summaryrefslogtreecommitdiffstats
path: root/lib/Target/ARM/ARMCodeEmitter.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'lib/Target/ARM/ARMCodeEmitter.cpp')
-rw-r--r--lib/Target/ARM/ARMCodeEmitter.cpp1411
1 files changed, 1411 insertions, 0 deletions
diff --git a/lib/Target/ARM/ARMCodeEmitter.cpp b/lib/Target/ARM/ARMCodeEmitter.cpp
new file mode 100644
index 0000000..44fac12
--- /dev/null
+++ b/lib/Target/ARM/ARMCodeEmitter.cpp
@@ -0,0 +1,1411 @@
+//===-- ARM/ARMCodeEmitter.cpp - Convert ARM code to machine code ---------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the pass that transforms the ARM machine instructions into
+// relocatable machine code.
+//
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "jit"
+#include "ARM.h"
+#include "ARMAddressingModes.h"
+#include "ARMConstantPoolValue.h"
+#include "ARMInstrInfo.h"
+#include "ARMRelocations.h"
+#include "ARMSubtarget.h"
+#include "ARMTargetMachine.h"
+#include "llvm/Constants.h"
+#include "llvm/DerivedTypes.h"
+#include "llvm/Function.h"
+#include "llvm/PassManager.h"
+#include "llvm/CodeGen/MachineCodeEmitter.h"
+#include "llvm/CodeGen/JITCodeEmitter.h"
+#include "llvm/CodeGen/MachineConstantPool.h"
+#include "llvm/CodeGen/MachineFunctionPass.h"
+#include "llvm/CodeGen/MachineInstr.h"
+#include "llvm/CodeGen/MachineJumpTableInfo.h"
+#include "llvm/CodeGen/Passes.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/Support/Compiler.h"
+#include "llvm/Support/Debug.h"
+#ifndef NDEBUG
+#include <iomanip>
+#endif
+using namespace llvm;
+
+STATISTIC(NumEmitted, "Number of machine instructions emitted");
+
+namespace {
+
+ class ARMCodeEmitter {
+ public:
+ /// getBinaryCodeForInstr - This function, generated by the
+ /// CodeEmitterGenerator using TableGen, produces the binary encoding for
+ /// machine instructions.
+ unsigned getBinaryCodeForInstr(const MachineInstr &MI);
+ };
+
+ template<class CodeEmitter>
+ class VISIBILITY_HIDDEN Emitter : public MachineFunctionPass,
+ public ARMCodeEmitter {
+ ARMJITInfo *JTI;
+ const ARMInstrInfo *II;
+ const TargetData *TD;
+ TargetMachine &TM;
+ CodeEmitter &MCE;
+ const std::vector<MachineConstantPoolEntry> *MCPEs;
+ const std::vector<MachineJumpTableEntry> *MJTEs;
+ bool IsPIC;
+
+ public:
+ static char ID;
+ explicit Emitter(TargetMachine &tm, CodeEmitter &mce)
+ : MachineFunctionPass(&ID), JTI(0), II(0), TD(0), TM(tm),
+ MCE(mce), MCPEs(0), MJTEs(0),
+ IsPIC(TM.getRelocationModel() == Reloc::PIC_) {}
+ Emitter(TargetMachine &tm, CodeEmitter &mce,
+ const ARMInstrInfo &ii, const TargetData &td)
+ : MachineFunctionPass(&ID), JTI(0), II(&ii), TD(&td), TM(tm),
+ MCE(mce), MCPEs(0), MJTEs(0),
+ IsPIC(TM.getRelocationModel() == Reloc::PIC_) {}
+
+ bool runOnMachineFunction(MachineFunction &MF);
+
+ virtual const char *getPassName() const {
+ return "ARM Machine Code Emitter";
+ }
+
+ void emitInstruction(const MachineInstr &MI);
+
+ private:
+
+ void emitWordLE(unsigned Binary);
+
+ void emitDWordLE(uint64_t Binary);
+
+ void emitConstPoolInstruction(const MachineInstr &MI);
+
+ void emitMOVi2piecesInstruction(const MachineInstr &MI);
+
+ void emitLEApcrelJTInstruction(const MachineInstr &MI);
+
+ void emitPseudoMoveInstruction(const MachineInstr &MI);
+
+ void addPCLabel(unsigned LabelID);
+
+ void emitPseudoInstruction(const MachineInstr &MI);
+
+ unsigned getMachineSoRegOpValue(const MachineInstr &MI,
+ const TargetInstrDesc &TID,
+ const MachineOperand &MO,
+ unsigned OpIdx);
+
+ unsigned getMachineSoImmOpValue(unsigned SoImm);
+
+ unsigned getAddrModeSBit(const MachineInstr &MI,
+ const TargetInstrDesc &TID) const;
+
+ void emitDataProcessingInstruction(const MachineInstr &MI,
+ unsigned ImplicitRd = 0,
+ unsigned ImplicitRn = 0);
+
+ void emitLoadStoreInstruction(const MachineInstr &MI,
+ unsigned ImplicitRd = 0,
+ unsigned ImplicitRn = 0);
+
+ void emitMiscLoadStoreInstruction(const MachineInstr &MI,
+ unsigned ImplicitRn = 0);
+
+ void emitLoadStoreMultipleInstruction(const MachineInstr &MI);
+
+ void emitMulFrmInstruction(const MachineInstr &MI);
+
+ void emitExtendInstruction(const MachineInstr &MI);
+
+ void emitMiscArithInstruction(const MachineInstr &MI);
+
+ void emitBranchInstruction(const MachineInstr &MI);
+
+ void emitInlineJumpTable(unsigned JTIndex);
+
+ void emitMiscBranchInstruction(const MachineInstr &MI);
+
+ void emitVFPArithInstruction(const MachineInstr &MI);
+
+ void emitVFPConversionInstruction(const MachineInstr &MI);
+
+ void emitVFPLoadStoreInstruction(const MachineInstr &MI);
+
+ void emitVFPLoadStoreMultipleInstruction(const MachineInstr &MI);
+
+ void emitMiscInstruction(const MachineInstr &MI);
+
+ /// getMachineOpValue - Return binary encoding of operand. If the machine
+ /// operand requires relocation, record the relocation and return zero.
+ unsigned getMachineOpValue(const MachineInstr &MI,const MachineOperand &MO);
+ unsigned getMachineOpValue(const MachineInstr &MI, unsigned OpIdx) {
+ return getMachineOpValue(MI, MI.getOperand(OpIdx));
+ }
+
+ /// getShiftOp - Return the shift opcode (bit[6:5]) of the immediate value.
+ ///
+ unsigned getShiftOp(unsigned Imm) const ;
+
+ /// Routines that handle operands which add machine relocations which are
+ /// fixed up by the relocation stage.
+ void emitGlobalAddress(GlobalValue *GV, unsigned Reloc,
+ bool NeedStub, intptr_t ACPV = 0);
+ void emitExternalSymbolAddress(const char *ES, unsigned Reloc);
+ void emitConstPoolAddress(unsigned CPI, unsigned Reloc);
+ void emitJumpTableAddress(unsigned JTIndex, unsigned Reloc);
+ void emitMachineBasicBlock(MachineBasicBlock *BB, unsigned Reloc,
+ intptr_t JTBase = 0);
+ };
+ template <class CodeEmitter>
+ char Emitter<CodeEmitter>::ID = 0;
+}
+
+/// createARMCodeEmitterPass - Return a pass that emits the collected ARM code
+/// to the specified MCE object.
