summaryrefslogtreecommitdiffstats
path: root/lib/Target/X86/X86InstrInfo.h
diff options
context:
space:
mode:
Diffstat (limited to 'lib/Target/X86/X86InstrInfo.h')
-rw-r--r--lib/Target/X86/X86InstrInfo.h461
1 files changed, 461 insertions, 0 deletions
diff --git a/lib/Target/X86/X86InstrInfo.h b/lib/Target/X86/X86InstrInfo.h
new file mode 100644
index 0000000..e09769e
--- /dev/null
+++ b/lib/Target/X86/X86InstrInfo.h
@@ -0,0 +1,461 @@
+//===- X86InstrInfo.h - X86 Instruction Information ------------*- C++ -*- ===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the X86 implementation of the TargetInstrInfo class.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef X86INSTRUCTIONINFO_H
+#define X86INSTRUCTIONINFO_H
+
+#include "llvm/Target/TargetInstrInfo.h"
+#include "X86.h"
+#include "X86RegisterInfo.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/Target/TargetRegisterInfo.h"
+
+namespace llvm {
+ class X86RegisterInfo;
+ class X86TargetMachine;
+
+namespace X86 {
+ // X86 specific condition code. These correspond to X86_*_COND in
+ // X86InstrInfo.td. They must be kept in synch.
+ enum CondCode {
+ COND_A = 0,
+ COND_AE = 1,
+ COND_B = 2,
+ COND_BE = 3,
+ COND_E = 4,
+ COND_G = 5,
+ COND_GE = 6,
+ COND_L = 7,
+ COND_LE = 8,
+ COND_NE = 9,
+ COND_NO = 10,
+ COND_NP = 11,
+ COND_NS = 12,
+ COND_O = 13,
+ COND_P = 14,
+ COND_S = 15,
+
+ // Artificial condition codes. These are used by AnalyzeBranch
+ // to indicate a block terminated with two conditional branches to
+ // the same location. This occurs in code using FCMP_OEQ or FCMP_UNE,
+ // which can't be represented on x86 with a single condition. These
+ // are never used in MachineInstrs.
+ COND_NE_OR_P,
+ COND_NP_OR_E,
+
+ COND_INVALID
+ };
+
+ // Turn condition code into conditional branch opcode.
+ unsigned GetCondBranchFromCond(CondCode CC);
+
+ /// GetOppositeBranchCondition - Return the inverse of the specified cond,
+ /// e.g. turning COND_E to COND_NE.
+ CondCode GetOppositeBranchCondition(X86::CondCode CC);
+
+}
+
+/// X86II - This namespace holds all of the target specific flags that
+/// instruction info tracks.
+///
+namespace X86II {
+ enum {
+ //===------------------------------------------------------------------===//
+ // Instruction types. These are the standard/most common forms for X86
+ // instructions.
+ //
+
+ // PseudoFrm - This represents an instruction that is a pseudo instruction
+ // or one that has not been implemented yet. It is illegal to code generate
+ // it, but tolerated for intermediate implementation stages.
+ Pseudo = 0,
+
+ /// Raw - This form is for instructions that don't have any operands, so
+ /// they are just a fixed opcode value, like 'leave'.
+ RawFrm = 1,
+
+ /// AddRegFrm - This form is used for instructions like 'push r32' that have
+ /// their one register operand added to their opcode.
+ AddRegFrm = 2,
+
+ /// MRMDestReg - This form is used for instructions that use the Mod/RM byte
+ /// to specify a destination, which in this case is a register.
+ ///
+ MRMDestReg = 3,
+
+ /// MRMDestMem - This form is used for instructions that use the Mod/RM byte
+ /// to specify a destination, which in this case is memory.
+ ///
+ MRMDestMem = 4,
+
+ /// MRMSrcReg - This form is used for instructions that use the Mod/RM byte
+ /// to specify a source, which in this case is a register.
+ ///
+ MRMSrcReg = 5,
+
+ /// MRMSrcMem - This form is used for instructions that use the Mod/RM byte
+ /// to specify a source, which in this case is memory.
