diff options
Diffstat (limited to 'lib/Target/NVPTX/VectorElementize.cpp')
-rw-r--r-- | lib/Target/NVPTX/VectorElementize.cpp | 1248 |
1 files changed, 1248 insertions, 0 deletions
diff --git a/lib/Target/NVPTX/VectorElementize.cpp b/lib/Target/NVPTX/VectorElementize.cpp new file mode 100644 index 0000000..8043e2d --- /dev/null +++ b/lib/Target/NVPTX/VectorElementize.cpp @@ -0,0 +1,1248 @@ +//===-- VectorElementize.cpp - Remove unreachable blocks for codegen --===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This pass converts operations on vector types to operations on their +// element types. +// +// For generic binary and unary vector instructions, the conversion is simple. +// Suppose we have +// av = bv Vop cv +// where av, bv, and cv are vector virtual registers, and Vop is a vector op. +// This gets converted to the following : +// a1 = b1 Sop c1 +// a2 = b2 Sop c2 +// +// VectorToScalarMap maintains the vector vreg to scalar vreg mapping. +// For the above example, the map will look as follows: +// av => [a1, a2] +// bv => [b1, b2] +// +// In addition, initVectorInfo creates the following opcode->opcode map. +// Vop => Sop +// OtherVop => OtherSop +// ... +// +// For vector specific instructions like vecbuild, vecshuffle etc, the +// conversion is different. Look at comments near the functions with +// prefix createVec<...>. +// +//===----------------------------------------------------------------------===// + +#include "llvm/CodeGen/Passes.h" +#include "llvm/Constant.h" +#include "llvm/Instructions.h" +#include "llvm/Function.h" +#include "llvm/Pass.h" +#include "llvm/Type.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/CodeGen/MachineFunctionPass.h" +#include "llvm/CodeGen/MachineModuleInfo.h" +#include "llvm/CodeGen/MachineRegisterInfo.h" +#include "llvm/CodeGen/MachineInstrBuilder.h" +#include "llvm/Support/CFG.h" +#include "llvm/Support/Compiler.h" +#include "llvm/Target/TargetInstrInfo.h" +#include "llvm/ADT/DepthFirstIterator.h" +#include "llvm/ADT/SmallPtrSet.h" +#include "NVPTX.h" +#include "NVPTXTargetMachine.h" + +using namespace llvm; + +namespace { + +class LLVM_LIBRARY_VISIBILITY VectorElementize : public MachineFunctionPass { + virtual bool runOnMachineFunction(MachineFunction &F); + + NVPTXTargetMachine &TM; + MachineRegisterInfo *MRI; + const NVPTXRegisterInfo *RegInfo; + const NVPTXInstrInfo *InstrInfo; + + llvm::DenseMap<const TargetRegisterClass *, const TargetRegisterClass *> + RegClassMap; + llvm::DenseMap<unsigned, bool> SimpleMoveMap; + + llvm::DenseMap<unsigned, SmallVector<unsigned, 4> > VectorToScalarMap; + + bool isVectorInstr(MachineInstr *); + + SmallVector<unsigned, 4> getScalarRegisters(unsigned); + unsigned getScalarVersion(unsigned); + unsigned getScalarVersion(MachineInstr *); + + bool isVectorRegister(unsigned); + const TargetRegisterClass *getScalarRegClass(const TargetRegisterClass *RC); + unsigned numCopiesNeeded(MachineInstr *); + + void createLoadCopy(MachineFunction&, MachineInstr *, + std::vector<MachineInstr *>&); + void createStoreCopy(MachineFunction&, MachineInstr *, + std::vector<MachineInstr *>&); + + void createVecDest(MachineFunction&, MachineInstr *, + std::vector<MachineInstr *>&); + + void createCopies(MachineFunction&, MachineInstr *, + std::vector<MachineInstr *>&); + + unsigned copyProp(MachineFunction&); + unsigned removeDeadMoves(MachineFunction&); + + void elementize(MachineFunction&); + + bool isSimpleMove(MachineInstr *); + + void createVecShuffle(MachineFunction& F, MachineInstr *Instr, + std::vector<MachineInstr *>& copies); + + void createVecExtract(MachineFunction& F, MachineInstr *Instr, + std::vector<MachineInstr *>& copies); + + void createVecInsert(MachineFunction& F, MachineInstr *Instr, + std::vector<MachineInstr *>& copies); + + void createVecBuild(MachineFunction& F, MachineInstr *Instr, + std::vector<MachineInstr *>& copies); + +public: + + static char ID; // Pass identification, replacement for typeid + VectorElementize(NVPTXTargetMachine &tm) + : MachineFunctionPass(ID), TM(tm) {} + + virtual const char *getPassName() const { + return "Convert LLVM vector types to their element types"; + } +}; + +char VectorElementize::ID = 1; +} + +static cl::opt<bool> +RemoveRedundantMoves("nvptx-remove-redundant-moves", + cl::desc("NVPTX: Remove redundant moves introduced by vector lowering"), + cl::init(true)); + +#define VECINST(x) ((((x)->getDesc().TSFlags) & NVPTX::VecInstTypeMask) \ + >> NVPTX::VecInstTypeShift) +#define ISVECINST(x) (VECINST(x) != NVPTX::VecNOP) +#define ISVECLOAD(x) (VECINST(x) == NVPTX::VecLoad) +#define ISVECSTORE(x) (VECINST(x) == NVPTX::VecStore) +#define ISVECBUILD(x) (VECINST(x) == NVPTX::VecBuild) +#define ISVECSHUFFLE(x) (VECINST(x) == NVPTX::VecShuffle) +#define ISVECEXTRACT(x) (VECINST(x) == NVPTX::VecExtract) +#define ISVECINSERT(x) (VECINST(x) == NVPTX::VecInsert) +#define ISVECDEST(x) (VECINST(x) == NVPTX::VecDest) + +bool VectorElementize::isSimpleMove(MachineInstr *mi) { + if (mi->isCopy()) + return true; + unsigned TSFlags = (mi->getDesc().TSFlags & NVPTX::SimpleMoveMask) + >> NVPTX::SimpleMoveShift; + return (TSFlags == 1); +} + +bool VectorElementize::isVectorInstr(MachineInstr *mi) { + if ((mi->getOpcode() == NVPTX::PHI) || + (mi->getOpcode() == NVPTX::IMPLICIT_DEF) || mi->isCopy()) { + MachineOperand dest = mi->getOperand(0); + return isVectorRegister(dest.getReg()); + } + return ISVECINST(mi); +} + +unsigned VectorElementize::getScalarVersion(MachineInstr *mi) { + return getScalarVersion(mi->getOpcode()); +} + +///============================================================================= +///Instr is assumed to be a vector instruction. For most vector instructions, +///the size of the destination vector register gives the number of scalar copies +///needed. For VecStore, size of getOperand(1) gives the number of scalar copies +///needed. For VecExtract, the dest is a scalar. So getOperand(1) gives the +///number of scalar copies needed. +///============================================================================= +unsigned VectorElementize::numCopiesNeeded(MachineInstr *Instr) { + unsigned numDefs=0; + unsigned def; + for (unsigned i=0, e=Instr->getNumOperands(); i!