diff options
Diffstat (limited to 'lib/Target/X86/X86ISelLowering.cpp')
-rw-r--r-- | lib/Target/X86/X86ISelLowering.cpp | 708 |
1 files changed, 322 insertions, 386 deletions
diff --git a/lib/Target/X86/X86ISelLowering.cpp b/lib/Target/X86/X86ISelLowering.cpp index ce1ca20..b16bd18 100644 --- a/lib/Target/X86/X86ISelLowering.cpp +++ b/lib/Target/X86/X86ISelLowering.cpp @@ -1111,7 +1111,7 @@ X86TargetLowering::X86TargetLowering(const X86TargetMachine &TM, setOperationAction(ISD::CTPOP, MVT::v8i32, Custom); setOperationAction(ISD::CTPOP, MVT::v4i64, Custom); - if (Subtarget->hasFMA() || Subtarget->hasFMA4()) { + if (Subtarget->hasFMA() || Subtarget->hasFMA4() || Subtarget->hasAVX512()) { setOperationAction(ISD::FMA, MVT::v8f32, Legal); setOperationAction(ISD::FMA, MVT::v4f64, Legal); setOperationAction(ISD::FMA, MVT::v4f32, Legal); @@ -6259,42 +6259,6 @@ is128BitLaneRepeatedShuffleMask(MVT VT, ArrayRef<int> Mask, return true; } -/// \brief Test whether a shuffle mask is equivalent within each 256-bit lane. -/// -/// This checks a shuffle mask to see if it is performing the same -/// 256-bit lane-relative shuffle in each 256-bit lane. This trivially implies -/// that it is also not lane-crossing. It may however involve a blend from the -/// same lane of a second vector. -/// -/// The specific repeated shuffle mask is populated in \p RepeatedMask, as it is -/// non-trivial to compute in the face of undef lanes. The representation is -/// *not* suitable for use with existing 256-bit shuffles as it will contain -/// entries from both V1 and V2 inputs to the wider mask. -static bool -is256BitLaneRepeatedShuffleMask(MVT VT, ArrayRef<int> Mask, - SmallVectorImpl<int> &RepeatedMask) { - int LaneSize = 256 / VT.getScalarSizeInBits(); - RepeatedMask.resize(LaneSize, -1); - int Size = Mask.size(); - for (int i = 0; i < Size; ++i) { - if (Mask[i] < 0) - continue; - if ((Mask[i] % Size) / LaneSize != i / LaneSize) - // This entry crosses lanes, so there is no way to model this shuffle. - return false; - - // Ok, handle the in-lane shuffles by detecting if and when they repeat. - if (RepeatedMask[i % LaneSize] == -1) - // This is the first non-undef entry in this slot of a 256-bit lane. - RepeatedMask[i % LaneSize] = - Mask[i] < Size ? Mask[i] % LaneSize : Mask[i] % LaneSize + Size; - else if (RepeatedMask[i % LaneSize] + (i / LaneSize) * LaneSize != Mask[i]) - // Found a mismatch with the repeated mask. - return false; - } - return true; -} - /// \brief Checks whether a shuffle mask is equivalent to an explicit list of /// arguments. /// @@ -6354,22 +6318,6 @@ static SDValue getV4X86ShuffleImm8ForMask(ArrayRef<int> Mask, SDLoc DL, return DAG.getConstant(Imm, DL, MVT::i8); } -/// \brief Get a 8-bit shuffle, 1 bit per lane, immediate for a mask. -/// -/// This helper function produces an 8-bit shuffle immediate corresponding to -/// the ubiquitous shuffle encoding scheme used in x86 instructions for -/// shuffling 8 lanes. -static SDValue get1bitLaneShuffleImm8ForMask(ArrayRef<int> Mask, SDLoc DL, - SelectionDAG &DAG) { - assert(Mask.size() <= 8 && - "Up to 8 elts may be in Imm8 1-bit lane shuffle mask"); - unsigned Imm = 0; - for (unsigned i = 0; i < Mask.size(); ++i) - if (Mask[i] >= 0) - Imm |= (Mask[i] % 2) << i; - return DAG.getConstant(Imm, DL, MVT::i8); -} - /// \brief Try to emit a blend instruction for a shuffle using bit math. /// /// This is used as a fallback approach when first class blend instructions are @@ -9385,30 +9333,6 @@ static SDValue lowerV2X128VectorShuffle(SDLoc DL, MVT VT, SDValue V1, DAG.getConstant(PermMask, DL, MVT::i8)); } -/// \brief Handle lowering 4-lane 128-bit shuffles. -static SDValue lowerV4X128VectorShuffle(SDLoc DL, MVT VT, SDValue V1, - SDValue V2, ArrayRef<int> WidenedMask, - SelectionDAG &DAG) { - - assert(WidenedMask.size() == 4 && "Unexpected mask size for 128bit shuffle!"); - // form a 128-bit permutation. - // convert the 64-bit shuffle mask selection values into 128-bit selection - // bits defined by a vshuf64x2 instruction's immediate control byte. - unsigned PermMask = 0, Imm = 0; - - for (int i = 0, Size = WidenedMask.size(); i < Size; ++i) { - if(WidenedMask[i] == SM_SentinelZero) - return SDValue(); - - // use first element in place of undef musk - Imm = (WidenedMask[i] == SM_SentinelUndef) ? 0 : WidenedMask[i]; - PermMask |= (Imm % 4) << (i * 2); - } - - return DAG.getNode(X86ISD::SHUF128, DL, VT, V1, V2, - DAG.getConstant(PermMask, DL, MVT::i8)); -} - /// \brief Lower a vector shuffle by first fixing the 128-bit lanes and then /// shuffling each lane. /// @@ -10144,105 +10068,86 @@ static SDValue lower256BitVectorShuffle(SDValue Op, SDValue V1, SDValue V2, } } -static SDValue lowerVectorShuffleWithVALIGN(SDLoc DL, MVT VT, - ArrayRef<int> Mask, SDValue V1, - SDValue V2, SelectionDAG &DAG) { - - assert(VT.getScalarSizeInBits() >= 32 && "Unexpected data type for VALIGN"); - // VALIGN pattern 2, 3, 4, 5, .. (sequential, shifted right) - int AlignVal = -1; - for (int i = 0; i < (signed)VT.getVectorNumElements(); ++i) { - if (Mask[i] < 0) - continue; - if (Mask[i] < i) - return SDValue(); - if (AlignVal == -1) - AlignVal = Mask[i] - i; - else if (Mask[i] - i != AlignVal) - return SDValue(); - } - // Vector source operands should be swapped - return DAG.getNode(X86ISD::VALIGN, DL, VT, V2, V1, - DAG.getConstant(AlignVal, DL, MVT::i8)); -} +/// \brief Handle lowering of 8-lane 64-bit floating point shuffles. +static SDValue lowerV8F64VectorShuffle(SDValue Op, SDValue V1, SDValue V2, + const X86Subtarget *Subtarget, + SelectionDAG &DAG) { + SDLoc DL(Op); + assert(V1.getSimpleValueType() == MVT::v8f64 && "Bad operand