+ ///
+ MRMSrcMem = 6,
+
+ /// MRM[0-7][rm] - These forms are used to represent instructions that use
+ /// a Mod/RM byte, and use the middle field to hold extended opcode
+ /// information. In the intel manual these are represented as /0, /1, ...
+ ///
+
+ // First, instructions that operate on a register r/m operand...
+ MRM0r = 16, MRM1r = 17, MRM2r = 18, MRM3r = 19, // Format /0 /1 /2 /3
+ MRM4r = 20, MRM5r = 21, MRM6r = 22, MRM7r = 23, // Format /4 /5 /6 /7
+
+ // Next, instructions that operate on a memory r/m operand...
+ MRM0m = 24, MRM1m = 25, MRM2m = 26, MRM3m = 27, // Format /0 /1 /2 /3
+ MRM4m = 28, MRM5m = 29, MRM6m = 30, MRM7m = 31, // Format /4 /5 /6 /7
+
+ // MRMInitReg - This form is used for instructions whose source and
+ // destinations are the same register.
+ MRMInitReg = 32,
+
+ FormMask = 63,
+
+ //===------------------------------------------------------------------===//
+ // Actual flags...
+
+ // OpSize - Set if this instruction requires an operand size prefix (0x66),
+ // which most often indicates that the instruction operates on 16 bit data
+ // instead of 32 bit data.
+ OpSize = 1 << 6,
+
+ // AsSize - Set if this instruction requires an operand size prefix (0x67),
+ // which most often indicates that the instruction address 16 bit address
+ // instead of 32 bit address (or 32 bit address in 64 bit mode).
+ AdSize = 1 << 7,
+
+ //===------------------------------------------------------------------===//
+ // Op0Mask - There are several prefix bytes that are used to form two byte
+ // opcodes. These are currently 0x0F, 0xF3, and 0xD8-0xDF. This mask is
+ // used to obtain the setting of this field. If no bits in this field is
+ // set, there is no prefix byte for obtaining a multibyte opcode.
+ //
+ Op0Shift = 8,
+ Op0Mask = 0xF << Op0Shift,
+
+ // TB - TwoByte - Set if this instruction has a two byte opcode, which
+ // starts with a 0x0F byte before the real opcode.
+ TB = 1 << Op0Shift,
+
+ // REP - The 0xF3 prefix byte indicating repetition of the following
+ // instruction.
+ REP = 2 << Op0Shift,
+
+ // D8-DF - These escape opcodes are used by the floating point unit. These
+ // values must remain sequential.
+ D8 = 3 << Op0Shift, D9 = 4 << Op0Shift,
+ DA = 5 << Op0Shift, DB = 6 << Op0Shift,
+ DC = 7 << Op0Shift, DD = 8 << Op0Shift,
+ DE = 9 << Op0Shift, DF = 10 << Op0Shift,
+
+ // XS, XD - These prefix codes are for single and double precision scalar
+ // floating point operations performed in the SSE registers.
+ XD = 11 << Op0Shift, XS = 12 << Op0Shift,
+
+ // T8, TA - Prefix after the 0x0F prefix.
+ T8 = 13 << Op0Shift, TA = 14 << Op0Shift,
+
+ //===------------------------------------------------------------------===//
+ // REX_W - REX prefixes are instruction prefixes used in 64-bit mode.
+ // They are used to specify GPRs and SSE registers, 64-bit operand size,
+ // etc. We only cares about REX.W and REX.R bits and only the former is
+ // statically determined.
+ //
+ REXShift = 12,
+ REX_W = 1 << REXShift,
+
+ //===------------------------------------------------------------------===//
+ // This three-bit field describes the size of an immediate operand. Zero is
+ // unused so that we can tell if we forgot to set a value.
+ ImmShift = 13,
+ ImmMask = 7 << ImmShift,
+ Imm8 = 1 << ImmShift,
+ Imm16 = 2 << ImmShift,
+ Imm32 = 3 << ImmShift,
+ Imm64 = 4 << ImmShift,
+
+ //===------------------------------------------------------------------===//
+ // FP Instruction Classification... Zero is non-fp instruction.
