summaryrefslogtreecommitdiffstats
path: root/lib/Target/X86/X86FastISel.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'lib/Target/X86/X86FastISel.cpp')
-rw-r--r--lib/Target/X86/X86FastISel.cpp485
1 files changed, 243 insertions, 242 deletions
diff --git a/lib/Target/X86/X86FastISel.cpp b/lib/Target/X86/X86FastISel.cpp
index 1382f18..f1b9972 100644
--- a/lib/Target/X86/X86FastISel.cpp
+++ b/lib/Target/X86/X86FastISel.cpp
@@ -108,11 +108,11 @@ private:
bool X86SelectFPExt(const Instruction *I);
bool X86SelectFPTrunc(const Instruction *I);
- bool X86SelectExtractValue(const Instruction *I);
-
bool X86VisitIntrinsicCall(const IntrinsicInst &I);
bool X86SelectCall(const Instruction *I);
+ bool DoSelectCall(const Instruction *I, const char *MemIntName);
+
const X86InstrInfo *getInstrInfo() const {
return getTargetMachine()->getInstrInfo();
}
@@ -135,6 +135,8 @@ private:
bool isTypeLegal(const Type *Ty, MVT &VT, bool AllowI1 = false);
+ bool IsMemcpySmall(uint64_t Len);
+
bool TryEmitSmallMemcpy(X86AddressMode DestAM,
X86AddressMode SrcAM, uint64_t Len);
};
@@ -401,7 +403,7 @@ bool X86FastISel::X86SelectAddress(const Value *V, X86AddressMode &AM) {
Disp += SL->getElementOffset(cast<ConstantInt>(Op)->getZExtValue());
continue;
}
-
+
// A array/variable index is always of the form i*S where S is the
// constant scale size. See if we can push the scale into immediates.
uint64_t S = TD.getTypeAllocSize(GTI.getIndexedType());
@@ -469,7 +471,7 @@ bool X86FastISel::X86SelectAddress(const Value *V, X86AddressMode &AM) {
if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
if (GVar->isThreadLocal())
return false;
-
+
// RIP-relative addresses can't have additional register operands, so if
// we've already folded stuff into the addressing mode, just force the
// global value into its own register, which we can use as the basereg.
@@ -704,7 +706,8 @@ bool X86FastISel::X86SelectRet(const Instruction *I) {
// Analyze operands of the call, assigning locations to each operand.
SmallVector<CCValAssign, 16> ValLocs;
- CCState CCInfo(CC, F.isVarArg(), TM, ValLocs, I->getContext());
+ CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, TM, ValLocs,
+ I->getContext());
CCInfo.AnalyzeReturn(Outs, RetCC_X86);
const Value *RV = Ret->getOperand(0);
@@ -724,18 +727,38 @@ bool X86FastISel::X86SelectRet(const Instruction *I) {
// Only handle register returns for now.
if (!VA.isRegLoc())
return false;
- // TODO: For now, don't try to handle cases where getLocInfo()
- // says Full but the types don't match.
- if (TLI.getValueType(RV->getType()) != VA.getValVT())
- return false;
// The calling-convention tables for x87 returns don't tell
// the whole story.
if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1)
return false;
- // Make the copy.
unsigned SrcReg = Reg + VA.getValNo();
+ EVT SrcVT = TLI.getValueType(RV->getType());
+ EVT DstVT = VA.getValVT();
+ // Special handling for extended integers.
+ if (SrcVT != DstVT) {
+ if (SrcVT != MVT::i1 && SrcVT != MVT::i8 && SrcVT != MVT::i16)
+ return false;
+
+ if (!Outs[0].Flags.isZExt() && !Outs[0].Flags.isSExt())
+ return false;
+
+ assert(DstVT == MVT::i32 && "X86 should always ext to i32");
+
+ if (SrcVT == MVT::i1) {
+ if (Outs[0].Flags.isSExt())
+ return false;
+ SrcReg = FastEmitZExtFromI1(MVT::i8, SrcReg, /*TODO: Kill=*/false);
+ SrcVT = MVT::i8;
+ }
+ unsigned Op = Outs[0].Flags.isZExt() ? ISD::ZERO_EXTEND :
+ ISD::SIGN_EXTEND;
+ SrcReg = FastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), Op,
+ SrcReg, /*TODO: Kill=*/false);
+ }
+
+ // Make the copy.
unsigned DstReg = VA.getLocReg();
const TargetRegisterClass* SrcRC = MRI.getRegClass(SrcReg);
// Avoid a cross-class copy. This is very unlikely.
