diff options
Diffstat (limited to 'lib/Target/ARM/ARMCodeEmitter.cpp')
-rw-r--r-- | lib/Target/ARM/ARMCodeEmitter.cpp | 1411 |
1 files changed, 1411 insertions, 0 deletions
diff --git a/lib/Target/ARM/ARMCodeEmitter.cpp b/lib/Target/ARM/ARMCodeEmitter.cpp new file mode 100644 index 0000000..44fac12 --- /dev/null +++ b/lib/Target/ARM/ARMCodeEmitter.cpp @@ -0,0 +1,1411 @@ +//===-- ARM/ARMCodeEmitter.cpp - Convert ARM code to machine code ---------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file contains the pass that transforms the ARM machine instructions into +// relocatable machine code. +// +//===----------------------------------------------------------------------===// + +#define DEBUG_TYPE "jit" +#include "ARM.h" +#include "ARMAddressingModes.h" +#include "ARMConstantPoolValue.h" +#include "ARMInstrInfo.h" +#include "ARMRelocations.h" +#include "ARMSubtarget.h" +#include "ARMTargetMachine.h" +#include "llvm/Constants.h" +#include "llvm/DerivedTypes.h" +#include "llvm/Function.h" +#include "llvm/PassManager.h" +#include "llvm/CodeGen/MachineCodeEmitter.h" +#include "llvm/CodeGen/JITCodeEmitter.h" +#include "llvm/CodeGen/MachineConstantPool.h" +#include "llvm/CodeGen/MachineFunctionPass.h" +#include "llvm/CodeGen/MachineInstr.h" +#include "llvm/CodeGen/MachineJumpTableInfo.h" +#include "llvm/CodeGen/Passes.h" +#include "llvm/ADT/Statistic.h" +#include "llvm/Support/Compiler.h" +#include "llvm/Support/Debug.h" +#ifndef NDEBUG +#include <iomanip> +#endif +using namespace llvm; + +STATISTIC(NumEmitted, "Number of machine instructions emitted"); + +namespace { + + class ARMCodeEmitter { + public: + /// getBinaryCodeForInstr - This function, generated by the + /// CodeEmitterGenerator using TableGen, produces the binary encoding for + /// machine instructions. + unsigned getBinaryCodeForInstr(const MachineInstr &MI); + }; + + template<class CodeEmitter> + class VISIBILITY_HIDDEN Emitter : public MachineFunctionPass, + public ARMCodeEmitter { + ARMJITInfo *JTI; + const ARMInstrInfo *II; + const TargetData *TD; + TargetMachine &TM; + CodeEmitter &MCE; + const std::vector<MachineConstantPoolEntry> *MCPEs; + const std::vector<MachineJumpTableEntry> *MJTEs; + bool IsPIC; + + public: + static char ID; + explicit Emitter(TargetMachine &tm, CodeEmitter &mce) + : MachineFunctionPass(&ID), JTI(0), II(0), TD(0), TM(tm), + MCE(mce), MCPEs(0), MJTEs(0), + IsPIC(TM.getRelocationModel() == Reloc::PIC_) {} + Emitter(TargetMachine &tm, CodeEmitter &mce, + const ARMInstrInfo &ii, const TargetData &td) + : MachineFunctionPass(&ID), JTI(0), II(&ii), TD(&td), TM(tm), + MCE(mce), MCPEs(0), MJTEs(0), + IsPIC(TM.getRelocationModel() == Reloc::PIC_) {} + + bool runOnMachineFunction(MachineFunction &MF); + + virtual const char *getPassName() const { + return "ARM Machine Code Emitter"; + } + + void emitInstruction(const MachineInstr &MI); + + private: + + void emitWordLE(unsigned Binary); + + void emitDWordLE(uint64_t Binary); + + void emitConstPoolInstruction(const MachineInstr &MI); + + void emitMOVi2piecesInstruction(const MachineInstr &MI); + + void emitLEApcrelJTInstruction(const MachineInstr &MI); + + void emitPseudoMoveInstruction(const MachineInstr &MI); + + void addPCLabel(unsigned LabelID); + + void emitPseudoInstruction(const MachineInstr &MI); + + unsigned getMachineSoRegOpValue(const MachineInstr &MI, + const TargetInstrDesc &TID, + const MachineOperand &MO, + unsigned OpIdx); + + unsigned getMachineSoImmOpValue(unsigned SoImm); + + unsigned getAddrModeSBit(const MachineInstr &MI, + const TargetInstrDesc &TID) const; + + void emitDataProcessingInstruction(const MachineInstr &MI, + unsigned ImplicitRd = 0, + unsigned ImplicitRn = 0); + + void emitLoadStoreInstruction(const MachineInstr &MI, + unsigned ImplicitRd = 0, + unsigned ImplicitRn = 0); + + void emitMiscLoadStoreInstruction(const MachineInstr &MI, + unsigned ImplicitRn = 0); + + void emitLoadStoreMultipleInstruction(const MachineInstr &MI); + + void emitMulFrmInstruction(const MachineInstr &MI); + + void emitExtendInstruction(const MachineInstr &MI); + + void emitMiscArithInstruction(const MachineInstr &MI); + + void emitBranchInstruction(const MachineInstr &MI); + + void emitInlineJumpTable(unsigned JTIndex); + + void emitMiscBranchInstruction(const MachineInstr &MI); + + void emitVFPArithInstruction(const MachineInstr &MI); + + void emitVFPConversionInstruction(const MachineInstr &MI); + + void emitVFPLoadStoreInstruction(const MachineInstr &MI); + + void emitVFPLoadStoreMultipleInstruction(const MachineInstr &MI); + + void emitMiscInstruction(const MachineInstr &MI); + + /// getMachineOpValue - Return binary encoding of operand. If the machine + /// operand requires relocation, record the relocation and return zero. + unsigned getMachineOpValue(const MachineInstr &MI,const MachineOperand &MO); + unsigned getMachineOpValue(const MachineInstr &MI, unsigned OpIdx) { + return getMachineOpValue(MI, MI.getOperand(OpIdx)); + } + + /// getShiftOp - Return the shift opcode (bit[6:5]) of the immediate value. + /// + unsigned getShiftOp(unsigned Imm) const ; + + /// Routines that handle operands which add machine relocations which are + /// fixed up by the relocation stage. + void emitGlobalAddress(GlobalValue *GV, unsigned Reloc, + bool NeedStub, intptr_t ACPV = 0); + void emitExternalSymbolAddress(const char *ES, unsigned Reloc); + void emitConstPoolAddress(unsigned CPI, unsigned