+
+namespace llvm {
+
+FunctionPass *createARMCodeEmitterPass(ARMTargetMachine &TM,
+ MachineCodeEmitter &MCE) {
+ return new Emitter<MachineCodeEmitter>(TM, MCE);
+}
+FunctionPass *createARMJITCodeEmitterPass(ARMTargetMachine &TM,
+ JITCodeEmitter &JCE) {
+ return new Emitter<JITCodeEmitter>(TM, JCE);
+}
+
+} // end namespace llvm
+
+template<class CodeEmitter>
+bool Emitter<CodeEmitter>::runOnMachineFunction(MachineFunction &MF) {
+ assert((MF.getTarget().getRelocationModel() != Reloc::Default ||
+ MF.getTarget().getRelocationModel() != Reloc::Static) &&
+ "JIT relocation model must be set to static or default!");
+ II = ((ARMTargetMachine&)MF.getTarget()).getInstrInfo();
+ TD = ((ARMTargetMachine&)MF.getTarget()).getTargetData();
+ JTI = ((ARMTargetMachine&)MF.getTarget()).getJITInfo();
+ MCPEs = &MF.getConstantPool()->getConstants();
+ MJTEs = &MF.getJumpTableInfo()->getJumpTables();
+ IsPIC = TM.getRelocationModel() == Reloc::PIC_;
+ JTI->Initialize(MF, IsPIC);
+
+ do {
+ DOUT << "JITTing function '" << MF.getFunction()->getName() << "'\n";
+ MCE.startFunction(MF);
+ for (MachineFunction::iterator MBB = MF.begin(), E = MF.end();
+ MBB != E; ++MBB) {
+ MCE.StartMachineBasicBlock(MBB);
+ for (MachineBasicBlock::const_iterator I = MBB->begin(), E = MBB->end();
+ I != E; ++I)
+ emitInstruction(*I);
+ }
+ } while (MCE.finishFunction(MF));
+
+ return false;
+}
+
+/// getShiftOp - Return the shift opcode (bit[6:5]) of the immediate value.
+///
+template<class CodeEmitter>
+unsigned Emitter<CodeEmitter>::getShiftOp(unsigned Imm) const {
+ switch (ARM_AM::getAM2ShiftOpc(Imm)) {
+ default: assert(0 && "Unknown shift opc!");
+ case ARM_AM::asr: return 2;
+ case ARM_AM::lsl: return 0;
+ case ARM_AM::lsr: return 1;
+ case ARM_AM::ror:
+ case ARM_AM::rrx: return 3;
+ }
+ return 0;
+}
+
+/// getMachineOpValue - Return binary encoding of operand. If the machine
+/// operand requires relocation, record the relocation and return zero.
+template<class CodeEmitter>
+unsigned Emitter<CodeEmitter>::getMachineOpValue(const MachineInstr &MI,
+ const MachineOperand &MO) {
+ if (MO.isReg())
+ return ARMRegisterInfo::getRegisterNumbering(MO.getReg());
+ else if (MO.isImm())
+ return static_cast<unsigned>(MO.getImm());
+ else if (MO.isGlobal())
+ emitGlobalAddress(MO.getGlobal(), ARM::reloc_arm_branch, true);
+ else if (MO.isSymbol())
+ emitExternalSymbolAddress(MO.getSymbolName(), ARM::reloc_arm_branch);
+ else if (MO.isCPI()) {
+ const TargetInstrDesc &TID = MI.getDesc();
+ // For VFP load, the immediate offset is multiplied by 4.
+ unsigned Reloc = ((TID.TSFlags & ARMII::FormMask) == ARMII::VFPLdStFrm)
+ ? ARM::reloc_arm_vfp_cp_entry : ARM::reloc_arm_cp_entry;
+ emitConstPoolAddress(MO.getIndex(), Reloc);
+ } else if (MO.isJTI())
+ emitJumpTableAddress(MO.getIndex(), ARM::reloc_arm_relative);
+ else if (MO.isMBB())
+ emitMachineBasicBlock(MO.getMBB(), ARM::reloc_arm_branch);
+ else {
+ cerr << "ERROR: Unknown type of MachineOperand: " << MO << "\n";
+ abort();
+ }
+ return 0;
+}
+
+/// emitGlobalAddress - Emit the specified address to the code stream.
+///
+template<class CodeEmitter>
+void Emitter<CodeEmitter>::emitGlobalAddress(GlobalValue *GV, unsigned Reloc,
+ bool NeedStub, intptr_t ACPV) {
+ MCE.addRelocation(MachineRelocation::getGV(MCE.getCurrentPCOffset(), Reloc,
+ GV, ACPV, NeedStub));
+}
+
+/// emitExternalSymbolAddress - Arrange for the address of an external symbol to
+/// be emitted to the current location in the function, and allow it to be PC
+/// relative.
+template<class CodeEmitter>
+void Emitter<CodeEmitter>::emitExternalSymbolAddress(const char *ES,
+ unsigned Reloc) {
+ MCE.addRelocation(MachineRelocation::getExtSym(MCE.getCurrentPCOffset(),
+ Reloc, ES));
+}
+
+/// emitConstPoolAddress - Arrange for the address of an constant pool
+/// to be emitted to the current location in the function, and allow it to be PC
+/// relative.
+template<class CodeEmitter>
+void Emitter<CodeEmitter>::emitConstPoolAddress(unsigned CPI,
+ unsigned Reloc) {
+ // Tell JIT emitter we'll resolve the address.
+ MCE.addRelocation(MachineRelocation::getConstPool(MCE.getCurrentPCOffset(),
+ Reloc, CPI, 0, true));
+}
+
+/// emitJumpTableAddress - Arrange for the address of a jump table to
+/// be emitted to the current location in the function, and allow it to be PC
+/// relative.
+template<class CodeEmitter>
+void Emitter<CodeEmitter>::emitJumpTableAddress(unsigned JTIndex,
+ unsigned Reloc) {
+ MCE.addRelocation(MachineRelocation::getJumpTable(MCE.getCurrentPCOffset(),
+ Reloc, JTIndex, 0, true));
+}
+
+/// emitMachineBasicBlock - Emit the specified address basic block.
