diff options
Diffstat (limited to 'lib/Target/ARM/ARMAddressingModes.h')
-rw-r--r-- | lib/Target/ARM/ARMAddressingModes.h | 595 |
1 files changed, 0 insertions, 595 deletions
diff --git a/lib/Target/ARM/ARMAddressingModes.h b/lib/Target/ARM/ARMAddressingModes.h deleted file mode 100644 index 595708f..0000000 --- a/lib/Target/ARM/ARMAddressingModes.h +++ /dev/null @@ -1,595 +0,0 @@ -//===- ARMAddressingModes.h - ARM Addressing Modes --------------*- C++ -*-===// -// -// The LLVM Compiler Infrastructure -// -// This file is distributed under the University of Illinois Open Source -// License. See LICENSE.TXT for details. -// -//===----------------------------------------------------------------------===// -// -// This file contains the ARM addressing mode implementation stuff. -// -//===----------------------------------------------------------------------===// - -#ifndef LLVM_TARGET_ARM_ARMADDRESSINGMODES_H -#define LLVM_TARGET_ARM_ARMADDRESSINGMODES_H - -#include "llvm/CodeGen/SelectionDAGNodes.h" -#include "llvm/Support/MathExtras.h" -#include <cassert> - -namespace llvm { - -/// ARM_AM - ARM Addressing Mode Stuff -namespace ARM_AM { - enum ShiftOpc { - no_shift = 0, - asr, - lsl, - lsr, - ror, - rrx - }; - - enum AddrOpc { - add = '+', sub = '-' - }; - - static inline const char *getAddrOpcStr(AddrOpc Op) { - return Op == sub ? "-" : ""; - } - - static inline const char *getShiftOpcStr(ShiftOpc Op) { - switch (Op) { - default: assert(0 && "Unknown shift opc!"); - case ARM_AM::asr: return "asr"; - case ARM_AM::lsl: return "lsl"; - case ARM_AM::lsr: return "lsr"; - case ARM_AM::ror: return "ror"; - case ARM_AM::rrx: return "rrx"; - } - } - - static inline unsigned getShiftOpcEncoding(ShiftOpc Op) { - switch (Op) { - default: assert(0 && "Unknown shift opc!"); - case ARM_AM::asr: return 2; - case ARM_AM::lsl: return 0; - case ARM_AM::lsr: return 1; - case ARM_AM::ror: return 3; - } - } - - static inline ShiftOpc getShiftOpcForNode(SDValue N) { - switch (N.getOpcode()) { - default: return ARM_AM::no_shift; - case ISD::SHL: return ARM_AM::lsl; - case ISD::SRL: return ARM_AM::lsr; - case ISD::SRA: return ARM_AM::asr; - case ISD::ROTR: return ARM_AM::ror; - //case ISD::ROTL: // Only if imm -> turn into ROTR. - // Can't handle RRX here, because it would require folding a flag into - // the addressing mode. :( This causes us to miss certain things. - //case ARMISD::RRX: return ARM_AM::rrx; - } - } - - enum AMSubMode { - bad_am_submode = 0, - ia, - ib, - da, - db - }; - - static inline const char *getAMSubModeStr(AMSubMode Mode) { - switch (Mode) { - default: assert(0 && "Unknown addressing sub-mode!"); - case ARM_AM::ia: return "ia"; - case ARM_AM::ib: return "ib"; - case ARM_AM::da: return "da"; - case ARM_AM::db: return "db"; - } - } - - /// rotr32 - Rotate a 32-bit unsigned value right by a specified # bits. - /// - static inline unsigned rotr32(unsigned Val, unsigned Amt) { - assert(Amt < 32 && "Invalid rotate amount"); - return (Val >> Amt) | (Val << ((32-Amt)&31)); - } - - /// rotl32 - Rotate a 32-bit unsigned value left by a specified # bits. - /// - static inline unsigned rotl32(unsigned Val, unsigned Amt) { - assert(Amt < 32 && "Invalid rotate amount"); - return (Val << Amt) | (Val >> ((32-Amt)&31)); - } - - //===--------------------------------------------------------------------===// - // Addressing Mode #1: shift_operand with registers - //===--------------------------------------------------------------------===// - // - // This 'addressing mode' is used for arithmetic instructions. It can - // represent things like: - // reg - // reg [asr|lsl|lsr|ror|rrx] reg - // reg [asr|lsl|lsr|ror|rrx] imm - // - // This is stored three operands [rega, regb, opc]. The first is the base - // reg, the second is the shift amount (or reg0 if not present or imm). The - // third operand encodes the shift opcode and the imm if a reg isn't present. - // - static inline unsigned getSORegOpc(ShiftOpc ShOp, unsigned Imm) { - return ShOp | (Imm << 3); - } - static inline unsigned getSORegOffset(unsigned Op) { - return Op >> 3; - } - static inline ShiftOpc