+
+ // FPTypeMask - Mask for all of the FP types...
+ FPTypeShift = 16,
+ FPTypeMask = 7 << FPTypeShift,
+
+ // NotFP - The default, set for instructions that do not use FP registers.
+ NotFP = 0 << FPTypeShift,
+
+ // ZeroArgFP - 0 arg FP instruction which implicitly pushes ST(0), f.e. fld0
+ ZeroArgFP = 1 << FPTypeShift,
+
+ // OneArgFP - 1 arg FP instructions which implicitly read ST(0), such as fst
+ OneArgFP = 2 << FPTypeShift,
+
+ // OneArgFPRW - 1 arg FP instruction which implicitly read ST(0) and write a
+ // result back to ST(0). For example, fcos, fsqrt, etc.
+ //
+ OneArgFPRW = 3 << FPTypeShift,
+
+ // TwoArgFP - 2 arg FP instructions which implicitly read ST(0), and an
+ // explicit argument, storing the result to either ST(0) or the implicit
+ // argument. For example: fadd, fsub, fmul, etc...
+ TwoArgFP = 4 << FPTypeShift,
+
+ // CompareFP - 2 arg FP instructions which implicitly read ST(0) and an
+ // explicit argument, but have no destination. Example: fucom, fucomi, ...
+ CompareFP = 5 << FPTypeShift,
+
+ // CondMovFP - "2 operand" floating point conditional move instructions.
+ CondMovFP = 6 << FPTypeShift,
+
+ // SpecialFP - Special instruction forms. Dispatch by opcode explicitly.
+ SpecialFP = 7 << FPTypeShift,
+
+ // Lock prefix
+ LOCKShift = 19,
+ LOCK = 1 << LOCKShift,
+
+ // Segment override prefixes. Currently we just need ability to address
+ // stuff in gs and fs segments.
+ SegOvrShift = 20,
+ SegOvrMask = 3 << SegOvrShift,
+ FS = 1 << SegOvrShift,
+ GS = 2 << SegOvrShift,
+
+ // Bits 22 -> 23 are unused
+ OpcodeShift = 24,
+ OpcodeMask = 0xFF << OpcodeShift
+ };
+}
+
+const int X86AddrNumOperands = 5;
+
+inline static bool isScale(const MachineOperand &MO) {
+ return MO.isImm() &&
+ (MO.getImm() == 1 || MO.getImm() == 2 ||
+ MO.getImm() == 4 || MO.getImm() == 8);
+}
+
+inline static bool isLeaMem(const MachineInstr *MI, unsigned Op) {
+ if (MI->getOperand(Op).isFI()) return true;
+ return Op+4 <= MI->getNumOperands() &&
+ MI->getOperand(Op ).isReg() && isScale(MI->getOperand(Op+1)) &&
+ MI->getOperand(Op+2).isReg() &&
+ (MI->getOperand(Op+3).isImm() ||
+ MI->getOperand(Op+3).isGlobal() ||
+ MI->getOperand(Op+3).isCPI() ||
+ MI->getOperand(Op+3).isJTI());
+}
+
+inline static bool isMem(const MachineInstr *MI, unsigned Op) {
+ if (MI->getOperand(Op).isFI()) return true;
+ return Op+5 <= MI->getNumOperands() &&
+ MI->getOperand(Op+4).isReg() &&
+ isLeaMem(MI, Op);
+}
+
+class X86InstrInfo : public TargetInstrInfoImpl {
+ X86TargetMachine &TM;
+ const X86RegisterInfo RI;
+
+ /// RegOp2MemOpTable2Addr, RegOp2MemOpTable0, RegOp2MemOpTable1,
+ /// RegOp2MemOpTable2 - Load / store folding opcode maps.