+template<class CodeEmitter>
+void Emitter<CodeEmitter>::emitMachineBasicBlock(MachineBasicBlock *BB,
+ unsigned Reloc, intptr_t JTBase) {
+ MCE.addRelocation(MachineRelocation::getBB(MCE.getCurrentPCOffset(),
+ Reloc, BB, JTBase));
+}
+
+template<class CodeEmitter>
+void Emitter<CodeEmitter>::emitWordLE(unsigned Binary) {
+#ifndef NDEBUG
+ DOUT << " 0x" << std::hex << std::setw(8) << std::setfill('0')
+ << Binary << std::dec << "\n";
+#endif
+ MCE.emitWordLE(Binary);
+}
+
+template<class CodeEmitter>
+void Emitter<CodeEmitter>::emitDWordLE(uint64_t Binary) {
+#ifndef NDEBUG
+ DOUT << " 0x" << std::hex << std::setw(8) << std::setfill('0')
+ << (unsigned)Binary << std::dec << "\n";
+ DOUT << " 0x" << std::hex << std::setw(8) << std::setfill('0')
+ << (unsigned)(Binary >> 32) << std::dec << "\n";
+#endif
+ MCE.emitDWordLE(Binary);
+}
+
+template<class CodeEmitter>
+void Emitter<CodeEmitter>::emitInstruction(const MachineInstr &MI) {
+ DOUT << "JIT: " << (void*)MCE.getCurrentPCValue() << ":\t" << MI;
+
+ NumEmitted++; // Keep track of the # of mi's emitted
+ switch (MI.getDesc().TSFlags & ARMII::FormMask) {
+ default: {
+ assert(0 && "Unhandled instruction encoding format!");
+ break;
+ }
+ case ARMII::Pseudo:
+ emitPseudoInstruction(MI);
+ break;
+ case ARMII::DPFrm:
+ case ARMII::DPSoRegFrm:
+ emitDataProcessingInstruction(MI);
+ break;
+ case ARMII::LdFrm:
+ case ARMII::StFrm:
+ emitLoadStoreInstruction(MI);
+ break;
+ case ARMII::LdMiscFrm:
+ case ARMII::StMiscFrm:
+ emitMiscLoadStoreInstruction(MI);
+ break;
+ case ARMII::LdStMulFrm:
+ emitLoadStoreMultipleInstruction(MI);
+ break;
+ case ARMII::MulFrm:
+ emitMulFrmInstruction(MI);
+ break;
+ case ARMII::ExtFrm:
+ emitExtendInstruction(MI);
+ break;
+ case ARMII::ArithMiscFrm:
+ emitMiscArithInstruction(MI);
+ break;
+ case ARMII::BrFrm:
+ emitBranchInstruction(MI);
+ break;
+ case ARMII::BrMiscFrm:
+ emitMiscBranchInstruction(MI);
+ break;
+ // VFP instructions.
+ case ARMII::VFPUnaryFrm:
+ case ARMII::VFPBinaryFrm:
+ emitVFPArithInstruction(MI);
+ break;
+ case ARMII::VFPConv1Frm:
+ case ARMII::VFPConv2Frm:
+ case ARMII::VFPConv3Frm:
+ case ARMII::VFPConv4Frm:
+ case ARMII::VFPConv5Frm:
+ emitVFPConversionInstruction(MI);
+ break;
+ case ARMII::VFPLdStFrm:
+ emitVFPLoadStoreInstruction(MI);
+ break;
+ case ARMII::VFPLdStMulFrm:
+ emitVFPLoadStoreMultipleInstruction(MI);
+ break;
+ case ARMII::VFPMiscFrm:
+ emitMiscInstruction(MI);
+ break;
+ }
+}
+
+template<class CodeEmitter>
+void Emitter<CodeEmitter>::emitConstPoolInstruction(const MachineInstr &MI) {
+ unsigned CPI = MI.getOperand(0).getImm(); // CP instruction index.
+ unsigned CPIndex = MI.getOperand(1).getIndex(); // Actual cp entry index.
+ const MachineConstantPoolEntry &MCPE = (*MCPEs)[CPIndex];
+
+ // Remember the CONSTPOOL_ENTRY address for later relocation.
+ JTI->addConstantPoolEntryAddr(CPI, MCE.getCurrentPCValue());
+
+ // Emit constpool island entry. In most cases, the actual values will be
+ // resolved and relocated after code emission.
+ if (MCPE.isMachineConstantPoolEntry()) {
+ ARMConstantPoolValue *ACPV =
+ static_cast<ARMConstantPoolValue*>(MCPE.Val.MachineCPVal);
+
+ DOUT << " ** ARM constant pool #" << CPI << " @ "
+ << (void*)MCE.getCurrentPCValue() << " " << *ACPV << '\n';
+
+ GlobalValue *GV = ACPV->getGV();
+ if (GV) {
+ assert(!ACPV->isStub() && "Don't know how to deal this yet!");
+ if (ACPV->isNonLazyPointer())
+ MCE.addRelocation(MachineRelocation::getIndirectSymbol(
+ MCE.getCurrentPCOffset(), ARM::reloc_arm_machine_cp_entry, GV,
+ (intptr_t)ACPV, false));
+ else
+ emitGlobalAddress(GV, ARM::reloc_arm_machine_cp_entry,
+ ACPV->isStub() || isa<Function>(GV), (intptr_t)ACPV);
+ } else {
+ assert(!ACPV->isNonLazyPointer() && "Don't know how to deal this yet!");
+ emitExternalSymbolAddress(ACPV->getSymbol(), ARM::reloc_arm_absolute);
+ }
+ emitWordLE(0);
+ } else {
+ Constant *CV = MCPE.Val.ConstVal;
+
+#ifndef NDEBUG
+ DOUT << " ** Constant pool #" << CPI << " @ "
+ << (void*)MCE.getCurrentPCValue() << " ";
+ if (const Function *F = dyn_cast<Function>(CV))
+ DOUT << F->getName();
+ else
+ DOUT << *CV;
+ DOUT << '\n';
+#endif
+
+ if (GlobalValue *GV = dyn_cast<GlobalValue>(CV)) {
+ emitGlobalAddress(GV, ARM::reloc_arm_absolute, isa<Function>(GV));
+ emitWordLE(0);
+ } else if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
+ uint32_t Val = *(uint32_t*)CI->getValue().getRawData();
+ emitWordLE(Val);
+ } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
+ if (CFP->getType() == Type::FloatTy)
+ emitWordLE(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
+ else if (CFP->getType() == Type::DoubleTy)
+ emitDWordLE(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
+ else {
+ assert(0 && "Unable to handle this constantpool entry!");
+ abort();
+ }
+ } else {
+ assert(0 && "Unable to handle this constantpool entry!");
+ abort();
+ }
+ }
+}
+
+template<class CodeEmitter>
+void Emitter<CodeEmitter>::emitMOVi2piecesInstruction(const MachineInstr &MI) {
+ const MachineOperand &MO0 = MI.getOperand(0);
+ const MachineOperand &MO1 = MI.getOperand(1);
+ assert(MO1.isImm() && "Not a valid so_imm value!");
+ unsigned V1 = ARM_AM::getSOImmTwoPartFirst(MO1.getImm());
+ unsigned V2 = ARM_AM::getSOImmTwoPartSecond(MO1.getImm());
+
+ // Emit the 'mov' instruction.
+ unsigned Binary = 0xd << 21; // mov: Insts{24-21} = 0b1101
+
+ // Set the conditional execution predicate.
+ Binary |= II->getPredicate(&MI) << ARMII::CondShift;
+
+ // Encode Rd.
+ Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRdShift;
+
+ // Encode so_imm.
+ // Set bit I(25) to identify this is the immediate form of <shifter_op>
+ Binary |= 1 << ARMII::I_BitShift;
+ Binary |= getMachineSoImmOpValue(ARM_AM::getSOImmVal(V1));
+ emitWordLE(Binary);
+
+ // Now the 'orr' instruction.
+ Binary = 0xc << 21; // orr: Insts{24-21} = 0b1100
+
+ // Set the conditional execution predicate.
+ Binary |= II->getPredicate(&MI) << ARMII::CondShift;
+
+ // Encode Rd.
+ Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRdShift;
+
+ // Encode Rn.
+ Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRnShift;
+
+ // Encode so_imm.
+ // Set bit I(25) to identify this is the immediate form of <shifter_op>
+ Binary |= 1 << ARMII::I_BitShift;
+ Binary |= getMachineSoImmOpValue(ARM_AM::getSOImmVal(V2));
+ emitWordLE(Binary);
+}
+
+template<class CodeEmitter>
+void Emitter<CodeEmitter>::emitLEApcrelJTInstruction(const MachineInstr &MI) {
+ // It's basically add r, pc, (LJTI - $+8)
+
+ const TargetInstrDesc &TID = MI.getDesc();
+
+ // Emit the 'add' instruction.
