diff options
Diffstat (limited to 'lib/Target/X86/X86ISelLowering.cpp')
-rw-r--r-- | lib/Target/X86/X86ISelLowering.cpp | 286 |
1 files changed, 176 insertions, 110 deletions
diff --git a/lib/Target/X86/X86ISelLowering.cpp b/lib/Target/X86/X86ISelLowering.cpp index 9974d8c..e2b8193 100644 --- a/lib/Target/X86/X86ISelLowering.cpp +++ b/lib/Target/X86/X86ISelLowering.cpp @@ -73,7 +73,7 @@ static TargetLoweringObjectFile *createTLOF(X86TargetMachine &TM) { case X86Subtarget::isDarwin: if (TM.getSubtarget<X86Subtarget>().is64Bit()) return new X8664_MachoTargetObjectFile(); - return new X8632_MachoTargetObjectFile(); + return new TargetLoweringObjectFileMachO(); case X86Subtarget::isELF: if (TM.getSubtarget<X86Subtarget>().is64Bit()) return new X8664_ELFTargetObjectFile(TM); @@ -990,6 +990,7 @@ X86TargetLowering::X86TargetLowering(X86TargetMachine &TM) setTargetDAGCombine(ISD::VECTOR_SHUFFLE); setTargetDAGCombine(ISD::BUILD_VECTOR); setTargetDAGCombine(ISD::SELECT); + setTargetDAGCombine(ISD::AND); setTargetDAGCombine(ISD::SHL); setTargetDAGCombine(ISD::SRA); setTargetDAGCombine(ISD::SRL); @@ -1743,7 +1744,7 @@ EmitTailCallStoreRetAddr(SelectionDAG & DAG, MachineFunction &MF, // Calculate the new stack slot for the return address. int SlotSize = Is64Bit ? 8 : 4; int NewReturnAddrFI = - MF.getFrameInfo()->CreateFixedObject(SlotSize, FPDiff-SlotSize, true,false); + MF.getFrameInfo()->CreateFixedObject(SlotSize, FPDiff-SlotSize, false, false); EVT VT = Is64Bit ? MVT::i64 : MVT::i32; SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, VT); Chain = DAG.getStore(Chain, dl, RetAddrFrIdx, NewRetAddrFrIdx, @@ -2376,7 +2377,7 @@ SDValue X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) { // Set up a frame object for the return address. uint64_t SlotSize = TD->getPointerSize(); ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(SlotSize, -SlotSize, - true, false); + false, false); FuncInfo->setRAIndex(ReturnAddrIndex); } @@ -4816,8 +4817,16 @@ X86TargetLowering::LowerINSERT_VECTOR_ELT_SSE4(SDValue Op, SelectionDAG &DAG){ if ((EltVT.getSizeInBits() == 8 || EltVT.getSizeInBits() == 16) && isa<ConstantSDNode>(N2)) { - unsigned Opc = (EltVT.getSizeInBits() == 8) ? X86ISD::PINSRB - : X86ISD::PINSRW; + unsigned Opc; + if (VT == MVT::v8i16) + Opc = X86ISD::PINSRW; + else if (VT == MVT::v4i16) + Opc = X86ISD::MMX_PINSRW; + else if (VT == MVT::v16i8) + Opc = X86ISD::PINSRB; + else + Opc = X86ISD::PINSRB; + // Transform it so it match pinsr{b,w} which expects a GR32 as its second // argument. if (N1.getValueType() != MVT::i32) @@ -4868,7 +4877,8 @@ X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) { N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1); if (N2.getValueType() != MVT::i32) N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue()); - return DAG.getNode(X86ISD::PINSRW, dl, VT, N0, N1, N2); + return DAG.getNode(VT == MVT::v8i16 ? X86ISD::PINSRW : X86ISD::MMX_PINSRW, + dl, VT, N0, N1, N2); } return SDValue(); } @@ -5244,7 +5254,7 @@ SDValue X86TargetLowering::LowerShift(SDValue Op, SelectionDAG &DAG) { SDValue AndNode = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt, DAG.getConstant(VTBits, MVT::i8)); - SDValue Cond = DAG.getNode(X86ISD::CMP, dl, VT, + SDValue Cond = DAG.getNode(X86ISD::CMP, dl, MVT::i32, AndNode, DAG.getConstant(0, MVT::i8)); SDValue Hi, Lo; @@ -5873,26 +5883,31 @@ SDValue X86TargetLowering::EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC, /// LowerToBT - Result of 'and' is compared against zero. Turn it into a BT node /// if it's possible. -static SDValue LowerToBT(SDValue Op0, ISD::CondCode CC, +static SDValue LowerToBT(SDValue And, ISD::CondCode CC, DebugLoc dl, SelectionDAG &DAG) { + SDValue Op0 = And.getOperand(0); + SDValue