summaryrefslogtreecommitdiffstats
path: root/lib/Target/X86/X86FastISel.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'lib/Target/X86/X86FastISel.cpp')
-rw-r--r--lib/Target/X86/X86FastISel.cpp507
1 files changed, 342 insertions, 165 deletions
diff --git a/lib/Target/X86/X86FastISel.cpp b/lib/Target/X86/X86FastISel.cpp
index 6fa9284..1382f18 100644
--- a/lib/Target/X86/X86FastISel.cpp
+++ b/lib/Target/X86/X86FastISel.cpp
@@ -23,6 +23,7 @@
#include "llvm/GlobalVariable.h"
#include "llvm/Instructions.h"
#include "llvm/IntrinsicInst.h"
+#include "llvm/Operator.h"
#include "llvm/CodeGen/Analysis.h"
#include "llvm/CodeGen/FastISel.h"
#include "llvm/CodeGen/FunctionLoweringInfo.h"
@@ -77,10 +78,8 @@ private:
bool X86FastEmitLoad(EVT VT, const X86AddressMode &AM, unsigned &RR);
- bool X86FastEmitStore(EVT VT, const Value *Val,
- const X86AddressMode &AM);
- bool X86FastEmitStore(EVT VT, unsigned Val,
- const X86AddressMode &AM);
+ bool X86FastEmitStore(EVT VT, const Value *Val, const X86AddressMode &AM);
+ bool X86FastEmitStore(EVT VT, unsigned Val, const X86AddressMode &AM);
bool X86FastEmitExtend(ISD::NodeType Opc, EVT DstVT, unsigned Src, EVT SrcVT,
unsigned &ResultReg);
@@ -125,6 +124,8 @@ private:
unsigned TargetMaterializeAlloca(const AllocaInst *C);
+ unsigned TargetMaterializeFloatZero(const ConstantFP *CF);
+
/// isScalarFPTypeInSSEReg - Return true if the specified scalar FP type is
/// computed in an SSE register, not on the X87 floating point stack.
bool isScalarFPTypeInSSEReg(EVT VT) const {
@@ -133,6 +134,9 @@ private:
}
bool isTypeLegal(const Type *Ty, MVT &VT, bool AllowI1 = false);
+
+ bool TryEmitSmallMemcpy(X86AddressMode DestAM,
+ X86AddressMode SrcAM, uint64_t Len);
};
} // end anonymous namespace.
@@ -224,8 +228,7 @@ bool X86FastISel::X86FastEmitLoad(EVT VT, const X86AddressMode &AM,
/// and a displacement offset, or a GlobalAddress,
/// i.e. V. Return true if it is possible.
bool
-X86FastISel::X86FastEmitStore(EVT VT, unsigned Val,
- const X86AddressMode &AM) {
+X86FastISel::X86FastEmitStore(EVT VT, unsigned Val, const X86AddressMode &AM) {
// Get opcode and regclass of the output for the given store instruction.
unsigned Opc = 0;
switch (VT.getSimpleVT().SimpleTy) {
@@ -395,37 +398,45 @@ bool X86FastISel::X86SelectAddress(const Value *V, X86AddressMode &AM) {
const Value *Op = *i;
if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
const StructLayout *SL = TD.getStructLayout(STy);
- unsigned Idx = cast<ConstantInt>(Op)->getZExtValue();
- Disp += SL->getElementOffset(Idx);
- } else {
- uint64_t S = TD.getTypeAllocSize(GTI.getIndexedType());
- SmallVector<const Value *, 4> Worklist;
- Worklist.push_back(Op);
- do {
- Op = Worklist.pop_back_val();
- if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
- // Constant-offset addressing.
- Disp += CI->getSExtValue() * S;
- } else if (isa<AddOperator>(Op) &&
- isa<ConstantInt>(cast<AddOperator>(Op)->getOperand(1))) {
- // An add with a constant operand. Fold the constant.
- ConstantInt *CI =
- cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1));
- Disp += CI->getSExtValue() * S;
- // Add the other operand back to the work list.
- Worklist.push_back(cast<AddOperator>(Op)->getOperand(0));
- } else if (IndexReg == 0 &&
- (!AM.GV || !Subtarget->isPICStyleRIPRel()) &&
- (S == 1 || S == 2 || S == 4 || S == 8)) {
- // Scaled-index addressing.
