summaryrefslogtreecommitdiffstats
path: root/lib/Support
diff options
context:
space:
mode:
Diffstat (limited to 'lib/Support')
-rw-r--r--lib/Support/APFloat.cpp2950
-rw-r--r--lib/Support/APInt.cpp2816
-rw-r--r--lib/Support/APSInt.cpp23
-rw-r--r--lib/Support/Allocator.cpp141
-rw-r--r--lib/Support/Annotation.cpp115
-rw-r--r--lib/Support/CMakeLists.txt31
-rw-r--r--lib/Support/CommandLine.cpp1184
-rw-r--r--lib/Support/ConstantRange.cpp472
-rw-r--r--lib/Support/Debug.cpp77
-rw-r--r--lib/Support/Dwarf.cpp589
-rw-r--r--lib/Support/FileUtilities.cpp263
-rw-r--r--lib/Support/FoldingSet.cpp378
-rw-r--r--lib/Support/GraphWriter.cpp89
-rw-r--r--lib/Support/IsInf.cpp49
-rw-r--r--lib/Support/IsNAN.cpp33
-rw-r--r--lib/Support/Makefile17
-rw-r--r--lib/Support/ManagedStatic.cpp91
-rw-r--r--lib/Support/MemoryBuffer.cpp279
-rw-r--r--lib/Support/PluginLoader.cpp43
-rw-r--r--lib/Support/PrettyStackTrace.cpp108
-rw-r--r--lib/Support/SlowOperationInformer.cpp66
-rw-r--r--lib/Support/SmallPtrSet.cpp223
-rw-r--r--lib/Support/Statistic.cpp126
-rw-r--r--lib/Support/Streams.cpp30
-rw-r--r--lib/Support/StringExtras.cpp114
-rw-r--r--lib/Support/StringMap.cpp234
-rw-r--r--lib/Support/StringPool.cpp35
-rw-r--r--lib/Support/SystemUtils.cpp58
-rw-r--r--lib/Support/Timer.cpp387
-rw-r--r--lib/Support/Triple.cpp187
-rw-r--r--lib/Support/raw_ostream.cpp376
31 files changed, 11584 insertions, 0 deletions
diff --git a/lib/Support/APFloat.cpp b/lib/Support/APFloat.cpp
new file mode 100644
index 0000000..3b03c54
--- /dev/null
+++ b/lib/Support/APFloat.cpp
@@ -0,0 +1,2950 @@
+//===-- APFloat.cpp - Implement APFloat class -----------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements a class to represent arbitrary precision floating
+// point values and provide a variety of arithmetic operations on them.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/ADT/APFloat.h"
+#include "llvm/ADT/FoldingSet.h"
+#include "llvm/Support/MathExtras.h"
+#include <cstring>
+
+using namespace llvm;
+
+#define convolve(lhs, rhs) ((lhs) * 4 + (rhs))
+
+/* Assumed in hexadecimal significand parsing, and conversion to
+ hexadecimal strings. */
+#define COMPILE_TIME_ASSERT(cond) extern int CTAssert[(cond) ? 1 : -1]
+COMPILE_TIME_ASSERT(integerPartWidth % 4 == 0);
+
+namespace llvm {
+
+ /* Represents floating point arithmetic semantics. */
+ struct fltSemantics {
+ /* The largest E such that 2^E is representable; this matches the
+ definition of IEEE 754. */
+ exponent_t maxExponent;
+
+ /* The smallest E such that 2^E is a normalized number; this
+ matches the definition of IEEE 754. */
+ exponent_t minExponent;
+
+ /* Number of bits in the significand. This includes the integer
+ bit. */
+ unsigned int precision;
+
+ /* True if arithmetic is supported. */
+ unsigned int arithmeticOK;
+ };
+
+ const fltSemantics APFloat::IEEEsingle = { 127, -126, 24, true };
+ const fltSemantics APFloat::IEEEdouble = { 1023, -1022, 53, true };
+ const fltSemantics APFloat::IEEEquad = { 16383, -16382, 113, true };
+ const fltSemantics APFloat::x87DoubleExtended = { 16383, -16382, 64, true };
+ const fltSemantics APFloat::Bogus = { 0, 0, 0, true };
+
+ // The PowerPC format consists of two doubles. It does not map cleanly
+ // onto the usual format above. For now only storage of constants of
+ // this type is supported, no arithmetic.