=e; ++i) { + MachineOperand oper = Instr->getOperand(i); + + if (!oper.isReg()) continue; + if (!oper.isDef()) continue; + def = i; + numDefs++; + } + assert((numDefs <= 1) && "Only 0 or 1 defs supported"); + + if (numDefs == 1) { + unsigned regnum = Instr->getOperand(def).getReg(); + if (ISVECEXTRACT(Instr)) + regnum = Instr->getOperand(1).getReg(); + return getNVPTXVectorSize(MRI->getRegClass(regnum)); + } + else if (numDefs == 0) { + assert(ISVECSTORE(Instr) + && "Only 0 def instruction supported is vector store"); + + unsigned regnum = Instr->getOperand(0).getReg(); + return getNVPTXVectorSize(MRI->getRegClass(regnum)); + } + return 1; +} + +const TargetRegisterClass *VectorElementize:: +getScalarRegClass(const TargetRegisterClass *RC) { + assert(isNVPTXVectorRegClass(RC) && + "Not a vector register class"); + return getNVPTXElemClass(RC); +} + +bool VectorElementize::isVectorRegister(unsigned reg) { + const TargetRegisterClass *RC=MRI->getRegClass(reg); + return isNVPTXVectorRegClass(RC); +} + +///============================================================================= +///For every vector register 'v' that is not already in the VectorToScalarMap, +///create n scalar registers of the corresponding element type, where n +///is 2 or 4 (getNVPTXVectorSize) and add it VectorToScalarMap. +///============================================================================= +SmallVector<unsigned, 4> VectorElementize::getScalarRegisters(unsigned regnum) { + assert(isVectorRegister(regnum) && "Expecting a vector register here"); + // Create the scalar registers and put them in the map, if not already there. + if (VectorToScalarMap.find(regnum) == VectorToScalarMap.end()) { + const TargetRegisterClass *vecClass = MRI->getRegClass(regnum); + const TargetRegisterClass *scalarClass = getScalarRegClass(vecClass); + + SmallVector<unsigned, 4> temp; + + for (unsigned i=0, e=getNVPTXVectorSize(vecClass); i!=e; ++i) + temp.push_back(MRI->createVirtualRegister(scalarClass)); + + VectorToScalarMap[regnum] = temp; + } + return VectorToScalarMap[regnum]; +} + +///============================================================================= +///For a vector load of the form +///va <= ldv2 [addr] +///the following multi output instruction is created : +///[v1, v2] <= LD [addr] +///Look at NVPTXVector.td for the definitions of multi output loads. +///============================================================================= +void VectorElementize::createLoadCopy(MachineFunction& F, MachineInstr *Instr, + std::vector<MachineInstr *>& copies) { + copies.push_back(F.CloneMachineInstr(Instr)); + + MachineInstr *copy=copies[0]; + copy->setDesc(InstrInfo->get(getScalarVersion(copy))); + + // Remove the dest, that should be a vector operand. + MachineOperand dest = copy->getOperand(0); + unsigned regnum = dest.getReg(); + + SmallVector<unsigned, 4> scalarRegs = getScalarRegisters(regnum); + copy->RemoveOperand(0); + + std::vector<MachineOperand> otherOperands; + for (unsigned i=0, e=copy->getNumOperands(); i!=e; ++i) + otherOperands.push_back(copy->getOperand(i)); + + for (unsigned i=0, e=copy->getNumOperands(); i!=e; ++i) + copy->RemoveOperand(0); + + for (unsigned i=0, e=scalarRegs.size(); i!=e; ++i) { + copy->addOperand(MachineOperand::CreateReg(scalarRegs[i], true)); + } + + for (unsigned i=0, e=otherOperands.size(); i!=e; ++i) + copy->addOperand(otherOperands[i]); + +} + +///============================================================================= +///For a vector store of the form +///stv2 va, [addr] +///the following multi input instruction is created : +///ST v1, v2, [addr] +///Look at NVPTXVector.td for the definitions of multi input stores. +///============================================================================= +void VectorElementize::createStoreCopy(MachineFunction& F, MachineInstr *Instr, + std::vector<MachineInstr *>& copies) { + copies.push_back(F.CloneMachineInstr(Instr)); + + MachineInstr *copy=copies[0]; + copy->setDesc(InstrInfo->get(getScalarVersion(copy))); + + MachineOperand src = copy->getOperand(0); + unsigned regnum = src.getReg(); + + SmallVector<unsigned, 4> scalarRegs = getScalarRegisters(regnum); + copy->RemoveOperand(0); + + std::vector<MachineOperand> otherOperands; + for (unsigned i=0, e=copy->getNumOperands(); i!=e; ++i) + otherOperands.push_back(copy->getOperand(i)); + + for (unsigned i=0, e=copy->getNumOperands(); i!=e; ++i) + copy->RemoveOperand(0); + + for (unsigned i=0, e=scalarRegs.size(); i!=e; ++i) + copy->addOperand(MachineOperand::CreateReg(scalarRegs[i], false)); + + for (unsigned i=0, e=otherOperands.size(); i!=e; ++i) + copy->addOperand(otherOperands[i]); +} + +///============================================================================= +///va <= shufflev2 vb, vc, <i1>, <i2> +///gets converted to 2 moves into a1 and a2. The source of the moves depend on +///i1 and i2. i1, i2 can belong to the set {0, 1, 2, 3} for shufflev2. For +///shufflev4 the set is {0,..7}. For example, if i1=3, i2=0, the move +///instructions will be +///a1 <= c2 +///a2 <= b1 +///============================================================================= +void VectorElementize::createVecShuffle(MachineFunction& F, MachineInstr *Instr, + std::vector<MachineInstr *>& copies) { + unsigned numcopies=numCopiesNeeded(Instr); + + unsigned destregnum = Instr->getOperand(0).getReg(); + unsigned src1regnum = Instr->getOperand(1).getReg(); + unsigned src2regnum = Instr->getOperand(2).getReg(); + + SmallVector<unsigned, 4> dest = getScalarRegisters(destregnum); + SmallVector<unsigned, 4> src1 = getScalarRegisters(src1regnum); + SmallVector<unsigned, 4> src2 = getScalarRegisters(src2regnum); + + DebugLoc DL = Instr->getDebugLoc(); + + for (unsigned i=0; i<numcopies; i++) { + MachineInstr *copy = BuildMI(F, DL, + InstrInfo->get(getScalarVersion(Instr)), dest[i]); + MachineOperand which=Instr->getOperand(3+i); + assert(which.isImm() && "Shuffle operand not a constant"); + + int src=which.getImm(); + int elem=src%numcopies; + + if (which.getImm() < numcopies) + copy->addOperand(MachineOperand::CreateReg(src1[elem], false)); + else + copy->addOperand(MachineOperand::CreateReg(src2[elem], false)); + copies.push_back(copy); + } +} + +///============================================================================= +///a <= extractv2 va, <i1> +///gets turned into a simple move to the scalar register a. The source depends +///on i1. +///============================================================================= +void VectorElementize::createVecExtract(MachineFunction& F, MachineInstr *Instr, + std::vector<MachineInstr *>& copies) { + unsigned srcregnum = Instr->getOperand(1).getReg(); + + SmallVector<unsigned, 4> src = getScalarRegisters(srcregnum); + + MachineOperand which = Instr->getOperand(2); + assert(which.isImm() && "Extract operand not a constant"); + + DebugLoc DL = Instr->getDebugLoc(); + + MachineInstr *copy = BuildMI(F, DL, InstrInfo->get(getScalarVersion(Instr)), + Instr->getOperand(0).getReg()); + copy->addOperand(MachineOperand::CreateReg(src[which.getImm()], false)); + + copies.push_back(copy); +} + +///============================================================================= +///va <= vecinsertv2 vb, c, <i1> +///This instruction copies all elements of vb to va, except the 'i1'th element. +///The scalar value c becomes the 'i1'th element of va. +///This gets translated to 2 (4 for vecinsertv4) moves. +///============================================================================= +void VectorElementize::createVecInsert(MachineFunction& F, MachineInstr *Instr, + std::vector<MachineInstr *>& copies) { + unsigned numcopies=numCopiesNeeded(Instr); + + unsigned destregnum = Instr->getOperand(0).getReg(); + unsigned srcregnum = Instr->getOperand(1).getReg(); + + SmallVector<unsigned, 4> dest = getScalarRegisters(destregnum); + SmallVector<unsigned, 4> src = getScalarRegisters(srcregnum); + + MachineOperand which=Instr->getOperand(3); + assert(which.isImm() && "Insert operand not a constant"); + unsigned int elem=which.getImm(); + + DebugLoc DL = Instr->getDebugLoc(); + + for (unsigned i=0; i<numcopies; i++) { + MachineInstr *copy = BuildMI(F, DL, + InstrInfo->get(getScalarVersion(Instr)), dest[i]); + + if (i != elem) + copy->addOperand(MachineOperand::CreateReg(src[i], false)); + else + copy->addOperand(Instr->getOperand(2)); + + copies.push_back(copy); + } + +} + +///============================================================================= +///va <= buildv2 b1, b2 +///gets translated to +///a1 <= b1 +///a2 <= b2 +///============================================================================= +void VectorElementize::createVecBuild(MachineFunction& F, MachineInstr *Instr, + std::vector<MachineInstr *>& copies) { + unsigned numcopies=numCopiesNeeded(Instr); + + unsigned destregnum = Instr->getOperand(0).getReg(); + + SmallVector<unsigned, 4> dest = getScalarRegisters(destregnum); + + DebugLoc DL = Instr->getDebugLoc(); + + for (unsigned i=0; i<numcopies; i++) { + MachineInstr *copy = BuildMI(F, DL, + InstrInfo->get(getScalarVersion(Instr)), dest[i]); + + copy->addOperand(Instr->getOperand(1+i)); + + copies.push_back(copy); + } + +} + +///============================================================================= +///For a tex inst of the form +///va <= op [scalar operands] +///the following multi output instruction is created : +///[v1, v2] <= op' [scalar operands] +///============================================================================= +void VectorElementize::createVecDest(MachineFunction& F, MachineInstr *Instr, + std::vector<MachineInstr *>& copies) { + copies.push_back(F.CloneMachineInstr(Instr)); + + MachineInstr *copy=copies[0]; + copy->setDesc(InstrInfo->get(getScalarVersion(copy))); + + // Remove the dest, that should be a vector operand. + MachineOperand dest = copy->getOperand(0); + unsigned regnum = dest.getReg(); + + SmallVector<unsigned, 4> scalarRegs = getScalarRegisters(regnum); + copy->RemoveOperand(0); + + std::vector<MachineOperand> otherOperands; + for (unsigned i=0, e=copy->getNumOperands(); i!=e; ++i) + otherOperands.push_back(copy->getOperand(i)); + + for (unsigned i=0, e=copy->getNumOperands(); i!=e; ++i) + copy->RemoveOperand(0); + + for (unsigned i=0, e=scalarRegs.size(); i!=e; ++i) + copy->addOperand(MachineOperand::CreateReg(scalarRegs[i], true)); + + for (unsigned i=0, e=otherOperands.size(); i!=e; ++i) + copy->addOperand(otherOperands[i]); +} + +///============================================================================= +///Look at the vector instruction type and dispatch to the createVec<...> +///function that creates the scalar copies. +///============================================================================= +void VectorElementize::createCopies(MachineFunction& F, MachineInstr *Instr, + std::vector<MachineInstr *>& copies) { + if (ISVECLOAD(Instr)) { + createLoadCopy(F, Instr, copies); + return; + } + if (ISVECSTORE(Instr)) { + createStoreCopy(F, Instr, copies); + return; + } + if (ISVECSHUFFLE(Instr)) { + createVecShuffle(F, Instr, copies); + return; + } + if (ISVECEXTRACT(Instr)) { + createVecExtract(F, Instr, copies); + return; + } + if (ISVECINSERT(Instr)) { + createVecInsert(F, Instr, copies); + return; + } + if (ISVECDEST(Instr)) { + createVecDest(F, Instr, copies); + return; + } + if (ISVECBUILD(Instr)) { + createVecBuild(F, Instr, copies); + return; + } + + unsigned numcopies=numCopiesNeeded(Instr); + + for (unsigned i=0; i<numcopies; ++i) + copies.push_back(F.CloneMachineInstr(Instr)); + + for (unsigned i=0; i<numcopies; ++i) { + MachineInstr *copy = copies[i]; + + std::vector<MachineOperand> allOperands; + std::vector<bool> isDef; + + for (unsigned j=0, e=copy->getNumOperands(); j!=e; ++j) { + MachineOperand oper = copy->getOperand(j); + allOperands.push_back(oper); + if (oper.isReg()) + isDef.push_back(oper.isDef()); + else + isDef.push_back(false); + } + + for (unsigned j=0, e=copy->getNumOperands(); j!=e; ++j) + copy->RemoveOperand(0); + + copy->setDesc(InstrInfo->get(getScalarVersion(Instr))); + + for (unsigned j=0, e=allOperands.size(); j!=e; ++j) { + MachineOperand oper=allOperands[j]; + if (oper.isReg()) { + unsigned regnum = oper.getReg(); + if (isVectorRegister(regnum)) { + + SmallVector<unsigned, 4> scalarRegs = getScalarRegisters(regnum); + copy->addOperand(MachineOperand::CreateReg(scalarRegs[i], isDef[j])); + } + else + copy->addOperand(oper); + } + else + copy->addOperand(oper); + } + } +} + +///============================================================================= +///Scan through all basic blocks, looking for vector instructions. +///For each vector instruction I, insert the scalar copies before I, and +///add I into toRemove vector. Finally remove all instructions in toRemove. +///============================================================================= +void VectorElementize::elementize(MachineFunction &F) { + for (MachineFunction::reverse_iterator BI=F.rbegin(), BE=F.rend(); + BI!=BE; ++BI) { + MachineBasicBlock *BB = &*BI; + + std::vector<MachineInstr *> copies; + std::vector<MachineInstr *> toRemove; + + for (MachineBasicBlock::iterator II=BB->begin(), IE=BB->end(); + II!=IE; ++II) { + MachineInstr *Instr = &*II; + + if (!isVectorInstr(Instr)) + continue; + + copies.clear(); + createCopies(F, Instr, copies); + for (unsigned i=0, e=copies.size(); i!=e; ++i) + BB->insert(II, copies[i]); + + assert((copies.size() > 0) && "Problem in createCopies"); + toRemove.push_back(Instr); + } + for (unsigned i=0, e=toRemove.size(); i!