- Scale = S;
- IndexReg = getRegForGEPIndex(Op).first;
- if (IndexReg == 0)
- return false;
- } else
- // Unsupported.
- goto unsupported_gep;
- } while (!Worklist.empty());
+ Disp += SL->getElementOffset(cast<ConstantInt>(Op)->getZExtValue());
+ continue;
+ }
+
+ // A array/variable index is always of the form i*S where S is the
+ // constant scale size. See if we can push the scale into immediates.
+ uint64_t S = TD.getTypeAllocSize(GTI.getIndexedType());
+ for (;;) {
+ if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
+ // Constant-offset addressing.
+ Disp += CI->getSExtValue() * S;
+ break;
+ }
+ if (isa<AddOperator>(Op) &&
+ (!isa<Instruction>(Op) ||
+ FuncInfo.MBBMap[cast<Instruction>(Op)->getParent()]
+ == FuncInfo.MBB) &&
+ isa<ConstantInt>(cast<AddOperator>(Op)->getOperand(1))) {
+ // An add (in the same block) with a constant operand. Fold the
+ // constant.
+ ConstantInt *CI =
+ cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1));
+ Disp += CI->getSExtValue() * S;
+ // Iterate on the other operand.
+ Op = cast<AddOperator>(Op)->getOperand(0);
+ continue;
+ }
+ if (IndexReg == 0 &&
+ (!AM.GV || !Subtarget->isPICStyleRIPRel()) &&
+ (S == 1 || S == 2 || S == 4 || S == 8)) {
+ // Scaled-index addressing.
+ Scale = S;
+ IndexReg = getRegForGEPIndex(Op).first;
+ if (IndexReg == 0)
+ return false;
+ break;
+ }
+ // Unsupported.
+ goto unsupported_gep;
}
}
// Check for displacement overflow.
@@ -439,7 +450,7 @@ bool X86FastISel::X86SelectAddress(const Value *V, X86AddressMode &AM) {
if (X86SelectAddress(U->getOperand(0), AM))
return true;
- // If we couldn't merge the sub value into this addr mode, revert back to
+ // If we couldn't merge the gep value into this addr mode, revert back to
// our address and just match the value instead of completely failing.
AM = SavedAM;
break;
@@ -451,91 +462,91 @@ bool X86FastISel::X86SelectAddress(const Value *V, X86AddressMode &AM) {
// Handle constant address.
if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
- // Can't handle alternate code models yet.
+ // Can't handle alternate code models or TLS yet.
if (TM.getCodeModel() != CodeModel::Small)
return false;
- // RIP-relative addresses can't have additional register operands.
- if (Subtarget->isPICStyleRIPRel() &&
- (AM.Base.Reg != 0 || AM.IndexReg != 0))
- return false;
-
- // Can't handle TLS yet.
if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
if (GVar->isThreadLocal())
return false;
+
+ // RIP-relative addresses can't have additional register operands, so if
+ // we've already folded stuff into the addressing mode, just force the
+ // global value into its own register, which we can use as the basereg.
+ if (!Subtarget->isPICStyleRIPRel() ||
+ (AM.Base.Reg == 0 && AM.IndexReg == 0)) {
+ // Okay, we've committed to selecting this global. Set up the address.
+ AM.GV = GV;
+
+ // Allow the subtarget to classify the global.
+ unsigned char GVFlags = Subtarget->ClassifyGlobalReference(GV, TM);
+
+ // If this reference is relative to the pic base, set it now.
+ if (isGlobalRelativeToPICBase(GVFlags)) {
+ // FIXME: How do we know Base.Reg is free??
+ AM.Base.Reg = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF);
+ }
- // Okay, we've committed to selecting this global. Set up the basic address.
- AM.GV = GV;
-
- // Allow the subtarget to classify the global.
- unsigned char GVFlags = Subtarget->ClassifyGlobalReference(GV, TM);
-
- // If this reference is relative to the pic base, set it now.
- if (isGlobalRelativeToPICBase(GVFlags)) {
- // FIXME: How do we know Base.Reg is free??