+ ///
+ DenseMap<unsigned*, unsigned> RegOp2MemOpTable2Addr;
+ DenseMap<unsigned*, unsigned> RegOp2MemOpTable0;
+ DenseMap<unsigned*, unsigned> RegOp2MemOpTable1;
+ DenseMap<unsigned*, unsigned> RegOp2MemOpTable2;
+
+ /// MemOp2RegOpTable - Load / store unfolding opcode map.
+ ///
+ DenseMap<unsigned*, std::pair<unsigned, unsigned> > MemOp2RegOpTable;
+
+public:
+ explicit X86InstrInfo(X86TargetMachine &tm);
+
+ /// getRegisterInfo - TargetInstrInfo is a superset of MRegister info. As
+ /// such, whenever a client has an instance of instruction info, it should
+ /// always be able to get register info as well (through this method).
+ ///
+ virtual const X86RegisterInfo &getRegisterInfo() const { return RI; }
+
+ /// Return true if the instruction is a register to register move and return
+ /// the source and dest operands and their sub-register indices by reference.
+ virtual bool isMoveInstr(const MachineInstr &MI,
+ unsigned &SrcReg, unsigned &DstReg,
+ unsigned &SrcSubIdx, unsigned &DstSubIdx) const;
+
+ unsigned isLoadFromStackSlot(const MachineInstr *MI, int &FrameIndex) const;
+ unsigned isStoreToStackSlot(const MachineInstr *MI, int &FrameIndex) const;
+
+ bool isReallyTriviallyReMaterializable(const MachineInstr *MI) const;
+ void reMaterialize(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
+ unsigned DestReg, const MachineInstr *Orig) const;
+
+ bool isInvariantLoad(const MachineInstr *MI) const;
+
+ /// convertToThreeAddress - This method must be implemented by targets that
+ /// set the M_CONVERTIBLE_TO_3_ADDR flag. When this flag is set, the target
+ /// may be able to convert a two-address instruction into a true
+ /// three-address instruction on demand. This allows the X86 target (for
+ /// example) to convert ADD and SHL instructions into LEA instructions if they
+ /// would require register copies due to two-addressness.
+ ///
+ /// This method returns a null pointer if the transformation cannot be
+ /// performed, otherwise it returns the new instruction.
+ ///
+ virtual MachineInstr *convertToThreeAddress(MachineFunction::iterator &MFI,
+ MachineBasicBlock::iterator &MBBI,
+ LiveVariables *LV) const;
+
+ /// commuteInstruction - We have a few instructions that must be hacked on to
+ /// commute them.
+ ///
+ virtual MachineInstr *commuteInstruction(MachineInstr *MI, bool NewMI) const;
+
+ // Branch analysis.
+ virtual bool isUnpredicatedTerminator(const MachineInstr* MI) const;
+ virtual bool AnalyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
+ MachineBasicBlock *&FBB,
+ SmallVectorImpl<MachineOperand> &Cond,
+ bool AllowModify) const;
+ virtual unsigned RemoveBranch(MachineBasicBlock &MBB) const;
+ virtual unsigned InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
+ MachineBasicBlock *FBB,
+ const SmallVectorImpl<MachineOperand> &Cond) const;
+ virtual bool copyRegToReg(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MI,
+ unsigned DestReg, unsigned SrcReg,
+ const TargetRegisterClass *DestRC,
+ const TargetRegisterClass *SrcRC) const;
+ virtual void storeRegToStackSlot(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MI,
+ unsigned SrcReg, bool isKill, int FrameIndex,
+ const TargetRegisterClass *RC) const;
+
+ virtual void storeRegToAddr(MachineFunction &MF, unsigned SrcReg, bool isKill,
+ SmallVectorImpl<MachineOperand> &Addr,
+ const TargetRegisterClass *RC,
+ SmallVectorImpl<MachineInstr*> &NewMIs) const;
+
+ virtual void loadRegFromStackSlot(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MI,
+ unsigned DestReg, int FrameIndex,
+ const TargetRegisterClass *RC) const;
+
+ virtual void loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
+ SmallVectorImpl<MachineOperand> &Addr,
+ const TargetRegisterClass *RC,
+ SmallVectorImpl<MachineInstr*> &NewMIs) const;
+
+ virtual bool spillCalleeSavedRegisters(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MI,
+ const std::vector<CalleeSavedInfo> &CSI) const;
+
+ virtual bool restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MI,
+ const std::vector<CalleeSavedInfo> &CSI) const;
+
+ /// foldMemoryOperand - If this target supports it, fold a load or store of
+ /// the specified stack slot into the specified machine instruction for the
+ /// specified operand(s). If this is possible, the target should perform the
+ /// folding and return true, otherwise it should return false. If it folds
+ /// the instruction, it is likely that the MachineInstruction the iterator
+ /// references has been changed.