Reloc); + void emitJumpTableAddress(unsigned JTIndex, unsigned Reloc); + void emitMachineBasicBlock(MachineBasicBlock *BB, unsigned Reloc, + intptr_t JTBase = 0); + }; + template <class CodeEmitter> + char Emitter<CodeEmitter>::ID = 0; +} + +/// createARMCodeEmitterPass - Return a pass that emits the collected ARM code +/// to the specified MCE object. + +namespace llvm { + +FunctionPass *createARMCodeEmitterPass(ARMTargetMachine &TM, + MachineCodeEmitter &MCE) { + return new Emitter<MachineCodeEmitter>(TM, MCE); +} +FunctionPass *createARMJITCodeEmitterPass(ARMTargetMachine &TM, + JITCodeEmitter &JCE) { + return new Emitter<JITCodeEmitter>(TM, JCE); +} + +} // end namespace llvm + +template<class CodeEmitter> +bool Emitter<CodeEmitter>::runOnMachineFunction(MachineFunction &MF) { + assert((MF.getTarget().getRelocationModel() != Reloc::Default || + MF.getTarget().getRelocationModel() != Reloc::Static) && + "JIT relocation model must be set to static or default!"); + II = ((ARMTargetMachine&)MF.getTarget()).getInstrInfo(); + TD = ((ARMTargetMachine&)MF.getTarget()).getTargetData(); + JTI = ((ARMTargetMachine&)MF.getTarget()).getJITInfo(); + MCPEs = &MF.getConstantPool()->getConstants(); + MJTEs = &MF.getJumpTableInfo()->getJumpTables(); + IsPIC = TM.getRelocationModel() == Reloc::PIC_; + JTI->Initialize(MF, IsPIC); + + do { + DOUT << "JITTing function '" << MF.getFunction()->getName() << "'\n"; + MCE.startFunction(MF); + for (MachineFunction::iterator MBB = MF.begin(), E = MF.end(); + MBB != E; ++MBB) { + MCE.StartMachineBasicBlock(MBB); + for (MachineBasicBlock::const_iterator I = MBB->begin(), E = MBB->end(); + I != E; ++I) + emitInstruction(*I); + } + } while (MCE.finishFunction(MF)); + + return false; +} + +/// getShiftOp - Return the shift opcode (bit[6:5]) of the immediate value. +/// +template<class CodeEmitter> +unsigned Emitter<CodeEmitter>::getShiftOp(unsigned Imm) const { + switch (ARM_AM::getAM2ShiftOpc(Imm)) { + default: assert(0 && "Unknown shift opc!"); + case ARM_AM::asr: return 2; + case ARM_AM::lsl: return 0; + case ARM_AM::lsr: return 1; + case ARM_AM::ror: + case ARM_AM::rrx: return 3; + } + return 0; +} + +/// getMachineOpValue - Return binary encoding of operand. If the machine +/// operand requires relocation, record the relocation and return zero. +template<class CodeEmitter> +unsigned Emitter<CodeEmitter>::getMachineOpValue(const MachineInstr &MI, + const MachineOperand &MO) { + if (MO.isReg()) + return ARMRegisterInfo::getRegisterNumbering(MO.getReg()); + else if (MO.isImm()) + return static_cast<unsigned>(MO.getImm()); + else if (MO.isGlobal()) + emitGlobalAddress(MO.getGlobal(), ARM::reloc_arm_branch, true); + else if (MO.isSymbol()) + emitExternalSymbolAddress(MO.getSymbolName(), ARM::reloc_arm_branch); + else if (MO.isCPI()) { + const TargetInstrDesc &TID = MI.getDesc(); + // For VFP load, the immediate offset is multiplied by 4. + unsigned Reloc = ((TID.TSFlags & ARMII::FormMask) == ARMII::VFPLdStFrm) + ? ARM::reloc_arm_vfp_cp_entry : ARM::reloc_arm_cp_entry; + emitConstPoolAddress(MO.getIndex(), Reloc); + } else if (MO.isJTI()) + emitJumpTableAddress(MO.getIndex(), ARM::reloc_arm_relative); + else if (MO.isMBB()) + emitMachineBasicBlock(MO.getMBB(), ARM::reloc_arm_branch); + else { + cerr << "ERROR: Unknown type of MachineOperand: " << MO << "\n"; + abort(); + } + return 0; +} + +/// emitGlobalAddress - Emit the specified address to the code stream. +/// +template<class CodeEmitter> +void Emitter<CodeEmitter>::emitGlobalAddress(GlobalValue *GV, unsigned Reloc, + bool NeedStub, intptr_t ACPV) { + MCE.addRelocation(MachineRelocation::getGV(MCE.getCurrentPCOffset(), Reloc, + GV, ACPV, NeedStub)); +} + +/// emitExternalSymbolAddress - Arrange for the address of an external symbol to +/// be emitted to the current location in the function, and allow it to be PC +/// relative. +template<class CodeEmitter> +void Emitter<CodeEmitter>::emitExternalSymbolAddress(const char *ES, + unsigned Reloc) { + MCE.addRelocation(MachineRelocation::getExtSym(MCE.getCurrentPCOffset(), + Reloc, ES)); +} + +/// emitConstPoolAddress - Arrange for the address of an constant pool +/// to be emitted to the current location in the function, and allow it to be PC +/// relative. +template<class CodeEmitter> +void Emitter<CodeEmitter>::emitConstPoolAddress(unsigned CPI, + unsigned Reloc) { + // Tell JIT emitter we'll resolve the address. + MCE.addRelocation(MachineRelocation::getConstPool(MCE.getCurrentPCOffset(), + Reloc, CPI, 0, true)); +} + +/// emitJumpTableAddress - Arrange for the address of a jump table to +/// be emitted to the current location in the function, and allow it to be PC +/// relative. +template<class CodeEmitter> +void Emitter<CodeEmitter>::emitJumpTableAddress(unsigned JTIndex, + unsigned Reloc) { + MCE.addRelocation(MachineRelocation::getJumpTable(MCE.getCurrentPCOffset(), + Reloc, JTIndex, 0, true)); +} + +/// emitMachineBasicBlock - Emit the specified address basic block. +template<class CodeEmitter> +void Emitter<CodeEmitter>::emitMachineBasicBlock(MachineBasicBlock *BB, + unsigned Reloc, intptr_t JTBase) { + MCE.addRelocation(MachineRelocation::getBB(MCE.getCurrentPCOffset(), + Reloc, BB, JTBase)); +} + +template<class CodeEmitter> +void Emitter<CodeEmitter>::emitWordLE(unsigned Binary) { +#ifndef NDEBUG + DOUT << " 0x" << std::hex << std::setw(8) << std::setfill('0') + << Binary << std::dec << "\n"; +#endif + MCE.emitWordLE(Binary); +} + +template<class CodeEmitter> +void Emitter<CodeEmitter>::emitDWordLE(uint64_t Binary) { +#ifndef NDEBUG + DOUT << " 0x" << std::hex << std::setw(8) << std::setfill('0') + << (unsigned)Binary << std::dec << "\n"; + DOUT << " 0x" << std::hex << std::setw(8) << std::setfill('0') + << (unsigned)(Binary >> 32) << std::dec << "\n"; +#endif + MCE.emitDWordLE(Binary); +} + +template<class CodeEmitter> +void Emitter<CodeEmitter>::emitInstruction(const MachineInstr &MI) { + DOUT << "JIT: " << (void*)MCE.getCurrentPCValue() << ":\t" << MI; + + NumEmitted++; // Keep track of the # of mi's emitted + switch (MI.getDesc().TSFlags & ARMII::FormMask) { + default: { + assert(0 && "Unhandled instruction encoding format!"); + break; + } + case ARMII::Pseudo: + emitPseudoInstruction(MI); + break; + case ARMII::DPFrm: + case ARMII::DPSoRegFrm: + emitDataProcessingInstruction(MI); + break; + case ARMII::LdFrm: + case ARMII::StFrm: + emitLoadStoreInstruction(MI); + break; + case ARMII::LdMiscFrm: + case ARMII::StMiscFrm: + emitMiscLoadStoreInstruction(MI); + break; + case ARMII::LdStMulFrm: + emitLoadStoreMultipleInstruction(MI); + break; + case ARMII::MulFrm: + emitMulFrmInstruction(MI); + break; + case ARMII::ExtFrm: + emitExtendInstruction(MI); + break; + case ARMII::ArithMiscFrm: + emitMiscArithInstruction(MI); + break; + case ARMII::BrFrm: + emitBranchInstruction(MI); + break; + case ARMII::BrMiscFrm: + emitMiscBranchInstruction(MI); + break; + // VFP instructions. + case ARMII::VFPUnaryFrm: + case ARMII::VFPBinaryFrm: + emitVFPArithInstruction(MI); + break; + case ARMII::VFPConv1Frm: + case ARMII::VFPConv2Frm: + case ARMII::VFPConv3Frm: + case ARMII::VFPConv4Frm: + case ARMII::VFPConv5Frm: + emitVFPConversionInstruction(MI); + break; + case ARMII::VFPLdStFrm: + emitVFPLoadStoreInstruction(MI); + break; + case ARMII::VFPLdStMulFrm: + emitVFPLoadStoreMultipleInstruction(MI); + break; + case ARMII::VFPMiscFrm: + emitMiscInstruction(MI); + break; + } +} + +template<class CodeEmitter> +void Emitter<CodeEmitter>::emitConstPoolInstruction(const MachineInstr &MI) { + unsigned CPI = MI.getOperand(0).getImm(); // CP instruction index. + unsigned CPIndex = MI.getOperand(1).getIndex(); // Actual cp entry index. + const MachineConstantPoolEntry &MCPE = (*MCPEs)[CPIndex]; + + // Remember the CONSTPOOL_ENTRY address for later relocation. + JTI->addConstantPoolEntryAddr(CPI, MCE.getCurrentPCValue()); + + // Emit constpool island entry. In most cases, the actual values will be + // resolved and relocated after code emission. + if (MCPE.isMachineConstantPoolEntry()) { + ARMConstantPoolValue *ACPV = + static_cast<ARMConstantPoolValue*>(MCPE.Val.MachineCPVal); + + DOUT << " ** ARM constant pool #" << CPI << " @ " + << (void*)MCE.getCurrentPCValue() << " " << *ACPV << '\n'; + + GlobalValue *GV = ACPV->getGV(); + if (GV) { + assert(!ACPV->isStub() && "Don't know how to deal this yet!"); + if (ACPV->isNonLazyPointer()) + MCE.addRelocation(MachineRelocation::getIndirectSymbol( + MCE.getCurrentPCOffset(), ARM::reloc_arm_machine_cp_entry, GV, + (intptr_t)ACPV, false)); + else + emitGlobalAddress(GV, ARM::reloc_arm_machine_cp_entry, + ACPV->isStub() || isa<Function>(GV), (intptr_t)ACPV); + } else { + assert(!ACPV->isNonLazyPointer() && "Don't know how to deal this yet!"); + emitExternalSymbolAddress(ACPV->getSymbol(), ARM::reloc_arm_absolute); + } + emitWordLE(0); + } else { + Constant *CV = MCPE.Val.ConstVal; + +#ifndef NDEBUG + DOUT << " ** Constant pool #" << CPI << " @ " + << (void*)MCE.getCurrentPCValue() << " "; + if (const Function *F = dyn_cast<Function>(CV)) + DOUT << F->getName(); + else + DOUT << *CV; + DOUT << '\n'; +#endif + + if (GlobalValue *GV = dyn_cast<GlobalValue>(CV)) { + emitGlobalAddress(GV, ARM::reloc_arm_absolute, isa<Function>(GV)); + emitWordLE(0); + } else if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { + uint32_t Val = *(uint32_t*)CI->getValue().getRawData(); + emitWordLE(Val); + } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) { + if (CFP->getType() == Type::FloatTy) + emitWordLE(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); + else if (CFP->getType() == Type::DoubleTy) + emitDWordLE(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); + else { + assert(0 && "Unable to handle this constantpool entry!"); + abort(); + } + } else { + assert(0 && "Unable to handle this constantpool entry!"); + abort(); + } + } +} + +template<class CodeEmitter> +void Emitter<CodeEmitter>::emitMOVi2piecesInstruction(const MachineInstr &MI) { + const MachineOperand &MO0 = MI.getOperand(0); + const MachineOperand &MO1 = MI.getOperand(1); + assert(MO1.isImm() && "Not a valid so_imm value!"); + unsigned V1 = ARM_AM::getSOImmTwoPartFirst(MO1.getImm()); + unsigned V2 = ARM_AM::getSOImmTwoPartSecond(MO1.getImm()); + + // Emit the 'mov' instruction. + unsigned Binary = 0xd << 21; // mov: Insts{24-21} = 0b1101 + + // Set the conditional execution predicate. + Binary |= II->getPredicate(&MI) << ARMII::CondShift; + + // Encode Rd. + Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRdShift; + + // Encode so_imm. + // Set bit I(25) to identify this is the immediate form of <shifter_op> + Binary |= 1 << ARMII::I_BitShift; + Binary |= getMachineSoImmOpValue(ARM_AM::getSOImmVal(V1)); + emitWordLE(Binary); + + // Now the 'orr' instruction. + Binary = 0xc << 21; // orr: Insts{24-21} = 0b1100 + + // Set the conditional execution