type!"); + assert(V2.getSimpleValueType() == MVT::v8f64 && "Bad operand type!"); + ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op); + ArrayRef<int> Mask = SVOp->getMask(); + assert(Mask.size() == 8 && "Unexpected mask size for v8 shuffle!"); -static SDValue lowerVectorShuffleWithPERMV(SDLoc DL, MVT VT, - ArrayRef<int> Mask, SDValue V1, - SDValue V2, SelectionDAG &DAG) { + // X86 has dedicated unpack instructions that can handle specific blend + // operations: UNPCKH and UNPCKL. + if (isShuffleEquivalent(V1, V2, Mask, {0, 8, 2, 10, 4, 12, 6, 14})) + return DAG.getNode(X86ISD::UNPCKL, DL, MVT::v8f64, V1, V2); + if (isShuffleEquivalent(V1, V2, Mask, {1, 9, 3, 11, 5, 13, 7, 15})) + return DAG.getNode(X86ISD::UNPCKH, DL, MVT::v8f64, V1, V2); - assert(VT.getScalarSizeInBits() >= 16 && "Unexpected data type for PERMV"); + // FIXME: Implement direct support for this type! + return splitAndLowerVectorShuffle(DL, MVT::v8f64, V1, V2, Mask, DAG); +} - MVT MaskEltVT = MVT::getIntegerVT(VT.getScalarSizeInBits()); - MVT MaskVecVT = MVT::getVectorVT(MaskEltVT, VT.getVectorNumElements()); +/// \brief Handle lowering of 16-lane 32-bit floating point shuffles. +static SDValue lowerV16F32VectorShuffle(SDValue Op, SDValue V1, SDValue V2, + const X86Subtarget *Subtarget, + SelectionDAG &DAG) { + SDLoc DL(Op); + assert(V1.getSimpleValueType() == MVT::v16f32 && "Bad operand type!"); + assert(V2.getSimpleValueType() == MVT::v16f32 && "Bad operand type!"); + ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op); + ArrayRef<int> Mask = SVOp->getMask(); + assert(Mask.size() == 16 && "Unexpected mask size for v16 shuffle!"); - SmallVector<SDValue, 32> VPermMask; - for (unsigned i = 0; i < VT.getVectorNumElements(); ++i) - VPermMask.push_back(Mask[i] < 0 ? DAG.getUNDEF(MaskEltVT) : - DAG.getConstant(Mask[i], DL,MaskEltVT)); - SDValue MaskNode = DAG.getNode(ISD::BUILD_VECTOR, DL, MaskVecVT, - VPermMask); - if (isSingleInputShuffleMask(Mask)) - return DAG.getNode(X86ISD::VPERMV, DL, VT, MaskNode, V1); + // Use dedicated unpack instructions for masks that match their pattern. + if (isShuffleEquivalent(V1, V2, Mask, + {// First 128-bit lane. + 0, 16, 1, 17, 4, 20, 5, 21, + // Second 128-bit lane. + 8, 24, 9, 25, 12, 28, 13, 29})) + return DAG.getNode(X86ISD::UNPCKL, DL, MVT::v16f32, V1, V2); + if (isShuffleEquivalent(V1, V2, Mask, + {// First 128-bit lane. + 2, 18, 3, 19, 6, 22, 7, 23, + // Second 128-bit lane. + 10, 26, 11, 27, 14, 30, 15, 31})) + return DAG.getNode(X86ISD::UNPCKH, DL, MVT::v16f32, V1, V2); - return DAG.getNode(X86ISD::VPERMV3, DL, VT, MaskNode, V1, V2); + // FIXME: Implement direct support for this type! + return splitAndLowerVectorShuffle(DL, MVT::v16f32, V1, V2, Mask, DAG); } - -/// \brief Handle lowering of 8-lane 64-bit floating point shuffles. -static SDValue lowerV8X64VectorShuffle(SDValue Op, SDValue V1, SDValue V2, +/// \brief Handle lowering of 8-lane 64-bit integer shuffles. +static SDValue lowerV8I64VectorShuffle(SDValue Op, SDValue V1, SDValue V2, const X86Subtarget *Subtarget, SelectionDAG &DAG) { SDLoc DL(Op); - MVT VT = Op.getSimpleValueType(); - assert((V1.getSimpleValueType() == MVT::v8f64 || - V1.getSimpleValueType() == MVT::v8i64) && "Bad operand type!"); - assert((V2.getSimpleValueType() == MVT::v8f64 || - V2.getSimpleValueType() == MVT::v8i64) && "Bad operand type!"); + assert(V1.getSimpleValueType() == MVT::v8i64 && "Bad operand type!"); + assert(V2.getSimpleValueType() == MVT::v8i64 && "Bad operand type!"); ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op); ArrayRef<int> Mask = SVOp->getMask(); assert(Mask.size() == 8 && "Unexpected mask size for v8 shuffle!"); - SmallVector<int, 4> WidenedMask; - if (canWidenShuffleElements(Mask, WidenedMask)) - if(SDValue Op = lowerV4X128VectorShuffle(DL, VT, V1, V2, WidenedMask, DAG)) - return Op; // X86 has dedicated unpack instructions that can handle specific blend // operations: UNPCKH and UNPCKL. if (isShuffleEquivalent(V1, V2, Mask, {0, 8, 2, 10, 4, 12, 6, 14})) - return DAG.getNode(X86ISD::UNPCKL, DL, VT, V1, V2); + return DAG.getNode(X86ISD::UNPCKL, DL, MVT::v8i64, V1, V2); if (isShuffleEquivalent(V1, V2, Mask, {1, 9, 3, 11, 5, 13, 7, 15})) - return DAG.getNode(X86ISD::UNPCKH, DL, VT, V1, V2); - - if (SDValue Op = lowerVectorShuffleWithVALIGN(DL, VT, Mask, V1, V2, DAG)) - return Op; - - if (SDValue Op = lowerVectorShuffleWithSHUFPD(DL, VT, Mask, V1, V2, DAG)) - return Op; - - // PERMILPD instruction - mask 0/1, 0/1, 2/3, 2/3, 4/5, 4/5, 6/7, 6/7 - if (isSingleInputShuffleMask(Mask)) { - if (!is128BitLaneCrossingShuffleMask(VT, Mask)) - return DAG.getNode(X86ISD::VPERMILPI, DL, VT, V1, - get1bitLaneShuffleImm8ForMask(Mask, DL, DAG)); + return DAG.getNode(X86ISD::UNPCKH, DL, MVT::v8i64, V1, V2); - SmallVector<int, 4> RepeatedMask; - if (is256BitLaneRepeatedShuffleMask(VT, Mask, RepeatedMask)) - return DAG.getNode(X86ISD::VPERMI, DL, VT, V1, - getV4X86ShuffleImm8ForMask(RepeatedMask, DL, DAG)); - } - return lowerVectorShuffleWithPERMV(DL, VT, Mask, V1, V2, DAG); + // FIXME: Implement direct support for this type! + return splitAndLowerVectorShuffle(DL, MVT::v8i64, V1, V2, Mask, DAG); } /// \brief Handle lowering of 16-lane 32-bit integer shuffles. -static SDValue lowerV16X32VectorShuffle(SDValue Op, SDValue V1, SDValue V2, +static SDValue lowerV16I32VectorShuffle(SDValue Op, SDValue V1, SDValue V2, const X86Subtarget *Subtarget, SelectionDAG &DAG) { - MVT VT = Op.getSimpleValueType(); SDLoc DL(Op); - assert((V1.getSimpleValueType() == MVT::v16i32 || - V1.getSimpleValueType() == MVT::v16f32) && "Bad operand type!"); - assert((V2.getSimpleValueType() == MVT::v16i32 || - V2.getSimpleValueType() == MVT::v16f32) && "Bad operand type!"); + assert(V1.getSimpleValueType() == MVT::v16i32 && "Bad operand type!"); + assert(V2.getSimpleValueType() == MVT::v16i32 && "Bad operand type!"); ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op); ArrayRef<int> Mask = SVOp->getMask(); assert(Mask.size() == 16 && "Unexpected mask size for v16 shuffle!"); @@ -10253,39 +10158,16 @@ static SDValue lowerV16X32VectorShuffle(SDValue Op, SDValue V1, SDValue V2, 0, 16, 1, 17, 4, 20, 5, 21, // Second 128-bit lane. 8, 24, 9, 25, 12, 28, 13, 29})) - return DAG.getNode(X86ISD::UNPCKL, DL, VT, V1, V2); + return DAG.getNode(X86ISD::UNPCKL, DL, MVT::v16i32, V1, V2); if (isShuffleEquivalent(V1, V2, Mask, {// First 128-bit lane. 2, 18, 3, 19, 6, 22, 7, 23, // Second 128-bit lane. 10, 26, 11, 27, 14, 30, 15, 31})) - return DAG.getNode(X86ISD::UNPCKH, DL, VT, V1, V2); + return DAG.getNode(X86ISD::UNPCKH, DL, MVT::v16i32, V1, V2); - if (isShuffleEquivalent(V1, V2, Mask, {0, 0, 2, 2, 4, 4, 6, 6, 8, 8, 10, 10, - 12, 12, 14, 14})) - return DAG.getNode(X86ISD::MOVSLDUP, DL, VT, V1); - if (isShuffleEquivalent(V1, V2, Mask, {1, 1, 3, 3, 5, 5, 7, 7, 9, 9, 11, 11, - 13, 13, 15, 15})) - return DAG.getNode(X86ISD::MOVSHDUP, DL, VT, V1); - - SmallVector<int, 4> RepeatedMask; - if (is128BitLaneRepeatedShuffleMask(VT, Mask, RepeatedMask)) { - if (isSingleInputShuffleMask(Mask)) { - unsigned Opc = VT.isInteger() ? X86ISD::PSHUFD : X86ISD::VPERMILPI; - return DAG.getNode(Opc, DL, VT, V1, - getV4X86ShuffleImm8ForMask(RepeatedMask, DL, DAG)); - } - - for (int i = 0; i < 4; ++i) - if (RepeatedMask[i] >= 16) - RepeatedMask[i] -= 12; - return lowerVectorShuffleWithSHUFPS(DL, VT, RepeatedMask, V1, V2, DAG); - } - - if (SDValue Op = lowerVectorShuffleWithVALIGN(DL, VT, Mask, V1, V2, DAG)) - return Op; - - return lowerVectorShuffleWithPERMV(DL, VT, Mask, V1, V2, DAG); + // FIXME: Implement direct support for this type! + return splitAndLowerVectorShuffle(DL, MVT::v16i32, V1, V2, Mask, DAG); } /// \brief Handle lowering of 32-lane 16-bit integer shuffles. @@ -10345,11 +10227,13 @@ static SDValue lower512BitVectorShuffle(SDValue Op, SDValue V1, SDValue V2, // the requisite ISA extensions for that element type are available. switch (VT.SimpleTy) { case MVT::v8f64: - case MVT::v8i64: - return lowerV8X64VectorShuffle(Op, V1, V2, Subtarget, DAG); + return lowerV8F64VectorShuffle(Op, V1, V2, Subtarget, DAG); case MVT::v16f32: + return lowerV16F32VectorShuffle(Op, V1, V2, Subtarget, DAG); + case MVT::v8i64: + return lowerV8I64VectorShuffle(Op, V1, V2, Subtarget, DAG); case MVT::v16i32: - return lowerV16X32VectorShuffle(Op, V1, V2, Subtarget, DAG); + return lowerV16I32VectorShuffle(Op, V1, V2, Subtarget, DAG); case MVT::v32i16: if (Subtarget->hasBWI()) return lowerV32I16VectorShuffle(Op, V1, V2, Subtarget, DAG); @@ -10759,11 +10643,9 @@ X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op, assert(VecVT.is128BitVector() && "Unexpected vector length"); - if (Subtarget->hasSSE41()) { - SDValue Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG); - if (Res.getNode()) + if (Subtarget->hasSSE41()) + if (SDValue Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG)) return Res; - } MVT VT = Op.getSimpleValueType(); // TODO: handle v16i8. @@ -12253,11 +12135,9 @@ static SDValue LowerZERO_EXTEND_AVX512(SDValue Op, static SDValue LowerANY_EXTEND(SDValue Op, const X86Subtarget *Subtarget, SelectionDAG &DAG) { - if (Subtarget->hasFp256()) { - SDValue Res = LowerAVXExtend(Op, DAG, Subtarget); - if (Res.getNode()) + if (Subtarget->hasFp256()) + if (SDValue Res = LowerAVXExtend(Op, DAG, Subtarget)) return Res; - } return SDValue(); } @@ -12272,11 +12152,9 @@ static SDValue LowerZERO_EXTEND(SDValue Op, const X86Subtarget *Subtarget, if (VT.is512BitVector() || SVT.getVectorElementType() == MVT::i1) return LowerZERO_EXTEND_AVX512(Op, Subtarget, DAG); - if (Subtarget->hasFp256()) { - SDValue Res = LowerAVXExtend(Op, DAG, Subtarget); - if (Res.getNode()) + if (Subtarget->hasFp256()) + if (SDValue Res = LowerAVXExtend(Op, DAG, Subtarget)) return Res; - } assert(!VT.is256BitVector() || !SVT.is128BitVector() || VT.getVectorNumElements() != SVT.getVectorNumElements()); @@ -15117,6 +14995,54 @@ static SDValue getScalarMaskingNode(SDValue Op, SDValue Mask, return DAG.getNode(X86ISD::SELECT, dl, VT, IMask, Op, PreservedSrc); } +/// When the 32-bit MSVC runtime transfers control to us, either to an outlined +/// function or when returning to a parent frame after catching an exception, we +/// recover the parent frame pointer by doing arithmetic on the incoming EBP. +/// Here's the math: +/// RegNodeBase = EntryEBP - RegNodeSize +/// ParentFP = RegNodeBase - RegNodeFrameOffset +/// Subtracting RegNodeSize takes us to the offset of the registration node, and +/// subtracting the offset (negative on x86) takes us back to the parent FP. +static SDValue recoverFramePointer(SelectionDAG &DAG, const Function *Fn, + SDValue EntryEBP) { + MachineFunction &MF = DAG.getMachineFunction(); + SDLoc dl; + + const TargetLowering &TLI = DAG.getTargetLoweringInfo(); + MVT PtrVT = TLI.getPointerTy(); + + // It's possible that the parent function no longer has a personality function + // if the exceptional code was optimized away, in which case we just return + // the incoming EBP. + if (!Fn->hasPersonalityFn()) + return EntryEBP; + + // The RegNodeSize is 6 32-bit words for SEH and 4 for C++ EH. See + // WinEHStatePass for the full struct definition. + int RegNodeSize; + switch (classifyEHPersonality(Fn->getPersonalityFn())) { + default: + report_fatal_error("can only recover FP for MSVC EH personality functions"); + case