=e; ++i) + F.DeleteMachineInstr(toRemove[i]->getParent()->remove(toRemove[i])); + } +} + +///============================================================================= +///a <= b +///... +///... +///x <= op(a, ...) +///gets converted to +/// +///x <= op(b, ...) +///The original move is still present. This works on SSA form machine code. +///Note that a <= b should be a simple vreg-to-vreg move instruction. +///TBD : I didn't find a function that can do replaceOperand, so I remove +///all operands and add all of them again, replacing the one while adding. +///============================================================================= +unsigned VectorElementize::copyProp(MachineFunction &F) { + unsigned numReplacements = 0; + + for (MachineFunction::reverse_iterator BI=F.rbegin(), BE=F.rend(); BI!=BE; + ++BI) { + MachineBasicBlock *BB = &*BI; + + for (MachineBasicBlock::iterator II=BB->begin(), IE=BB->end(); II!=IE; + ++II) { + MachineInstr *Instr = &*II; + + // Don't do copy propagation on PHI as it will cause unnecessary + // live range overlap. + if ((Instr->getOpcode() == TargetOpcode::PHI) || + (Instr->getOpcode() == TargetOpcode::DBG_VALUE)) + continue; + + bool needsReplacement = false; + + for (unsigned i=0, e=Instr->getNumOperands(); i!=e; ++i) { + MachineOperand oper = Instr->getOperand(i); + if (!oper.isReg()) continue; + if (oper.isDef()) continue; + if (!RegInfo->isVirtualRegister(oper.getReg())) continue; + + MachineInstr *defInstr = MRI->getVRegDef(oper.getReg()); + + if (!defInstr) continue; + + if (!isSimpleMove(defInstr)) continue; + + MachineOperand defSrc = defInstr->getOperand(1); + if (!defSrc.isReg()) continue; + if (!RegInfo->isVirtualRegister(defSrc.getReg())) continue; + + needsReplacement = true; + + } + if (!needsReplacement) continue; + + numReplacements++; + + std::vector<MachineOperand> operands; + + for (unsigned i=0, e=Instr->getNumOperands(); i!=e; ++i) { + MachineOperand oper = Instr->getOperand(i); + bool flag = false; + do { + if (!(oper.isReg())) + break; + if (oper.isDef()) + break; + if (!(RegInfo->isVirtualRegister(oper.getReg()))) + break; + MachineInstr *defInstr = MRI->getVRegDef(oper.getReg()); + if (!(isSimpleMove(defInstr))) + break; + MachineOperand defSrc = defInstr->getOperand(1); + if (!(defSrc.isReg())) + break; + if (!(RegInfo->isVirtualRegister(defSrc.getReg()))) + break; + operands.push_back(defSrc); + flag = true; + } while (0); + if (flag == false) + operands.push_back(oper); + } + + for (unsigned i=0, e=Instr->getNumOperands(); i!=e; ++i) + Instr->RemoveOperand(0); + for (unsigned i=0, e=operands.size(); i!=e; ++i) + Instr->addOperand(operands[i]); + + } + } + return numReplacements; +} + +///============================================================================= +///Look for simple vreg-to-vreg instructions whose use_empty() is true, add +///them to deadMoves vector. Then remove all instructions in deadMoves. +///============================================================================= +unsigned VectorElementize::removeDeadMoves(MachineFunction &F) { + std::vector<MachineInstr *> deadMoves; + for (MachineFunction::reverse_iterator BI=F.rbegin(), BE=F.rend(); BI!=BE; + ++BI) { + MachineBasicBlock *BB = &*BI; + + for (MachineBasicBlock::iterator II=BB->begin(), IE=BB->end(); II!=IE; + ++II) { + MachineInstr *Instr = &*II; + + if (!isSimpleMove(Instr)) continue; + + MachineOperand dest = Instr->getOperand(0); + assert(dest.isReg() && "dest of move not a register"); + assert(RegInfo->isVirtualRegister(dest.getReg()) && + "dest of move not a virtual register"); + + if (MRI->use_empty(dest.getReg())) { + deadMoves.push_back(Instr); + } + } + } + + for (unsigned i=0, e=deadMoves.size(); i!=e; ++i) + F.DeleteMachineInstr(deadMoves[i]->getParent()->remove(deadMoves[i])); + + return deadMoves.size(); +} + +///============================================================================= +///Main function for this pass. +///============================================================================= +bool VectorElementize::runOnMachineFunction(MachineFunction &F) { + MRI = &F.getRegInfo(); + + RegInfo = TM.getRegisterInfo(); + InstrInfo = TM.getInstrInfo(); + + VectorToScalarMap.clear(); + + elementize(F); + + if (RemoveRedundantMoves) + while (1) { + if (copyProp(F) == 0) break; + removeDeadMoves(F); + } + + return true; +} + +FunctionPass *llvm::createVectorElementizePass(NVPTXTargetMachine &tm) { + return new VectorElementize(tm); +} + +unsigned VectorElementize::getScalarVersion(unsigned opcode) { + if (opcode == NVPTX::PHI) + return opcode; + if (opcode == NVPTX::IMPLICIT_DEF) + return opcode; + switch(opcode) { + default: llvm_unreachable("Scalar version not set, fix NVPTXVector.td"); + case TargetOpcode::COPY: return TargetOpcode::COPY; + case NVPTX::AddCCCV2I32: return NVPTX::ADDCCCi32rr; + case NVPTX::AddCCCV4I32: return NVPTX::ADDCCCi32rr; + case NVPTX::AddCCV2I32: return NVPTX::ADDCCi32rr; + case NVPTX::AddCCV4I32: return NVPTX::ADDCCi32rr; + case NVPTX::Build_Vector2_f32: return NVPTX::FMOV32rr; + case NVPTX::Build_Vector2_f64: return NVPTX::FMOV64rr; + case NVPTX::Build_Vector2_i16: return NVPTX::IMOV16rr; + case NVPTX::Build_Vector2_i32: return NVPTX::IMOV32rr; + case NVPTX::Build_Vector2_i64: return NVPTX::IMOV64rr; + case NVPTX::Build_Vector2_i8: return NVPTX::IMOV8rr; + case NVPTX::Build_Vector4_f32: return NVPTX::FMOV32rr; + case NVPTX::Build_Vector4_i16: return NVPTX::IMOV16rr; + case NVPTX::Build_Vector4_i32: return NVPTX::IMOV32rr; + case NVPTX::Build_Vector4_i8: return NVPTX::IMOV8rr; + case NVPTX::CVTv2i16tov2i32: return NVPTX::Zint_extendext16to32; + case NVPTX::CVTv2i64tov2i32: return NVPTX::TRUNC_64to32; + case NVPTX::CVTv2i8tov2i32: return NVPTX::Zint_extendext8to32; + case NVPTX::CVTv4i16tov4i32: return NVPTX::Zint_extendext16to32; + case NVPTX::CVTv4i8tov4i32: return NVPTX::Zint_extendext8to32; + case NVPTX::F32MAD_ftzV2: return NVPTX::FMAD32_ftzrrr; + case NVPTX::F32MADV2: return NVPTX::FMAD32rrr; + case NVPTX::F32MAD_ftzV4: return NVPTX::FMAD32_ftzrrr; + case NVPTX::F32MADV4: return NVPTX::FMAD32rrr; + case NVPTX::F32FMA_ftzV2: return NVPTX::FMA32_ftzrrr; + case NVPTX::F32FMAV2: return NVPTX::FMA32rrr; + case NVPTX::F32FMA_ftzV4: return NVPTX::FMA32_ftzrrr; + case NVPTX::F32FMAV4: return NVPTX::FMA32rrr; + case NVPTX::F64FMAV2: return NVPTX::FMA64rrr; + case NVPTX::FVecEQV2F32: return NVPTX::FSetEQf32rr_toi32; + case NVPTX::FVecEQV2F64: return NVPTX::FSetEQf64rr_toi64; + case NVPTX::FVecEQV4F32: return NVPTX::FSetEQf32rr_toi32; + case NVPTX::FVecGEV2F32: return NVPTX::FSetGEf32rr_toi32; + case NVPTX::FVecGEV2F64: return NVPTX::FSetGEf64rr_toi64; + case NVPTX::FVecGEV4F32: return NVPTX::FSetGEf32rr_toi32; + case