Op1 = And.getOperand(1); + if (Op0.getOpcode() == ISD::TRUNCATE) + Op0 = Op0.getOperand(0); + if (Op1.getOpcode() == ISD::TRUNCATE) + Op1 = Op1.getOperand(0); + SDValue LHS, RHS; - if (Op0.getOperand(1).getOpcode() == ISD::SHL) { - if (ConstantSDNode *Op010C = - dyn_cast<ConstantSDNode>(Op0.getOperand(1).getOperand(0))) - if (Op010C->getZExtValue() == 1) { - LHS = Op0.getOperand(0); - RHS = Op0.getOperand(1).getOperand(1); + if (Op1.getOpcode() == ISD::SHL) { + if (ConstantSDNode *And10C = dyn_cast<ConstantSDNode>(Op1.getOperand(0))) + if (And10C->getZExtValue() == 1) { + LHS = Op0; + RHS = Op1.getOperand(1); } - } else if (Op0.getOperand(0).getOpcode() == ISD::SHL) { - if (ConstantSDNode *Op000C = - dyn_cast<ConstantSDNode>(Op0.getOperand(0).getOperand(0))) - if (Op000C->getZExtValue() == 1) { - LHS = Op0.getOperand(1); - RHS = Op0.getOperand(0).getOperand(1); + } else if (Op0.getOpcode() == ISD::SHL) { + if (ConstantSDNode *And00C = dyn_cast<ConstantSDNode>(Op0.getOperand(0))) + if (And00C->getZExtValue() == 1) { + LHS = Op1; + RHS = Op0.getOperand(1); } - } else if (Op0.getOperand(1).getOpcode() == ISD::Constant) { - ConstantSDNode *AndRHS = cast<ConstantSDNode>(Op0.getOperand(1)); - SDValue AndLHS = Op0.getOperand(0); + } else if (Op1.getOpcode() == ISD::Constant) { + ConstantSDNode *AndRHS = cast<ConstantSDNode>(Op1); + SDValue AndLHS = Op0; if (AndRHS->getZExtValue() == 1 && AndLHS.getOpcode() == ISD::SRL) { LHS = AndLHS.getOperand(0); RHS = AndLHS.getOperand(1); @@ -5942,6 +5957,21 @@ SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) { return NewSetCC; } + // Look for "(setcc) == / != 1" to avoid unncessary setcc. + if (Op0.getOpcode() == X86ISD::SETCC && + Op1.getOpcode() == ISD::Constant && + (cast<ConstantSDNode>(Op1)->getZExtValue() == 1 || + cast<ConstantSDNode>(Op1)->isNullValue()) && + (CC == ISD::SETEQ || CC == ISD::SETNE)) { + X86::CondCode CCode = (X86::CondCode)Op0.getConstantOperandVal(0); + bool Invert = (CC == ISD::SETNE) ^ + cast<ConstantSDNode>(Op1)->isNullValue(); + if (Invert) + CCode = X86::GetOppositeBranchCondition(CCode); + return DAG.getNode(X86ISD::SETCC, dl, MVT::i8, + DAG.getConstant(CCode, MVT::i8), Op0.getOperand(1)); + } + bool isFP = Op.getOperand(1).getValueType().isFloatingPoint(); unsigned X86CC = TranslateX86CC(CC, isFP, Op0, Op1, DAG); if (X86CC == X86::COND_INVALID) @@ -6444,8 +6474,7 @@ X86TargetLowering::EmitTargetCodeForMemset(SelectionDAG &DAG, DebugLoc dl, LowerCallTo(Chain, Type::getVoidTy(*DAG.getContext()), false, false, false, false, 0, CallingConv::C, false, /*isReturnValueUsed=*/false, - DAG.getExternalSymbol(bzeroEntry, IntPtr), Args, DAG, dl, - DAG.GetOrdering(Chain.getNode())); + DAG.getExternalSymbol(bzeroEntry, IntPtr), Args, DAG, dl); return CallResult.second; } @@ -7662,6 +7691,7 @@ const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const { case X86ISD::INSERTPS: return "X86ISD::INSERTPS"; case X86ISD::PINSRB: return "X86ISD::PINSRB"; case X86ISD::PINSRW: return "X86ISD::PINSRW"; + case X86ISD::MMX_PINSRW: return "X86ISD::MMX_PINSRW"; case X86ISD::PSHUFB: return "X86ISD::PSHUFB"; case X86ISD::FMAX: return "X86ISD::FMAX"; case X86ISD::FMIN: return "X86ISD::FMIN"; @@ -7769,7 +7799,7 @@ bool X86TargetLowering::isTruncateFree(const Type *Ty1, const Type *Ty2) const { unsigned NumBits2 = Ty2->getPrimitiveSizeInBits(); if (NumBits1 <= NumBits2) return false; - return Subtarget->is64Bit() || NumBits1 < 64; + return true; } bool X86TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const { @@ -7779,7 +7809,7 @@ bool X86TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const { unsigned NumBits2 = VT2.getSizeInBits(); if (NumBits1 <= NumBits2) return false; - return Subtarget->is64Bit() || NumBits1 < 64; + return true; } bool X86TargetLowering::isZExtFree(const Type *Ty1, const Type *Ty2) const { @@ -8792,10 +8822,9 @@ static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG, SDValue RHS = N->getOperand(2); // If we have SSE[12] support, try to form min/max nodes. SSE min/max - // instructions have the peculiarity that if either operand is a NaN, - // they chose what we call the RHS operand (and as such are not symmetric). - // It happens that this matches the semantics of the common C idiom - // x<y?x:y and related forms, so we can recognize these cases. + // instructions match the semantics of the common C idiom x<y?x:y but not + // x<=y?x:y, because of how they handle negative zero (which can be + // ignored in unsafe-math mode). if (Subtarget->hasSSE2() && (LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64) && Cond.getOpcode() == ISD::SETCC) { @@ -8803,36 +8832,34 @@ static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG, unsigned Opcode = 0; // Check for x CC y ? x : y. - if (LHS == Cond.getOperand(0) && RHS == Cond.getOperand(1)) { + if (DAG.isEqualTo(LHS, Cond.getOperand(0)) && + DAG.isEqualTo(RHS, Cond.getOperand(1))) { switch (CC) { default: break; case ISD::SETULT: - // This can be a min if we can prove that at least one of the operands - // is not a nan. - if (!FiniteOnlyFPMath()) { - if (DAG.isKnownNeverNaN(RHS)) { - // Put the potential NaN in the RHS so that SSE will preserve it. - std::swap(LHS, RHS); - } else if (!DAG.isKnownNeverNaN(LHS)) + // Converting this to a min would handle NaNs incorrectly, and swapping + // the operands would cause it to handle comparisons between positive + // and negative zero incorrectly. + if (!FiniteOnlyFPMath() && + (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))) { + if (!UnsafeFPMath && + !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS))) break; + std::swap(LHS, RHS); } Opcode = X86ISD::FMIN; break; case ISD::SETOLE: - // This can be a min if we can prove that at least one of the operands - // is not a nan. - if (!FiniteOnlyFPMath()) { - if (DAG.isKnownNeverNaN(LHS)) { - // Put the potential NaN in the RHS so that SSE will preserve it. - std::swap(LHS, RHS); - } else if (!DAG.isKnownNeverNaN(RHS)) - break; - } + // Converting this to a min would handle comparisons between positive + // and negative zero incorrectly. + if (!UnsafeFPMath && + !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS)) + break; Opcode = X86ISD::FMIN; break; case ISD::SETULE: - // This can be a min, but if either operand is a NaN we need it to - // preserve the original LHS. + // Converting this to a min would handle both negative zeros and NaNs + // incorrectly, but we can swap the operands to fix both. std::swap(LHS, RHS); case ISD::SETOLT: case ISD::SETLT: @@ -8841,32 +8868,29 @@ static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG, break; case ISD::SETOGE: - // This can be a max if we can prove that at least one of the operands - // is not a nan. - if (!FiniteOnlyFPMath()) { - if (DAG.isKnownNeverNaN(LHS)) { - // Put the potential NaN in the RHS so that SSE will preserve it. - std::swap(LHS, RHS); - } else if (!DAG.isKnownNeverNaN(RHS)) - break; - } + // Converting this to a max would handle comparisons between positive + // and negative zero incorrectly. + if (!UnsafeFPMath && + !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(LHS)) + break; Opcode = X86ISD::FMAX; break; case ISD::SETUGT: - // This can be a max if we can prove that at least one of the operands - // is not a nan. - if (!FiniteOnlyFPMath()) { - if (DAG.isKnownNeverNaN(RHS)) { - // Put the potential NaN in the RHS so that SSE will preserve it. - std::swap(LHS, RHS); - } else if (!DAG.isKnownNeverNaN(LHS)) + // Converting this to a max would handle NaNs incorrectly, and swapping + // the operands would cause it to handle comparisons between positive + // and negative zero incorrectly. + if (!FiniteOnlyFPMath() && + (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))) { + if (!UnsafeFPMath && + !