@@ -916,18 +939,31 @@ bool X86FastISel::X86SelectCmp(const Instruction *I) {
bool X86FastISel::X86SelectZExt(const Instruction *I) {
// Handle zero-extension from i1 to i8, which is common.
- if (I->getType()->isIntegerTy(8) &&
- I->getOperand(0)->getType()->isIntegerTy(1)) {
- unsigned ResultReg = getRegForValue(I->getOperand(0));
- if (ResultReg == 0) return false;
- // Set the high bits to zero.
- ResultReg = FastEmitZExtFromI1(MVT::i8, ResultReg, /*TODO: Kill=*/false);
- if (ResultReg == 0) return false;
- UpdateValueMap(I, ResultReg);
- return true;
+ if (!I->getOperand(0)->getType()->isIntegerTy(1))
+ return false;
+
+ EVT DstVT = TLI.getValueType(I->getType());
+ if (!TLI.isTypeLegal(DstVT))
+ return false;
+
+ unsigned ResultReg = getRegForValue(I->getOperand(0));
+ if (ResultReg == 0)
+ return false;
+
+ // Set the high bits to zero.
+ ResultReg = FastEmitZExtFromI1(MVT::i8, ResultReg, /*TODO: Kill=*/false);
+ if (ResultReg == 0)
+ return false;
+
+ if (DstVT != MVT::i8) {
+ ResultReg = FastEmit_r(MVT::i8, DstVT.getSimpleVT(), ISD::ZERO_EXTEND,
+ ResultReg, /*Kill=*/true);
+ if (ResultReg == 0)
+ return false;
}
- return false;
+ UpdateValueMap(I, ResultReg);
+ return true;
}
@@ -1010,63 +1046,6 @@ bool X86FastISel::X86SelectBranch(const Instruction *I) {
FuncInfo.MBB->addSuccessor(TrueMBB);
return true;
}
- } else if (ExtractValueInst *EI =
- dyn_cast<ExtractValueInst>(BI->getCondition())) {
- // Check to see if the branch instruction is from an "arithmetic with
- // overflow" intrinsic. The main way these intrinsics are used is:
- //
- // %t = call { i32, i1 } @llvm.sadd.with.overflow.i32(i32 %v1, i32 %v2)
- // %sum = extractvalue { i32, i1 } %t, 0
- // %obit = extractvalue { i32, i1 } %t, 1
- // br i1 %obit, label %overflow, label %normal
- //
- // The %sum and %obit are converted in an ADD and a SETO/SETB before
- // reaching the branch. Therefore, we search backwards through the MBB
- // looking for the SETO/SETB instruction. If an instruction modifies the
- // EFLAGS register before we reach the SETO/SETB instruction, then we can't
- // convert the branch into a JO/JB instruction.
- if (const IntrinsicInst *CI =
- dyn_cast<IntrinsicInst>(EI->getAggregateOperand())){
- if (CI->getIntrinsicID() == Intrinsic::sadd_with_overflow ||
- CI->getIntrinsicID() == Intrinsic::uadd_with_overflow) {
- const MachineInstr *SetMI = 0;
- unsigned Reg = getRegForValue(EI);
-
- for (MachineBasicBlock::const_reverse_iterator
- RI = FuncInfo.MBB->rbegin(), RE = FuncInfo.MBB->rend();
- RI != RE; ++RI) {
- const MachineInstr &MI = *RI;
-
- if (MI.definesRegister(Reg)) {
- if (MI.isCopy()) {
- Reg = MI.getOperand(1).getReg();
- continue;
- }
-
- SetMI = &MI;
- break;
- }
-
- const TargetInstrDesc &TID = MI.getDesc();
- if (TID.hasImplicitDefOfPhysReg(X86::EFLAGS) ||
- MI.hasUnmodeledSideEffects())
- break;
- }
-
- if (SetMI) {
- unsigned OpCode = SetMI->getOpcode();
-
- if (OpCode == X86::SETOr || OpCode == X86::SETBr) {
- BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
- TII.get(OpCode == X86::SETOr ? X86::JO_4 : X86::JB_4))
- .addMBB(TrueMBB);
- FastEmitBranch(FalseMBB, DL);
- FuncInfo.MBB->addSuccessor(TrueMBB);
- return true;
- }
- }
- }
- }
} else if (TruncInst *TI = dyn_cast<TruncInst>(BI->getCondition())) {
// Handle things like "%cond = trunc i32 %X to i1 / br i1 %cond", which
// typically happen for _Bool and C++ bools.