NVPTX::FVecGTV2F32: return NVPTX::FSetGTf32rr_toi32; + case NVPTX::FVecGTV2F64: return NVPTX::FSetGTf64rr_toi64; + case NVPTX::FVecGTV4F32: return NVPTX::FSetGTf32rr_toi32; + case NVPTX::FVecLEV2F32: return NVPTX::FSetLEf32rr_toi32; + case NVPTX::FVecLEV2F64: return NVPTX::FSetLEf64rr_toi64; + case NVPTX::FVecLEV4F32: return NVPTX::FSetLEf32rr_toi32; + case NVPTX::FVecLTV2F32: return NVPTX::FSetLTf32rr_toi32; + case NVPTX::FVecLTV2F64: return NVPTX::FSetLTf64rr_toi64; + case NVPTX::FVecLTV4F32: return NVPTX::FSetLTf32rr_toi32; + case NVPTX::FVecNANV2F32: return NVPTX::FSetNANf32rr_toi32; + case NVPTX::FVecNANV2F64: return NVPTX::FSetNANf64rr_toi64; + case NVPTX::FVecNANV4F32: return NVPTX::FSetNANf32rr_toi32; + case NVPTX::FVecNEV2F32: return NVPTX::FSetNEf32rr_toi32; + case NVPTX::FVecNEV2F64: return NVPTX::FSetNEf64rr_toi64; + case NVPTX::FVecNEV4F32: return NVPTX::FSetNEf32rr_toi32; + case NVPTX::FVecNUMV2F32: return NVPTX::FSetNUMf32rr_toi32; + case NVPTX::FVecNUMV2F64: return NVPTX::FSetNUMf64rr_toi64; + case NVPTX::FVecNUMV4F32: return NVPTX::FSetNUMf32rr_toi32; + case NVPTX::FVecUEQV2F32: return NVPTX::FSetUEQf32rr_toi32; + case NVPTX::FVecUEQV2F64: return NVPTX::FSetUEQf64rr_toi64; + case NVPTX::FVecUEQV4F32: return NVPTX::FSetUEQf32rr_toi32; + case NVPTX::FVecUGEV2F32: return NVPTX::FSetUGEf32rr_toi32; + case NVPTX::FVecUGEV2F64: return NVPTX::FSetUGEf64rr_toi64; + case NVPTX::FVecUGEV4F32: return NVPTX::FSetUGEf32rr_toi32; + case NVPTX::FVecUGTV2F32: return NVPTX::FSetUGTf32rr_toi32; + case NVPTX::FVecUGTV2F64: return NVPTX::FSetUGTf64rr_toi64; + case NVPTX::FVecUGTV4F32: return NVPTX::FSetUGTf32rr_toi32; + case NVPTX::FVecULEV2F32: return NVPTX::FSetULEf32rr_toi32; + case NVPTX::FVecULEV2F64: return NVPTX::FSetULEf64rr_toi64; + case NVPTX::FVecULEV4F32: return NVPTX::FSetULEf32rr_toi32; + case NVPTX::FVecULTV2F32: return NVPTX::FSetULTf32rr_toi32; + case NVPTX::FVecULTV2F64: return NVPTX::FSetULTf64rr_toi64; + case NVPTX::FVecULTV4F32: return NVPTX::FSetULTf32rr_toi32; + case NVPTX::FVecUNEV2F32: return NVPTX::FSetUNEf32rr_toi32; + case NVPTX::FVecUNEV2F64: return NVPTX::FSetUNEf64rr_toi64; + case NVPTX::FVecUNEV4F32: return NVPTX::FSetUNEf32rr_toi32; + case NVPTX::I16MADV2: return NVPTX::MAD16rrr; + case NVPTX::I16MADV4: return NVPTX::MAD16rrr; + case NVPTX::I32MADV2: return NVPTX::MAD32rrr; + case NVPTX::I32MADV4: return NVPTX::MAD32rrr; + case NVPTX::I64MADV2: return NVPTX::MAD64rrr; + case NVPTX::I8MADV2: return NVPTX::MAD8rrr; + case NVPTX::I8MADV4: return NVPTX::MAD8rrr; + case NVPTX::ShiftLV2I16: return NVPTX::SHLi16rr; + case NVPTX::ShiftLV2I32: return NVPTX::SHLi32rr; + case NVPTX::ShiftLV2I64: return NVPTX::SHLi64rr; + case NVPTX::ShiftLV2I8: return NVPTX::SHLi8rr; + case NVPTX::ShiftLV4I16: return NVPTX::SHLi16rr; + case NVPTX::ShiftLV4I32: return NVPTX::SHLi32rr; + case NVPTX::ShiftLV4I8: return NVPTX::SHLi8rr; + case NVPTX::ShiftRAV2I16: return NVPTX::SRAi16rr; + case NVPTX::ShiftRAV2I32: return NVPTX::SRAi32rr; + case NVPTX::ShiftRAV2I64: return NVPTX::SRAi64rr; + case NVPTX::ShiftRAV2I8: return NVPTX::SRAi8rr; + case NVPTX::ShiftRAV4I16: return NVPTX::SRAi16rr; + case NVPTX::ShiftRAV4I32: return NVPTX::SRAi32rr; + case NVPTX::ShiftRAV4I8: return NVPTX::SRAi8rr; + case NVPTX::ShiftRLV2I16: return NVPTX::SRLi16rr; + case NVPTX::ShiftRLV2I32: return NVPTX::SRLi32rr; + case NVPTX::ShiftRLV2I64: return NVPTX::SRLi64rr; + case NVPTX::ShiftRLV2I8: return NVPTX::SRLi8rr; + case NVPTX::ShiftRLV4I16: return NVPTX::SRLi16rr; + case NVPTX::ShiftRLV4I32: return NVPTX::SRLi32rr; + case NVPTX::ShiftRLV4I8: return NVPTX::SRLi8rr; + case NVPTX::SubCCCV2I32: return NVPTX::SUBCCCi32rr; + case NVPTX::SubCCCV4I32: return NVPTX::SUBCCCi32rr; + case NVPTX::SubCCV2I32: return NVPTX::SUBCCi32rr; + case NVPTX::SubCCV4I32: return NVPTX::SUBCCi32rr; + case NVPTX::V2F32Div_prec_ftz: return NVPTX::FDIV32rr_prec_ftz; + case NVPTX::V2F32Div_prec: return NVPTX::FDIV32rr_prec; + case NVPTX::V2F32Div_ftz: return NVPTX::FDIV32rr_ftz; + case NVPTX::V2F32Div: return NVPTX::FDIV32rr; + case NVPTX::V2F32_Select: return NVPTX::SELECTf32rr; + case NVPTX::V2F64Div: return NVPTX::FDIV64rr; + case NVPTX::V2F64_Select: return NVPTX::SELECTf64rr; + case NVPTX::V2I16_Select: return NVPTX::SELECTi16rr; + case NVPTX::V2I32_Select: return NVPTX::SELECTi32rr; + case NVPTX::V2I64_Select: return NVPTX::SELECTi64rr; + case NVPTX::V2I8_Select: return NVPTX::SELECTi8rr; + case NVPTX::V2f32Extract: return NVPTX::FMOV32rr; + case NVPTX::V2f32Insert: return NVPTX::FMOV32rr; + case NVPTX::V2f32Mov: return NVPTX::FMOV32rr; + case NVPTX::V2f64Extract: return NVPTX::FMOV64rr; + case NVPTX::V2f64Insert: return NVPTX::FMOV64rr; + case NVPTX::V2f64Mov: return NVPTX::FMOV64rr; + case NVPTX::V2i16Extract: return NVPTX::IMOV16rr; + case NVPTX::V2i16Insert: return NVPTX::IMOV16rr; + case NVPTX::V2i16Mov: return NVPTX::IMOV16rr; + case NVPTX::V2i32Extract: return NVPTX::IMOV32rr; + case NVPTX::V2i32Insert: return NVPTX::IMOV32rr; + case NVPTX::V2i32Mov: return NVPTX::IMOV32rr; + case NVPTX::V2i64Extract: return NVPTX::IMOV64rr; + case NVPTX::V2i64Insert: return NVPTX::IMOV64rr; + case NVPTX::V2i64Mov: return NVPTX::IMOV64rr; + case NVPTX::V2i8Extract: return NVPTX::IMOV8rr; + case NVPTX::V2i8Insert: return NVPTX::IMOV8rr; + case NVPTX::V2i8Mov: return NVPTX::IMOV8rr; + case NVPTX::V4F32Div_prec_ftz: return NVPTX::FDIV32rr_prec_ftz; + case NVPTX::V4F32Div_prec: return NVPTX::FDIV32rr_prec; + case NVPTX::V4F32Div_ftz: return NVPTX::FDIV32rr_ftz; + case NVPTX::V4F32Div: return NVPTX::FDIV32rr; + case NVPTX::V4F32_Select: return NVPTX::SELECTf32rr; + case NVPTX::V4I16_Select: return NVPTX::SELECTi16rr; + case NVPTX::V4I32_Select: return NVPTX::SELECTi32rr; + case NVPTX::V4I8_Select: return NVPTX::SELECTi8rr; + case NVPTX::V4f32Extract: return NVPTX::FMOV32rr; + case NVPTX::V4f32Insert: return NVPTX::FMOV32rr; + case NVPTX::V4f32Mov: return NVPTX::FMOV32rr; + case NVPTX::V4i16Extract: return NVPTX::IMOV16rr; + case NVPTX::V4i16Insert: return NVPTX::IMOV16rr; + case NVPTX::V4i16Mov: return NVPTX::IMOV16rr; + case NVPTX::V4i32Extract: return NVPTX::IMOV32rr; + case NVPTX::V4i32Insert: return NVPTX::IMOV32rr; + case NVPTX::V4i32Mov: return NVPTX::IMOV32rr; + case NVPTX::V4i8Extract: return NVPTX::IMOV8rr; + case NVPTX::V4i8Insert: return NVPTX::IMOV8rr; + case NVPTX::V4i8Mov: return NVPTX::IMOV8rr; + case NVPTX::VAddV2I16: return NVPTX::ADDi16rr; + case NVPTX::VAddV2I32: return NVPTX::ADDi32rr; + case NVPTX::VAddV2I64: return NVPTX::ADDi64rr; + case NVPTX::VAddV2I8: return NVPTX::ADDi8rr; + case NVPTX::VAddV4I16: return NVPTX::ADDi16rr; + case NVPTX::VAddV4I32: return