- AM.Base.Reg = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF);
- }
-
- // Unless the ABI requires an extra load, return a direct reference to
- // the global.
- if (!isGlobalStubReference(GVFlags)) {
- if (Subtarget->isPICStyleRIPRel()) {
- // Use rip-relative addressing if we can. Above we verified that the
- // base and index registers are unused.
- assert(AM.Base.Reg == 0 && AM.IndexReg == 0);
- AM.Base.Reg = X86::RIP;
+ // Unless the ABI requires an extra load, return a direct reference to
+ // the global.
+ if (!isGlobalStubReference(GVFlags)) {
+ if (Subtarget->isPICStyleRIPRel()) {
+ // Use rip-relative addressing if we can. Above we verified that the
+ // base and index registers are unused.
+ assert(AM.Base.Reg == 0 && AM.IndexReg == 0);
+ AM.Base.Reg = X86::RIP;
+ }
+ AM.GVOpFlags = GVFlags;
+ return true;
}
- AM.GVOpFlags = GVFlags;
- return true;
- }
- // Ok, we need to do a load from a stub. If we've already loaded from this
- // stub, reuse the loaded pointer, otherwise emit the load now.
- DenseMap<const Value*, unsigned>::iterator I = LocalValueMap.find(V);
- unsigned LoadReg;
- if (I != LocalValueMap.end() && I->second != 0) {
- LoadReg = I->second;
- } else {
- // Issue load from stub.
- unsigned Opc = 0;
- const TargetRegisterClass *RC = NULL;
- X86AddressMode StubAM;
- StubAM.Base.Reg = AM.Base.Reg;
- StubAM.GV = GV;
- StubAM.GVOpFlags = GVFlags;
-
- // Prepare for inserting code in the local-value area.
- SavePoint SaveInsertPt = enterLocalValueArea();
-
- if (TLI.getPointerTy() == MVT::i64) {
- Opc = X86::MOV64rm;
- RC = X86::GR64RegisterClass;
-
- if (Subtarget->isPICStyleRIPRel())
- StubAM.Base.Reg = X86::RIP;
+ // Ok, we need to do a load from a stub. If we've already loaded from
+ // this stub, reuse the loaded pointer, otherwise emit the load now.
+ DenseMap<const Value*, unsigned>::iterator I = LocalValueMap.find(V);
+ unsigned LoadReg;
+ if (I != LocalValueMap.end() && I->second != 0) {
+ LoadReg = I->second;
} else {
- Opc = X86::MOV32rm;
- RC = X86::GR32RegisterClass;
- }
+ // Issue load from stub.
+ unsigned Opc = 0;
+ const TargetRegisterClass *RC = NULL;
+ X86AddressMode StubAM;
+ StubAM.Base.Reg = AM.Base.Reg;
+ StubAM.GV = GV;
+ StubAM.GVOpFlags = GVFlags;
+
+ // Prepare for inserting code in the local-value area.
+ SavePoint SaveInsertPt = enterLocalValueArea();
+
+ if (TLI.getPointerTy() == MVT::i64) {
+ Opc = X86::MOV64rm;
+ RC = X86::GR64RegisterClass;
+
+ if (Subtarget->isPICStyleRIPRel())
+ StubAM.Base.Reg = X86::RIP;
+ } else {
+ Opc = X86::MOV32rm;
+ RC = X86::GR32RegisterClass;
+ }
- LoadReg = createResultReg(RC);
- MachineInstrBuilder LoadMI =
- BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), LoadReg);
- addFullAddress(LoadMI, StubAM);
+ LoadReg = createResultReg(RC);
+ MachineInstrBuilder LoadMI =
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), LoadReg);
+ addFullAddress(LoadMI, StubAM);
- // Ok, back to normal mode.
- leaveLocalValueArea(SaveInsertPt);
+ // Ok, back to normal mode.
+ leaveLocalValueArea(SaveInsertPt);
- // Prevent loading GV stub multiple times in same MBB.
- LocalValueMap[V] = LoadReg;
- }
+ // Prevent loading GV stub multiple times in same MBB.
+ LocalValueMap[V] = LoadReg;
+ }
- // Now construct the final address. Note that the Disp, Scale,
- // and Index values may already be set here.