@@ -1086,13 +1065,13 @@ bool X86FastISel::X86SelectBranch(const Instruction *I) {
if (OpReg == 0) return false;
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TestOpc))
.addReg(OpReg).addImm(1);
-
+
unsigned JmpOpc = X86::JNE_4;
if (FuncInfo.MBB->isLayoutSuccessor(TrueMBB)) {
std::swap(TrueMBB, FalseMBB);
JmpOpc = X86::JE_4;
}
-
+
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(JmpOpc))
.addMBB(TrueMBB);
FastEmitBranch(FalseMBB, DL);
@@ -1266,18 +1245,13 @@ bool X86FastISel::X86SelectFPTrunc(const Instruction *I) {
}
bool X86FastISel::X86SelectTrunc(const Instruction *I) {
- if (Subtarget->is64Bit())
- // All other cases should be handled by the tblgen generated code.
- return false;
EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
EVT DstVT = TLI.getValueType(I->getType());
- // This code only handles truncation to byte right now.
+ // This code only handles truncation to byte.
if (DstVT != MVT::i8 && DstVT != MVT::i1)
- // All other cases should be handled by the tblgen generated code.
return false;
- if (SrcVT != MVT::i16 && SrcVT != MVT::i32)
- // All other cases should be handled by the tblgen generated code.
+ if (!TLI.isTypeLegal(SrcVT))
return false;
unsigned InputReg = getRegForValue(I->getOperand(0));
@@ -1285,16 +1259,26 @@ bool X86FastISel::X86SelectTrunc(const Instruction *I) {
// Unhandled operand. Halt "fast" selection and bail.
return false;
- // First issue a copy to GR16_ABCD or GR32_ABCD.
- const TargetRegisterClass *CopyRC = (SrcVT == MVT::i16)
- ? X86::GR16_ABCDRegisterClass : X86::GR32_ABCDRegisterClass;
- unsigned CopyReg = createResultReg(CopyRC);
- BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
- CopyReg).addReg(InputReg);
+ if (SrcVT == MVT::i8) {
+ // Truncate from i8 to i1; no code needed.
+ UpdateValueMap(I, InputReg);
+ return true;
+ }
+
+ if (!Subtarget->is64Bit()) {
+ // If we're on x86-32; we can't extract an i8 from a general register.
+ // First issue a copy to GR16_ABCD or GR32_ABCD.
+ const TargetRegisterClass *CopyRC = (SrcVT == MVT::i16)
+ ? X86::GR16_ABCDRegisterClass : X86::GR32_ABCDRegisterClass;
+ unsigned CopyReg = createResultReg(CopyRC);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
+ CopyReg).addReg(InputReg);
+ InputReg = CopyReg;
+ }
- // Then issue an extract_subreg.
+ // Issue an extract_subreg.
unsigned ResultReg = FastEmitInst_extractsubreg(MVT::i8,
- CopyReg, /*Kill=*/true,
+ InputReg, /*Kill=*/true,
X86::sub_8bit);
if (!ResultReg)
return false;
@@ -1303,36 +1287,18 @@ bool X86FastISel::X86SelectTrunc(const Instruction *I) {
return true;
}
-bool X86FastISel::X86SelectExtractValue(const Instruction *I) {
- const ExtractValueInst *EI = cast<ExtractValueInst>(I);
- const Value *Agg = EI->getAggregateOperand();
-
- if (const IntrinsicInst *CI = dyn_cast<IntrinsicInst>(Agg)) {
- switch (CI->getIntrinsicID()) {
- default: break;
- case Intrinsic::sadd_with_overflow:
- case Intrinsic::uadd_with_overflow: {
- // Cheat a little. We know that the registers for "add" and "seto" are
- // allocated sequentially. However, we only keep track of the register
- // for "add" in the value map. Use extractvalue's index to get the
- // correct register for "seto".
- unsigned OpReg = getRegForValue(Agg);
- if (OpReg == 0)
- return false;
- UpdateValueMap(I, OpReg + *EI->idx_begin());
- return true;
- }
- }
- }
-
- return false;
+bool X86FastISel::IsMemcpySmall(uint64_t Len) {
+ return Len <= (Subtarget->is64Bit() ? 32 : 16);
}
bool X86FastISel::TryEmitSmallMemcpy(X86AddressMode DestAM,
X86AddressMode SrcAM, uint64_t Len) {
+
// Make sure we don't bloat code by inlining very large memcpy's.