NVPTX::ADDi32rr; + case NVPTX::VAddV4I8: return NVPTX::ADDi8rr; + case NVPTX::VAddfV2F32: return NVPTX::FADDf32rr; + case NVPTX::VAddfV2F32_ftz: return NVPTX::FADDf32rr_ftz; + case NVPTX::VAddfV2F64: return NVPTX::FADDf64rr; + case NVPTX::VAddfV4F32: return NVPTX::FADDf32rr; + case NVPTX::VAddfV4F32_ftz: return NVPTX::FADDf32rr_ftz; + case NVPTX::VAndV2I16: return NVPTX::ANDb16rr; + case NVPTX::VAndV2I32: return NVPTX::ANDb32rr; + case NVPTX::VAndV2I64: return NVPTX::ANDb64rr; + case NVPTX::VAndV2I8: return NVPTX::ANDb8rr; + case NVPTX::VAndV4I16: return NVPTX::ANDb16rr; + case NVPTX::VAndV4I32: return NVPTX::ANDb32rr; + case NVPTX::VAndV4I8: return NVPTX::ANDb8rr; + case NVPTX::VMulfV2F32_ftz: return NVPTX::FMULf32rr_ftz; + case NVPTX::VMulfV2F32: return NVPTX::FMULf32rr; + case NVPTX::VMulfV2F64: return NVPTX::FMULf64rr; + case NVPTX::VMulfV4F32_ftz: return NVPTX::FMULf32rr_ftz; + case NVPTX::VMulfV4F32: return NVPTX::FMULf32rr; + case NVPTX::VMultHSV2I16: return NVPTX::MULTHSi16rr; + case NVPTX::VMultHSV2I32: return NVPTX::MULTHSi32rr; + case NVPTX::VMultHSV2I64: return NVPTX::MULTHSi64rr; + case NVPTX::VMultHSV2I8: return NVPTX::MULTHSi8rr; + case NVPTX::VMultHSV4I16: return NVPTX::MULTHSi16rr; + case NVPTX::VMultHSV4I32: return NVPTX::MULTHSi32rr; + case NVPTX::VMultHSV4I8: return NVPTX::MULTHSi8rr; + case NVPTX::VMultHUV2I16: return NVPTX::MULTHUi16rr; + case NVPTX::VMultHUV2I32: return NVPTX::MULTHUi32rr; + case NVPTX::VMultHUV2I64: return NVPTX::MULTHUi64rr; + case NVPTX::VMultHUV2I8: return NVPTX::MULTHUi8rr; + case NVPTX::VMultHUV4I16: return NVPTX::MULTHUi16rr; + case NVPTX::VMultHUV4I32: return NVPTX::MULTHUi32rr; + case NVPTX::VMultHUV4I8: return NVPTX::MULTHUi8rr; + case NVPTX::VMultV2I16: return NVPTX::MULTi16rr; + case NVPTX::VMultV2I32: return NVPTX::MULTi32rr; + case NVPTX::VMultV2I64: return NVPTX::MULTi64rr; + case NVPTX::VMultV2I8: return NVPTX::MULTi8rr; + case NVPTX::VMultV4I16: return NVPTX::MULTi16rr; + case NVPTX::VMultV4I32: return NVPTX::MULTi32rr; + case NVPTX::VMultV4I8: return NVPTX::MULTi8rr; + case NVPTX::VNegV2I16: return NVPTX::INEG16; + case NVPTX::VNegV2I32: return NVPTX::INEG32; + case NVPTX::VNegV2I64: return NVPTX::INEG64; + case NVPTX::VNegV2I8: return NVPTX::INEG8; + case NVPTX::VNegV4I16: return NVPTX::INEG16; + case NVPTX::VNegV4I32: return NVPTX::INEG32; + case NVPTX::VNegV4I8: return NVPTX::INEG8; + case NVPTX::VNegv2f32: return NVPTX::FNEGf32; + case NVPTX::VNegv2f32_ftz: return NVPTX::FNEGf32_ftz; + case NVPTX::VNegv2f64: return NVPTX::FNEGf64; + case NVPTX::VNegv4f32: return NVPTX::FNEGf32; + case NVPTX::VNegv4f32_ftz: return NVPTX::FNEGf32_ftz; + case NVPTX::VNotV2I16: return NVPTX::NOT16; + case NVPTX::VNotV2I32: return NVPTX::NOT32; + case NVPTX::VNotV2I64: return NVPTX::NOT64; + case NVPTX::VNotV2I8: return NVPTX::NOT8; + case NVPTX::VNotV4I16: return NVPTX::NOT16; + case NVPTX::VNotV4I32: return NVPTX::NOT32; + case NVPTX::VNotV4I8: return NVPTX::NOT8; + case NVPTX::VOrV2I16: return NVPTX::ORb16rr; + case NVPTX::VOrV2I32: return NVPTX::ORb32rr; + case NVPTX::VOrV2I64: return NVPTX::ORb64rr; + case NVPTX::VOrV2I8: return NVPTX::ORb8rr; + case NVPTX::VOrV4I16: return NVPTX::ORb16rr; + case NVPTX::VOrV4I32: return NVPTX::ORb32rr; + case NVPTX::VOrV4I8: return NVPTX::ORb8rr; + case NVPTX::VSDivV2I16: return NVPTX::SDIVi16rr; + case NVPTX::VSDivV2I32: return NVPTX::SDIVi32rr; + case NVPTX::VSDivV2I64: return NVPTX::SDIVi64rr; + case NVPTX::VSDivV2I8: return NVPTX::SDIVi8rr; + case NVPTX::VSDivV4I16: return NVPTX::SDIVi16rr; + case NVPTX::VSDivV4I32: return NVPTX::SDIVi32rr; + case NVPTX::VSDivV4I8: return NVPTX::SDIVi8rr; + case NVPTX::VSRemV2I16: return NVPTX::SREMi16rr; + case NVPTX::VSRemV2I32: return NVPTX::SREMi32rr; + case NVPTX::VSRemV2I64: return NVPTX::SREMi64rr; + case NVPTX::VSRemV2I8: return NVPTX::SREMi8rr; + case NVPTX::VSRemV4I16: return NVPTX::SREMi16rr; + case NVPTX::VSRemV4I32: return NVPTX::SREMi32rr; + case NVPTX::VSRemV4I8: return NVPTX::SREMi8rr; + case NVPTX::VSubV2I16: return NVPTX::SUBi16rr; + case NVPTX::VSubV2I32: return NVPTX::SUBi32rr; + case NVPTX::VSubV2I64: return NVPTX::SUBi64rr; + case NVPTX::VSubV2I8: return NVPTX::SUBi8rr; + case NVPTX::VSubV4I16: return NVPTX::SUBi16rr; + case NVPTX::VSubV4I32: return NVPTX::SUBi32rr; + case NVPTX::VSubV4I8: return NVPTX::SUBi8rr; + case NVPTX::VSubfV2F32_ftz: return NVPTX::FSUBf32rr_ftz; + case NVPTX::VSubfV2F32: return NVPTX::FSUBf32rr; + case NVPTX::VSubfV2F64: return NVPTX::FSUBf64rr; + case NVPTX::VSubfV4F32_ftz: return NVPTX::FSUBf32rr_ftz; + case NVPTX::VSubfV4F32: return NVPTX::FSUBf32rr; + case NVPTX::VUDivV2I16: return NVPTX::UDIVi16rr; + case NVPTX::VUDivV2I32: return NVPTX::UDIVi32rr; + case NVPTX::VUDivV2I64: return NVPTX::UDIVi64rr; + case NVPTX::VUDivV2I8: return NVPTX::UDIVi8rr; + case NVPTX::VUDivV4I16: return NVPTX::UDIVi16rr; + case NVPTX::VUDivV4I32: return NVPTX::UDIVi32rr; + case NVPTX::VUDivV4I8: return NVPTX::UDIVi8rr; + case NVPTX::VURemV2I16: return NVPTX::UREMi16rr; + case NVPTX::VURemV2I32: return NVPTX::UREMi32rr; + case NVPTX::VURemV2I64: return NVPTX::UREMi64rr; + case NVPTX::VURemV2I8: return NVPTX::UREMi8rr; + case NVPTX::VURemV4I16: return NVPTX::UREMi16rr; + case NVPTX::VURemV4I32: return NVPTX::UREMi32rr; + case NVPTX::VURemV4I8: return NVPTX::UREMi8rr; + case NVPTX::VXorV2I16: return NVPTX::XORb16rr; + case NVPTX::VXorV2I32: return NVPTX::XORb32rr; + case NVPTX::VXorV2I64: return NVPTX::XORb64rr; + case NVPTX::VXorV2I8: return NVPTX::XORb8rr; + case NVPTX::VXorV4I16: return NVPTX::XORb16rr; + case NVPTX::VXorV4I32: return NVPTX::XORb32rr; + case NVPTX::VXorV4I8: return NVPTX::XORb8rr; + case NVPTX::VecSEQV2I16: return NVPTX::ISetSEQi16rr_toi16; + case NVPTX::VecSEQV2I32: return NVPTX::ISetSEQi32rr_toi32; + case NVPTX::VecSEQV2I64: return NVPTX::ISetSEQi64rr_toi64; + case NVPTX::VecSEQV2I8: return NVPTX::ISetSEQi8rr_toi8; + case NVPTX::VecSEQV4I16: return NVPTX::ISetSEQi16rr_toi16; + case NVPTX::VecSEQV4I32: return NVPTX::ISetSEQi32rr_toi32; + case NVPTX::VecSEQV4I8: return NVPTX::ISetSEQi8rr_toi8; + case NVPTX::VecSGEV2I16: return NVPTX::ISetSGEi16rr_toi16; + case NVPTX::VecSGEV2I32: return NVPTX::ISetSGEi32rr_toi32; + case NVPTX::VecSGEV2I64: return NVPTX::ISetSGEi64rr_toi64; + case NVPTX::VecSGEV2I8: return NVPTX::ISetSGEi8rr_toi8; + case NVPTX::VecSGEV4I16: return NVPTX::ISetSGEi16rr_toi16; + case NVPTX::VecSGEV4I32: return NVPTX::ISetSGEi32rr_toi32; + case NVPTX::VecSGEV4I8: return NVPTX::ISetSGEi8rr_toi8; + case NVPTX::VecSGTV2I16: return NVPTX::ISetSGTi16rr_toi16; + case NVPTX::VecSGTV2I32: return NVPTX::ISetSGTi32rr_toi32; + case NVPTX::VecSGTV2I64: return NVPTX::ISetSGTi64rr_toi64; + case NVPTX::VecSGTV2I8: return NVPTX::ISetSGTi8rr_toi8; + case NVPTX::VecSGTV4I16: return NVPTX::ISetSGTi16rr_toi16; + case NVPTX::VecSGTV4I32: return NVPTX::ISetSGTi32rr_toi32; + case NVPTX::VecSGTV4I8: return NVPTX::ISetSGTi8rr_toi8; + case NVPTX::VecSLEV2I16: return NVPTX::ISetSLEi16rr_toi16; + case NVPTX::VecSLEV2I32: return NVPTX::ISetSLEi32rr_toi32; + case NVPTX::VecSLEV2I64: return NVPTX::ISetSLEi64rr_toi64; + case NVPTX::VecSLEV2I8: return NVPTX::ISetSLEi8rr_toi8; + case NVPTX::VecSLEV4I16: return NVPTX::ISetSLEi16rr_toi16; + case NVPTX::VecSLEV4I32: return NVPTX::ISetSLEi32rr_toi32; + case NVPTX::VecSLEV4I8: return NVPTX::ISetSLEi8rr_toi8; + case NVPTX::VecSLTV2I16: return NVPTX::ISetSLTi16rr_toi16; + case NVPTX::VecSLTV2I32: return NVPTX::ISetSLTi32rr_toi32; + case NVPTX::VecSLTV2I64: return NVPTX::ISetSLTi64rr_toi64; + case NVPTX::VecSLTV2I8: return NVPTX::ISetSLTi8rr_toi8; + case NVPTX::VecSLTV4I16: return NVPTX::ISetSLTi16rr_toi16; + case NVPTX::VecSLTV4I32: return NVPTX::ISetSLTi32rr_toi32; + case NVPTX::VecSLTV4I8: return NVPTX::ISetSLTi8rr_toi8; + case NVPTX::VecSNEV2I16: return NVPTX::ISetSNEi16rr_toi16; + case NVPTX::VecSNEV2I32: return NVPTX::ISetSNEi32rr_toi32; + case NVPTX::VecSNEV2I64: return NVPTX::ISetSNEi64rr_toi64; + case NVPTX::VecSNEV2I8: return NVPTX::ISetSNEi8rr_toi8; + case NVPTX::VecSNEV4I16: return NVPTX::ISetSNEi16rr_toi16; + case NVPTX::VecSNEV4I32: return NVPTX::ISetSNEi32rr_toi32; + case NVPTX::VecSNEV4I8: return NVPTX::ISetSNEi8rr_toi8; + case NVPTX::VecShuffle_v2f32: return NVPTX::FMOV32rr; + case NVPTX::VecShuffle_v2f64: return NVPTX::FMOV64rr; + case NVPTX::VecShuffle_v2i16: return NVPTX::IMOV16rr; + case NVPTX::VecShuffle_v2i32: return NVPTX::IMOV32rr; + case NVPTX::VecShuffle_v2i64: return NVPTX::IMOV64rr; + case NVPTX::VecShuffle_v2i8: return NVPTX::IMOV8rr; + case NVPTX::VecShuffle_v4f32: return NVPTX::FMOV32rr; + case NVPTX::VecShuffle_v4i16: return NVPTX::IMOV16rr; + case NVPTX::VecShuffle_v4i32: return NVPTX::IMOV32rr; + case NVPTX::VecShuffle_v4i8: return NVPTX::IMOV8rr; + case NVPTX::VecUEQV2I16: return NVPTX::ISetUEQi16rr_toi16; + case NVPTX::VecUEQV2I32: return NVPTX::ISetUEQi32rr_toi32; + case NVPTX::VecUEQV2I64: return NVPTX::ISetUEQi64rr_toi64; + case NVPTX::VecUEQV2I8: return NVPTX::ISetUEQi8rr_toi8; + case NVPTX::VecUEQV4I16: return NVPTX::ISetUEQi16rr_toi16; + case NVPTX::VecUEQV4I32: return NVPTX::ISetUEQi32rr_toi32; + case NVPTX::VecUEQV4I8: return NVPTX::ISetUEQi8rr_toi8; + case NVPTX::VecUGEV2I16: return NVPTX::ISetUGEi16rr_toi16; + case NVPTX::VecUGEV2I32: return NVPTX::ISetUGEi32rr_toi32; + case NVPTX::VecUGEV2I64: return NVPTX::ISetUGEi64rr_toi64; + case NVPTX::VecUGEV2I8: return NVPTX::ISetUGEi8rr_toi8; + case NVPTX::VecUGEV4I16: return NVPTX::ISetUGEi16rr_toi16; + case NVPTX::VecUGEV4I32: return NVPTX::ISetUGEi32rr_toi32; + case NVPTX::VecUGEV4I8: return NVPTX::ISetUGEi8rr_toi8; + case NVPTX::VecUGTV2I16: return NVPTX::ISetUGTi16rr_toi16; + case NVPTX::VecUGTV2I32: return NVPTX::ISetUGTi32rr_toi32; + case NVPTX::VecUGTV2I64: return NVPTX::ISetUGTi64rr_toi64; + case NVPTX::VecUGTV2I8: return NVPTX::ISetUGTi8rr_toi8; + case NVPTX::VecUGTV4I16: return NVPTX::ISetUGTi16rr_toi16; + case NVPTX::VecUGTV4I32: return NVPTX::ISetUGTi32rr_toi32; + case NVPTX::VecUGTV4I8: return NVPTX::ISetUGTi8rr_toi8; + case NVPTX::VecULEV2I16: return NVPTX::ISetULEi16rr_toi16; + case NVPTX::VecULEV2I32: return NVPTX::ISetULEi32rr_toi32; + case NVPTX::VecULEV2I64: return NVPTX::ISetULEi64rr_toi64; + case NVPTX::VecULEV2I8: return NVPTX::ISetULEi8rr_toi8; + case NVPTX::VecULEV4I16: return NVPTX::ISetULEi16rr_toi16; + case NVPTX::VecULEV4I32: return NVPTX::ISetULEi32rr_toi32; + case NVPTX::VecULEV4I8: return NVPTX::ISetULEi8rr_toi8; + case NVPTX::VecULTV2I16: return NVPTX::ISetULTi16rr_toi16; + case NVPTX::VecULTV2I32: return NVPTX::ISetULTi32rr_toi32; + case NVPTX::VecULTV2I64: return NVPTX::ISetULTi64rr_toi64; + case NVPTX::VecULTV2I8: return NVPTX::ISetULTi8rr_toi8; + case NVPTX::VecULTV4I16: return NVPTX::ISetULTi16rr_toi16; + case NVPTX::VecULTV4I32: return NVPTX::ISetULTi32rr_toi32; + case NVPTX::VecULTV4I8: return NVPTX::ISetULTi8rr_toi8; + case NVPTX::VecUNEV2I16: return NVPTX::ISetUNEi16rr_toi16; + case NVPTX::VecUNEV2I32: return NVPTX::ISetUNEi32rr_toi32; + case NVPTX::VecUNEV2I64: return NVPTX::ISetUNEi64rr_toi64; + case NVPTX::VecUNEV2I8: return NVPTX::ISetUNEi8rr_toi8; + case NVPTX::VecUNEV4I16: return NVPTX::ISetUNEi16rr_toi16; + case NVPTX::VecUNEV4I32: return NVPTX::ISetUNEi32rr_toi32; + case NVPTX::VecUNEV4I8: return NVPTX::ISetUNEi8rr_toi8; + case NVPTX::INT_PTX_LDU_G_v2i8_32: return NVPTX::INT_PTX_LDU_G_v2i8_ELE_32; + case NVPTX::INT_PTX_LDU_G_v4i8_32: return NVPTX::INT_PTX_LDU_G_v4i8_ELE_32; + case NVPTX::INT_PTX_LDU_G_v2i16_32: return NVPTX::INT_PTX_LDU_G_v2i16_ELE_32; + case NVPTX::INT_PTX_LDU_G_v4i16_32: return NVPTX::INT_PTX_LDU_G_v4i16_ELE_32; + case NVPTX::INT_PTX_LDU_G_v2i32_32: return NVPTX::INT_PTX_LDU_G_v2i32_ELE_32; + case NVPTX::INT_PTX_LDU_G_v4i32_32: return NVPTX::INT_PTX_LDU_G_v4i32_ELE_32; + case NVPTX::INT_PTX_LDU_G_v2f32_32: return NVPTX::INT_PTX_LDU_G_v2f32_ELE_32; + case NVPTX::INT_PTX_LDU_G_v4f32_32: return NVPTX::INT_PTX_LDU_G_v4f32_ELE_32; + case NVPTX::INT_PTX_LDU_G_v2i64_32: return NVPTX::INT_PTX_LDU_G_v2i64_ELE_32; + case NVPTX::INT_PTX_LDU_G_v2f64_32: return NVPTX::INT_PTX_LDU_G_v2f64_ELE_32; + case NVPTX::INT_PTX_LDU_G_v2i8_64: return NVPTX::INT_PTX_LDU_G_v2i8_ELE_64; + case NVPTX::INT_PTX_LDU_G_v4i8_64: return NVPTX::INT_PTX_LDU_G_v4i8_ELE_64; + case NVPTX::INT_PTX_LDU_G_v2i16_64: return NVPTX::INT_PTX_LDU_G_v2i16_ELE_64; + case NVPTX::INT_PTX_LDU_G_v4i16_64: return NVPTX::INT_PTX_LDU_G_v4i16_ELE_64; + case NVPTX::INT_PTX_LDU_G_v2i32_64: return NVPTX::INT_PTX_LDU_G_v2i32_ELE_64; + case NVPTX::INT_PTX_LDU_G_v4i32_64: return NVPTX::INT_PTX_LDU_G_v4i32_ELE_64; + case NVPTX::INT_PTX_LDU_G_v2f32_64: return NVPTX::INT_PTX_LDU_G_v2f32_ELE_64; + case NVPTX::INT_PTX_LDU_G_v4f32_64: return NVPTX::INT_PTX_LDU_G_v4f32_ELE_64; + case NVPTX::INT_PTX_LDU_G_v2i64_64: return NVPTX::INT_PTX_LDU_G_v2i64_ELE_64; + case NVPTX::INT_PTX_LDU_G_v2f64_64: return NVPTX::INT_PTX_LDU_G_v2f64_ELE_64; + + case NVPTX::LoadParamV4I32: return NVPTX::LoadParamScalar4I32; + case NVPTX::LoadParamV4I16: return NVPTX::LoadParamScalar4I16; + case NVPTX::LoadParamV4I8: return NVPTX::LoadParamScalar4I8; + case NVPTX::LoadParamV2I64: return NVPTX::LoadParamScalar2I64; + case NVPTX::LoadParamV2I32: return NVPTX::LoadParamScalar2I32; + case NVPTX::LoadParamV2I16: return NVPTX::LoadParamScalar2I16; + case NVPTX::LoadParamV2I8: return NVPTX::LoadParamScalar2I8; + case NVPTX::LoadParamV4F32: return NVPTX::LoadParamScalar4F32; + case NVPTX::LoadParamV2F32: return NVPTX::LoadParamScalar2F32; + case NVPTX::LoadParamV2F64: return NVPTX::LoadParamScalar2F64; + case NVPTX::StoreParamV4I32: return NVPTX::StoreParamScalar4I32; + case NVPTX::StoreParamV4I16: return NVPTX::StoreParamScalar4I16; + case NVPTX::StoreParamV4I8: return NVPTX::StoreParamScalar4I8; + case NVPTX::StoreParamV2I64: return NVPTX::StoreParamScalar2I64; + case NVPTX::StoreParamV2I32: return NVPTX::StoreParamScalar2I32; + case NVPTX::StoreParamV2I16: return NVPTX::StoreParamScalar2I16; + case NVPTX::StoreParamV2I8: return NVPTX::StoreParamScalar2I8; + case NVPTX::StoreParamV4F32: return NVPTX::StoreParamScalar4F32; + case NVPTX::StoreParamV2F32: return NVPTX::StoreParamScalar2F32; + case NVPTX::StoreParamV2F64: return NVPTX::StoreParamScalar2F64; + case NVPTX::StoreRetvalV4I32: return NVPTX::StoreRetvalScalar4I32; + case NVPTX::StoreRetvalV4I16: return NVPTX::StoreRetvalScalar4I16; + case NVPTX::StoreRetvalV4I8: return NVPTX::StoreRetvalScalar4I8; + case NVPTX::StoreRetvalV2I64: return NVPTX::StoreRetvalScalar2I64; + case NVPTX::StoreRetvalV2I32: return NVPTX::StoreRetvalScalar2I32; + case NVPTX::StoreRetvalV2I16: return NVPTX::StoreRetvalScalar2I16; + case NVPTX::StoreRetvalV2I8: return NVPTX::StoreRetvalScalar2I8; + case NVPTX::StoreRetvalV4F32: return NVPTX::StoreRetvalScalar4F32; + case NVPTX::StoreRetvalV2F32: return NVPTX::StoreRetvalScalar2F32; + case NVPTX::StoreRetvalV2F64: return NVPTX::StoreRetvalScalar2F64; + case NVPTX::VecI32toV4I8: return NVPTX::I32toV4I8; + case NVPTX::VecI64toV4I16: return NVPTX::I64toV4I16; + case NVPTX::VecI16toV2I8: return NVPTX::I16toV2I8; + case NVPTX::VecI32toV2I16: return NVPTX::I32toV2I16; + case NVPTX::VecI64toV2I32: return NVPTX::I64toV2I32; + case NVPTX::VecF64toV2F32: return NVPTX::F64toV2F32; + + case NVPTX::LD_v2i8_avar: return NVPTX::LDV_i8_v2_avar; + case NVPTX::LD_v2i8_areg: return NVPTX::LDV_i8_v2_areg; + case NVPTX::LD_v2i8_ari: return NVPTX::LDV_i8_v2_ari; + case NVPTX::LD_v2i8_asi: return NVPTX::LDV_i8_v2_asi; + case NVPTX::LD_v4i8_avar: return NVPTX::LDV_i8_v4_avar; + case NVPTX::LD_v4i8_areg: return NVPTX::LDV_i8_v4_areg; + case NVPTX::LD_v4i8_ari: return NVPTX::LDV_i8_v4_ari; + case NVPTX::LD_v4i8_asi: return NVPTX::LDV_i8_v4_asi; + + case NVPTX::LD_v2i16_avar: return NVPTX::LDV_i16_v2_avar; + case NVPTX::LD_v2i16_areg: return NVPTX::LDV_i16_v2_areg; + case NVPTX::LD_v2i16_ari: return NVPTX::LDV_i16_v2_ari; + case NVPTX::LD_v2i16_asi: return NVPTX::LDV_i16_v2_asi; + case NVPTX::LD_v4i16_avar: return NVPTX::LDV_i16_v4_avar; + case NVPTX::LD_v4i16_areg: return NVPTX::LDV_i16_v4_areg; + case NVPTX::LD_v4i16_ari: return NVPTX::LDV_i16_v4_ari; + case NVPTX::LD_v4i16_asi: return NVPTX::LDV_i16_v4_asi; + + case NVPTX::LD_v2i32_avar: return NVPTX::LDV_i32_v2_avar; + case NVPTX::LD_v2i32_areg: return NVPTX::LDV_i32_v2_areg; + case NVPTX::LD_v2i32_ari: return NVPTX::LDV_i32_v2_ari; + case NVPTX::LD_v2i32_asi: return NVPTX::LDV_i32_v2_asi; + case NVPTX::LD_v4i32_avar: return NVPTX::LDV_i32_v4_avar; + case NVPTX::LD_v4i32_areg: return NVPTX::LDV_i32_v4_areg; + case NVPTX::LD_v4i32_ari: return NVPTX::LDV_i32_v4_ari; + case NVPTX::LD_v4i32_asi: return NVPTX::LDV_i32_v4_asi; + + case NVPTX::LD_v2f32_avar: return NVPTX::LDV_f32_v2_avar; + case NVPTX::LD_v2f32_areg: return NVPTX::LDV_f32_v2_areg; + case NVPTX::LD_v2f32_ari: return NVPTX::LDV_f32_v2_ari; + case NVPTX::LD_v2f32_asi: return NVPTX::LDV_f32_v2_asi; + case NVPTX::LD_v4f32_avar: return NVPTX::LDV_f32_v4_avar; + case NVPTX::LD_v4f32_areg: return NVPTX::LDV_f32_v4_areg; + case NVPTX::LD_v4f32_ari: return NVPTX::LDV_f32_v4_ari; + case NVPTX::LD_v4f32_asi: return NVPTX::LDV_f32_v4_asi; + + case NVPTX::LD_v2i64_avar: return NVPTX::LDV_i64_v2_avar; + case NVPTX::LD_v2i64_areg: return NVPTX::LDV_i64_v2_areg; + case NVPTX::LD_v2i64_ari: return NVPTX::LDV_i64_v2_ari; + case NVPTX::LD_v2i64_asi: return NVPTX::LDV_i64_v2_asi; + case NVPTX::LD_v2f64_avar: return NVPTX::LDV_f64_v2_avar; + case NVPTX::LD_v2f64_areg: return NVPTX::LDV_f64_v2_areg; + case NVPTX::LD_v2f64_ari: return NVPTX::LDV_f64_v2_ari; + case NVPTX::LD_v2f64_asi: return NVPTX::LDV_f64_v2_asi; + + case NVPTX::ST_v2i8_avar: return NVPTX::STV_i8_v2_avar; + case NVPTX::ST_v2i8_areg: return NVPTX::STV_i8_v2_areg; + case NVPTX::ST_v2i8_ari: return NVPTX::STV_i8_v2_ari; + case NVPTX::ST_v2i8_asi: return NVPTX::STV_i8_v2_asi; + case NVPTX::ST_v4i8_avar: return NVPTX::STV_i8_v4_avar; + case NVPTX::ST_v4i8_areg: return NVPTX::STV_i8_v4_areg; + case NVPTX::ST_v4i8_ari: return NVPTX::STV_i8_v4_ari; + case NVPTX::ST_v4i8_asi: return NVPTX::STV_i8_v4_asi; + + case NVPTX::ST_v2i16_avar: return NVPTX::STV_i16_v2_avar; + case NVPTX::ST_v2i16_areg: return NVPTX::STV_i16_v2_areg; + case NVPTX::ST_v2i16_ari: return NVPTX::STV_i16_v2_ari; + case NVPTX::ST_v2i16_asi: return NVPTX::STV_i16_v2_asi; + case NVPTX::ST_v4i16_avar: return NVPTX::STV_i16_v4_avar; + case NVPTX::ST_v4i16_areg: return NVPTX::STV_i16_v4_areg; + case NVPTX::ST_v4i16_ari: return NVPTX::STV_i16_v4_ari; + case NVPTX::ST_v4i16_asi: return NVPTX::STV_i16_v4_asi; + + case NVPTX::ST_v2i32_avar: return NVPTX::STV_i32_v2_avar; + case NVPTX::ST_v2i32_areg: return NVPTX::STV_i32_v2_areg; + case NVPTX::ST_v2i32_ari: return NVPTX::STV_i32_v2_ari; + case NVPTX::ST_v2i32_asi: return NVPTX::STV_i32_v2_asi; + case NVPTX::ST_v4i32_avar: return NVPTX::STV_i32_v4_avar; + case NVPTX::ST_v4i32_areg: return NVPTX::STV_i32_v4_areg; + case NVPTX::ST_v4i32_ari: return NVPTX::STV_i32_v4_ari; + case NVPTX::ST_v4i32_asi: return NVPTX::STV_i32_v4_asi; + + case NVPTX::ST_v2f32_avar: return NVPTX::STV_f32_v2_avar; + case NVPTX::ST_v2f32_areg: return NVPTX::STV_f32_v2_areg; + case NVPTX::ST_v2f32_ari: return NVPTX::STV_f32_v2_ari; + case NVPTX::ST_v2f32_asi: return NVPTX::STV_f32_v2_asi; + case NVPTX::ST_v4f32_avar: return NVPTX::STV_f32_v4_avar; + case NVPTX::ST_v4f32_areg: return NVPTX::STV_f32_v4_areg; + case NVPTX::ST_v4f32_ari: return NVPTX::STV_f32_v4_ari; + case NVPTX::ST_v4f32_asi: return NVPTX::STV_f32_v4_asi; + + case NVPTX::ST_v2i64_avar: return NVPTX::STV_i64_v2_avar; + case NVPTX::ST_v2i64_areg: return NVPTX::STV_i64_v2_areg; + case NVPTX::ST_v2i64_ari: return NVPTX::STV_i64_v2_ari; + case NVPTX::ST_v2i64_asi: return NVPTX::STV_i64_v2_asi; + case NVPTX::ST_v2f64_avar: return NVPTX::STV_f64_v2_avar; + case NVPTX::ST_v2f64_areg: return NVPTX::STV_f64_v2_areg; + case NVPTX::ST_v2f64_ari: return NVPTX::STV_f64_v2_ari; + case NVPTX::ST_v2f64_asi: return NVPTX::STV_f64_v2_asi; + } + return 0; +} |