- AM.Base.Reg = LoadReg;
- AM.GV = 0;
- return true;
+ // Now construct the final address. Note that the Disp, Scale,
+ // and Index values may already be set here.
+ AM.Base.Reg = LoadReg;
+ AM.GV = 0;
+ return true;
+ }
}
// If all else fails, try to materialize the value in a register.
@@ -856,12 +867,9 @@ bool X86FastISel::X86SelectCmp(const Instruction *I) {
unsigned NEReg = createResultReg(&X86::GR8RegClass);
unsigned PReg = createResultReg(&X86::GR8RegClass);
- BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
- TII.get(X86::SETNEr), NEReg);
- BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
- TII.get(X86::SETPr), PReg);
- BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
- TII.get(X86::OR8rr), ResultReg)
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(X86::SETNEr), NEReg);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(X86::SETPr), PReg);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(X86::OR8rr),ResultReg)
.addReg(PReg).addReg(NEReg);
UpdateValueMap(I, ResultReg);
return true;
@@ -1059,14 +1067,49 @@ bool X86FastISel::X86SelectBranch(const Instruction *I) {
}
}
}
+ } else if (TruncInst *TI = dyn_cast<TruncInst>(BI->getCondition())) {
+ // Handle things like "%cond = trunc i32 %X to i1 / br i1 %cond", which
+ // typically happen for _Bool and C++ bools.
+ MVT SourceVT;
+ if (TI->hasOneUse() && TI->getParent() == I->getParent() &&
+ isTypeLegal(TI->getOperand(0)->getType(), SourceVT)) {
+ unsigned TestOpc = 0;
+ switch (SourceVT.SimpleTy) {
+ default: break;
+ case MVT::i8: TestOpc = X86::TEST8ri; break;
+ case MVT::i16: TestOpc = X86::TEST16ri; break;
+ case MVT::i32: TestOpc = X86::TEST32ri; break;
+ case MVT::i64: TestOpc = X86::TEST64ri32; break;
+ }
+ if (TestOpc) {
+ unsigned OpReg = getRegForValue(TI->getOperand(0));
+ if (OpReg == 0) return false;
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TestOpc))
+ .addReg(OpReg).addImm(1);
+
+ unsigned JmpOpc = X86::JNE_4;
+ if (FuncInfo.MBB->isLayoutSuccessor(TrueMBB)) {
+ std::swap(TrueMBB, FalseMBB);
+ JmpOpc = X86::JE_4;
+ }
+
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(JmpOpc))
+ .addMBB(TrueMBB);
+ FastEmitBranch(FalseMBB, DL);
+ FuncInfo.MBB->addSuccessor(TrueMBB);
+ return true;
+ }
+ }
}
// Otherwise do a clumsy setcc and re-test it.
+ // Note that i1 essentially gets ANY_EXTEND'ed to i8 where it isn't used
+ // in an explicit cast, so make sure to handle that correctly.
unsigned OpReg = getRegForValue(BI->getCondition());
if (OpReg == 0) return false;
- BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(X86::TEST8rr))
- .addReg(OpReg).addReg(OpReg);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(X86::TEST8ri))
+ .addReg(OpReg).addImm(1);
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(X86::JNE_4))
.addMBB(TrueMBB);
FastEmitBranch(FalseMBB, DL);
@@ -1075,42 +1118,42 @@ bool X86FastISel::X86SelectBranch(const Instruction *I) {
}
bool X86FastISel::X86SelectShift(const Instruction *I) {
- unsigned CReg = 0, OpReg = 0, OpImm = 0;
+ unsigned CReg = 0, OpReg = 0;
const TargetRegisterClass *RC = NULL;
if (I->getType()->isIntegerTy(8)) {
CReg = X86::CL;