EHPersonality::MSVC_X86SEH: RegNodeSize = 24; break; + case EHPersonality::MSVC_CXX: RegNodeSize = 16; break; + } + + // Get an MCSymbol that will ultimately resolve to the frame offset of the EH + // registration. + MCSymbol *OffsetSym = + MF.getMMI().getContext().getOrCreateParentFrameOffsetSymbol( + GlobalValue::getRealLinkageName(Fn->getName())); + SDValue OffsetSymVal = DAG.getMCSymbol(OffsetSym, PtrVT); + SDValue RegNodeFrameOffset = + DAG.getNode(ISD::FRAME_ALLOC_RECOVER, dl, PtrVT, OffsetSymVal); + + // RegNodeBase = EntryEBP - RegNodeSize + // ParentFP = RegNodeBase - RegNodeFrameOffset + SDValue RegNodeBase = DAG.getNode(ISD::SUB, dl, PtrVT, EntryEBP, + DAG.getConstant(RegNodeSize, dl, PtrVT)); + return DAG.getNode(ISD::SUB, dl, PtrVT, RegNodeBase, RegNodeFrameOffset); +} + static SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, const X86Subtarget *Subtarget, SelectionDAG &DAG) { SDLoc dl(Op); @@ -15206,6 +15132,23 @@ static SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, const X86Subtarget *Subtarget Src1,Src2), Mask, PassThru, Subtarget, DAG); } + case INTR_TYPE_2OP_MASK_RM: { + SDValue Src1 = Op.getOperand(1); + SDValue Src2 = Op.getOperand(2); + SDValue PassThru = Op.getOperand(3); + SDValue Mask = Op.getOperand(4); + // We specify 2 possible modes for intrinsics, with/without rounding modes. + // First, we check if the intrinsic have rounding mode (6 operands), + // if not, we set rounding mode to "current". + SDValue Rnd; + if (Op.getNumOperands() == 6) + Rnd = Op.getOperand(5); + else + Rnd = DAG.getConstant(X86::STATIC_ROUNDING::CUR_DIRECTION, dl, MVT::i32); + return getVectorMaskingNode(DAG.getNode(IntrData->Opc0, dl, VT, + Src1, Src2, Rnd), + Mask, PassThru, Subtarget, DAG); + } case INTR_TYPE_3OP_MASK: { SDValue Src1 = Op.getOperand(1); SDValue Src2 = Op.getOperand(2); @@ -15230,11 +15173,26 @@ static SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, const X86Subtarget *Subtarget Src1, Src2, Src3), Mask, PassThru, Subtarget, DAG); } + case VPERM_3OP_MASKZ: + case VPERM_3OP_MASK: + case FMA_OP_MASK3: + case FMA_OP_MASKZ: case FMA_OP_MASK: { SDValue Src1 = Op.getOperand(1); SDValue Src2 = Op.getOperand(2); SDValue Src3 = Op.getOperand(3); SDValue Mask = Op.getOperand(4); + EVT VT = Op.getValueType(); + SDValue PassThru = SDValue(); + + // set PassThru element + if (IntrData->Type == VPERM_3OP_MASKZ || IntrData->Type == FMA_OP_MASKZ) + PassThru = getZeroVector(VT, Subtarget, DAG, dl); + else if (IntrData->Type == FMA_OP_MASK3) + PassThru = Src3; + else + PassThru = Src1; + // We specify 2 possible opcodes for intrinsics with rounding modes. // First, we check if the intrinsic may have non-default rounding mode, // (IntrData->Opc1 != 0), then we check the rounding mode operand. @@ -15246,12 +15204,12 @@ static SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, const X86Subtarget *Subtarget return getVectorMaskingNode(DAG.getNode(IntrWithRoundingModeOpcode, dl, Op.getValueType(), Src1, Src2, Src3, Rnd), - Mask, Src1, Subtarget, DAG); + Mask, PassThru, Subtarget, DAG); } return getVectorMaskingNode(DAG.getNode(IntrData->Opc0, dl, Op.getValueType(), Src1, Src2, Src3), - Mask, Src1, Subtarget, DAG); + Mask, PassThru, Subtarget, DAG); } case CMP_MASK: case CMP_MASK_CC: { @@ -15330,18 +15288,10 @@ static SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, const X86Subtarget *Subtarget SDValue PassThru = Op.getOperand(2); if (isAllOnes(Mask)) // return data as is return Op.getOperand(1); - EVT VT = Op.getValueType(); - EVT MaskVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1, - VT.getVectorNumElements()); - EVT BitcastVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1, - Mask.getValueType().getSizeInBits()); - SDLoc dl(Op); - SDValue VMask = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MaskVT, - DAG.getBitcast(BitcastVT, Mask), - DAG.getIntPtrConstant(0, dl)); - return DAG.getNode(IntrData->Opc0, dl, VT, VMask, DataToCompress, - PassThru); + return getVectorMaskingNode(DAG.getNode(IntrData->Opc0, dl, VT, + DataToCompress), + Mask, PassThru, Subtarget, DAG); } case BLEND: { SDValue Mask = Op.getOperand(3); @@ -15532,15 +15482,23 @@ static SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, const X86Subtarget *Subtarget auto *Fn = cast<Function>(cast<GlobalAddressSDNode>(Op1)->getGlobal()); MCSymbol *LSDASym = MF.getMMI().getContext().getOrCreateLSDASymbol( GlobalValue::getRealLinkageName(Fn->getName())); - StringRef Name = LSDASym->getName(); - assert(Name.data()[Name.size()] == '\0' && "not null terminated"); // Generate a simple absolute symbol reference. This intrinsic is only // supported on 32-bit Windows, which isn't PIC. - SDValue Result = - DAG.getTargetExternalSymbol(Name.data(), VT, X86II::MO_NOPREFIX); + SDValue Result = DAG.getMCSymbol(LSDASym, VT); return DAG.getNode(X86ISD::Wrapper, dl, VT, Result); } + + case Intrinsic::x86_seh_recoverfp: { + SDValue FnOp = Op.getOperand(1); + SDValue IncomingFPOp = Op.getOperand(2); + GlobalAddressSDNode *GSD = dyn_cast<GlobalAddressSDNode>(FnOp); + auto *Fn = dyn_cast_or_null<Function>(GSD ? GSD->getGlobal() : nullptr); + if (!Fn) + report_fatal_error( + "llvm.x86.seh.recoverfp must take a function as the first argument"); + return recoverFramePointer(DAG, Fn, IncomingFPOp); + } } } @@ -15550,7 +15508,12 @@ static SDValue getGatherNode(unsigned Opc, SDValue Op, SelectionDAG &DAG, const X86Subtarget * Subtarget) { SDLoc dl(Op); ConstantSDNode *C = dyn_cast<ConstantSDNode>(ScaleOp); - assert(C && "Invalid scale type"); + if (!C) + llvm_unreachable("Invalid scale type"); + unsigned ScaleVal = C->getZExtValue(); + if (ScaleVal > 2 && ScaleVal != 4 && ScaleVal != 8) + llvm_unreachable("Valid scale values are 1, 2, 4, 8"); + SDValue Scale = DAG.getTargetConstant(C->getZExtValue(), dl, MVT::i8); EVT MaskVT = MVT::getVectorVT(MVT::i1, Index.getSimpleValueType().getVectorNumElements()); @@ -15558,8 +15521,16 @@ static SDValue getGatherNode(unsigned Opc, SDValue Op, SelectionDAG &DAG, ConstantSDNode *MaskC = dyn_cast<ConstantSDNode>(Mask); if (MaskC) MaskInReg = DAG.getTargetConstant(MaskC->getSExtValue(), dl, MaskVT); - else - MaskInReg = DAG.getBitcast(MaskVT, Mask); + else { + EVT BitcastVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1, + Mask.getValueType().getSizeInBits()); + + // In case when MaskVT equals v2i1 or v4i1, low 2 or 4 elements + // are extracted by EXTRACT_SUBVECTOR. + MaskInReg = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MaskVT, + DAG.getBitcast(BitcastVT, Mask), + DAG.getIntPtrConstant(0, dl)); + } SDVTList VTs = DAG.getVTList(Op.getValueType(), MaskVT, MVT::Other); SDValue Disp = DAG.getTargetConstant(0, dl, MVT::i32); SDValue Segment = DAG.getRegister(0, MVT::i32); @@ -15576,7 +15547,12 @@ static SDValue getScatterNode(unsigned Opc, SDValue Op, SelectionDAG &DAG, SDValue Index, SDValue ScaleOp, SDValue Chain) { SDLoc dl(Op); ConstantSDNode *C = dyn_cast<ConstantSDNode>(ScaleOp); - assert(C && "Invalid scale type"); + if (!C) + llvm_unreachable("Invalid scale type"); + unsigned ScaleVal = C->getZExtValue(); + if (ScaleVal > 2 && ScaleVal != 4 && ScaleVal != 8) + llvm_unreachable("Valid scale values are 1, 2, 4, 8"); + SDValue Scale = DAG.getTargetConstant(C->getZExtValue(), dl, MVT::i8); SDValue Disp = DAG.getTargetConstant(0, dl, MVT::i32); SDValue Segment = DAG.getRegister(0, MVT::i32); @@ -15586,8 +15562,16 @@ static SDValue getScatterNode(unsigned Opc, SDValue Op, SelectionDAG &DAG, ConstantSDNode *MaskC = dyn_cast<ConstantSDNode>(Mask); if (MaskC) MaskInReg = DAG.getTargetConstant(MaskC->getSExtValue(), dl, MaskVT); - else - MaskInReg = DAG.getBitcast(MaskVT, Mask); + else { + EVT BitcastVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1, + Mask.getValueType().getSizeInBits()); + + // In case when MaskVT equals v2i1 or v4i1, low 2 or 4 elements + // are extracted by EXTRACT_SUBVECTOR. + MaskInReg = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MaskVT, + DAG.getBitcast(BitcastVT, Mask), + DAG.getIntPtrConstant(0, dl)); + } SDVTList VTs = DAG.getVTList(MaskVT, MVT::Other); SDValue Ops[] = {Base, Scale, Index, Disp, Segment, MaskInReg, Src, Chain}; SDNode *Res = DAG.getMachineNode(Opc, dl, VTs, Ops); @@ -15725,37 +15709,38 @@ static SDValue LowerREADCYCLECOUNTER(SDValue Op, const X86Subtarget *Subtarget, return DAG.getMergeValues(Results, DL); } -static SDValue LowerEXCEPTIONINFO(SDValue Op, const X86Subtarget *Subtarget, - SelectionDAG &DAG) { +static SDValue LowerSEHRESTOREFRAME(SDValue Op, const X86Subtarget *Subtarget, + SelectionDAG &DAG) { MachineFunction &MF = DAG.getMachineFunction(); SDLoc dl(Op); - SDValue FnOp = Op.getOperand(2); - SDValue FPOp = Op.getOperand(3); + SDValue Chain = Op.getOperand(0); - // Compute the symbol for the parent EH registration. We know it'll get - // emitted later. - auto *Fn = cast<Function>(cast<GlobalAddressSDNode>(FnOp)->getGlobal()); - MCSymbol *ParentFrameSym = - MF.getMMI().getContext().getOrCreateParentFrameOffsetSymbol( - GlobalValue::getRealLinkageName(Fn->getName())); - StringRef Name = ParentFrameSym->getName(); - assert(Name.data()[Name.size()] == '\0' && "not null terminated"); - - // Create a TargetExternalSymbol for the label to avoid any target lowering - // that would make this PC relative. - MVT PtrVT = Op.getSimpleValueType(); - SDValue OffsetSym = DAG.getTargetExternalSymbol(Name.data(), PtrVT); - SDValue OffsetVal = - DAG.getNode(ISD::FRAME_ALLOC_RECOVER, dl, PtrVT, OffsetSym); - - // Add the offset to the FP. - SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, FPOp, OffsetVal); - - // Load the second field of the struct, which is 4 bytes in. See - // WinEHStatePass for more info. - Add = DAG.getNode(ISD::ADD, dl, PtrVT, Add, DAG.getConstant(4, dl, PtrVT)); - return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Add, MachinePointerInfo(), - false, false, false, 0); + const TargetLowering &TLI = DAG.getTargetLoweringInfo(); + MVT VT = TLI.getPointerTy(); + + const X86RegisterInfo *RegInfo = Subtarget->getRegisterInfo(); + unsigned FrameReg = + RegInfo->getPtrSizedFrameRegister(DAG.getMachineFunction()); + unsigned SPReg = RegInfo->getStackRegister(); + + // Get incoming EBP. + SDValue IncomingEBP = + DAG.getCopyFromReg(Chain, dl, FrameReg, VT); + + // Load [EBP-24] into SP. + SDValue SPAddr = + DAG.getNode(ISD::ADD, dl, VT, IncomingEBP, DAG.getConstant(-24, dl, VT)); + SDValue NewSP = + DAG.getLoad(VT, dl, Chain, SPAddr, MachinePointerInfo(), false, false, + false, VT.getScalarSizeInBits() / 8); + Chain = DAG.getCopyToReg(Chain, dl, SPReg, NewSP); + + // FIXME: Restore the base pointer in case of stack realignment! + + // Adjust EBP to point back to the original frame position. + SDValue NewFP = recoverFramePointer(DAG, MF.getFunction(), IncomingEBP); + Chain = DAG.getCopyToReg(Chain, dl, FrameReg, NewFP); + return Chain; } static SDValue LowerINTRINSIC_W_CHAIN(SDValue Op, const X86Subtarget *Subtarget, @@ -15764,8 +15749,8 @@ static SDValue LowerINTRINSIC_W_CHAIN(SDValue Op, const X86Subtarget *Subtarget, const IntrinsicData* IntrData = getIntrinsicWithChain(IntNo); if (!IntrData) { - if (IntNo == Intrinsic::x86_seh_exceptioninfo) - return LowerEXCEPTIONINFO(Op, Subtarget, DAG); + if (IntNo == llvm::Intrinsic::x86_seh_restoreframe) + return LowerSEHRESTOREFRAME(Op, Subtarget, DAG); return