+ unsigned Binary = 0x4 << 21; // add: Insts{24-31} = 0b0100
+
+ // Set the conditional execution predicate
+ Binary |= II->getPredicate(&MI) << ARMII::CondShift;
+
+ // Encode S bit if MI modifies CPSR.
+ Binary |= getAddrModeSBit(MI, TID);
+
+ // Encode Rd.
+ Binary |= getMachineOpValue(MI, 0) << ARMII::RegRdShift;
+
+ // Encode Rn which is PC.
+ Binary |= ARMRegisterInfo::getRegisterNumbering(ARM::PC) << ARMII::RegRnShift;
+
+ // Encode the displacement.
+ // Set bit I(25) to identify this is the immediate form of <shifter_op>.
+ Binary |= 1 << ARMII::I_BitShift;
+ emitJumpTableAddress(MI.getOperand(1).getIndex(), ARM::reloc_arm_jt_base);
+
+ emitWordLE(Binary);
+}
+
+template<class CodeEmitter>
+void Emitter<CodeEmitter>::emitPseudoMoveInstruction(const MachineInstr &MI) {
+ unsigned Opcode = MI.getDesc().Opcode;
+
+ // Part of binary is determined by TableGn.
+ unsigned Binary = getBinaryCodeForInstr(MI);
+
+ // Set the conditional execution predicate
+ Binary |= II->getPredicate(&MI) << ARMII::CondShift;
+
+ // Encode S bit if MI modifies CPSR.
+ if (Opcode == ARM::MOVsrl_flag || Opcode == ARM::MOVsra_flag)
+ Binary |= 1 << ARMII::S_BitShift;
+
+ // Encode register def if there is one.
+ Binary |= getMachineOpValue(MI, 0) << ARMII::RegRdShift;
+
+ // Encode the shift operation.
+ switch (Opcode) {
+ default: break;
+ case ARM::MOVrx:
+ // rrx
+ Binary |= 0x6 << 4;
+ break;
+ case ARM::MOVsrl_flag:
+ // lsr #1
+ Binary |= (0x2 << 4) | (1 << 7);
+ break;
+ case ARM::MOVsra_flag:
+ // asr #1
+ Binary |= (0x4 << 4) | (1 << 7);
+ break;
+ }
+
+ // Encode register Rm.
+ Binary |= getMachineOpValue(MI, 1);
+
+ emitWordLE(Binary);
+}
+
+template<class CodeEmitter>
+void Emitter<CodeEmitter>::addPCLabel(unsigned LabelID) {
+ DOUT << " ** LPC" << LabelID << " @ "
+ << (void*)MCE.getCurrentPCValue() << '\n';
+ JTI->addPCLabelAddr(LabelID, MCE.getCurrentPCValue());
+}
+
+template<class CodeEmitter>
+void Emitter<CodeEmitter>::emitPseudoInstruction(const MachineInstr &MI) {
+ unsigned Opcode = MI.getDesc().Opcode;
+ switch (Opcode) {
+ default:
+ abort(); // FIXME:
+ case TargetInstrInfo::INLINEASM: {
+ // We allow inline assembler nodes with empty bodies - they can
+ // implicitly define registers, which is ok for JIT.
+ if (MI.getOperand(0).getSymbolName()[0]) {
+ assert(0 && "JIT does not support inline asm!\n");
+ abort();
+ }
+ break;
+ }
+ case TargetInstrInfo::DBG_LABEL:
+ case TargetInstrInfo::EH_LABEL:
+ MCE.emitLabel(MI.getOperand(0).getImm());
+ break;
+ case TargetInstrInfo::IMPLICIT_DEF:
+ case TargetInstrInfo::DECLARE:
+ case ARM::DWARF_LOC:
+ // Do nothing.
+ break;
+ case ARM::CONSTPOOL_ENTRY:
+ emitConstPoolInstruction(MI);
+ break;
+ case ARM::PICADD: {
+ // Remember of the address of the PC label for relocation later.
+ addPCLabel(MI.getOperand(2).getImm());
+ // PICADD is just an add instruction that implicitly read pc.
+ emitDataProcessingInstruction(MI, 0, ARM::PC);
+ break;
+ }
+ case ARM::PICLDR:
+ case ARM::PICLDRB:
+ case ARM::PICSTR:
+ case ARM::PICSTRB: {
+ // Remember of the address of the PC label for relocation later.
+ addPCLabel(MI.getOperand(2).getImm());
+ // These are just load / store instructions that implicitly read pc.
+ emitLoadStoreInstruction(MI, 0, ARM::PC);
+ break;
+ }
+ case ARM::PICLDRH:
+ case ARM::PICLDRSH:
+ case ARM::PICLDRSB:
+ case ARM::PICSTRH: {
+ // Remember of the address of the PC label for relocation later.
+ addPCLabel(MI.getOperand(2).getImm());
+ // These are just load / store instructions that implicitly read pc.
+ emitMiscLoadStoreInstruction(MI, ARM::PC);
+ break;
+ }
+ case ARM::MOVi2pieces:
+ // Two instructions to materialize a constant.
+ emitMOVi2piecesInstruction(MI);
+ break;
+ case ARM::LEApcrelJT:
+ // Materialize jumptable address.
+ emitLEApcrelJTInstruction(MI);
+ break;
+ case ARM::MOVrx:
+ case ARM::MOVsrl_flag:
+ case ARM::MOVsra_flag:
+ emitPseudoMoveInstruction(MI);
+ break;
+ }
+}
+
+template<class CodeEmitter>
+unsigned Emitter<CodeEmitter>::getMachineSoRegOpValue(
+ const MachineInstr &MI,
+ const TargetInstrDesc &TID,
+ const MachineOperand &MO,
+ unsigned OpIdx) {
+ unsigned Binary = getMachineOpValue(MI, MO);
+
+ const MachineOperand &MO1 = MI.getOperand(OpIdx + 1);
+ const MachineOperand &MO2 = MI.getOperand(OpIdx + 2);
+ ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(MO2.getImm());
+
+ // Encode the shift opcode.
+ unsigned SBits = 0;
+ unsigned Rs = MO1.getReg();
+ if (Rs) {
+ // Set shift operand (bit[7:4]).
+ // LSL - 0001
+ // LSR - 0011
+ // ASR - 0101
+ // ROR - 0111
+ // RRX - 0110 and bit[11:8] clear.
+ switch (SOpc) {
+ default: assert(0 && "Unknown shift opc!");
+ case ARM_AM::lsl: SBits = 0x1; break;
+ case ARM_AM::lsr: SBits = 0x3; break;
+ case ARM_AM::asr: SBits = 0x5; break;
+ case ARM_AM::ror: SBits = 0x7; break;
+ case ARM_AM::rrx: SBits = 0x6; break;
+ }
+ } else {
+ // Set shift operand (bit[6:4]).
+ // LSL - 000
+ // LSR - 010
+ // ASR - 100
+ // ROR - 110
+ switch (SOpc) {
+ default: assert(0 && "Unknown shift opc!");
+ case ARM_AM::lsl: SBits = 0x0; break;
+ case ARM_AM::lsr: SBits = 0x2; break;
+ case ARM_AM::asr: SBits = 0x4; break;
+ case ARM_AM::ror: SBits = 0x6; break;
+ }
+ }
+ Binary |= SBits << 4;
+ if (SOpc == ARM_AM::rrx)
+ return Binary;
+
+ // Encode the shift operation Rs or shift_imm (except rrx).