- bool i64Legal = TLI.isTypeLegal(MVT::i64);
- if (Len > (i64Legal ? 32 : 16)) return false;
+ if (!IsMemcpySmall(Len))
+ return false;
+
+ bool i64Legal = Subtarget->is64Bit();
// We don't care about alignment here since we just emit integer accesses.
while (Len) {
@@ -1369,20 +1335,44 @@ bool X86FastISel::X86VisitIntrinsicCall(const IntrinsicInst &I) {
case Intrinsic::memcpy: {
const MemCpyInst &MCI = cast<MemCpyInst>(I);
// Don't handle volatile or variable length memcpys.
- if (MCI.isVolatile() || !isa<ConstantInt>(MCI.getLength()))
+ if (MCI.isVolatile())
+ return false;
+
+ if (isa<ConstantInt>(MCI.getLength())) {
+ // Small memcpy's are common enough that we want to do them
+ // without a call if possible.
+ uint64_t Len = cast<ConstantInt>(MCI.getLength())->getZExtValue();
+ if (IsMemcpySmall(Len)) {
+ X86AddressMode DestAM, SrcAM;
+ if (!X86SelectAddress(MCI.getRawDest(), DestAM) ||
+ !X86SelectAddress(MCI.getRawSource(), SrcAM))
+ return false;
+ TryEmitSmallMemcpy(DestAM, SrcAM, Len);
+ return true;
+ }
+ }
+
+ unsigned SizeWidth = Subtarget->is64Bit() ? 64 : 32;
+ if (!MCI.getLength()->getType()->isIntegerTy(SizeWidth))
return false;
- uint64_t Len = cast<ConstantInt>(MCI.getLength())->getZExtValue();
-
- // Get the address of the dest and source addresses.
- X86AddressMode DestAM, SrcAM;
- if (!X86SelectAddress(MCI.getRawDest(), DestAM) ||
- !X86SelectAddress(MCI.getRawSource(), SrcAM))
+ if (MCI.getSourceAddressSpace() > 255 || MCI.getDestAddressSpace() > 255)
return false;
- return TryEmitSmallMemcpy(DestAM, SrcAM, Len);
+ return DoSelectCall(&I, "memcpy");
+ }
+ case Intrinsic::memset: {
+ const MemSetInst &MSI = cast<MemSetInst>(I);
+
+ unsigned SizeWidth = Subtarget->is64Bit() ? 64 : 32;
+ if (!MSI.getLength()->getType()->isIntegerTy(SizeWidth))
+ return false;
+
+ if (MSI.getDestAddressSpace() > 255)
+ return false;
+
+ return DoSelectCall(&I, "memset");
}
-
case Intrinsic::stackprotector: {
// Emit code inline code to store the stack guard onto the stack.
EVT PtrTy = TLI.getPointerTy();
@@ -1396,29 +1386,6 @@ bool X86FastISel::X86VisitIntrinsicCall(const IntrinsicInst &I) {
if (!X86FastEmitStore(PtrTy, Op1, AM)) return false;
return true;
}
- case Intrinsic::objectsize: {
- // FIXME: This should be moved to generic code!
- ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
- const Type *Ty = I.getCalledFunction()->getReturnType();
-
- MVT VT;
- if (!isTypeLegal(Ty, VT))
- return false;
-
- unsigned OpC = 0;
- if (VT == MVT::i32)
- OpC = X86::MOV32ri;
- else if (VT == MVT::i64)
- OpC = X86::MOV64ri;
- else
- return false;
-
- unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT));
- BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(OpC), ResultReg).
- addImm(CI->isZero() ? -1ULL : 0);
- UpdateValueMap(&I, ResultReg);
- return true;
- }
case Intrinsic::dbg_declare: {
const DbgDeclareInst *DI = cast<DbgDeclareInst>(&I);
X86AddressMode AM;
@@ -1439,12 +1406,9 @@ bool X86FastISel::X86VisitIntrinsicCall(const IntrinsicInst &I) {
case Intrinsic::sadd_with_overflow:
case Intrinsic::uadd_with_overflow: {
// FIXME: Should fold immediates.
-
+
// Replace "add with overflow" intrinsics with an "add" instruction followed
- // by a seto/setc instruction. Later on, when the "extractvalue"
- // instructions are encountered, we use the fact that two registers were
- // created sequentially to get the correct registers for the "sum" and the
- // "overflow bit".