RC = &X86::GR8RegClass;
switch (I->getOpcode()) {
- case Instruction::LShr: OpReg = X86::SHR8rCL; OpImm = X86::SHR8ri; break;
- case Instruction::AShr: OpReg = X86::SAR8rCL; OpImm = X86::SAR8ri; break;
- case Instruction::Shl: OpReg = X86::SHL8rCL; OpImm = X86::SHL8ri; break;
+ case Instruction::LShr: OpReg = X86::SHR8rCL; break;
+ case Instruction::AShr: OpReg = X86::SAR8rCL; break;
+ case Instruction::Shl: OpReg = X86::SHL8rCL; break;
default: return false;
}
} else if (I->getType()->isIntegerTy(16)) {
CReg = X86::CX;
RC = &X86::GR16RegClass;
switch (I->getOpcode()) {
- case Instruction::LShr: OpReg = X86::SHR16rCL; OpImm = X86::SHR16ri; break;
- case Instruction::AShr: OpReg = X86::SAR16rCL; OpImm = X86::SAR16ri; break;
- case Instruction::Shl: OpReg = X86::SHL16rCL; OpImm = X86::SHL16ri; break;
+ case Instruction::LShr: OpReg = X86::SHR16rCL; break;
+ case Instruction::AShr: OpReg = X86::SAR16rCL; break;
+ case Instruction::Shl: OpReg = X86::SHL16rCL; break;
default: return false;
}
} else if (I->getType()->isIntegerTy(32)) {
CReg = X86::ECX;
RC = &X86::GR32RegClass;
switch (I->getOpcode()) {
- case Instruction::LShr: OpReg = X86::SHR32rCL; OpImm = X86::SHR32ri; break;
- case Instruction::AShr: OpReg = X86::SAR32rCL; OpImm = X86::SAR32ri; break;
- case Instruction::Shl: OpReg = X86::SHL32rCL; OpImm = X86::SHL32ri; break;
+ case Instruction::LShr: OpReg = X86::SHR32rCL; break;
+ case Instruction::AShr: OpReg = X86::SAR32rCL; break;
+ case Instruction::Shl: OpReg = X86::SHL32rCL; break;
default: return false;
}
} else if (I->getType()->isIntegerTy(64)) {
CReg = X86::RCX;
RC = &X86::GR64RegClass;
switch (I->getOpcode()) {
- case Instruction::LShr: OpReg = X86::SHR64rCL; OpImm = X86::SHR64ri; break;
- case Instruction::AShr: OpReg = X86::SAR64rCL; OpImm = X86::SAR64ri; break;
- case Instruction::Shl: OpReg = X86::SHL64rCL; OpImm = X86::SHL64ri; break;
+ case Instruction::LShr: OpReg = X86::SHR64rCL; break;
+ case Instruction::AShr: OpReg = X86::SAR64rCL; break;
+ case Instruction::Shl: OpReg = X86::SHL64rCL; break;
default: return false;
}
} else {
@@ -1124,15 +1167,6 @@ bool X86FastISel::X86SelectShift(const Instruction *I) {
unsigned Op0Reg = getRegForValue(I->getOperand(0));
if (Op0Reg == 0) return false;
- // Fold immediate in shl(x,3).
- if (const ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
- unsigned ResultReg = createResultReg(RC);
- BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(OpImm),
- ResultReg).addReg(Op0Reg).addImm(CI->getZExtValue() & 0xff);
- UpdateValueMap(I, ResultReg);
- return true;
- }
-
unsigned Op1Reg = getRegForValue(I->getOperand(1));
if (Op1Reg == 0) return false;
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
@@ -1294,10 +1328,61 @@ bool X86FastISel::X86SelectExtractValue(const Instruction *I) {
return false;
}
+bool X86FastISel::TryEmitSmallMemcpy(X86AddressMode DestAM,
+ X86AddressMode SrcAM, uint64_t Len) {
+ // Make sure we don't bloat code by inlining very large memcpy's.
+ bool i64Legal = TLI.isTypeLegal(MVT::i64);
+ if (Len > (i64Legal ? 32 : 16)) return false;
+
+ // We don't care about alignment here since we just emit integer accesses.