getSORegShOp(unsigned Op) { - return (ShiftOpc)(Op & 7); - } - - /// getSOImmValImm - Given an encoded imm field for the reg/imm form, return - /// the 8-bit imm value. - static inline unsigned getSOImmValImm(unsigned Imm) { - return Imm & 0xFF; - } - /// getSOImmValRot - Given an encoded imm field for the reg/imm form, return - /// the rotate amount. - static inline unsigned getSOImmValRot(unsigned Imm) { - return (Imm >> 8) * 2; - } - - /// getSOImmValRotate - Try to handle Imm with an immediate shifter operand, - /// computing the rotate amount to use. If this immediate value cannot be - /// handled with a single shifter-op, determine a good rotate amount that will - /// take a maximal chunk of bits out of the immediate. - static inline unsigned getSOImmValRotate(unsigned Imm) { - // 8-bit (or less) immediates are trivially shifter_operands with a rotate - // of zero. - if ((Imm & ~255U) == 0) return 0; - - // Use CTZ to compute the rotate amount. - unsigned TZ = CountTrailingZeros_32(Imm); - - // Rotate amount must be even. Something like 0x200 must be rotated 8 bits, - // not 9. - unsigned RotAmt = TZ & ~1; - - // If we can handle this spread, return it. - if ((rotr32(Imm, RotAmt) & ~255U) == 0) - return (32-RotAmt)&31; // HW rotates right, not left. - - // For values like 0xF000000F, we should ignore the low 6 bits, then - // retry the hunt. - if (Imm & 63U) { - unsigned TZ2 = CountTrailingZeros_32(Imm & ~63U); - unsigned RotAmt2 = TZ2 & ~1; - if ((rotr32(Imm, RotAmt2) & ~255U) == 0) - return (32-RotAmt2)&31; // HW rotates right, not left. - } - - // Otherwise, we have no way to cover this span of bits with a single - // shifter_op immediate. Return a chunk of bits that will be useful to - // handle. - return (32-RotAmt)&31; // HW rotates right, not left. - } - - /// getSOImmVal - Given a 32-bit immediate, if it is something that can fit - /// into an shifter_operand immediate operand, return the 12-bit encoding for - /// it. If not, return -1. - static inline int getSOImmVal(unsigned Arg) { - // 8-bit (or less) immediates are trivially shifter_operands with a rotate - // of zero. - if ((Arg & ~255U) == 0) return Arg; - - unsigned RotAmt = getSOImmValRotate(Arg); - - // If this cannot be handled with a single shifter_op, bail out. - if (rotr32(~255U, RotAmt) & Arg) - return -1; - - // Encode this correctly. - return rotl32(Arg, RotAmt) | ((RotAmt>>1) << 8); - } - - /// isSOImmTwoPartVal - Return true if the specified value can be obtained by - /// or'ing together two SOImmVal's. - static inline bool isSOImmTwoPartVal(unsigned V) { - // If this can be handled with a single shifter_op, bail out. - V = rotr32(~255U, getSOImmValRotate(V)) & V; - if (V == 0) - return false; - - // If this can be handled with two shifter_op's, accept. - V = rotr32(~255U, getSOImmValRotate(V)) & V; - return V == 0; - } - - /// getSOImmTwoPartFirst - If V is a value that satisfies isSOImmTwoPartVal, - /// return the first chunk of it. - static inline unsigned getSOImmTwoPartFirst(unsigned V) { - return rotr32(255U, getSOImmValRotate(V)) & V; - } - - /// getSOImmTwoPartSecond - If V is a value that satisfies isSOImmTwoPartVal, - /// return the second chunk of it. - static inline unsigned getSOImmTwoPartSecond(unsigned V) { - // Mask out the first hunk. - V = rotr32(~255U, getSOImmValRotate(V)) & V; - - // Take what's left. - assert(V == (rotr32(255U, getSOImmValRotate(V)) & V)); - return V; - } - - /// getThumbImmValShift - Try to handle Imm with a 8-bit immediate followed - /// by a left shift. Returns the shift amount to use. - static inline unsigned getThumbImmValShift(unsigned Imm) { - // 8-bit (or less) immediates are trivially immediate operand with a shift - // of zero. - if ((Imm & ~255U) == 0) return 0; - - // Use CTZ to compute the shift amount. - return CountTrailingZeros_32(Imm); - } - - /// isThumbImmShiftedVal - Return true if the specified value can be obtained - /// by left shifting a 8-bit immediate. - static inline bool isThumbImmShiftedVal(unsigned V) { - // If this can be handled with - V = (~255U << getThumbImmValShift(V)) & V; - return V == 0; - } - - /// getThumbImm16ValShift - Try to handle Imm with a 16-bit immediate followed - /// by a left shift. Returns the shift amount to use. - static inline unsigned getThumbImm16ValShift(unsigned Imm) { - // 16-bit (or less) immediates are trivially immediate operand with a shift - // of zero. - if ((Imm & ~65535U) == 0) return 0; - - // Use CTZ to compute the shift amount. - return CountTrailingZeros_32(Imm); - } - - /// isThumbImm16ShiftedVal - Return true if the specified value can be - /// obtained by left shifting a 16-bit immediate. - static inline bool isThumbImm16ShiftedVal(unsigned V) { - // If this can be handled with - V = (~65535U << getThumbImm16ValShift(V)) & V; - return V == 0; - } - - /// getThumbImmNonShiftedVal - If V is a value that satisfies - /// isThumbImmShiftedVal, return the non-shiftd value. - static inline unsigned getThumbImmNonShiftedVal(unsigned V) { - return V >> getThumbImmValShift(V); - } - - - /// getT2SOImmValSplat - Return the 12-bit encoded representation - /// if the specified value can be obtained by splatting the low 8 bits - /// into every other byte or every byte of a 32-bit value. i.e., - /// 00000000 00000000 00000000 abcdefgh control = 0 - /// 00000000 abcdefgh 00000000 abcdefgh control = 1 - /// abcdefgh 00000000 abcdefgh 00000000 control = 2 - /// abcdefgh abcdefgh abcdefgh abcdefgh control = 3 - /// Return -1 if none of the above apply. - /// See ARM Reference Manual A6.3.2. - static inline int getT2SOImmValSplatVal(unsigned V) { - unsigned u, Vs, Imm; - // control = 0 - if ((V & 0xffffff00) == 0) - return V; - - // If the value is zeroes in the first byte, just shift those off - Vs = ((V & 0xff) == 0) ? V >> 8 : V; - // Any passing value only has 8 bits of payload, splatted across the word - Imm = Vs & 0xff; - // Likewise, any passing values have the payload splatted into the 3rd byte - u = Imm | (Imm << 16); - - // control = 1 or 2 - if (Vs == u) - return (((Vs == V) ? 1 : 2) << 8) | Imm; - - // control = 3 - if (Vs == (u | (u << 8))) - return (3 << 8) | Imm; - - return -1; - } - - /// getT2SOImmValRotateVal - Return the 12-bit encoded representation if the - /// specified value is a rotated 8-bit value. Return -1 if no rotation - /// encoding is possible. - /// See ARM Reference Manual A6.3.2. - static inline int getT2SOImmValRotateVal(unsigned V) { - unsigned RotAmt = CountLeadingZeros_32(V); - if (RotAmt >= 24) - return -1; - - // If 'Arg' can be handled with a single shifter_op return the value. - if ((rotr32(0xff000000U, RotAmt) & V) == V) - return (rotr32(V, 24 - RotAmt) & 0x7f) | ((RotAmt + 8) << 7); - - return -1; - } - - /// getT2SOImmVal - Given a 32-bit immediate, if it is something that can fit - /// into a Thumb-2 shifter_operand immediate operand, return the 12-bit - /// encoding for it. If not, return -1. - /// See ARM Reference Manual A6.3.2. - static inline int getT2SOImmVal(unsigned Arg) { - // If 'Arg' is an 8-bit splat, then get the encoded value. - int Splat = getT2SOImmValSplatVal(Arg); - if (Splat != -1) - return Splat; - - // If 'Arg' can be handled with a single shifter_op return the value. - int Rot = getT2SOImmValRotateVal(Arg); - if (Rot != -1) - return Rot; - - return -1; - } - - static inline unsigned getT2SOImmValRotate(unsigned V) { - if ((V & ~255U) == 0) return 0; - // Use CTZ to compute the rotate amount. - unsigned RotAmt = CountTrailingZeros_32(V); - return (32 - RotAmt) & 31; - } - - static inline bool isT2SOImmTwoPartVal (unsigned Imm) { - unsigned V = Imm; - // Passing values can be any combination of splat values and shifter - // values. If this can be handled with a single shifter or splat, bail - // out. Those should be handled directly, not with a two-part val. - if (getT2SOImmValSplatVal(V) != -1) - return false; - V = rotr32 (~255U, getT2SOImmValRotate(V)) & V; - if (V == 0) - return false; - - // If this can be handled as an immediate, accept. - if (getT2SOImmVal(V) != -1) return true; - - // Likewise, try masking out a splat value first. - V = Imm; - if (getT2SOImmValSplatVal(V & 0xff00ff00U) != -1) - V &= ~0xff00ff00U; - else if (getT2SOImmValSplatVal(V & 0x00ff00ffU) != -1) - V &= ~0x00ff00ffU; - // If what's left can be handled as an immediate, accept. - if (getT2SOImmVal(V) != -1) return true; - - // Otherwise, do not accept. - return false; - } - - static inline unsigned getT2SOImmTwoPartFirst(unsigned Imm) { - assert (isT2SOImmTwoPartVal(Imm) && - "Immedate cannot be encoded as two part immediate!"); - // Try a shifter operand as one part - unsigned V = rotr32 (~255, getT2SOImmValRotate(Imm)) & Imm; - // If the rest is encodable as an immediate, then return it. - if (getT2SOImmVal(V) != -1) return V; - - // Try masking out a splat value first. - if (getT2SOImmValSplatVal(Imm & 0xff00ff00U) != -1) - return Imm & 0xff00ff00U; - - // The other splat is all that's left as an option. - assert (getT2SOImmValSplatVal(Imm & 0x00ff00ffU) != -1); - return Imm & 0x00ff00ffU; - } - - static inline unsigned getT2SOImmTwoPartSecond(unsigned Imm) { - // Mask out the first hunk - Imm ^= getT2SOImmTwoPartFirst(Imm); - // Return what's left - assert (getT2SOImmVal(Imm) != -1 && - "Unable to encode second part of T2 two part SO immediate"); - return Imm; - } - - - //===--------------------------------------------------------------------===// - // Addressing Mode #2 - //===--------------------------------------------------------------------===// - // - // This is used for most simple load/store instructions. - // - // addrmode2 := reg +/- reg shop imm - // addrmode2 := reg +/- imm12 - // - // The first operand is always a Reg. The second operand is a reg if in - // reg/reg form, otherwise it's reg#0. The third field encodes the operation - // in bit 12, the immediate in bits 0-11, and the shift op in 13-15. The - // fourth operand 16-17 encodes the index mode. - // - // If this addressing mode is a frame index (before prolog/epilog insertion - // and code rewriting), this operand will have the form: FI#, reg0, <offs> - // with no shift amount for the frame offset. - // - static inline unsigned getAM2Opc(AddrOpc Opc, unsigned Imm12, ShiftOpc SO, - unsigned IdxMode = 0) { - assert(Imm12 < (1 << 12) && "Imm too large!"); - bool isSub = Opc == sub; - return Imm12 | ((int)isSub << 12) | (SO << 13) | (IdxMode << 16) ; - } - static inline unsigned getAM2Offset(unsigned AM2Opc) { - return AM2Opc & ((1 << 12)-1); - } - static inline AddrOpc getAM2Op(unsigned AM2Opc) { - return ((AM2Opc >> 12) & 1) ? sub : add; - } - static inline ShiftOpc getAM2ShiftOpc(unsigned AM2Opc) { - return (ShiftOpc)((AM2Opc >> 13) & 7); - } - static inline unsigned getAM2IdxMode(unsigned AM2Opc) { - return (AM2Opc >> 16); - } - - - //===--------------------------------------------------------------------===// - // Addressing Mode #3 - //===--------------------------------------------------------------------===// - // - // This is used for sign-extending loads, and load/store-pair instructions. - // - // addrmode3 := reg +/- reg - // addrmode3 := reg +/- imm8 - // - // The first operand is always a Reg. The second operand is a reg if in - // reg/reg form, otherwise it's reg#0. The third field encodes the operation - // in bit 8, the immediate in bits 0-7. The fourth operand 9-10 encodes the - // index mode. - - /// getAM3Opc - This function encodes the addrmode3 opc field. - static inline unsigned getAM3Opc(AddrOpc Opc, unsigned char Offset, - unsigned IdxMode = 0) { - bool isSub = Opc == sub; - return ((int)isSub << 8) | Offset | (IdxMode << 9); - } - static inline unsigned char getAM3Offset(unsigned AM3Opc) { - return AM3Opc & 0xFF; - } - static inline AddrOpc getAM3Op(unsigned AM3Opc) { - return ((AM3Opc >> 8) & 1) ? sub : add; - } - static inline unsigned getAM3IdxMode(unsigned AM3Opc) { - return (AM3Opc >> 9); - } - - //===--------------------------------------------------------------------===// - // Addressing Mode #4 - //===--------------------------------------------------------------------===// - // - // This is used for load / store multiple instructions. - // - // addrmode4 := reg, <mode> - // - // The four modes are: - // IA - Increment after - // IB - Increment before - // DA - Decrement after - // DB - Decrement before - // For VFP instructions, only the IA and DB modes are valid. - - static inline AMSubMode getAM4SubMode(unsigned Mode) { - return (AMSubMode)(Mode & 0x7); - } - - static inline unsigned getAM4ModeImm(AMSubMode SubMode) { - return (int)SubMode; - } - - //===--------------------------------------------------------------------===// - // Addressing Mode #5 - //===--------------------------------------------------------------------===// - // - // This is used for coprocessor instructions, such as FP load/stores. - // - // addrmode5 := reg +/- imm8*4 - // - // The first operand is always a Reg. The second operand encodes the - // operation in bit 8 and the immediate in bits 0-7. - - /// getAM5Opc - This function encodes the addrmode5 opc field. - static inline unsigned getAM5Opc(AddrOpc Opc, unsigned char Offset) { - bool isSub = Opc == sub; - return ((int)isSub << 8) | Offset; - } - static inline unsigned char getAM5Offset(unsigned AM5Opc) { - return AM5Opc & 0xFF; - } - static inline AddrOpc getAM5Op(unsigned AM5Opc) { - return ((AM5Opc >> 8) & 1) ? sub : add; - } - - //===--------------------------------------------------------------------===// - // Addressing Mode #6 - //===--------------------------------------------------------------------===// - // - // This is used for NEON load / store instructions. - // - // addrmode6 := reg with optional alignment - // - // This is stored in two operands [regaddr, align]. The first is the - // address register. The second operand is the value of the alignment - // specifier in bytes or zero if no explicit alignment. - // Valid alignments depend on the specific instruction. - - //===--------------------------------------------------------------------===// - // NEON Modified Immediates - //===--------------------------------------------------------------------===// - // - // Several NEON instructions (e.g., VMOV) take a "modified immediate" - // vector operand, where a small immediate encoded in the instruction - // specifies a full NEON vector value. These modified immediates are - // represented here as encoded integers. The low 8 bits hold the immediate - // value; bit 12 holds the "Op" field of the instruction, and bits 11-8 hold - // the "Cmode" field of the instruction. The interfaces below treat the - // Op and Cmode values as a single 5-bit value. - - static inline unsigned createNEONModImm(unsigned OpCmode, unsigned Val) { - return (OpCmode << 8) | Val; - } - static inline unsigned getNEONModImmOpCmode(unsigned ModImm) { - return (ModImm >> 8) & 0x1f; - } - static inline unsigned getNEONModImmVal(unsigned ModImm) { - return ModImm & 0xff; - } - - /// decodeNEONModImm - Decode a NEON modified immediate value into the - /// element value and the element size in bits. (If the element size is - /// smaller than the vector, it is splatted into all the elements.) - static inline uint64_t decodeNEONModImm(unsigned ModImm, unsigned &EltBits) { - unsigned OpCmode = getNEONModImmOpCmode(ModImm); - unsigned Imm8 = getNEONModImmVal(ModImm); - uint64_t Val = 0; - - if (OpCmode == 0xe) { - // 8-bit vector elements - Val = Imm8; - EltBits = 8; - } else if ((OpCmode & 0xc) == 0x8) { - // 16-bit vector elements - unsigned ByteNum = (OpCmode & 0x6) >> 1; - Val = Imm8 << (8 * ByteNum); - EltBits = 16; - } else if ((OpCmode & 0x8) == 0) { - // 32-bit vector elements, zero with one byte set - unsigned ByteNum = (OpCmode & 0x6) >> 1; - Val = Imm8 << (8 * ByteNum); - EltBits = 32; - } else if ((OpCmode & 0xe) == 0xc) { - // 32-bit vector elements, one byte with low bits set - unsigned ByteNum = 1 + (OpCmode & 0x1); - Val = (Imm8 << (8 * ByteNum)) | (0xffff >> (8 * (2 - ByteNum))); - EltBits = 32; - } else if (OpCmode == 0x1e) { - // 64-bit vector elements - for (unsigned ByteNum = 0; ByteNum < 8; ++ByteNum) { - if ((ModImm >> ByteNum) & 1) - Val |= (uint64_t)0xff << (8 * ByteNum); - } - EltBits = 64; - } else { - assert(false && "Unsupported NEON immediate"); - } - return Val; - } - - AMSubMode getLoadStoreMultipleSubMode(int Opcode); - -} // end namespace ARM_AM -} // end namespace llvm - -#endif - |