+ if (Rs) {
+ // Encode Rs bit[11:8].
+ assert(ARM_AM::getSORegOffset(MO2.getImm()) == 0);
+ return Binary |
+ (ARMRegisterInfo::getRegisterNumbering(Rs) << ARMII::RegRsShift);
+ }
+
+ // Encode shift_imm bit[11:7].
+ return Binary | ARM_AM::getSORegOffset(MO2.getImm()) << 7;
+}
+
+template<class CodeEmitter>
+unsigned Emitter<CodeEmitter>::getMachineSoImmOpValue(unsigned SoImm) {
+ // Encode rotate_imm.
+ unsigned Binary = (ARM_AM::getSOImmValRot(SoImm) >> 1)
+ << ARMII::SoRotImmShift;
+
+ // Encode immed_8.
+ Binary |= ARM_AM::getSOImmValImm(SoImm);
+ return Binary;
+}
+
+template<class CodeEmitter>
+unsigned Emitter<CodeEmitter>::getAddrModeSBit(const MachineInstr &MI,
+ const TargetInstrDesc &TID) const {
+ for (unsigned i = MI.getNumOperands(), e = TID.getNumOperands(); i != e; --i){
+ const MachineOperand &MO = MI.getOperand(i-1);
+ if (MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR)
+ return 1 << ARMII::S_BitShift;
+ }
+ return 0;
+}
+
+template<class CodeEmitter>
+void Emitter<CodeEmitter>::emitDataProcessingInstruction(
+ const MachineInstr &MI,
+ unsigned ImplicitRd,
+ unsigned ImplicitRn) {
+ const TargetInstrDesc &TID = MI.getDesc();
+
+ // Part of binary is determined by TableGn.
+ unsigned Binary = getBinaryCodeForInstr(MI);
+
+ // Set the conditional execution predicate
+ Binary |= II->getPredicate(&MI) << ARMII::CondShift;
+
+ // Encode S bit if MI modifies CPSR.
+ Binary |= getAddrModeSBit(MI, TID);
+
+ // Encode register def if there is one.
+ unsigned NumDefs = TID.getNumDefs();
+ unsigned OpIdx = 0;
+ if (NumDefs)
+ Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
+ else if (ImplicitRd)
+ // Special handling for implicit use (e.g. PC).
+ Binary |= (ARMRegisterInfo::getRegisterNumbering(ImplicitRd)
+ << ARMII::RegRdShift);
+
+ // If this is a two-address operand, skip it. e.g. MOVCCr operand 1.
+ if (TID.getOperandConstraint(OpIdx, TOI::TIED_TO) != -1)
+ ++OpIdx;
+
+ // Encode first non-shifter register operand if there is one.
+ bool isUnary = TID.TSFlags & ARMII::UnaryDP;
+ if (!isUnary) {
+ if (ImplicitRn)
+ // Special handling for implicit use (e.g. PC).
+ Binary |= (ARMRegisterInfo::getRegisterNumbering(ImplicitRn)
+ << ARMII::RegRnShift);
+ else {
+ Binary |= getMachineOpValue(MI, OpIdx) << ARMII::RegRnShift;
+ ++OpIdx;
+ }
+ }
+
+ // Encode shifter operand.
+ const MachineOperand &MO = MI.getOperand(OpIdx);
+ if ((TID.TSFlags & ARMII::FormMask) == ARMII::DPSoRegFrm) {
+ // Encode SoReg.
+ emitWordLE(Binary | getMachineSoRegOpValue(MI, TID, MO, OpIdx));
+ return;
+ }
+
+ if (MO.isReg()) {
+ // Encode register Rm.
+ emitWordLE(Binary | ARMRegisterInfo::getRegisterNumbering(MO.getReg()));
+ return;
+ }
+
+ // Encode so_imm.
+ // Set bit I(25) to identify this is the immediate form of <shifter_op>.
+ Binary |= 1 << ARMII::I_BitShift;
+ Binary |= getMachineSoImmOpValue(MO.getImm());
+
+ emitWordLE(Binary);
+}
+
+template<class CodeEmitter>
+void Emitter<CodeEmitter>::emitLoadStoreInstruction(
+ const MachineInstr &MI,
+ unsigned ImplicitRd,
+ unsigned ImplicitRn) {
+ const TargetInstrDesc &TID = MI.getDesc();
+ unsigned Form = TID.TSFlags & ARMII::FormMask;
+ bool IsPrePost = (TID.TSFlags & ARMII::IndexModeMask) != 0;
+
+ // Part of binary is determined by TableGn.
+ unsigned Binary = getBinaryCodeForInstr(MI);
+
+ // Set the conditional execution predicate
+ Binary |= II->getPredicate(&MI) << ARMII::CondShift;
+
+ unsigned OpIdx = 0;
+
+ // Operand 0 of a pre- and post-indexed store is the address base
+ // writeback. Skip it.
+ bool Skipped = false;
+ if (IsPrePost && Form == ARMII::StFrm) {
+ ++OpIdx;
+ Skipped = true;
+ }
+
+ // Set first operand
+ if (ImplicitRd)
+ // Special handling for implicit use (e.g. PC).
+ Binary |= (ARMRegisterInfo::getRegisterNumbering(ImplicitRd)
+ << ARMII::RegRdShift);
+ else
+ Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
+
+ // Set second operand
+ if (ImplicitRn)
+ // Special handling for implicit use (e.g. PC).
+ Binary |= (ARMRegisterInfo::getRegisterNumbering(ImplicitRn)
+ << ARMII::RegRnShift);
+ else
+ Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRnShift;
+
+ // If this is a two-address operand, skip it. e.g. LDR_PRE.
+ if (!Skipped && TID.getOperandConstraint(OpIdx, TOI::TIED_TO) != -1)
+ ++OpIdx;
+
+ const MachineOperand &MO2 = MI.getOperand(OpIdx);
+ unsigned AM2Opc = (ImplicitRn == ARM::PC)
+ ? 0 : MI.getOperand(OpIdx+1).getImm();
+
+ // Set bit U(23) according to sign of immed value (positive or negative).
+ Binary |= ((ARM_AM::getAM2Op(AM2Opc) == ARM_AM::add ? 1 : 0) <<
+ ARMII::U_BitShift);
+ if (!MO2.getReg()) { // is immediate
+ if (ARM_AM::getAM2Offset(AM2Opc))
+ // Set the value of offset_12 field
+ Binary |= ARM_AM::getAM2Offset(AM2Opc);
+ emitWordLE(Binary);
+ return;
+ }
+
+ // Set bit I(25), because this is not in immediate enconding.
+ Binary |= 1 << ARMII::I_BitShift;
+ assert(TargetRegisterInfo::isPhysicalRegister(MO2.getReg()));
+ // Set bit[3:0] to the corresponding Rm register
+ Binary |= ARMRegisterInfo::getRegisterNumbering(MO2.getReg());
+
+ // If this instr is in scaled register offset/index instruction, set
+ // shift_immed(bit[11:7]) and shift(bit[6:5]) fields.