+ const fltSemantics APFloat::PPCDoubleDouble = { 1023, -1022, 106, false };
+
+ /* A tight upper bound on number of parts required to hold the value
+ pow(5, power) is
+
+ power * 815 / (351 * integerPartWidth) + 1
+
+ However, whilst the result may require only this many parts,
+ because we are multiplying two values to get it, the
+ multiplication may require an extra part with the excess part
+ being zero (consider the trivial case of 1 * 1, tcFullMultiply
+ requires two parts to hold the single-part result). So we add an
+ extra one to guarantee enough space whilst multiplying. */
+ const unsigned int maxExponent = 16383;
+ const unsigned int maxPrecision = 113;
+ const unsigned int maxPowerOfFiveExponent = maxExponent + maxPrecision - 1;
+ const unsigned int maxPowerOfFiveParts = 2 + ((maxPowerOfFiveExponent * 815)
+ / (351 * integerPartWidth));
+}
+
+/* A bunch of private, handy routines. */
+
+static inline unsigned int
+partCountForBits(unsigned int bits)
+{
+ return ((bits) + integerPartWidth - 1) / integerPartWidth;
+}
+
+/* Returns 0U-9U. Return values >= 10U are not digits. */
+static inline unsigned int
+decDigitValue(unsigned int c)
+{
+ return c - '0';
+}
+
+static unsigned int
+hexDigitValue(unsigned int c)
+{
+ unsigned int r;
+
+ r = c - '0';
+ if(r <= 9)
+ return r;
+
+ r = c - 'A';
+ if(r <= 5)
+ return r + 10;
+
+ r = c - 'a';
+ if(r <= 5)
+ return r + 10;
+
+ return -1U;
+}
+
+static inline void
+assertArithmeticOK(const llvm::fltSemantics &semantics) {
+ assert(semantics.arithmeticOK
+ && "Compile-time arithmetic does not support these semantics");
+}
+
+/* Return the value of a decimal exponent of the form
+ [+-]ddddddd.
+
+ If the exponent overflows, returns a large exponent with the
+ appropriate sign. */
+static int
+readExponent(const char *p)
+{
+ bool isNegative;
+ unsigned int absExponent;
+ const unsigned int overlargeExponent = 24000; /* FIXME. */
+
+ isNegative = (*p == '-');
+ if (*p == '-' || *p == '+')
+ p++;
+
+ absExponent = decDigitValue(*p++);
+ assert (absExponent < 10U);
+
+ for (;;) {
+ unsigned int value;
+
+ value = decDigitValue(*p);
+ if (value >= 10U)
+ break;
+
+ p++;
+ value += absExponent * 10;
+ if (absExponent >= overlargeExponent) {
+ absExponent = overlargeExponent;
+ break;
+ }
+ absExponent = value;
+ }
+
+ if (isNegative)
+ return -(int) absExponent;
+ else
+ return (int) absExponent;
+}
+
+/* This is ugly and needs cleaning up, but I don't immediately see
+ how whilst remaining safe. */
+static int
+totalExponent(const char *p, int exponentAdjustment)
+{
+ int unsignedExponent;
+ bool negative, overflow;
+ int exponent;
+
+ /* Move past the exponent letter and sign to the digits. */
+ p++;
+ negative = *p == '-';
+ if(*p == '-' || *p == '+')
+ p++;
+
+ unsignedExponent = 0;
+ overflow = false;
+ for(;;) {
+ unsigned int value;
+
+ value = decDigitValue(*p);
+ if(value >= 10U)
+ break;
+
+ p++;
+ unsignedExponent = unsignedExponent * 10 + value;
+ if(unsignedExponent > 65535)
+ overflow = true;
+ }
+
+ if(exponentAdjustment > 65535 || exponentAdjustment < -65536)
+ overflow = true;
+
+ if(!overflow) {
+ exponent = unsignedExponent;
+ if(negative)
+ exponent = -exponent;
+ exponent += exponentAdjustment;
+ if(exponent > 65535 || exponent < -65536)
+ overflow = true;
+ }
+
+ if(overflow)
+ exponent = negative ? -65536: 65535;
+
+ return exponent;
+}
+
+static const char *
+skipLeadingZeroesAndAnyDot(const char *p, const char **dot)
+{
+ *dot = 0;
+ while(*p == '0')
+ p++;
+
+ if(*p == '.') {
+ *dot = p++;
+ while(*p == '0')
+ p++;
+ }
+
+ return p;
+}
+
+/* Given a normal decimal floating point number of the form
+
+ dddd.dddd[eE][+-]ddd
+
+ where the decimal point and exponent are optional, fill out the
+ structure D. Exponent is appropriate if the significand is
+ treated as an integer, and normalizedExponent if the significand
+ is taken to have the decimal point after a single leading
+ non-zero digit.