+ while (Len) {
+ MVT VT;
+ if (Len >= 8 && i64Legal)
+ VT = MVT::i64;
+ else if (Len >= 4)
+ VT = MVT::i32;
+ else if (Len >= 2)
+ VT = MVT::i16;
+ else {
+ assert(Len == 1);
+ VT = MVT::i8;
+ }
+
+ unsigned Reg;
+ bool RV = X86FastEmitLoad(VT, SrcAM, Reg);
+ RV &= X86FastEmitStore(VT, Reg, DestAM);
+ assert(RV && "Failed to emit load or store??");
+
+ unsigned Size = VT.getSizeInBits()/8;
+ Len -= Size;
+ DestAM.Disp += Size;
+ SrcAM.Disp += Size;
+ }
+
+ return true;
+}
+
bool X86FastISel::X86VisitIntrinsicCall(const IntrinsicInst &I) {
// FIXME: Handle more intrinsics.
switch (I.getIntrinsicID()) {
default: return false;
+ case Intrinsic::memcpy: {
+ const MemCpyInst &MCI = cast<MemCpyInst>(I);
+ // Don't handle volatile or variable length memcpys.
+ if (MCI.isVolatile() || !isa<ConstantInt>(MCI.getLength()))
+ return false;
+
+ uint64_t Len = cast<ConstantInt>(MCI.getLength())->getZExtValue();
+
+ // Get the address of the dest and source addresses.
+ X86AddressMode DestAM, SrcAM;
+ if (!X86SelectAddress(MCI.getRawDest(), DestAM) ||
+ !X86SelectAddress(MCI.getRawSource(), SrcAM))
+ return false;
+
+ return TryEmitSmallMemcpy(DestAM, SrcAM, Len);
+ }
+
case Intrinsic::stackprotector: {
// Emit code inline code to store the stack guard onto the stack.
EVT PtrTy = TLI.getPointerTy();
@@ -1308,17 +1393,14 @@ bool X86FastISel::X86VisitIntrinsicCall(const IntrinsicInst &I) {
// Grab the frame index.
X86AddressMode AM;
if (!X86SelectAddress(Slot, AM)) return false;
-
if (!X86FastEmitStore(PtrTy, Op1, AM)) return false;
-
return true;
}
case Intrinsic::objectsize: {
- ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1));
+ // FIXME: This should be moved to generic code!
+ ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
const Type *Ty = I.getCalledFunction()->getReturnType();
- assert(CI && "Non-constant type in Intrinsic::objectsize?");
-
MVT VT;
if (!isTypeLegal(Ty, VT))
return false;
@@ -1356,6 +1438,8 @@ bool X86FastISel::X86VisitIntrinsicCall(const IntrinsicInst &I) {
}
case Intrinsic::sadd_with_overflow:
case Intrinsic::uadd_with_overflow: {
+ // FIXME: Should fold immediates.
+
// Replace "add with overflow" intrinsics with an "add" instruction followed
// by a seto/setc instruction. Later on, when the "extractvalue"
// instructions are encountered, we use the fact that two registers were
@@ -1427,8 +1511,7 @@ bool X86FastISel::X86SelectCall(const Instruction *I) {
// Handle only C and fastcc calling conventions for now.
ImmutableCallSite CS(CI);
CallingConv::ID CC = CS.getCallingConv();
- if (CC != CallingConv::C &&
- CC != CallingConv::Fast &&
+ if (CC != CallingConv::C && CC != CallingConv::Fast &&
CC != CallingConv::X86_FastCall)
return false;
@@ -1437,14 +1520,17 @@ bool X86FastISel::X86SelectCall(const Instruction *I) {
if (CC == CallingConv::Fast && GuaranteedTailCallOpt)
return false;
- // Let SDISel handle vararg functions.
const PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
const FunctionType *FTy = cast<FunctionType>(PT->getElementType());
- if (FTy->isVarArg())
+ bool isVarArg = FTy->isVarArg();
+
+ // Don't know how to handle Win64 varargs yet. Nothing special needed for
+ // x86-32. Special handling for x86-64 is implemented.
+ if (isVarArg && Subtarget->isTargetWin64())
return false;
// Fast-isel doesn't know about callee-pop yet.
- if (Subtarget->IsCalleePop(FTy->isVarArg(), CC))
+ if (Subtarget->IsCalleePop(isVarArg, CC))
return false;
// Handle *simple* calls for now.