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS))) break; + std::swap(LHS, RHS); } Opcode = X86ISD::FMAX; break; case ISD::SETUGE: - // This can be a max, but if either operand is a NaN we need it to - // preserve the original LHS. + // Converting this to a max would handle both negative zeros and NaNs + // incorrectly, but we can swap the operands to fix both. std::swap(LHS, RHS); case ISD::SETOGT: case ISD::SETGT: @@ -8875,36 +8899,33 @@ static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG, break; } // Check for x CC y ? y : x -- a min/max with reversed arms. - } else if (LHS == Cond.getOperand(1) && RHS == Cond.getOperand(0)) { + } else if (DAG.isEqualTo(LHS, Cond.getOperand(1)) && + DAG.isEqualTo(RHS, Cond.getOperand(0))) { switch (CC) { default: break; case ISD::SETOGE: - // This can be a min if we can prove that at least one of the operands - // is not a nan. - if (!FiniteOnlyFPMath()) { - if (DAG.isKnownNeverNaN(RHS)) { - // Put the potential NaN in the RHS so that SSE will preserve it. - std::swap(LHS, RHS); - } else if (!DAG.isKnownNeverNaN(LHS)) + // Converting this to a min would handle comparisons between positive + // and negative zero incorrectly, and swapping the operands would + // cause it to handle NaNs incorrectly. + if (!UnsafeFPMath && + !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS))) { + if (!FiniteOnlyFPMath() && + (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))) break; + std::swap(LHS, RHS); } Opcode = X86ISD::FMIN; break; case ISD::SETUGT: - // This can be a min if we can prove that at least one of the operands - // is not a nan. - if (!FiniteOnlyFPMath()) { - if (DAG.isKnownNeverNaN(LHS)) { - // Put the potential NaN in the RHS so that SSE will preserve it. - std::swap(LHS, RHS); - } else if (!DAG.isKnownNeverNaN(RHS)) - break; - } + // Converting this to a min would handle NaNs incorrectly. + if (!UnsafeFPMath && + (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))) + break; Opcode = X86ISD::FMIN; break; case ISD::SETUGE: - // This can be a min, but if either operand is a NaN we need it to - // preserve the original LHS. + // Converting this to a min would handle both negative zeros and NaNs + // incorrectly, but we can swap the operands to fix both. std::swap(LHS, RHS); case ISD::SETOGT: case ISD::SETGT: @@ -8913,32 +8934,28 @@ static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG, break; case ISD::SETULT: - // This can be a max if we can prove that at least one of the operands - // is not a nan. - if (!FiniteOnlyFPMath()) { - if (DAG.isKnownNeverNaN(LHS)) { - // Put the potential NaN in the RHS so that SSE will preserve it. - std::swap(LHS, RHS); - } else if (!DAG.isKnownNeverNaN(RHS)) - break; - } + // Converting this to a max would handle NaNs incorrectly. + if (!FiniteOnlyFPMath() && + (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))) + break; Opcode = X86ISD::FMAX; break; case ISD::SETOLE: - // This can be a max if we can prove that at least one of the operands - // is not a nan. - if (!FiniteOnlyFPMath()) { - if (DAG.isKnownNeverNaN(RHS)) { - // Put the potential NaN in the RHS so that SSE will preserve it. - std::swap(LHS, RHS); - } else if (!DAG.isKnownNeverNaN(LHS)) + // Converting this to a max would handle comparisons between positive + // and negative zero incorrectly, and swapping the operands would + // cause it to handle NaNs incorrectly. + if (!UnsafeFPMath && + !