+ if (unsigned ShImm = ARM_AM::getAM2Offset(AM2Opc)) {
+ Binary |= getShiftOp(AM2Opc) << ARMII::ShiftImmShift; // shift
+ Binary |= ShImm << ARMII::ShiftShift; // shift_immed
+ }
+
+ emitWordLE(Binary);
+}
+
+template<class CodeEmitter>
+void Emitter<CodeEmitter>::emitMiscLoadStoreInstruction(const MachineInstr &MI,
+ unsigned ImplicitRn) {
+ const TargetInstrDesc &TID = MI.getDesc();
+ unsigned Form = TID.TSFlags & ARMII::FormMask;
+ bool IsPrePost = (TID.TSFlags & ARMII::IndexModeMask) != 0;
+
+ // Part of binary is determined by TableGn.
+ unsigned Binary = getBinaryCodeForInstr(MI);
+
+ // Set the conditional execution predicate
+ Binary |= II->getPredicate(&MI) << ARMII::CondShift;
+
+ unsigned OpIdx = 0;
+
+ // Operand 0 of a pre- and post-indexed store is the address base
+ // writeback. Skip it.
+ bool Skipped = false;
+ if (IsPrePost && Form == ARMII::StMiscFrm) {
+ ++OpIdx;
+ Skipped = true;
+ }
+
+ // Set first operand
+ Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
+
+ // Set second operand
+ if (ImplicitRn)
+ // Special handling for implicit use (e.g. PC).
+ Binary |= (ARMRegisterInfo::getRegisterNumbering(ImplicitRn)
+ << ARMII::RegRnShift);
+ else
+ Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRnShift;
+
+ // If this is a two-address operand, skip it. e.g. LDRH_POST.
+ if (!Skipped && TID.getOperandConstraint(OpIdx, TOI::TIED_TO) != -1)
+ ++OpIdx;
+
+ const MachineOperand &MO2 = MI.getOperand(OpIdx);
+ unsigned AM3Opc = (ImplicitRn == ARM::PC)
+ ? 0 : MI.getOperand(OpIdx+1).getImm();
+
+ // Set bit U(23) according to sign of immed value (positive or negative)
+ Binary |= ((ARM_AM::getAM3Op(AM3Opc) == ARM_AM::add ? 1 : 0) <<
+ ARMII::U_BitShift);
+
+ // If this instr is in register offset/index encoding, set bit[3:0]
+ // to the corresponding Rm register.
+ if (MO2.getReg()) {
+ Binary |= ARMRegisterInfo::getRegisterNumbering(MO2.getReg());
+ emitWordLE(Binary);
+ return;
+ }
+
+ // This instr is in immediate offset/index encoding, set bit 22 to 1.
+ Binary |= 1 << ARMII::AM3_I_BitShift;
+ if (unsigned ImmOffs = ARM_AM::getAM3Offset(AM3Opc)) {
+ // Set operands
+ Binary |= (ImmOffs >> 4) << ARMII::ImmHiShift; // immedH
+ Binary |= (ImmOffs & 0xF); // immedL
+ }
+
+ emitWordLE(Binary);
+}
+
+static unsigned getAddrModeUPBits(unsigned Mode) {
+ unsigned Binary = 0;
+
+ // Set addressing mode by modifying bits U(23) and P(24)
+ // IA - Increment after - bit U = 1 and bit P = 0
+ // IB - Increment before - bit U = 1 and bit P = 1
+ // DA - Decrement after - bit U = 0 and bit P = 0
+ // DB - Decrement before - bit U = 0 and bit P = 1
+ switch (Mode) {
+ default: assert(0 && "Unknown addressing sub-mode!");
+ case ARM_AM::da: break;
+ case ARM_AM::db: Binary |= 0x1 << ARMII::P_BitShift; break;
+ case ARM_AM::ia: Binary |= 0x1 << ARMII::U_BitShift; break;
+ case ARM_AM::ib: Binary |= 0x3 << ARMII::U_BitShift; break;
+ }
+
+ return Binary;
+}
+
+template<class CodeEmitter>
+void Emitter<CodeEmitter>::emitLoadStoreMultipleInstruction(
+ const MachineInstr &MI) {
+ // Part of binary is determined by TableGn.
+ unsigned Binary = getBinaryCodeForInstr(MI);
+
+ // Set the conditional execution predicate
+ Binary |= II->getPredicate(&MI) << ARMII::CondShift;
+
+ // Set base address operand
+ Binary |= getMachineOpValue(MI, 0) << ARMII::RegRnShift;
+
+ // Set addressing mode by modifying bits U(23) and P(24)
+ const MachineOperand &MO = MI.getOperand(1);
+ Binary |= getAddrModeUPBits(ARM_AM::getAM4SubMode(MO.getImm()));
+
+ // Set bit W(21)
+ if (ARM_AM::getAM4WBFlag(MO.getImm()))
+ Binary |= 0x1 << ARMII::W_BitShift;
+
+ // Set registers
+ for (unsigned i = 4, e = MI.getNumOperands(); i != e; ++i) {
+ const MachineOperand &MO = MI.getOperand(i);
+ if (!MO.isReg() || MO.isImplicit())
+ break;
+ unsigned RegNum = ARMRegisterInfo::getRegisterNumbering(MO.getReg());
+ assert(TargetRegisterInfo::isPhysicalRegister(MO.getReg()) &&
+ RegNum < 16);
+ Binary |= 0x1 << RegNum;
+ }
+
+ emitWordLE(Binary);
+}
+
+template<class CodeEmitter>
+void Emitter<CodeEmitter>::emitMulFrmInstruction(const MachineInstr &MI) {
+ const TargetInstrDesc &TID = MI.getDesc();
+
+ // Part of binary is determined by TableGn.
+ unsigned Binary = getBinaryCodeForInstr(MI);
+
+ // Set the conditional execution predicate
+ Binary |= II->getPredicate(&MI) << ARMII::CondShift;
+
+ // Encode S bit if MI modifies CPSR.
+ Binary |= getAddrModeSBit(MI, TID);
+
+ // 32x32->64bit operations have two destination registers. The number
+ // of register definitions will tell us if that's what we're dealing with.
+ unsigned OpIdx = 0;
+ if (TID.getNumDefs() == 2)
+ Binary |= getMachineOpValue (MI, OpIdx++) << ARMII::RegRdLoShift;
+
+ // Encode Rd
+ Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdHiShift;
+
+ // Encode Rm
+ Binary |= getMachineOpValue(MI, OpIdx++);
+
+ // Encode Rs
+ Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRsShift;
+
+ // Many multiple instructions (e.g. MLA) have three src operands. Encode
+ // it as Rn (for multiply, that's in the same offset as RdLo.
+ if (TID.getNumOperands() > OpIdx &&
+ !TID.OpInfo[OpIdx].isPredicate() &&
+ !TID.OpInfo[OpIdx].isOptionalDef())
+ Binary |= getMachineOpValue(MI, OpIdx) << ARMII::RegRdLoShift;
+
+ emitWordLE(Binary);
+}
+
+template<class CodeEmitter>
+void Emitter<CodeEmitter>::emitExtendInstruction(const MachineInstr &MI) {
+ const TargetInstrDesc &TID = MI.getDesc();
+
+ // Part of binary is determined by TableGn.
+ unsigned Binary = getBinaryCodeForInstr(MI);
+
+ // Set the conditional execution predicate
+ Binary |= II->getPredicate(&MI) << ARMII::CondShift;
+
+ unsigned OpIdx = 0;
+
+ // Encode Rd
+ Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
+
+ const MachineOperand &MO1 = MI.getOperand(OpIdx++);
+ const MachineOperand &MO2 = MI.getOperand(OpIdx);
+ if (MO2.isReg()) {
+ // Two register operand form.