+ // by a seto/setc instruction.
const Function *Callee = I.getCalledFunction();
const Type *RetTy =
cast<StructType>(Callee->getReturnType())->getTypeAtIndex(unsigned(0));
@@ -1470,27 +1434,18 @@ bool X86FastISel::X86VisitIntrinsicCall(const IntrinsicInst &I) {
else
return false;
- unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT));
+ // The call to CreateRegs builds two sequential registers, to store the
+ // both the the returned values.
+ unsigned ResultReg = FuncInfo.CreateRegs(I.getType());
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(OpC), ResultReg)
.addReg(Reg1).addReg(Reg2);
- unsigned DestReg1 = UpdateValueMap(&I, ResultReg);
-
- // If the add with overflow is an intra-block value then we just want to
- // create temporaries for it like normal. If it is a cross-block value then
- // UpdateValueMap will return the cross-block register used. Since we
- // *really* want the value to be live in the register pair known by
- // UpdateValueMap, we have to use DestReg1+1 as the destination register in
- // the cross block case. In the non-cross-block case, we should just make
- // another register for the value.
- if (DestReg1 != ResultReg)
- ResultReg = DestReg1+1;
- else
- ResultReg = createResultReg(TLI.getRegClassFor(MVT::i8));
unsigned Opc = X86::SETBr;
if (I.getIntrinsicID() == Intrinsic::sadd_with_overflow)
Opc = X86::SETOr;
- BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), ResultReg);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), ResultReg+1);
+
+ UpdateValueMap(&I, ResultReg, 2);
return true;
}
}
@@ -1508,6 +1463,14 @@ bool X86FastISel::X86SelectCall(const Instruction *I) {
if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI))
return X86VisitIntrinsicCall(*II);
+ return DoSelectCall(I, 0);
+}
+
+// Select either a call, or an llvm.memcpy/memmove/memset intrinsic
+bool X86FastISel::DoSelectCall(const Instruction *I, const char *MemIntName) {
+ const CallInst *CI = cast<CallInst>(I);
+ const Value *Callee = CI->getCalledValue();
+
// Handle only C and fastcc calling conventions for now.
ImmutableCallSite CS(CI);
CallingConv::ID CC = CS.getCallingConv();
@@ -1533,12 +1496,15 @@ bool X86FastISel::X86SelectCall(const Instruction *I) {
if (Subtarget->IsCalleePop(isVarArg, CC))
return false;
- // Handle *simple* calls for now.
- const Type *RetTy = CS.getType();
- MVT RetVT;
- if (RetTy->isVoidTy())
- RetVT = MVT::isVoid;
- else if (!isTypeLegal(RetTy, RetVT, true))
+ // Check whether the function can return without sret-demotion.
+ SmallVector<ISD::OutputArg, 4> Outs;
+ SmallVector<uint64_t, 4> Offsets;
+ GetReturnInfo(I->getType(), CS.getAttributes().getRetAttributes(),
+ Outs, TLI, &Offsets);
+ bool CanLowerReturn = TLI.CanLowerReturn(CS.getCallingConv(),
+ *FuncInfo.MF, FTy->isVarArg(),
+ Outs, FTy->getContext());
+ if (!CanLowerReturn)
return false;
// Materialize callee address in a register. FIXME: GV address can be
@@ -1555,13 +1521,6 @@ bool X86FastISel::X86SelectCall(const Instruction *I) {
} else
return false;
- // Allow calls which produce i1 results.
- bool AndToI1 = false;
- if (RetVT == MVT::i1) {
- RetVT = MVT::i8;
- AndToI1 = true;
- }
-
// Deal with call operands first.
SmallVector<const Value *, 8> ArgVals;
SmallVector<unsigned, 8> Args;
@@ -1573,6 +1532,10 @@ bool X86FastISel::X86SelectCall(const Instruction *I) {
ArgFlags.reserve(CS.arg_size());
for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
i != e; ++i) {
+ // If we're lowering a mem intrinsic instead of a regular call, skip the
+ // last two arguments, which should not passed to the underlying functions.