predicate. + Binary |= II->getPredicate(&MI) << ARMII::CondShift; + + // Encode Rd. + Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRdShift; + + // Encode Rn. + Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRnShift; + + // Encode so_imm. + // Set bit I(25) to identify this is the immediate form of <shifter_op> + Binary |= 1 << ARMII::I_BitShift; + Binary |= getMachineSoImmOpValue(ARM_AM::getSOImmVal(V2)); + emitWordLE(Binary); +} + +template<class CodeEmitter> +void Emitter<CodeEmitter>::emitLEApcrelJTInstruction(const MachineInstr &MI) { + // It's basically add r, pc, (LJTI - $+8) + + const TargetInstrDesc &TID = MI.getDesc(); + + // Emit the 'add' instruction. + unsigned Binary = 0x4 << 21; // add: Insts{24-31} = 0b0100 + + // Set the conditional execution predicate + Binary |= II->getPredicate(&MI) << ARMII::CondShift; + + // Encode S bit if MI modifies CPSR. + Binary |= getAddrModeSBit(MI, TID); + + // Encode Rd. + Binary |= getMachineOpValue(MI, 0) << ARMII::RegRdShift; + + // Encode Rn which is PC. + Binary |= ARMRegisterInfo::getRegisterNumbering(ARM::PC) << ARMII::RegRnShift; + + // Encode the displacement. + // Set bit I(25) to identify this is the immediate form of <shifter_op>. + Binary |= 1 << ARMII::I_BitShift; + emitJumpTableAddress(MI.getOperand(1).getIndex(), ARM::reloc_arm_jt_base); + + emitWordLE(Binary); +} + +template<class CodeEmitter> +void Emitter<CodeEmitter>::emitPseudoMoveInstruction(const MachineInstr &MI) { + unsigned Opcode = MI.getDesc().Opcode; + + // Part of binary is determined by TableGn. + unsigned Binary = getBinaryCodeForInstr(MI); + + // Set the conditional execution predicate + Binary |= II->getPredicate(&MI) << ARMII::CondShift; + + // Encode S bit if MI modifies CPSR. + if (Opcode == ARM::MOVsrl_flag || Opcode == ARM::MOVsra_flag) + Binary |= 1 << ARMII::S_BitShift; + + // Encode register def if there is one. + Binary |= getMachineOpValue(MI, 0) << ARMII::RegRdShift; + + // Encode the shift operation. + switch (Opcode) { + default: break; + case ARM::MOVrx: + // rrx + Binary |= 0x6 << 4; + break; + case ARM::MOVsrl_flag: + // lsr #1 + Binary |= (0x2 << 4) | (1 << 7); + break; + case ARM::MOVsra_flag: + // asr #1 + Binary |= (0x4 << 4) | (1 << 7); + break; + } + + // Encode register Rm. + Binary |= getMachineOpValue(MI, 1); + + emitWordLE(Binary); +} + +template<class CodeEmitter> +void Emitter<CodeEmitter>::addPCLabel(unsigned LabelID) { + DOUT << " ** LPC" << LabelID << " @ " + << (void*)MCE.getCurrentPCValue() << '\n'; + JTI->addPCLabelAddr(LabelID, MCE.getCurrentPCValue()); +} + +template<class CodeEmitter> +void Emitter<CodeEmitter>::emitPseudoInstruction(const MachineInstr &MI) { + unsigned Opcode = MI.getDesc().Opcode; + switch (Opcode) { + default: + abort(); // FIXME: + case TargetInstrInfo::INLINEASM: { + // We allow inline assembler nodes with empty bodies - they can + // implicitly define registers, which is ok for JIT. + if (MI.getOperand(0).getSymbolName()[0]) { + assert(0 && "JIT does not support inline asm!\n"); + abort(); + } + break; + } + case TargetInstrInfo::DBG_LABEL: + case TargetInstrInfo::EH_LABEL: + MCE.emitLabel(MI.getOperand(0).getImm()); + break; + case TargetInstrInfo::IMPLICIT_DEF: + case TargetInstrInfo::DECLARE: + case ARM::DWARF_LOC: + // Do nothing. + break; + case ARM::CONSTPOOL_ENTRY: + emitConstPoolInstruction(MI); + break; + case ARM::PICADD: { + // Remember of the address of the PC label for relocation later. + addPCLabel(MI.getOperand(2).getImm()); + // PICADD is just an add instruction that implicitly read pc. + emitDataProcessingInstruction(MI, 0, ARM::PC); + break; + } + case ARM::PICLDR: + case ARM::PICLDRB: + case ARM::PICSTR: + case ARM::PICSTRB: { + // Remember of the address of the PC label for relocation later. + addPCLabel(MI.getOperand(2).getImm()); + // These are just load / store instructions that implicitly read pc. + emitLoadStoreInstruction(MI, 0, ARM::PC); + break; + } + case ARM::PICLDRH: + case ARM::PICLDRSH: + case ARM::PICLDRSB: + case ARM::PICSTRH: { + // Remember of the address of the PC label for relocation later. + addPCLabel(MI.getOperand(2).getImm()); + // These are just load / store instructions that implicitly read pc. + emitMiscLoadStoreInstruction(MI, ARM::PC); + break; + } + case ARM::MOVi2pieces: + // Two instructions to materialize a constant. + emitMOVi2piecesInstruction(MI); + break; + case ARM::LEApcrelJT: + // Materialize jumptable address. + emitLEApcrelJTInstruction(MI); + break; + case ARM::MOVrx: + case ARM::MOVsrl_flag: + case ARM::MOVsra_flag: + emitPseudoMoveInstruction(MI); + break; + } +} + +template<class CodeEmitter> +unsigned Emitter<CodeEmitter>::getMachineSoRegOpValue( + const MachineInstr &MI, + const TargetInstrDesc &TID, + const MachineOperand &MO, + unsigned OpIdx) { + unsigned Binary = getMachineOpValue(MI, MO); + + const MachineOperand &MO1 = MI.getOperand(OpIdx + 1); + const MachineOperand &MO2 = MI.getOperand(OpIdx + 2); + ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(MO2.getImm()); + + // Encode the shift opcode. + unsigned SBits = 0; + unsigned Rs = MO1.getReg(); + if (Rs) { + // Set shift operand (bit[7:4]). + // LSL - 0001 + // LSR - 0011 + // ASR - 0101 + // ROR - 0111 + // RRX - 0110 and bit[11:8] clear. + switch (SOpc) { + default: assert(0 && "Unknown shift opc!"); + case ARM_AM::lsl: SBits = 0x1; break; + case ARM_AM::lsr: SBits = 0x3; break; + case ARM_AM::asr: SBits = 0x5; break; + case ARM_AM::ror: SBits = 0x7; break; + case ARM_AM::rrx: SBits = 0x6; break; + } + } else { + // Set shift operand (bit[6:4]). + // LSL - 000 + // LSR - 010 + // ASR - 100 + // ROR - 110 + switch (SOpc) { + default: assert(0 && "Unknown shift opc!"); + case ARM_AM::lsl: SBits = 0x0; break; + case ARM_AM::lsr: SBits = 0x2; break; + case ARM_AM::asr: SBits = 0x4; break; + case ARM_AM::ror: SBits = 0x6; break; + } + } + Binary |= SBits << 4; + if (SOpc == ARM_AM::rrx) + return Binary; + + // Encode the shift operation Rs or shift_imm (except rrx). + if (Rs) { + // Encode Rs bit[11:8]. + assert(ARM_AM::getSORegOffset(MO2.getImm()) == 0); + return Binary | + (ARMRegisterInfo::getRegisterNumbering(Rs) << ARMII::RegRsShift); + } + + // Encode shift_imm bit[11:7]. + return Binary | ARM_AM::getSORegOffset(MO2.getImm()) << 7; +} + +template<class CodeEmitter> +unsigned Emitter<CodeEmitter>::getMachineSoImmOpValue(unsigned SoImm) { + // Encode rotate_imm. + unsigned Binary = (ARM_AM::getSOImmValRot(SoImm) >> 1) + << ARMII::SoRotImmShift; + + // Encode immed_8. + Binary |= ARM_AM::getSOImmValImm(SoImm); + return Binary; +} + +template<class CodeEmitter> +unsigned Emitter<CodeEmitter>::getAddrModeSBit(const MachineInstr &MI, + const TargetInstrDesc &TID) const { + for (unsigned i = MI.getNumOperands(), e = TID.getNumOperands(); i != e; --i){ + const MachineOperand &MO = MI.getOperand(i-1); + if (MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR) + return 1 << ARMII::S_BitShift; + } + return 0; +} + +template<class CodeEmitter> +void Emitter<CodeEmitter>::emitDataProcessingInstruction( + const MachineInstr &MI, + unsigned ImplicitRd, + unsigned ImplicitRn) { + const TargetInstrDesc &TID = MI.getDesc(); + + // Part of binary is determined by TableGn. + unsigned Binary = getBinaryCodeForInstr(MI); + + // Set the conditional execution predicate + Binary |= II->getPredicate(&MI) << ARMII::CondShift; + + // Encode S bit if MI modifies CPSR. + Binary |= getAddrModeSBit(MI, TID); + + // Encode register def if there is one. + unsigned NumDefs = TID.getNumDefs(); + unsigned OpIdx = 0; + if (NumDefs) + Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift; + else if (ImplicitRd) + // Special handling for implicit use (e.g. PC). + Binary |= (ARMRegisterInfo::getRegisterNumbering(ImplicitRd) + << ARMII::RegRdShift); + + // If this is a two-address operand, skip it. e.g. MOVCCr operand 1. + if (TID.getOperandConstraint(OpIdx, TOI::TIED_TO) != -1) + ++OpIdx; + + // Encode first non-shifter register operand if there is one. + bool isUnary = TID.TSFlags & ARMII::UnaryDP; + if (!isUnary) { + if (ImplicitRn) + // Special handling for implicit use (e.g. PC). + Binary |= (ARMRegisterInfo::getRegisterNumbering(ImplicitRn) + << ARMII::RegRnShift); + else { + Binary |= getMachineOpValue(MI, OpIdx) << ARMII::RegRnShift; + ++OpIdx; + } + } + + // Encode shifter operand. + const MachineOperand &MO = MI.getOperand(OpIdx); + if ((TID.TSFlags & ARMII::FormMask) == ARMII::DPSoRegFrm) { + // Encode SoReg. + emitWordLE(Binary | getMachineSoRegOpValue(MI, TID, MO, OpIdx)); + return; + } + + if (MO.isReg()) { + // Encode register Rm. + emitWordLE(Binary | ARMRegisterInfo::getRegisterNumbering(MO.getReg())); + return; + } + + // Encode so_imm. + // Set bit I(25) to identify this is the immediate form of <shifter_op>. + Binary |= 1 << ARMII::I_BitShift; + Binary |= getMachineSoImmOpValue(MO.getImm()); + + emitWordLE(Binary); +} + +template<class CodeEmitter> +void Emitter<CodeEmitter>::emitLoadStoreInstruction( + const MachineInstr &MI, + unsigned ImplicitRd, + unsigned ImplicitRn) { + const TargetInstrDesc &TID = MI.getDesc(); + unsigned Form = TID.TSFlags & ARMII::FormMask; + bool IsPrePost = (TID.TSFlags & ARMII::IndexModeMask) != 0; + + // Part of binary is determined by TableGn. + unsigned Binary = getBinaryCodeForInstr(MI); + + // Set the conditional execution predicate + Binary |= II->getPredicate(&MI) << ARMII::CondShift; + + unsigned OpIdx = 0; + + // Operand 0 of a pre- and post-indexed store is the address base + // writeback. Skip it. + bool Skipped = false; + if (IsPrePost && Form == ARMII::StFrm) { + ++OpIdx; + Skipped = true; + } + + // Set first operand + if (ImplicitRd) + // Special handling for implicit use (e.g. PC). + Binary |= (ARMRegisterInfo::getRegisterNumbering(ImplicitRd) + << ARMII::RegRdShift); + else + Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift; + + // Set second operand + if (ImplicitRn) + // Special handling for implicit use (e.g. PC). + Binary |= (ARMRegisterInfo::getRegisterNumbering(ImplicitRn) + << ARMII::RegRnShift); + else + Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRnShift; + + // If this is a two-address operand, skip it. e.g. LDR_PRE. + if (!Skipped && TID.getOperandConstraint(OpIdx, TOI::TIED_TO) != -1) + ++OpIdx; + + const MachineOperand &MO2 = MI.getOperand(OpIdx); + unsigned AM2Opc = (ImplicitRn == ARM::PC) + ? 0 : MI.getOperand(OpIdx+1).getImm(); + + // Set bit U(23) according to sign of immed value (positive or negative). + Binary |= ((ARM_AM::getAM2Op(AM2Opc) == ARM_AM::add ? 