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS)) { + if (!FiniteOnlyFPMath() && + (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))) break; + std::swap(LHS, RHS); } Opcode = X86ISD::FMAX; break; case ISD::SETULE: - // This can be a max, but if either operand is a NaN we need it to - // preserve the original LHS. + // Converting this to a max would handle both negative zeros and NaNs + // incorrectly, but we can swap the operands to fix both. std::swap(LHS, RHS); case ISD::SETOLT: case ISD::SETLT: @@ -9157,16 +9174,64 @@ static SDValue PerformCMOVCombine(SDNode *N, SelectionDAG &DAG, return SDValue(); } +/// PerformANDCombine - Look for SSE and instructions of this form: +/// (and x, (build_vector signbit,signbit,signbit,signbit)). If there +/// exists a use of a build_vector that's the bitwise complement of the mask, +/// then transform the node to +/// (and (xor x, (build_vector -1,-1,-1,-1)), (build_vector ~sb,~sb,~sb,~sb)). +static SDValue PerformANDCombine(SDNode *N, SelectionDAG &DAG, + TargetLowering::DAGCombinerInfo &DCI) { + EVT VT = N->getValueType(0); + if (!VT.isVector() || !VT.isInteger()) + return SDValue(); + + SDValue N0 = N->getOperand(0); + SDValue N1 = N->getOperand(1); + if (N0.getOpcode() == ISD::XOR || !N1.hasOneUse()) + return SDValue(); + + if (N1.getOpcode() == ISD::BUILD_VECTOR) { + unsigned NumElts = VT.getVectorNumElements(); + EVT EltVT = VT.getVectorElementType(); + SmallVector<SDValue, 8> Mask; + Mask.reserve(NumElts); + for (unsigned i = 0; i != NumElts; ++i) { + SDValue Arg = N1.getOperand(i); + if (Arg.getOpcode() == ISD::UNDEF) { + Mask.push_back(Arg); + continue; + } + ConstantSDNode *C = dyn_cast<ConstantSDNode>(Arg); + if (!C) + return SDValue(); + if (!C->getAPIntValue().isSignBit() && + !C->getAPIntValue().isMaxSignedValue()) + return SDValue(); + Mask.push_back(DAG.getConstant(~C->getAPIntValue(), EltVT)); + } + N1 = DAG.getNode(ISD::BUILD_VECTOR, N1.getDebugLoc(), VT, + &Mask[0], NumElts); + if (!N1.use_empty()) { + unsigned Bits = EltVT.getSizeInBits(); + Mask.clear(); + for (unsigned i = 0; i != NumElts; ++i) + Mask.push_back(DAG.getConstant(APInt::getAllOnesValue(Bits), EltVT)); + SDValue NewMask = DAG.getNode(ISD::BUILD_VECTOR, N->getDebugLoc(), + VT, &Mask[0], NumElts); + return DAG.getNode(ISD::AND, N->getDebugLoc(), VT, + DAG.getNode(ISD::XOR, N->getDebugLoc(), VT, + N0, NewMask), N1); + } + } + + return SDValue(); +} /// PerformMulCombine - Optimize a single multiply with constant into two /// in order to implement it with two cheaper instructions, e.g. /// LEA + SHL, LEA + LEA. static SDValue PerformMulCombine(SDNode *N, SelectionDAG &DAG, TargetLowering::DAGCombinerInfo &DCI) { - if (DAG.getMachineFunction(). - getFunction()->hasFnAttr(Attribute::OptimizeForSize)) - return SDValue(); - if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer()) return SDValue(); @@ -9305,7 +9370,7 @@ static SDValue PerformShiftCombine(SDNode* N, SelectionDAG &DAG, } } else if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT) { if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(InVec.getOperand(2))) { - unsigned SplatIdx = cast<ShuffleVectorSDNode>(ShAmtOp)->getSplatIndex(); + unsigned SplatIdx= cast<ShuffleVectorSDNode>(ShAmtOp)->getSplatIndex(); if (C->getZExtValue() == SplatIdx) BaseShAmt = InVec.getOperand(1); } @@ -9690,6 +9755,7 @@ SDValue X86TargetLowering::PerformDAGCombine(SDNode *N, case ISD::VECTOR_SHUFFLE: return PerformShuffleCombine(N, DAG, *this); case ISD::SELECT: return PerformSELECTCombine(N, DAG, Subtarget); case X86ISD::CMOV: return PerformCMOVCombine(N, DAG, DCI); + case ISD::AND: return PerformANDCombine(N, DAG, DCI); case ISD::MUL: return PerformMulCombine(N, DAG, DCI); case ISD::SHL: case ISD::SRA: |