRM6r: case X86II::MRM7r:
+ if (HasVEX_4V) // Skip the register dst (which is encoded in VEX_VVVV).
+ CurOp++;
EmitByte(BaseOpcode, CurByte, OS);
EmitRegModRMByte(MI.getOperand(CurOp++),
(TSFlags & X86II::FormMask)-X86II::MRM0r,
@@ -596,7 +882,7 @@ EncodeInstruction(const MCInst &MI, raw_ostream &OS,
EmitByte(BaseOpcode, CurByte, OS);
EmitMemModRMByte(MI, CurOp, (TSFlags & X86II::FormMask)-X86II::MRM0m,
TSFlags, CurByte, OS, Fixups);
- CurOp += X86AddrNumOperands;
+ CurOp += X86::AddrNumOperands;
break;
case X86II::MRM_C1:
EmitByte(BaseOpcode, CurByte, OS);
@@ -639,14 +925,27 @@ EncodeInstruction(const MCInst &MI, raw_ostream &OS,
EmitByte(0xF9, CurByte, OS);
break;
}
-
+
// If there is a remaining operand, it must be a trailing immediate. Emit it
// according to the right size for the instruction.
- if (CurOp != NumOps)
- EmitImmediate(MI.getOperand(CurOp++),
- X86II::getSizeOfImm(TSFlags), getImmFixupKind(TSFlags),
- CurByte, OS, Fixups);
-
+ if (CurOp != NumOps) {
+ // The last source register of a 4 operand instruction in AVX is encoded
+ // in bits[7:4] of a immediate byte, and bits[3:0] are ignored.
+ if (TSFlags & X86II::VEX_I8IMM) {
+ const MCOperand &MO = MI.getOperand(CurOp++);
+ bool IsExtReg =
+ X86InstrInfo::isX86_64ExtendedReg(MO.getReg());
+ unsigned RegNum = (IsExtReg ? (1 << 7) : 0);
+ RegNum |= GetX86RegNum(MO) << 4;
+ EmitImmediate(MCOperand::CreateImm(RegNum), 1, FK_Data_1, CurByte, OS,
+ Fixups);
+ } else
+ EmitImmediate(MI.getOperand(CurOp++),
+ X86II::getSizeOfImm(TSFlags), getImmFixupKind(TSFlags),
+ CurByte, OS, Fixups);
+ }
+
+
#ifndef NDEBUG
// FIXME: Verify.
if (/*!Desc.isVariadic() &&*/ CurOp != NumOps) {
OpenPOWER on IntegriCloud