+ // Encode Rn.
+ Binary |= getMachineOpValue(MI, MO1) << ARMII::RegRnShift;
+
+ // Encode Rm.
+ Binary |= getMachineOpValue(MI, MO2);
+ ++OpIdx;
+ } else {
+ Binary |= getMachineOpValue(MI, MO1);
+ }
+
+ // Encode rot imm (0, 8, 16, or 24) if it has a rotate immediate operand.
+ if (MI.getOperand(OpIdx).isImm() &&
+ !TID.OpInfo[OpIdx].isPredicate() &&
+ !TID.OpInfo[OpIdx].isOptionalDef())
+ Binary |= (getMachineOpValue(MI, OpIdx) / 8) << ARMII::ExtRotImmShift;
+
+ emitWordLE(Binary);
+}
+
+template<class CodeEmitter>
+void Emitter<CodeEmitter>::emitMiscArithInstruction(const MachineInstr &MI) {
+ const TargetInstrDesc &TID = MI.getDesc();
+
+ // Part of binary is determined by TableGn.
+ unsigned Binary = getBinaryCodeForInstr(MI);
+
+ // Set the conditional execution predicate
+ Binary |= II->getPredicate(&MI) << ARMII::CondShift;
+
+ unsigned OpIdx = 0;
+
+ // Encode Rd
+ Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
+
+ const MachineOperand &MO = MI.getOperand(OpIdx++);
+ if (OpIdx == TID.getNumOperands() ||
+ TID.OpInfo[OpIdx].isPredicate() ||
+ TID.OpInfo[OpIdx].isOptionalDef()) {
+ // Encode Rm and it's done.
+ Binary |= getMachineOpValue(MI, MO);
+ emitWordLE(Binary);
+ return;
+ }
+
+ // Encode Rn.
+ Binary |= getMachineOpValue(MI, MO) << ARMII::RegRnShift;
+
+ // Encode Rm.
+ Binary |= getMachineOpValue(MI, OpIdx++);
+
+ // Encode shift_imm.
+ unsigned ShiftAmt = MI.getOperand(OpIdx).getImm();
+ assert(ShiftAmt < 32 && "shift_imm range is 0 to 31!");
+ Binary |= ShiftAmt << ARMII::ShiftShift;
+
+ emitWordLE(Binary);
+}
+
+template<class CodeEmitter>
+void Emitter<CodeEmitter>::emitBranchInstruction(const MachineInstr &MI) {
+ const TargetInstrDesc &TID = MI.getDesc();
+
+ if (TID.Opcode == ARM::TPsoft)
+ abort(); // FIXME
+
+ // Part of binary is determined by TableGn.
+ unsigned Binary = getBinaryCodeForInstr(MI);
+
+ // Set the conditional execution predicate
+ Binary |= II->getPredicate(&MI) << ARMII::CondShift;
+
+ // Set signed_immed_24 field
+ Binary |= getMachineOpValue(MI, 0);
+
+ emitWordLE(Binary);
+}
+
+template<class CodeEmitter>
+void Emitter<CodeEmitter>::emitInlineJumpTable(unsigned JTIndex) {
+ // Remember the base address of the inline jump table.
+ uintptr_t JTBase = MCE.getCurrentPCValue();
+ JTI->addJumpTableBaseAddr(JTIndex, JTBase);
+ DOUT << " ** Jump Table #" << JTIndex << " @ " << (void*)JTBase << '\n';
+
+ // Now emit the jump table entries.
+ const std::vector<MachineBasicBlock*> &MBBs = (*MJTEs)[JTIndex].MBBs;
+ for (unsigned i = 0, e = MBBs.size(); i != e; ++i) {
+ if (IsPIC)
+ // DestBB address - JT base.
+ emitMachineBasicBlock(MBBs[i], ARM::reloc_arm_pic_jt, JTBase);
+ else
+ // Absolute DestBB address.
+ emitMachineBasicBlock(MBBs[i], ARM::reloc_arm_absolute);
+ emitWordLE(0);
+ }
+}
+
+template<class CodeEmitter>
+void Emitter<CodeEmitter>::emitMiscBranchInstruction(const MachineInstr &MI) {
+ const TargetInstrDesc &TID = MI.getDesc();
+
+ // Handle jump tables.
+ if (TID.Opcode == ARM::BR_JTr || TID.Opcode == ARM::BR_JTadd) {
+ // First emit a ldr pc, [] instruction.
+ emitDataProcessingInstruction(MI, ARM::PC);
+
+ // Then emit the inline jump table.
+ unsigned JTIndex = (TID.Opcode == ARM::BR_JTr)
+ ? MI.getOperand(1).getIndex() : MI.getOperand(2).getIndex();
+ emitInlineJumpTable(JTIndex);
+ return;
+ } else if (TID.Opcode == ARM::BR_JTm) {
+ // First emit a ldr pc, [] instruction.
+ emitLoadStoreInstruction(MI, ARM::PC);
+
+ // Then emit the inline jump table.
+ emitInlineJumpTable(MI.getOperand(3).getIndex());
+ return;
+ }
+
+ // Part of binary is determined by TableGn.
+ unsigned Binary = getBinaryCodeForInstr(MI);
+
+ // Set the conditional execution predicate
+ Binary |= II->getPredicate(&MI) << ARMII::CondShift;
+
+ if (TID.Opcode == ARM::BX_RET)
+ // The return register is LR.
+ Binary |= ARMRegisterInfo::getRegisterNumbering(ARM::LR);
+ else
+ // otherwise, set the return register
+ Binary |= getMachineOpValue(MI, 0);
+
+ emitWordLE(Binary);
+}
+
+static unsigned encodeVFPRd(const MachineInstr &MI, unsigned OpIdx) {
+ unsigned RegD = MI.getOperand(OpIdx).getReg();
+ unsigned Binary = 0;
+ bool isSPVFP = false;
+ RegD = ARMRegisterInfo::getRegisterNumbering(RegD, isSPVFP);
+ if (!isSPVFP)
+ Binary |= RegD << ARMII::RegRdShift;
+ else {
+ Binary |= ((RegD & 0x1E) >> 1) << ARMII::RegRdShift;
+ Binary |= (RegD & 0x01) << ARMII::D_BitShift;
+ }
+ return Binary;
+}
+
+static unsigned encodeVFPRn(const MachineInstr &MI, unsigned OpIdx) {
+ unsigned RegN = MI.getOperand(OpIdx).getReg();
+ unsigned Binary = 0;
+ bool isSPVFP = false;
+ RegN = ARMRegisterInfo::getRegisterNumbering(RegN, isSPVFP);
+ if (!isSPVFP)
+ Binary |= RegN << ARMII::RegRnShift;
+ else {
+ Binary |= ((RegN & 0x1E) >> 1) << ARMII::RegRnShift;
+ Binary |= (RegN & 0x01) << ARMII::N_BitShift;
+ }
+ return Binary;
+}
+
+static unsigned encodeVFPRm(const MachineInstr &MI, unsigned OpIdx) {
+ unsigned RegM = MI.getOperand(OpIdx).getReg();
+ unsigned Binary = 0;
+ bool isSPVFP = false;
+ RegM = ARMRegisterInfo::getRegisterNumbering(RegM, isSPVFP);
+ if (!isSPVFP)
+ Binary |= RegM;
+ else {
+ Binary |= ((RegM & 0x1E) >> 1);
+ Binary |= (RegM & 0x01) << ARMII::M_BitShift;
+ }
+ return Binary;
+}
+
+template<class CodeEmitter>
+void Emitter<CodeEmitter>::emitVFPArithInstruction(const MachineInstr &MI) {
+ const TargetInstrDesc &TID = MI.getDesc();
+
+ // Part of binary is determined by TableGn.