SDValue(); } @@ -15884,16 +15869,9 @@ static SDValue LowerINTRINSIC_W_CHAIN(SDValue Op, const X86Subtarget *Subtarget, MachinePointerInfo(), false, false, VT.getScalarSizeInBits()/8); - EVT MaskVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1, - VT.getVectorNumElements()); - EVT BitcastVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1, - Mask.getValueType().getSizeInBits()); - SDValue VMask = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MaskVT, - DAG.getBitcast(BitcastVT, Mask), - DAG.getIntPtrConstant(0, dl)); - - SDValue Compressed = DAG.getNode(IntrData->Opc0, dl, VT, VMask, - DataToCompress, DAG.getUNDEF(VT)); + SDValue Compressed = + getVectorMaskingNode(DAG.getNode(IntrData->Opc0, dl, VT, DataToCompress), + Mask, DAG.getUNDEF(VT), Subtarget, DAG); return DAG.getStore(Chain, dl, Compressed, Addr, MachinePointerInfo(), false, false, VT.getScalarSizeInBits()/8); @@ -15901,7 +15879,7 @@ static SDValue LowerINTRINSIC_W_CHAIN(SDValue Op, const X86Subtarget *Subtarget, case EXPAND_FROM_MEM: { SDLoc dl(Op); SDValue Mask = Op.getOperand(4); - SDValue PathThru = Op.getOperand(3); + SDValue PassThru = Op.getOperand(3); SDValue Addr = Op.getOperand(2); SDValue Chain = Op.getOperand(0); EVT VT = Op.getValueType(); @@ -15909,21 +15887,14 @@ static SDValue LowerINTRINSIC_W_CHAIN(SDValue Op, const X86Subtarget *Subtarget, if (isAllOnes(Mask)) // return just a load return DAG.getLoad(VT, dl, Chain, Addr, MachinePointerInfo(), false, false, false, VT.getScalarSizeInBits()/8); - EVT MaskVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1, - VT.getVectorNumElements()); - EVT BitcastVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1, - Mask.getValueType().getSizeInBits()); - SDValue VMask = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MaskVT, - DAG.getBitcast(BitcastVT, Mask), - DAG.getIntPtrConstant(0, dl)); SDValue DataToExpand = DAG.getLoad(VT, dl, Chain, Addr, MachinePointerInfo(), false, false, false, VT.getScalarSizeInBits()/8); SDValue Results[] = { - DAG.getNode(IntrData->Opc0, dl, VT, VMask, DataToExpand, PathThru), - Chain}; + getVectorMaskingNode(DAG.getNode(IntrData->Opc0, dl, VT, DataToExpand), + Mask, PassThru, Subtarget, DAG), Chain}; return DAG.getMergeValues(Results, dl); } } @@ -18476,6 +18447,7 @@ const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const { case X86ISD::UMIN: return "X86ISD::UMIN"; case X86ISD::SMAX: return "X86ISD::SMAX"; case X86ISD::SMIN: return "X86ISD::SMIN"; + case X86ISD::ABS: return "X86ISD::ABS"; case X86ISD::FMAX: return "X86ISD::FMAX"; case X86ISD::FMAX_RND: return "X86ISD::FMAX_RND"; case X86ISD::FMIN: return "X86ISD::FMIN"; @@ -18618,9 +18590,10 @@ const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const { case X86ISD::FDIV_RND: return "X86ISD::FDIV_RND"; case X86ISD::FSQRT_RND: return "X86ISD::FSQRT_RND"; case X86ISD::FGETEXP_RND: return "X86ISD::FGETEXP_RND"; + case X86ISD::SCALEF: return "X86ISD::SCALEF"; case X86ISD::ADDS: return "X86ISD::ADDS"; case X86ISD::SUBS: return "X86ISD::SUBS"; - case X86ISD::AVG: return "X86ISD::AVG"; + case X86ISD::AVG: return "X86ISD::AVG"; case X86ISD::SINT_TO_FP_RND: return "X86ISD::SINT_TO_FP_RND"; case X86ISD::UINT_TO_FP_RND: return "X86ISD::UINT_TO_FP_RND"; } @@ -18777,7 +18750,7 @@ bool X86TargetLowering::isVectorLoadExtDesirable(SDValue) const { return true; } bool X86TargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const { - if (!(Subtarget->hasFMA() || Subtarget->hasFMA4())) + if (!(Subtarget->hasFMA() || Subtarget->hasFMA4() || Subtarget->hasAVX512())) return false; VT = VT.getScalarType(); @@ -19962,6 +19935,7 @@ X86TargetLowering::emitEHSjLjLongJmp(MachineInstr *MI, // Replace 213-type (isel default) FMA3 instructions with 231-type for // accumulator loops. Writing back to the accumulator allows the coalescer // to remove extra copies in the loop. +// FIXME: Do this on AVX512. We don't support 231 variants yet (PR23937). MachineBasicBlock * X86TargetLowering::emitFMA3Instr(MachineInstr *MI, MachineBasicBlock *MBB) const { @@ -21302,8 +21276,7 @@ static SDValue PerformShuffleCombine(SDNode *N, SelectionDAG &DAG, for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) Elts.push_back(getShuffleScalarElt(N, i, DAG, 0)); - SDValue LD = EltsFromConsecutiveLoads(VT, Elts, dl, DAG, true); - if (LD.getNode()) + if (SDValue LD = EltsFromConsecutiveLoads(VT, Elts, dl, DAG, true)) return LD; if (isTargetShuffle(N->getOpcode())) { @@ -21451,8 +21424,7 @@ static SDValue PerformBITCASTCombine(SDNode *N, SelectionDAG &DAG) { /// use 64-bit extracts and shifts. static SDValue PerformEXTRACT_VECTOR_ELTCombine(SDNode *N, SelectionDAG &DAG, TargetLowering::DAGCombinerInfo &DCI) { - SDValue NewOp = XFormVExtractWithShuffleIntoLoad(N, DAG, DCI); - if (NewOp.getNode()) + if (SDValue NewOp = XFormVExtractWithShuffleIntoLoad(N, DAG, DCI)) return NewOp; SDValue InputVector = N->getOperand(0); @@ -22895,16 +22867,14 @@ static SDValue performShiftToAllZeros(SDNode *N, SelectionDAG &DAG, static SDValue PerformShiftCombine(SDNode* N, SelectionDAG &DAG, TargetLowering::DAGCombinerInfo &DCI, const X86Subtarget *Subtarget) { - if (N->getOpcode() == ISD::SHL) { - SDValue V = PerformSHLCombine(N, DAG); - if (V.getNode()) return V; - } + if (N->getOpcode() == ISD::SHL) + if (SDValue V = PerformSHLCombine(N, DAG)) + return V; - if (N->getOpcode() != ISD::SRA) { - // Try to fold this logical shift into a zero vector. - SDValue V = performShiftToAllZeros(N, DAG, Subtarget); - if (V.getNode()) return V; - } + // Try to fold this logical shift into a zero vector. + if (N->getOpcode() != ISD::SRA) + if (SDValue V = performShiftToAllZeros(N, DAG, Subtarget)) + return V; return SDValue(); } @@ -23284,8 +23254,7 @@ static SDValue PerformOrCombine(SDNode *N, SelectionDAG &DAG, if (DCI.isBeforeLegalizeOps()) return SDValue(); - SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget); - if (R.getNode()) + if (SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget)) return R; SDValue N0 = N->getOperand(0); @@ -23480,11 +23449,9 @@ static SDValue PerformXorCombine(SDNode *N, SelectionDAG &DAG, if (DCI.isBeforeLegalizeOps()) return SDValue(); - if (Subtarget->hasCMov()) { - SDValue RV = performIntegerAbsCombine(N, DAG); - if (RV.getNode()) + if (Subtarget->hasCMov()) + if (SDValue RV = performIntegerAbsCombine(N, DAG)) return RV; - } return SDValue(); } @@ -24266,23 +24233,37 @@ static SDValue PerformSExtCombine(SDNode *N, SelectionDAG &DAG, return SDValue(); } - if (VT.isVector()) { - auto ExtendToVec128 = [&DAG](SDLoc DL, SDValue N) { + if (VT.isVector() && Subtarget->hasSSE2()) { + auto ExtendVecSize = [&DAG](SDLoc DL, SDValue N, unsigned Size) { EVT InVT = N.getValueType(); EVT OutVT = EVT::getVectorVT(*DAG.getContext(), InVT.getScalarType(), - 128 / InVT.getScalarSizeInBits()); - SmallVector<SDValue, 8> Opnds(128 / InVT.getSizeInBits(), + Size / InVT.getScalarSizeInBits()); + SmallVector<SDValue, 8> Opnds(Size / InVT.getSizeInBits(), DAG.getUNDEF(InVT)); Opnds[0] = N; return DAG.getNode(ISD::CONCAT_VECTORS, DL, OutVT, Opnds); }; + // If target-size is less than 128-bits, extend to a type that would extend + // to 128 bits, extend that and extract the original target vector. + if (VT.getSizeInBits() < 128 && !(128 % VT.getSizeInBits()) && + (SVT == MVT::i64 || SVT == MVT::i32 || SVT == MVT::i16) && + (InSVT == MVT::i32 || InSVT == MVT::i16 || InSVT == MVT::i8)) { + unsigned Scale = 128 / VT.getSizeInBits(); + EVT ExVT = + EVT::getVectorVT(*DAG.getContext(), SVT, 128 / SVT.getSizeInBits()); + SDValue Ex = ExtendVecSize(DL, N0, Scale * InVT.getSizeInBits()); + SDValue SExt = DAG.getNode(ISD::SIGN_EXTEND, DL, ExVT, Ex); + return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, SExt, + DAG.getIntPtrConstant(0, DL)); + } + // If target-size is 128-bits, then convert to ISD::SIGN_EXTEND_VECTOR_INREG // which ensures lowering to X86ISD::VSEXT (pmovsx*). if (VT.getSizeInBits() == 128 && (SVT == MVT::i64 || SVT == MVT::i32 || SVT == MVT::i16) && (InSVT == MVT::i32 || InSVT == MVT::i16 || InSVT == MVT::i8)) { - SDValue ExOp = ExtendToVec128(DL, N0); + SDValue ExOp = ExtendVecSize(DL, N0, 128); return DAG.getSignExtendVectorInReg(ExOp, DL, VT); } @@ -24301,7 +24282,7 @@ static SDValue PerformSExtCombine(SDNode *N, SelectionDAG &DAG, ++i, Offset += NumSubElts) { SDValue SrcVec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InSubVT, N0, DAG.getIntPtrConstant(Offset, DL)); - SrcVec = ExtendToVec128(DL, SrcVec); + SrcVec = ExtendVecSize(DL, SrcVec, 128); SrcVec = DAG.getSignExtendVectorInReg(SrcVec, DL, SubVT); Opnds.push_back(SrcVec); } @@ -24312,11 +24293,9 @@ static SDValue PerformSExtCombine(SDNode *N, SelectionDAG &DAG, if (!Subtarget->hasFp256()) return SDValue(); - if (VT.isVector() && VT.getSizeInBits() == 256) { - SDValue R = WidenMaskArithmetic(N, DAG, DCI, Subtarget); - if (R.getNode()) + if (VT.isVector() && VT.getSizeInBits() == 256) + if (SDValue R = WidenMaskArithmetic(N, DAG, DCI, Subtarget)) return R; - } return SDValue(); } @@ -24332,7 +24311,8 @@ static SDValue PerformFMACombine(SDNode *N, SelectionDAG &DAG, EVT ScalarVT = VT.getScalarType(); if ((ScalarVT != MVT::f32 && ScalarVT != MVT::f64) || - (!Subtarget->hasFMA() && !Subtarget->hasFMA4())) + (!Subtarget->hasFMA() && !Subtarget->hasFMA4() && + !Subtarget->hasAVX512())) return SDValue(); SDValue A = N->getOperand(0); @@ -24398,11 +24378,10 @@ static SDValue PerformZExtCombine(SDNode *N, SelectionDAG &DAG, DAG.getConstant(1, dl, VT)); } } - if (VT.is256BitVector()) { - SDValue R = WidenMaskArithmetic(N, DAG, DCI, Subtarget); - if (R.getNode()) + + if (VT.is256BitVector()) + if (SDValue R = WidenMaskArithmetic(N, DAG, DCI, Subtarget)) return R; - } // (i8,i32 zext (udivrem (i8 x, i8 y)) -> // (i8,i32 (udivrem_zext_hreg (i8 x, i8 y) @@ -24606,10 +24585,7 @@ static SDValue PerformSETCCCombine(SDNode *N, SelectionDAG &DAG, if (CC == X86::COND_B) return MaterializeSETB(DL, EFLAGS, DAG, N->getSimpleValueType(0)); - SDValue Flags; - - Flags = checkBoolTestSetCCCombine(EFLAGS, CC); - if (Flags.getNode()) { + if (SDValue Flags = checkBoolTestSetCCCombine(EFLAGS, CC)) { SDValue Cond = DAG.getConstant(CC, DL, MVT::i8); return DAG.getNode(X86ISD::SETCC, DL, N->getVTList(), Cond, Flags); } @@ -24628,10 +24604,7 @@ static SDValue PerformBrCondCombine(SDNode *N, SelectionDAG &DAG, SDValue EFLAGS = N->getOperand(3); X86::CondCode CC = X86::CondCode(N->getConstantOperandVal(2)); - SDValue Flags; - - Flags = checkBoolTestSetCCCombine(EFLAGS, CC); - if (Flags.getNode()) { + if (SDValue Flags = checkBoolTestSetCCCombine(EFLAGS, CC)) { SDValue Cond = DAG.getConstant(CC, DL, MVT::i8); return DAG.getNode(X86ISD::BRCOND, DL, N->getVTList(), Chain, Dest, Cond, Flags); @@ -24695,16 +24668,18 @@ static SDValue PerformSINT_TO_FPCombine(SDNode *N, SelectionDAG &DAG, // Now move on to more general possibilities. SDValue Op0 = N->getOperand(0); - EVT InVT = Op0->getValueType(0); + EVT VT = N->getValueType(0); + EVT InVT = Op0.getValueType(); + EVT InSVT = InVT.getScalarType(); // SINT_TO_FP(vXi8) -> SINT_TO_FP(SEXT(vXi8 to vXi32)) // SINT_TO_FP(vXi16) -> SINT_TO_FP(SEXT(vXi16 to vXi32)) - if (InVT == MVT::v8i8 || InVT == MVT::v4i8 || - InVT == MVT::v8i16 || InVT == MVT::v4i16) { + if (InVT.isVector() && (InSVT == MVT::i8 || InSVT == MVT::i16)) { SDLoc dl(N); - MVT DstVT = MVT::getVectorVT(MVT::i32, InVT.getVectorNumElements()); + EVT DstVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, + InVT.getVectorNumElements()); SDValue P = DAG.getNode(ISD::SIGN_EXTEND, dl, DstVT, Op0); - return DAG.getNode(ISD::SINT_TO_FP, dl, N->getValueType(0), P); + return DAG.getNode(ISD::SINT_TO_FP, dl, VT, P); } // Transform (SINT_TO_FP (i64 ...)) into an x87 operation if we have @@ -24714,10 +24689,10 @@ static SDValue PerformSINT_TO_FPCombine(SDNode *N, SelectionDAG &DAG, EVT LdVT = Ld->getValueType(0); // This transformation is not supported if the result type is f16 - if (N->getValueType(0) == MVT::f16) + if (VT == MVT::f16) return SDValue(); - if (!Ld->isVolatile() && !N->getValueType(0).isVector() && + if (!Ld->isVolatile() && !VT.isVector() && ISD::isNON_EXTLoad(Op0.getNode()) && Op0.hasOneUse() && !Subtarget->is64Bit() && LdVT == MVT::i64) { SDValue FILDChain = Subtarget->getTargetLowering()->BuildFILD( @@ -25683,75 +25658,40 @@ X86TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, // Otherwise, check to see if this is a register class of the wrong value // type. For example, we want to map "{ax},i32" -> {eax}, we don't want it to // turn into {ax},{dx}. - if (Res.second->hasType(VT)) + // MVT::Other is used to specify clobber names. + if (Res.second->hasType(VT) || VT == MVT::Other) return Res; // Correct type already, nothing to do. - // All of the single-register GCC register classes map their values onto - // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp". If we - // really want an 8-bit or 32-bit register, map to the appropriate register - // class and return the appropriate register. - if (Res.second == &X86::GR16RegClass) { - if (VT == MVT::i8 || VT == MVT::i1) { - unsigned DestReg = 0; - switch (Res.first) { - default: break; - case X86::AX: DestReg = X86::AL; break; - case X86::DX: DestReg = X86::DL; break; - case X86::CX: DestReg = X86::CL; break; - case X86::BX: DestReg = X86::BL; break; - } - if (DestReg) { - Res.first = DestReg; - Res.second = &X86::GR8RegClass; - } - } else if (VT == MVT::i32 || VT == MVT::f32) { - unsigned DestReg = 0; - switch (Res.first) { - default: break; - case X86::AX: DestReg = X86::EAX; break; - case X86::DX: DestReg = X86::EDX; break; - case X86::CX: DestReg = X86::ECX; break; - case X86::BX: DestReg = X86::EBX; break; - case X86::SI: DestReg = X86::ESI; break; - case X86::DI: DestReg = X86::EDI; break; - case X86::BP: DestReg = X86::EBP; break; - case X86::SP: DestReg = X86::ESP; break; - } - if (DestReg) { - Res.first = DestReg; - Res.second = &X86::GR32RegClass; - } - } else if (VT == MVT::i64 || VT == MVT::f64) { - unsigned DestReg = 0; - switch (Res.first) { - default: break; - case X86::AX: DestReg = X86::RAX; break; - case X86::DX: DestReg = X86::RDX; break; - case X86::CX: DestReg = X86::RCX; break; - case X86::BX: DestReg = X86::RBX; break; - case X86::SI: DestReg = X86::RSI; break; - case X86::DI: DestReg = X86::RDI; break; - case X86::BP: DestReg = X86::RBP; break; - case X86::SP: DestReg = X86::RSP; break; - } - if (DestReg) { - Res.first = DestReg; - Res.second = &X86::GR64RegClass; - } - } else if (VT != MVT::Other) { - // Type mismatch and not a clobber: Return an error; + // Get a matching integer of the correct size. i.e. "ax" with MVT::32 should + // return "eax". This should even work for things like getting 64bit integer + // registers when given an f64 type. + const TargetRegisterClass *Class = Res.second; + if (Class == &X86::GR8RegClass || Class == &X86::GR16RegClass || + Class == &X86::GR32RegClass || Class == &X86::GR64RegClass) { + unsigned Size = VT.getSizeInBits(); + MVT::SimpleValueType SimpleTy = Size == 1 || Size == 8 ? MVT::i8 + : Size == 16 ? MVT::i16 + : Size == 32 ? MVT::i32 + : Size == 64 ? MVT::i64 + : MVT::Other; + unsigned DestReg = getX86SubSuperRegisterOrZero(Res.first, SimpleTy); + if (DestReg > 0) { + Res.first = DestReg; + Res.second = SimpleTy == MVT::i8 ? &X86::GR8RegClass + : SimpleTy == MVT::i16 ? &X86::GR16RegClass + : SimpleTy == MVT::i32 ? &X86::GR32RegClass + : &X86::GR64RegClass; + assert(Res.second->contains(Res.first) && "Register in register class"); + } else { + // No register found/type mismatch. Res.first = 0; Res.second = nullptr; } - } else if (Res.second == &X86::FR32RegClass || - Res.second == &X86::FR64RegClass || - Res.second == &X86::VR128RegClass || - Res.second == &X86::VR256RegClass || - Res.second == &X86::FR32XRegClass || - Res.second == &X86::FR64XRegClass || - Res.second == &X86::VR128XRegClass || - Res.second == &X86::VR256XRegClass || - Res.second == &X86::VR512RegClass) { + } else if (Class == &X86::FR32RegClass || Class == &X86::FR64RegClass || + Class == &X86::VR128RegClass || Class == &X86::VR256RegClass || + Class == &X86::FR32XRegClass || Class == &X86::FR64XRegClass || + Class == &X86::VR128XRegClass || Class == &X86::VR256XRegClass || + Class == &X86::VR512RegClass) { // Handle references to XMM physical registers that got mapped into the // wrong class. This can happen with constraints like {xmm0} where the // target independent register mapper will just pick the first match it can @@ -25767,15 +25707,11 @@ X86TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, Res.second = &X86::VR256RegClass; else if (X86::VR512RegClass.hasType(VT)) Res.second = &X86::VR512RegClass; - else if (VT != MVT::Other) { + else { // Type mismatch and not a clobber: Return an error; Res.first = 0; Res.second = nullptr; } - } else if (VT != MVT::Other) { - // Type mismatch and not a clobber: Return an error; - Res.first = 0; - Res.second = nullptr; } return Res; |