1 : 0) << + ARMII::U_BitShift); + if (!MO2.getReg()) { // is immediate + if (ARM_AM::getAM2Offset(AM2Opc)) + // Set the value of offset_12 field + Binary |= ARM_AM::getAM2Offset(AM2Opc); + emitWordLE(Binary); + return; + } + + // Set bit I(25), because this is not in immediate enconding. + Binary |= 1 << ARMII::I_BitShift; + assert(TargetRegisterInfo::isPhysicalRegister(MO2.getReg())); + // Set bit[3:0] to the corresponding Rm register + Binary |= ARMRegisterInfo::getRegisterNumbering(MO2.getReg()); + + // If this instr is in scaled register offset/index instruction, set + // shift_immed(bit[11:7]) and shift(bit[6:5]) fields. + if (unsigned ShImm = ARM_AM::getAM2Offset(AM2Opc)) { + Binary |= getShiftOp(AM2Opc) << ARMII::ShiftImmShift; // shift + Binary |= ShImm << ARMII::ShiftShift; // shift_immed + } + + emitWordLE(Binary); +} + +template<class CodeEmitter> +void Emitter<CodeEmitter>::emitMiscLoadStoreInstruction(const MachineInstr &MI, + unsigned ImplicitRn) { + const TargetInstrDesc &TID = MI.getDesc(); + unsigned Form = TID.TSFlags & ARMII::FormMask; + bool IsPrePost = (TID.TSFlags & ARMII::IndexModeMask) != 0; + + // Part of binary is determined by TableGn. + unsigned Binary = getBinaryCodeForInstr(MI); + + // Set the conditional execution predicate + Binary |= II->getPredicate(&MI) << ARMII::CondShift; + + unsigned OpIdx = 0; + + // Operand 0 of a pre- and post-indexed store is the address base + // writeback. Skip it. + bool Skipped = false; + if (IsPrePost && Form == ARMII::StMiscFrm) { + ++OpIdx; + Skipped = true; + } + + // Set first operand + Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift; + + // Set second operand + if (ImplicitRn) + // Special handling for implicit use (e.g. PC). + Binary |= (ARMRegisterInfo::getRegisterNumbering(ImplicitRn) + << ARMII::RegRnShift); + else + Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRnShift; + + // If this is a two-address operand, skip it. e.g. LDRH_POST. + if (!Skipped && TID.getOperandConstraint(OpIdx, TOI::TIED_TO) != -1) + ++OpIdx; + + const MachineOperand &MO2 = MI.getOperand(OpIdx); + unsigned AM3Opc = (ImplicitRn == ARM::PC) + ? 0 : MI.getOperand(OpIdx+1).getImm(); + + // Set bit U(23) according to sign of immed value (positive or negative) + Binary |= ((ARM_AM::getAM3Op(AM3Opc) == ARM_AM::add ? 1 : 0) << + ARMII::U_BitShift); + + // If this instr is in register offset/index encoding, set bit[3:0] + // to the corresponding Rm register. + if (MO2.getReg()) { + Binary |= ARMRegisterInfo::getRegisterNumbering(MO2.getReg()); + emitWordLE(Binary); + return; + } + + // This instr is in immediate offset/index encoding, set bit 22 to 1. + Binary |= 1 << ARMII::AM3_I_BitShift; + if (unsigned ImmOffs = ARM_AM::getAM3Offset(AM3Opc)) { + // Set operands + Binary |= (ImmOffs >> 4) << ARMII::ImmHiShift; // immedH + Binary |= (ImmOffs & 0xF); // immedL + } + + emitWordLE(Binary); +} + +static unsigned getAddrModeUPBits(unsigned Mode) { + unsigned Binary = 0; + + // Set addressing mode by modifying bits U(23) and P(24) + // IA - Increment after - bit U = 1 and bit P = 0 + // IB - Increment before - bit U = 1 and bit P = 1 + // DA - Decrement after - bit U = 0 and bit P = 0 + // DB - Decrement before - bit U = 0 and bit P = 1 + switch (Mode) { + default: assert(0 && "Unknown addressing sub-mode!"); + case ARM_AM::da: break; + case ARM_AM::db: Binary |= 0x1 << ARMII::P_BitShift; break; + case ARM_AM::ia: Binary |= 0x1 << ARMII::U_BitShift; break; + case ARM_AM::ib: Binary |= 0x3 << ARMII::U_BitShift; break; + } + + return Binary; +} + +template<class CodeEmitter> +void Emitter<CodeEmitter>::emitLoadStoreMultipleInstruction( + const MachineInstr &MI) { + // Part of binary is determined by TableGn. + unsigned Binary = getBinaryCodeForInstr(MI); + + // Set the conditional execution predicate + Binary |= II->getPredicate(&MI) << ARMII::CondShift; + + // Set base address operand + Binary |= getMachineOpValue(MI, 0) << ARMII::RegRnShift; + + // Set addressing mode by modifying bits U(23) and P(24) + const MachineOperand &MO = MI.getOperand(1); + Binary |= getAddrModeUPBits(ARM_AM::getAM4SubMode(MO.getImm())); + + // Set bit W(21) + if (ARM_AM::getAM4WBFlag(MO.getImm())) + Binary |= 0x1 << ARMII::W_BitShift; + + // Set registers + for (unsigned i = 4, e = MI.getNumOperands(); i != e; ++i) { + const MachineOperand &MO = MI.getOperand(i); + if (!MO.isReg() || MO.isImplicit()) + break; + unsigned RegNum = ARMRegisterInfo::getRegisterNumbering(MO.getReg()); + assert(TargetRegisterInfo::isPhysicalRegister(MO.getReg()) && + RegNum < 16); + Binary |= 0x1 << RegNum; + } + + emitWordLE(Binary); +} + +template<class CodeEmitter> +void Emitter<CodeEmitter>::emitMulFrmInstruction(const MachineInstr &MI) { + const TargetInstrDesc &TID = MI.getDesc(); + + // Part of binary is determined by TableGn. + unsigned Binary = getBinaryCodeForInstr(MI); + + // Set the conditional execution predicate + Binary |= II->getPredicate(&MI) << ARMII::CondShift; + + // Encode S bit if MI modifies CPSR. + Binary |= getAddrModeSBit(MI, TID); + + // 32x32->64bit operations have two destination registers. The number + // of register definitions will tell us if that's what we're dealing with. + unsigned OpIdx = 0; + if (TID.getNumDefs() == 2) + Binary |= getMachineOpValue (MI, OpIdx++) << ARMII::RegRdLoShift; + + // Encode Rd + Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdHiShift; + + // Encode Rm + Binary |= getMachineOpValue(MI, OpIdx++); + + // Encode Rs + Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRsShift; + + // Many multiple instructions (e.g. MLA) have three src operands. Encode + // it as Rn (for multiply, that's in the same offset as RdLo. + if (TID.getNumOperands() > OpIdx && + !TID.OpInfo[OpIdx].isPredicate() && + !TID.OpInfo[OpIdx].isOptionalDef()) + Binary |= getMachineOpValue(MI, OpIdx) << ARMII::RegRdLoShift; + + emitWordLE(Binary); +} + +template<class CodeEmitter> +void Emitter<CodeEmitter>::emitExtendInstruction(const MachineInstr &MI) { + const TargetInstrDesc &TID = MI.getDesc(); + + // Part of binary is determined by TableGn. + unsigned Binary = getBinaryCodeForInstr(MI); + + // Set the conditional execution predicate + Binary |= II->getPredicate(&MI) << ARMII::CondShift; + + unsigned OpIdx = 0; + + // Encode Rd + Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift; + + const MachineOperand &MO1 = MI.getOperand(OpIdx++); + const MachineOperand &MO2 = MI.getOperand(OpIdx); + if (MO2.isReg()) { + // Two register operand form. + // Encode Rn. + Binary |= getMachineOpValue(MI, MO1) << ARMII::RegRnShift; + + // Encode Rm. + Binary |= getMachineOpValue(MI, MO2); + ++OpIdx; + } else { + Binary |= getMachineOpValue(MI, MO1); + } + + // Encode rot imm (0, 8, 16, or 24) if it has a rotate immediate operand. + if (MI.getOperand(OpIdx).isImm() && + !TID.OpInfo[OpIdx].isPredicate() && + !TID.OpInfo[OpIdx].isOptionalDef()) + Binary |= (getMachineOpValue(MI, OpIdx) / 8) << ARMII::ExtRotImmShift; + + emitWordLE(Binary); +} + +template<class CodeEmitter> +void Emitter<CodeEmitter>::emitMiscArithInstruction(const MachineInstr &MI) { + const TargetInstrDesc &TID = MI.getDesc(); + + // Part of binary is determined by TableGn. + unsigned Binary = getBinaryCodeForInstr(MI); + + // Set the conditional execution predicate + Binary |= II->getPredicate(&MI) << ARMII::CondShift; + + unsigned OpIdx = 0; + + // Encode Rd + Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift; + + const MachineOperand &MO = MI.getOperand(OpIdx++); + if (OpIdx == TID.getNumOperands() || + TID.OpInfo[OpIdx].isPredicate() || + TID.OpInfo[OpIdx].isOptionalDef()) { + // Encode Rm and it's done. + Binary |= getMachineOpValue(MI, MO); + emitWordLE(Binary); + return; + } + + // Encode Rn. + Binary |= getMachineOpValue(MI, MO) << ARMII::RegRnShift; + + // Encode Rm. + Binary |= getMachineOpValue(MI, OpIdx++); + + // Encode shift_imm. + unsigned ShiftAmt = MI.getOperand(OpIdx).getImm(); + assert(ShiftAmt < 32 && "shift_imm range is 0 to 31!"); + Binary |= ShiftAmt << ARMII::ShiftShift; + + emitWordLE(Binary); +} + +template<class CodeEmitter> +void Emitter<CodeEmitter>::emitBranchInstruction(const MachineInstr &MI) { + const TargetInstrDesc &TID = MI.getDesc(); + + if (TID.Opcode == ARM::TPsoft) + abort(); // FIXME + + // Part of binary is determined by TableGn. + unsigned Binary = getBinaryCodeForInstr(MI); + + // Set the conditional execution predicate + Binary |= II->getPredicate(&MI) << ARMII::CondShift; + + // Set signed_immed_24 field + Binary |= getMachineOpValue(MI, 0); + + emitWordLE(Binary); +} + +template<class CodeEmitter> +void Emitter<CodeEmitter>::emitInlineJumpTable(unsigned JTIndex) { + // Remember the base address of the inline jump table. + uintptr_t JTBase = MCE.getCurrentPCValue(); + JTI->addJumpTableBaseAddr(JTIndex, JTBase); + DOUT << " ** Jump Table #" << JTIndex << " @ " << (void*)JTBase << '\n'; + + // Now emit the jump table entries. + const std::vector<MachineBasicBlock*> &MBBs = (*MJTEs)[JTIndex].MBBs; + for (unsigned i = 0, e = MBBs.size(); i != e; ++i) { + if (IsPIC) + // DestBB address - JT base. + emitMachineBasicBlock(MBBs[i], ARM::reloc_arm_pic_jt, JTBase); + else + // Absolute DestBB address. + emitMachineBasicBlock(MBBs[i], ARM::reloc_arm_absolute); + emitWordLE(0); + } +} + +template<class CodeEmitter> +void Emitter<CodeEmitter>::emitMiscBranchInstruction(const MachineInstr &MI) { + const TargetInstrDesc &TID = MI.getDesc(); + + // Handle jump tables. + if (TID.Opcode == ARM::BR_JTr || TID.Opcode == ARM::BR_JTadd) { + // First emit a ldr pc, [] instruction. + emitDataProcessingInstruction(MI, ARM::PC); + + // Then emit the inline jump table. + unsigned JTIndex = (TID.Opcode == ARM::BR_JTr) + ? MI.getOperand(1).getIndex() : MI.getOperand(2).getIndex(); + emitInlineJumpTable(JTIndex); + return; + } else if (TID.Opcode == ARM::BR_JTm) { + // First emit a ldr pc, [] instruction. + emitLoadStoreInstruction(MI, ARM::PC); + + // Then emit the inline jump table. + emitInlineJumpTable(MI.getOperand(3).getIndex()); + return; + } + + // Part of binary is determined by TableGn. + unsigned Binary = getBinaryCodeForInstr(MI); + + // Set the conditional execution predicate + Binary |= II->getPredicate(&MI) << ARMII::CondShift; + + if (TID.Opcode == ARM::BX_RET) + // The return register is LR. + Binary |= ARMRegisterInfo::getRegisterNumbering(ARM::LR); + else + // otherwise, set the return register + Binary |= getMachineOpValue(MI, 0); + + emitWordLE(Binary); +} + +static unsigned encodeVFPRd(const MachineInstr &MI, unsigned OpIdx) { + unsigned RegD = MI.getOperand(OpIdx).getReg(); + unsigned Binary = 0; + bool isSPVFP = false; + RegD = ARMRegisterInfo::getRegisterNumbering(RegD, isSPVFP); + if (!isSPVFP) + Binary |= RegD << ARMII::RegRdShift; + else { + Binary |= ((RegD & 0x1E) >> 1) << ARMII::RegRdShift; + Binary |= (RegD & 0x01) << ARMII::D_BitShift; + } + return Binary; +} + +static unsigned encodeVFPRn(const MachineInstr &MI, unsigned OpIdx) { + unsigned RegN = MI.getOperand(OpIdx).getReg(); + unsigned Binary = 0; + bool isSPVFP = false; + RegN = ARMRegisterInfo::getRegisterNumbering(RegN, isSPVFP); + if (!isSPVFP) + Binary |= RegN << ARMII::RegRnShift; + else { + Binary |= ((RegN & 0x1E) >> 1) << ARMII::RegRnShift; + Binary |= (RegN & 0x01) << ARMII::N_BitShift; + } + return Binary; +} + +static unsigned encodeVFPRm(const MachineInstr &MI, unsigned OpIdx) { + unsigned RegM = MI.getOperand(OpIdx).getReg(); + unsigned Binary = 0; + bool isSPVFP = false; + RegM = ARMRegisterInfo::getRegisterNumbering(RegM, isSPVFP); + if (!isSPVFP) + Binary |= RegM; + else { + Binary |= ((RegM & 0x1E) >> 1); + Binary |= (RegM & 0x01) << ARMII::M_BitShift; + } + return Binary; +} + +template<class CodeEmitter> +void Emitter<CodeEmitter>::emitVFPArithInstruction(const MachineInstr &MI) { + const TargetInstrDesc &TID = MI.getDesc(); + + // Part of binary is determined by TableGn. + unsigned Binary = getBinaryCodeForInstr(MI); + + // Set the conditional execution predicate + Binary |= II->getPredicate(&MI) << ARMII::CondShift; + + unsigned OpIdx = 0; + assert((Binary & ARMII::D_BitShift) == 0 && + (Binary & ARMII::N_BitShift) == 0 && + (Binary & ARMII::M_BitShift) == 0 && "VFP encoding bug!"); + + // Encode Dd / Sd. + Binary |= encodeVFPRd(MI, OpIdx++); + + // If this is a two-address operand, skip it, e.g. FMACD. + if (TID.getOperandConstraint(OpIdx, TOI::TIED_TO) != -1) + ++OpIdx; + + // Encode Dn / Sn. + if ((TID.TSFlags & ARMII::FormMask) == ARMII::VFPBinaryFrm) + Binary |= encodeVFPRn(MI, OpIdx++); + + if (OpIdx == TID.getNumOperands() || + TID.OpInfo[OpIdx].isPredicate() || + TID.OpInfo[OpIdx].isOptionalDef()) { + // FCMPEZD etc. has only one operand. + emitWordLE(Binary); + return; + } + + // Encode Dm / Sm. + Binary |= encodeVFPRm(MI, OpIdx); + + emitWordLE(Binary); +} + +template<class CodeEmitter> +void Emitter<CodeEmitter>::emitVFPConversionInstruction( + const MachineInstr &MI) { + const TargetInstrDesc &TID = MI.getDesc(); + unsigned Form = TID.TSFlags & ARMII::FormMask; + + // Part of binary is determined by TableGn. + unsigned Binary = getBinaryCodeForInstr(MI); + + // Set the conditional execution predicate + Binary |= II->getPredicate(&MI) << ARMII::CondShift; + + switch (Form) { + default: break; + case ARMII::VFPConv1Frm: + case ARMII::VFPConv2Frm: + case ARMII::VFPConv3Frm: + // Encode Dd / Sd. + Binary |= encodeVFPRd(MI, 0); + break; + case ARMII::VFPConv4Frm: + // Encode Dn / Sn. + Binary |= encodeVFPRn(MI, 0); + break; + case ARMII::VFPConv5Frm: + // Encode Dm / Sm. + Binary |= encodeVFPRm(MI, 0); + break; + } + + switch (Form) { + default: break; + case ARMII::VFPConv1Frm: + // Encode Dm / Sm. + Binary |= encodeVFPRm(MI, 1); + break; + case ARMII::VFPConv2Frm: + case ARMII::VFPConv3Frm: + // Encode Dn / Sn. + Binary |= encodeVFPRn(MI, 1); + break; + case ARMII::VFPConv4Frm: + case ARMII::VFPConv5Frm: + // Encode Dd / Sd. + Binary |= encodeVFPRd(MI, 1); + break; + } + + if (Form == ARMII::VFPConv5Frm) + // Encode Dn / Sn. + Binary |= encodeVFPRn(MI, 2); + else if (Form == ARMII::VFPConv3Frm) + // Encode Dm / Sm. + Binary |= encodeVFPRm(MI, 2); + + emitWordLE(Binary); +} + +template<class CodeEmitter> +void Emitter<CodeEmitter>::emitVFPLoadStoreInstruction(const MachineInstr &MI) { + // Part of binary is determined by TableGn. + unsigned Binary = getBinaryCodeForInstr(MI); + + // Set the conditional execution predicate + Binary |= II->getPredicate(&MI) << ARMII::CondShift; + + unsigned OpIdx = 0; + + // Encode Dd / Sd. + Binary |= encodeVFPRd(MI, OpIdx++); + + // Encode address base. + const MachineOperand &Base = MI.getOperand(OpIdx++); + Binary |= getMachineOpValue(MI, Base) << ARMII::RegRnShift; + + // If there is a non-zero immediate offset, encode it. + if (Base.isReg()) { + const MachineOperand &Offset = MI.getOperand(OpIdx); + if (unsigned ImmOffs = ARM_AM::getAM5Offset(Offset.getImm())) { + if (ARM_AM::getAM5Op(Offset.getImm()) == ARM_AM::add) + Binary |= 1 << ARMII::U_BitShift; + Binary |= ImmOffs; + emitWordLE(Binary); + return; + } + } + + // If immediate offset is omitted, default to +0. + Binary |= 1 << ARMII::U_BitShift; + + emitWordLE(Binary); +} + +template<class CodeEmitter> +void Emitter<CodeEmitter>::emitVFPLoadStoreMultipleInstruction( + const MachineInstr &MI) { + // Part of binary is determined by TableGn. + unsigned Binary = getBinaryCodeForInstr(MI); + + // Set the conditional execution predicate + Binary |= II->getPredicate(&MI) << ARMII::CondShift; + + // Set base address operand + Binary |= getMachineOpValue(MI, 0) << ARMII::RegRnShift; + + // Set addressing mode by modifying bits U(23) and P(24) + const MachineOperand &MO = MI.getOperand(1); + Binary |= getAddrModeUPBits(ARM_AM::getAM5SubMode(MO.getImm())); + + // Set bit W(21) + if (ARM_AM::getAM5WBFlag(MO.getImm())) + Binary |= 0x1 << ARMII::W_BitShift; + + // First register is encoded in Dd. + Binary |= encodeVFPRd(MI, 4); + + // Number of registers are encoded in offset field. + unsigned NumRegs = 1; + for (unsigned i = 5, e = MI.getNumOperands(); i != e; ++i) { + const MachineOperand &MO = MI.getOperand(i); + if (!MO.isReg() || MO.isImplicit()) + break; + ++NumRegs; + } + Binary |= NumRegs * 2; + + emitWordLE(Binary); +} + +template<class CodeEmitter> +void Emitter<CodeEmitter>::emitMiscInstruction(const MachineInstr &MI) { + // Part of binary is determined by TableGn. + unsigned Binary = getBinaryCodeForInstr(MI); + + // Set the conditional execution predicate + Binary |= II->getPredicate(&MI) << ARMII::CondShift; + + emitWordLE(Binary); +} + +#include "ARMGenCodeEmitter.inc" + |