@@ -1487,9 +1573,7 @@ bool X86FastISel::X86SelectCall(const Instruction *I) {
ArgFlags.reserve(CS.arg_size());
for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
i != e; ++i) {
- unsigned Arg = getRegForValue(*i);
- if (Arg == 0)
- return false;
+ Value *ArgVal = *i;
ISD::ArgFlagsTy Flags;
unsigned AttrInd = i - CS.arg_begin() + 1;
if (CS.paramHasAttr(AttrInd, Attribute::SExt))
@@ -1497,34 +1581,67 @@ bool X86FastISel::X86SelectCall(const Instruction *I) {
if (CS.paramHasAttr(AttrInd, Attribute::ZExt))
Flags.setZExt();
+ // If this is an i1/i8/i16 argument, promote to i32 to avoid an extra
+ // instruction. This is safe because it is common to all fastisel supported
+ // calling conventions on x86.
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(ArgVal)) {
+ if (CI->getBitWidth() == 1 || CI->getBitWidth() == 8 ||
+ CI->getBitWidth() == 16) {
+ if (Flags.isSExt())
+ ArgVal = ConstantExpr::getSExt(CI,Type::getInt32Ty(CI->getContext()));
+ else
+ ArgVal = ConstantExpr::getZExt(CI,Type::getInt32Ty(CI->getContext()));
+ }
+ }
+
+ unsigned ArgReg;
+
+ // Passing bools around ends up doing a trunc to i1 and passing it.
+ // Codegen this as an argument + "and 1".
+ if (ArgVal->getType()->isIntegerTy(1) && isa<TruncInst>(ArgVal) &&
+ cast<TruncInst>(ArgVal)->getParent() == I->getParent() &&
+ ArgVal->hasOneUse()) {
+ ArgVal = cast<TruncInst>(ArgVal)->getOperand(0);
+ ArgReg = getRegForValue(ArgVal);
+ if (ArgReg == 0) return false;
+
+ MVT ArgVT;
+ if (!isTypeLegal(ArgVal->getType(), ArgVT)) return false;
+
+ ArgReg = FastEmit_ri(ArgVT, ArgVT, ISD::AND, ArgReg,
+ ArgVal->hasOneUse(), 1);
+ } else {
+ ArgReg = getRegForValue(ArgVal);
+ }
+
+ if (ArgReg == 0) return false;
+
// FIXME: Only handle *easy* calls for now.
if (CS.paramHasAttr(AttrInd, Attribute::InReg) ||
- CS.paramHasAttr(AttrInd, Attribute::StructRet) ||
CS.paramHasAttr(AttrInd, Attribute::Nest) ||
CS.paramHasAttr(AttrInd, Attribute::ByVal))
return false;
- const Type *ArgTy = (*i)->getType();
+ const Type *ArgTy = ArgVal->getType();
MVT ArgVT;
if (!isTypeLegal(ArgTy, ArgVT))
return false;
unsigned OriginalAlignment = TD.getABITypeAlignment(ArgTy);
Flags.setOrigAlign(OriginalAlignment);
- Args.push_back(Arg);
- ArgVals.push_back(*i);
+ Args.push_back(ArgReg);
+ ArgVals.push_back(ArgVal);
ArgVTs.push_back(ArgVT);
ArgFlags.push_back(Flags);
}
// Analyze operands of the call, assigning locations to each operand.
SmallVector<CCValAssign, 16> ArgLocs;
- CCState CCInfo(CC, false, TM, ArgLocs, I->getParent()->getContext());
+ CCState CCInfo(CC, isVarArg, TM, ArgLocs, I->getParent()->getContext());
// Allocate shadow area for Win64
- if (Subtarget->isTargetWin64()) {
+ if (Subtarget->isTargetWin64())
CCInfo.AllocateStack(32, 8);
- }
CCInfo.AnalyzeCallOperands(ArgVTs, ArgFlags, CC_X86);
@@ -1618,6 +1735,17 @@ bool X86FastISel::X86SelectCall(const Instruction *I) {
X86::EBX).addReg(Base);
}
+ if (Subtarget->is64Bit() && isVarArg && !Subtarget->isTargetWin64()) {
+ // Count the number of XMM registers allocated.
+ static const unsigned XMMArgRegs[] = {
+ X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
+ X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
+ };
+ unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(X86::MOV8ri),
+ X86::AL).addImm(NumXMMRegs);
+ }
+
// Issue the call.