+ unsigned Binary = getBinaryCodeForInstr(MI);
+
+ // Set the conditional execution predicate
+ Binary |= II->getPredicate(&MI) << ARMII::CondShift;
+
+ unsigned OpIdx = 0;
+ assert((Binary & ARMII::D_BitShift) == 0 &&
+ (Binary & ARMII::N_BitShift) == 0 &&
+ (Binary & ARMII::M_BitShift) == 0 && "VFP encoding bug!");
+
+ // Encode Dd / Sd.
+ Binary |= encodeVFPRd(MI, OpIdx++);
+
+ // If this is a two-address operand, skip it, e.g. FMACD.
+ if (TID.getOperandConstraint(OpIdx, TOI::TIED_TO) != -1)
+ ++OpIdx;
+
+ // Encode Dn / Sn.
+ if ((TID.TSFlags & ARMII::FormMask) == ARMII::VFPBinaryFrm)
+ Binary |= encodeVFPRn(MI, OpIdx++);
+
+ if (OpIdx == TID.getNumOperands() ||
+ TID.OpInfo[OpIdx].isPredicate() ||
+ TID.OpInfo[OpIdx].isOptionalDef()) {
+ // FCMPEZD etc. has only one operand.
+ emitWordLE(Binary);
+ return;
+ }
+
+ // Encode Dm / Sm.
+ Binary |= encodeVFPRm(MI, OpIdx);
+
+ emitWordLE(Binary);
+}
+
+template<class CodeEmitter>
+void Emitter<CodeEmitter>::emitVFPConversionInstruction(
+ const MachineInstr &MI) {
+ const TargetInstrDesc &TID = MI.getDesc();
+ unsigned Form = TID.TSFlags & ARMII::FormMask;
+
+ // Part of binary is determined by TableGn.
+ unsigned Binary = getBinaryCodeForInstr(MI);
+
+ // Set the conditional execution predicate
+ Binary |= II->getPredicate(&MI) << ARMII::CondShift;
+
+ switch (Form) {
+ default: break;
+ case ARMII::VFPConv1Frm:
+ case ARMII::VFPConv2Frm:
+ case ARMII::VFPConv3Frm:
+ // Encode Dd / Sd.
+ Binary |= encodeVFPRd(MI, 0);
+ break;
+ case ARMII::VFPConv4Frm:
+ // Encode Dn / Sn.
+ Binary |= encodeVFPRn(MI, 0);
+ break;
+ case ARMII::VFPConv5Frm:
+ // Encode Dm / Sm.
+ Binary |= encodeVFPRm(MI, 0);
+ break;
+ }
+
+ switch (Form) {
+ default: break;
+ case ARMII::VFPConv1Frm:
+ // Encode Dm / Sm.
+ Binary |= encodeVFPRm(MI, 1);
+ break;
+ case ARMII::VFPConv2Frm:
+ case ARMII::VFPConv3Frm:
+ // Encode Dn / Sn.
+ Binary |= encodeVFPRn(MI, 1);
+ break;
+ case ARMII::VFPConv4Frm:
+ case ARMII::VFPConv5Frm:
+ // Encode Dd / Sd.
+ Binary |= encodeVFPRd(MI, 1);
+ break;
+ }
+
+ if (Form == ARMII::VFPConv5Frm)
+ // Encode Dn / Sn.
+ Binary |= encodeVFPRn(MI, 2);
+ else if (Form == ARMII::VFPConv3Frm)
+ // Encode Dm / Sm.
+ Binary |= encodeVFPRm(MI, 2);
+
+ emitWordLE(Binary);
+}
+
+template<class CodeEmitter>
+void Emitter<CodeEmitter>::emitVFPLoadStoreInstruction(const MachineInstr &MI) {
+ // Part of binary is determined by TableGn.
+ unsigned Binary = getBinaryCodeForInstr(MI);
+
+ // Set the conditional execution predicate
+ Binary |= II->getPredicate(&MI) << ARMII::CondShift;
+
+ unsigned OpIdx = 0;
+
+ // Encode Dd / Sd.
+ Binary |= encodeVFPRd(MI, OpIdx++);
+
+ // Encode address base.
+ const MachineOperand &Base = MI.getOperand(OpIdx++);
+ Binary |= getMachineOpValue(MI, Base) << ARMII::RegRnShift;
+
+ // If there is a non-zero immediate offset, encode it.
+ if (Base.isReg()) {
+ const MachineOperand &Offset = MI.getOperand(OpIdx);
+ if (unsigned ImmOffs = ARM_AM::getAM5Offset(Offset.getImm())) {
+ if (ARM_AM::getAM5Op(Offset.getImm()) == ARM_AM::add)
+ Binary |= 1 << ARMII::U_BitShift;
+ Binary |= ImmOffs;
+ emitWordLE(Binary);
+ return;
+ }
+ }
+
+ // If immediate offset is omitted, default to +0.
+ Binary |= 1 << ARMII::U_BitShift;
+
+ emitWordLE(Binary);
+}
+
+template<class CodeEmitter>
+void Emitter<CodeEmitter>::emitVFPLoadStoreMultipleInstruction(
+ const MachineInstr &MI) {
+ // Part of binary is determined by TableGn.
+ unsigned Binary = getBinaryCodeForInstr(MI);
+
+ // Set the conditional execution predicate
+ Binary |= II->getPredicate(&MI) << ARMII::CondShift;
+
+ // Set base address operand
+ Binary |= getMachineOpValue(MI, 0) << ARMII::RegRnShift;
+
+ // Set addressing mode by modifying bits U(23) and P(24)
+ const MachineOperand &MO = MI.getOperand(1);
+ Binary |= getAddrModeUPBits(ARM_AM::getAM5SubMode(MO.getImm()));
+
+ // Set bit W(21)
+ if (ARM_AM::getAM5WBFlag(MO.getImm()))
+ Binary |= 0x1 << ARMII::W_BitShift;
+
+ // First register is encoded in Dd.
+ Binary |= encodeVFPRd(MI, 4);
+
+ // Number of registers are encoded in offset field.
+ unsigned NumRegs = 1;
+ for (unsigned i = 5, e = MI.getNumOperands(); i != e; ++i) {
+ const MachineOperand &MO = MI.getOperand(i);
+ if (!MO.isReg() || MO.isImplicit())
+ break;
+ ++NumRegs;
+ }
+ Binary |= NumRegs * 2;
+
+ emitWordLE(Binary);
+}
+
+template<class CodeEmitter>
+void Emitter<CodeEmitter>::emitMiscInstruction(const MachineInstr &MI) {
+ // Part of binary is determined by TableGn.
+ unsigned Binary = getBinaryCodeForInstr(MI);
+
+ // Set the conditional execution predicate
+ Binary |= II->getPredicate(&MI) << ARMII::CondShift;
+
+ emitWordLE(Binary);
+}
+
+#include "ARMGenCodeEmitter.inc"
+
OpenPOWER on IntegriCloud