+ if (MemIntName && e-i <= 2)
+ break;
Value *ArgVal = *i;
ISD::ArgFlagsTy Flags;
unsigned AttrInd = i - CS.arg_begin() + 1;
@@ -1581,6 +1544,25 @@ bool X86FastISel::X86SelectCall(const Instruction *I) {
if (CS.paramHasAttr(AttrInd, Attribute::ZExt))
Flags.setZExt();
+ if (CS.paramHasAttr(AttrInd, Attribute::ByVal)) {
+ const PointerType *Ty = cast<PointerType>(ArgVal->getType());
+ const Type *ElementTy = Ty->getElementType();
+ unsigned FrameSize = TD.getTypeAllocSize(ElementTy);
+ unsigned FrameAlign = CS.getParamAlignment(AttrInd);
+ if (!FrameAlign)
+ FrameAlign = TLI.getByValTypeAlignment(ElementTy);
+ Flags.setByVal();
+ Flags.setByValSize(FrameSize);
+ Flags.setByValAlign(FrameAlign);
+ if (!IsMemcpySmall(FrameSize))
+ return false;
+ }
+
+ if (CS.paramHasAttr(AttrInd, Attribute::InReg))
+ Flags.setInReg();
+ if (CS.paramHasAttr(AttrInd, Attribute::Nest))
+ Flags.setNest();
+
// If this is an i1/i8/i16 argument, promote to i32 to avoid an extra
// instruction. This is safe because it is common to all fastisel supported
// calling conventions on x86.
@@ -1593,9 +1575,9 @@ bool X86FastISel::X86SelectCall(const Instruction *I) {
ArgVal = ConstantExpr::getZExt(CI,Type::getInt32Ty(CI->getContext()));
}
}
-
+
unsigned ArgReg;
-
+
// Passing bools around ends up doing a trunc to i1 and passing it.
// Codegen this as an argument + "and 1".
if (ArgVal->getType()->isIntegerTy(1) && isa<TruncInst>(ArgVal) &&
@@ -1604,10 +1586,10 @@ bool X86FastISel::X86SelectCall(const Instruction *I) {
ArgVal = cast<TruncInst>(ArgVal)->getOperand(0);
ArgReg = getRegForValue(ArgVal);
if (ArgReg == 0) return false;
-
+
MVT ArgVT;
if (!isTypeLegal(ArgVal->getType(), ArgVT)) return false;
-
+
ArgReg = FastEmit_ri(ArgVT, ArgVT, ISD::AND, ArgReg,
ArgVal->hasOneUse(), 1);
} else {
@@ -1616,16 +1598,12 @@ bool X86FastISel::X86SelectCall(const Instruction *I) {
if (ArgReg == 0) return false;
- // FIXME: Only handle *easy* calls for now.
- if (CS.paramHasAttr(AttrInd, Attribute::InReg) ||
- CS.paramHasAttr(AttrInd, Attribute::Nest) ||
- CS.paramHasAttr(AttrInd, Attribute::ByVal))
- return false;
-
const Type *ArgTy = ArgVal->getType();
MVT ArgVT;
if (!isTypeLegal(ArgTy, ArgVT))
return false;
+ if (ArgVT == MVT::x86mmx)
+ return false;
unsigned OriginalAlignment = TD.getABITypeAlignment(ArgTy);
Flags.setOrigAlign(OriginalAlignment);
@@ -1637,7 +1615,8 @@ bool X86FastISel::X86SelectCall(const Instruction *I) {
// Analyze operands of the call, assigning locations to each operand.
SmallVector<CCValAssign, 16> ArgLocs;
- CCState CCInfo(CC, isVarArg, TM, ArgLocs, I->getParent()->getContext());
+ CCState CCInfo(CC, isVarArg, *FuncInfo.MF, TM, ArgLocs,
+ I->getParent()->getContext());
// Allocate shadow area for Win64
if (Subtarget->isTargetWin64())
@@ -1666,6 +1645,8 @@ bool X86FastISel::X86SelectCall(const Instruction *I) {
default: llvm_unreachable("Unknown loc info!");
case CCValAssign::Full: break;
case CCValAssign::SExt: {
+ assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() &&
+ "Unexpected extend");
bool Emitted = X86FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(),
Arg, ArgVT, Arg);
assert(Emitted && "Failed to emit a sext!"); (void)Emitted;
@@ -1673,6 +1654,8 @@ bool X86FastISel::X86SelectCall(const Instruction *I) {
break;
}
case CCValAssign::ZExt: {
+ assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() &&
+ "Unexpected extend");
bool Emitted = X86FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(),
Arg, ArgVT, Arg);
assert(Emitted && "Failed to emit a zext!"); (void)Emitted;
@@ -1680,9 +1663,8 @@ bool X86FastISel::X86SelectCall(const Instruction *I) {
break;
}
case CCValAssign::AExt: {
- // We don't handle MMX parameters yet.