+ virtual MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
+ MachineInstr* MI,
+ const SmallVectorImpl<unsigned> &Ops,
+ int FrameIndex) const;
+
+ /// foldMemoryOperand - Same as the previous version except it allows folding
+ /// of any load and store from / to any address, not just from a specific
+ /// stack slot.
+ virtual MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
+ MachineInstr* MI,
+ const SmallVectorImpl<unsigned> &Ops,
+ MachineInstr* LoadMI) const;
+
+ /// canFoldMemoryOperand - Returns true if the specified load / store is
+ /// folding is possible.
+ virtual bool canFoldMemoryOperand(const MachineInstr*,
+ const SmallVectorImpl<unsigned> &) const;
+
+ /// unfoldMemoryOperand - Separate a single instruction which folded a load or
+ /// a store or a load and a store into two or more instruction. If this is
+ /// possible, returns true as well as the new instructions by reference.
+ virtual bool unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
+ unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
+ SmallVectorImpl<MachineInstr*> &NewMIs) const;
+
+ virtual bool unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
+ SmallVectorImpl<SDNode*> &NewNodes) const;
+
+ /// getOpcodeAfterMemoryUnfold - Returns the opcode of the would be new
+ /// instruction after load / store are unfolded from an instruction of the
+ /// specified opcode. It returns zero if the specified unfolding is not
+ /// possible.
+ virtual unsigned getOpcodeAfterMemoryUnfold(unsigned Opc,
+ bool UnfoldLoad, bool UnfoldStore) const;
+
+ virtual bool BlockHasNoFallThrough(const MachineBasicBlock &MBB) const;
+ virtual
+ bool ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const;
+
+ /// isSafeToMoveRegClassDefs - Return true if it's safe to move a machine
+ /// instruction that defines the specified register class.
+ bool isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const;
+
+ // getBaseOpcodeFor - This function returns the "base" X86 opcode for the
+ // specified machine instruction.
+ //
+ unsigned char getBaseOpcodeFor(const TargetInstrDesc *TID) const {
+ return TID->TSFlags >> X86II::OpcodeShift;
+ }
+ unsigned char getBaseOpcodeFor(unsigned Opcode) const {
+ return getBaseOpcodeFor(&get(Opcode));
+ }
+
+ static bool isX86_64NonExtLowByteReg(unsigned reg) {
+ return (reg == X86::SPL || reg == X86::BPL ||
+ reg == X86::SIL || reg == X86::DIL);
+ }
+
+ static unsigned sizeOfImm(const TargetInstrDesc *Desc);
+ static bool isX86_64ExtendedReg(const MachineOperand &MO);
+ static unsigned determineREX(const MachineInstr &MI);
+
+ /// GetInstSize - Returns the size of the specified MachineInstr.
+ ///
+ virtual unsigned GetInstSizeInBytes(const MachineInstr *MI) const;
+
+ /// getGlobalBaseReg - Return a virtual register initialized with the
+ /// the global base register value. Output instructions required to
+ /// initialize the register in the function entry block, if necessary.
+ ///
+ unsigned getGlobalBaseReg(MachineFunction *MF) const;
+
+private:
+ MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
+ MachineInstr* MI,
+ unsigned OpNum,
+ const SmallVectorImpl<MachineOperand> &MOs) const;
+};
+
+} // End llvm namespace
+
+#endif
OpenPOWER on IntegriCloud