MachineInstrBuilder MIB;
if (CalleeOp) {
@@ -1656,7 +1784,8 @@ bool X86FastISel::X86SelectCall(const Instruction *I) {
OpFlags = X86II::MO_PLT;
} else if (Subtarget->isPICStyleStubAny() &&
(GV->isDeclaration() || GV->isWeakForLinker()) &&
- Subtarget->getDarwinVers() < 9) {
+ (!Subtarget->getTargetTriple().isMacOSX() ||
+ Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
// PC-relative references to external symbols should go through $stub,
// unless we're building with the leopard linker or later, which
// automatically synthesizes these stubs.
@@ -1672,14 +1801,20 @@ bool X86FastISel::X86SelectCall(const Instruction *I) {
if (Subtarget->isPICStyleGOT())
MIB.addReg(X86::EBX);
+ if (Subtarget->is64Bit() && isVarArg && !Subtarget->isTargetWin64())
+ MIB.addReg(X86::AL);
+
// Add implicit physical register uses to the call.
for (unsigned i = 0, e = RegArgs.size(); i != e; ++i)
MIB.addReg(RegArgs[i]);
// Issue CALLSEQ_END
unsigned AdjStackUp = TM.getRegisterInfo()->getCallFrameDestroyOpcode();
+ unsigned NumBytesCallee = 0;
+ if (!Subtarget->is64Bit() && CS.paramHasAttr(1, Attribute::StructRet))
+ NumBytesCallee = 4;
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(AdjStackUp))
- .addImm(NumBytes).addImm(0);
+ .addImm(NumBytes).addImm(NumBytesCallee);
// Now handle call return value (if any).
SmallVector<unsigned, 4> UsedRegs;
@@ -1850,10 +1985,13 @@ unsigned X86FastISel::TargetMaterializeConstant(const Constant *C) {
if (isa<GlobalValue>(C)) {
X86AddressMode AM;
if (X86SelectAddress(C, AM)) {
- if (TLI.getPointerTy() == MVT::i32)
- Opc = X86::LEA32r;
- else
- Opc = X86::LEA64r;
+ // If the expression is just a basereg, then we're done, otherwise we need
+ // to emit an LEA.
+ if (AM.BaseType == X86AddressMode::RegBase &&
+ AM.IndexReg == 0 && AM.Disp == 0 && AM.GV == 0)
+ return AM.Base.Reg;
+
+ Opc = TLI.getPointerTy() == MVT::i32 ? X86::LEA32r : X86::LEA64r;
unsigned ResultReg = createResultReg(RC);
addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
TII.get(Opc), ResultReg), AM);
@@ -1915,6 +2053,45 @@ unsigned X86FastISel::TargetMaterializeAlloca(const AllocaInst *C) {
return ResultReg;
}
+unsigned X86FastISel::TargetMaterializeFloatZero(const ConstantFP *CF) {
+ MVT VT;
+ if (!isTypeLegal(CF->getType(), VT))
+ return false;
+
+ // Get opcode and regclass for the given zero.
+ unsigned Opc = 0;
+ const TargetRegisterClass *RC = NULL;
+ switch (VT.SimpleTy) {
+ default: return false;
+ case MVT::f32:
+ if (Subtarget->hasSSE1()) {
+ Opc = X86::FsFLD0SS;
+ RC = X86::FR32RegisterClass;
+ } else {
+ Opc = X86::LD_Fp032;
+ RC = X86::RFP32RegisterClass;
+ }
+ break;
+ case MVT::f64:
+ if (Subtarget->hasSSE2()) {
+ Opc = X86::FsFLD0SD;
+ RC = X86::FR64RegisterClass;
+ } else {
+ Opc = X86::LD_Fp064;
+ RC = X86::RFP64RegisterClass;
+ }
+ break;
+ case MVT::f80:
+ // No f80 support yet.
+ return false;
+ }
+
+ unsigned ResultReg = createResultReg(RC);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), ResultReg);
+ return ResultReg;
+}
+
+
/// TryToFoldLoad - The specified machine instr operand is a vreg, and that
/// vreg is being provided by the specified load instruction. If possible,
/// try to fold the load as an operand to the instruction, returning true if
OpenPOWER on IntegriCloud