- if (VA.getLocVT().isVector() && VA.getLocVT().getSizeInBits() == 128)
- return false;
+ assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() &&
+ "Unexpected extend");
bool Emitted = X86FastEmitExtend(ISD::ANY_EXTEND, VA.getLocVT(),
Arg, ArgVT, Arg);
if (!Emitted)
@@ -1716,14 +1698,21 @@ bool X86FastISel::X86SelectCall(const Instruction *I) {
AM.Base.Reg = StackPtr;
AM.Disp = LocMemOffset;
const Value *ArgVal = ArgVals[VA.getValNo()];
-
- // If this is a really simple value, emit this with the Value* version of
- // X86FastEmitStore. If it isn't simple, we don't want to do this, as it
- // can cause us to reevaluate the argument.
- if (isa<ConstantInt>(ArgVal) || isa<ConstantPointerNull>(ArgVal))
+ ISD::ArgFlagsTy Flags = ArgFlags[VA.getValNo()];
+
+ if (Flags.isByVal()) {
+ X86AddressMode SrcAM;
+ SrcAM.Base.Reg = Arg;
+ bool Res = TryEmitSmallMemcpy(AM, SrcAM, Flags.getByValSize());
+ assert(Res && "memcpy length already checked!"); (void)Res;
+ } else if (isa<ConstantInt>(ArgVal) || isa<ConstantPointerNull>(ArgVal)) {
+ // If this is a really simple value, emit this with the Value* version
+ //of X86FastEmitStore. If it isn't simple, we don't want to do this,
+ // as it can cause us to reevaluate the argument.
X86FastEmitStore(ArgVT, ArgVal, AM);
- else
+ } else {
X86FastEmitStore(ArgVT, Arg, AM);
+ }
}
}
@@ -1793,8 +1782,11 @@ bool X86FastISel::X86SelectCall(const Instruction *I) {
}
- MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(CallOpc))
- .addGlobalAddress(GV, 0, OpFlags);
+ MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(CallOpc));
+ if (MemIntName)
+ MIB.addExternalSymbol(MemIntName, OpFlags);
+ else
+ MIB.addGlobalAddress(GV, 0, OpFlags);
}
// Add an implicit use GOT pointer in EBX.
@@ -1816,63 +1808,74 @@ bool X86FastISel::X86SelectCall(const Instruction *I) {
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(AdjStackUp))
.addImm(NumBytes).addImm(NumBytesCallee);
- // Now handle call return value (if any).
- SmallVector<unsigned, 4> UsedRegs;
- if (RetVT != MVT::isVoid) {
- SmallVector<CCValAssign, 16> RVLocs;
- CCState CCInfo(CC, false, TM, RVLocs, I->getParent()->getContext());
- CCInfo.AnalyzeCallResult(RetVT, RetCC_X86);
+ // Build info for return calling conv lowering code.
+ // FIXME: This is practically a copy-paste from TargetLowering::LowerCallTo.
+ SmallVector<ISD::InputArg, 32> Ins;
+ SmallVector<EVT, 4> RetTys;
+ ComputeValueVTs(TLI, I->getType(), RetTys);
+ for (unsigned i = 0, e = RetTys.size(); i != e; ++i) {
+ EVT VT = RetTys[i];
+ EVT RegisterVT = TLI.getRegisterType(I->getParent()->getContext(), VT);
+ unsigned NumRegs = TLI.getNumRegisters(I->getParent()->getContext(), VT);
+ for (unsigned j = 0; j != NumRegs; ++j) {
+ ISD::InputArg MyFlags;
+ MyFlags.VT = RegisterVT.getSimpleVT();
+ MyFlags.Used = !CS.getInstruction()->use_empty();
+ if (CS.paramHasAttr(0, Attribute::SExt))
+ MyFlags.Flags.setSExt();
+ if (CS.paramHasAttr(0, Attribute::ZExt))
+ MyFlags.Flags.setZExt();
+ if (CS.paramHasAttr(0, Attribute::InReg))
+ MyFlags.Flags.setInReg();
+ Ins.push_back(MyFlags);
+ }
+ }
- // Copy all of the result registers out of their specified physreg.
- assert(RVLocs.size() == 1 && "Can't handle multi-value calls!");
- EVT CopyVT = RVLocs[0].getValVT();
- TargetRegisterClass* DstRC = TLI.getRegClassFor(CopyVT);
+ // Now handle call return values.
+ SmallVector<unsigned, 4> UsedRegs;
+ SmallVector<CCValAssign, 16> RVLocs;
+ CCState CCRetInfo(CC, false, *FuncInfo.MF, TM, RVLocs,
+ I->getParent()->getContext());
+ unsigned ResultReg = FuncInfo.CreateRegs(I->getType());
+ CCRetInfo.AnalyzeCallResult(Ins, RetCC_X86);
+ for (unsigned i = 0; i != RVLocs.size(); ++i) {
+ EVT CopyVT = RVLocs[i].getValVT();
+ unsigned CopyReg = ResultReg + i;
// If this is a call to a function that returns an fp value on the x87 fp
// stack, but where we prefer to use the value in xmm registers, copy it
// out as F80 and use a truncate to move it from fp stack reg to xmm reg.
- if ((RVLocs[0].getLocReg() == X86::ST0 ||
- RVLocs[0].getLocReg() == X86::ST1) &&
+ if ((RVLocs[i].getLocReg() == X86::ST0 ||
+ RVLocs[i].getLocReg() == X86::ST1) &&
isScalarFPTypeInSSEReg(RVLocs[0].getValVT())) {
CopyVT = MVT::f80;
- DstRC = X86::RFP80RegisterClass;
+ CopyReg = createResultReg(X86::RFP80RegisterClass);
}
- unsigned ResultReg = createResultReg(DstRC);
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
- ResultReg).addReg(RVLocs[0].getLocReg());
- UsedRegs.push_back(RVLocs[0].getLocReg());
+ CopyReg).addReg(RVLocs[i].getLocReg());
+ UsedRegs.push_back(RVLocs[i].getLocReg());
- if (CopyVT != RVLocs[0].getValVT()) {
+ if (CopyVT != RVLocs[i].getValVT()) {
// Round the F80 the right size, which also moves to the appropriate xmm
// register. This is accomplished by storing the F80 value in memory and
// then loading it back. Ewww...
- EVT ResVT = RVLocs[0].getValVT();
+ EVT ResVT = RVLocs[i].getValVT();
unsigned Opc = ResVT == MVT::f32 ? X86::ST_Fp80m32 : X86::ST_Fp80m64;
unsigned MemSize = ResVT.getSizeInBits()/8;
int FI = MFI.CreateStackObject(MemSize, MemSize, false);
addFrameReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
TII.get(Opc)), FI)
- .addReg(ResultReg);
- DstRC = ResVT == MVT::f32
- ? X86::FR32RegisterClass : X86::FR64RegisterClass;
+ .addReg(CopyReg);
Opc = ResVT == MVT::f32 ? X86::MOVSSrm : X86::MOVSDrm;
- ResultReg = createResultReg(DstRC);
addFrameReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
- TII.get(Opc), ResultReg), FI);
+ TII.get(Opc), ResultReg + i), FI);
}
-
- if (AndToI1) {
- // Mask out all but lowest bit for some call which produces an i1.
- unsigned AndResult = createResultReg(X86::GR8RegisterClass);
- BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
- TII.get(X86::AND8ri), AndResult).addReg(ResultReg).addImm(1);
- ResultReg = AndResult;
- }
-
- UpdateValueMap(I, ResultReg);
}
+ if (RVLocs.size())
+ UpdateValueMap(I, ResultReg, RVLocs.size());
+
// Set all unused physreg defs as dead.
static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI);
@@ -1911,8 +1914,6 @@ X86FastISel::TargetSelectInstruction(const Instruction *I) {
return X86SelectFPExt(I);
case Instruction::FPTrunc:
return X86SelectFPTrunc(I);
- case Instruction::ExtractValue:
- return X86SelectExtractValue(I);
case Instruction::IntToPtr: // Deliberate fall-through.
case Instruction::PtrToInt: {
EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
@@ -1990,7 +1991,7 @@ unsigned X86FastISel::TargetMaterializeConstant(const Constant *C) {
if (AM.BaseType == X86AddressMode::RegBase &&
AM.IndexReg == 0 && AM.Disp == 0 && AM.GV == 0)
return AM.Base.Reg;
-
+
Opc = TLI.getPointerTy() == MVT::i32 ? X86::LEA32r : X86::LEA64r;
unsigned ResultReg = createResultReg(RC);
addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
OpenPOWER on IntegriCloud