+
+ If the value is zero, V->firstSigDigit points to a non-digit, and
+ the return exponent is zero.
+*/
+struct decimalInfo {
+ const char *firstSigDigit;
+ const char *lastSigDigit;
+ int exponent;
+ int normalizedExponent;
+};
+
+static void
+interpretDecimal(const char *p, decimalInfo *D)
+{
+ const char *dot;
+
+ p = skipLeadingZeroesAndAnyDot (p, &dot);
+
+ D->firstSigDigit = p;
+ D->exponent = 0;
+ D->normalizedExponent = 0;
+
+ for (;;) {
+ if (*p == '.') {
+ assert(dot == 0);
+ dot = p++;
+ }
+ if (decDigitValue(*p) >= 10U)
+ break;
+ p++;
+ }
+
+ /* If number is all zerooes accept any exponent. */
+ if (p != D->firstSigDigit) {
+ if (*p == 'e' || *p == 'E')
+ D->exponent = readExponent(p + 1);
+
+ /* Implied decimal point? */
+ if (!dot)
+ dot = p;
+
+ /* Drop insignificant trailing zeroes. */
+ do
+ do
+ p--;
+ while (*p == '0');
+ while (*p == '.');
+
+ /* Adjust the exponents for any decimal point. */
+ D->exponent += static_cast<exponent_t>((dot - p) - (dot > p));
+ D->normalizedExponent = (D->exponent +
+ static_cast<exponent_t>((p - D->firstSigDigit)
+ - (dot > D->firstSigDigit && dot < p)));
+ }
+
+ D->lastSigDigit = p;
+}
+
+/* Return the trailing fraction of a hexadecimal number.
+ DIGITVALUE is the first hex digit of the fraction, P points to
+ the next digit. */
+static lostFraction
+trailingHexadecimalFraction(const char *p, unsigned int digitValue)
+{
+ unsigned int hexDigit;
+
+ /* If the first trailing digit isn't 0 or 8 we can work out the
+ fraction immediately. */
+ if(digitValue > 8)
+ return lfMoreThanHalf;
+ else if(digitValue < 8 && digitValue > 0)
+ return lfLessThanHalf;
+
+ /* Otherwise we need to find the first non-zero digit. */
+ while(*p == '0')
+ p++;
+
+ hexDigit = hexDigitValue(*p);
+
+ /* If we ran off the end it is exactly zero or one-half, otherwise
+ a little more. */
+ if(hexDigit == -1U)
+ return digitValue == 0 ? lfExactlyZero: lfExactlyHalf;
+ else
+ return digitValue == 0 ? lfLessThanHalf: lfMoreThanHalf;
+}
+
+/* Return the fraction lost were a bignum truncated losing the least
+ significant BITS bits. */
+static lostFraction
+lostFractionThroughTruncation(const integerPart *parts,
+ unsigned int partCount,
+ unsigned int bits)
+{
+ unsigned int lsb;
+
+ lsb = APInt::tcLSB(parts, partCount);
+
+ /* Note this is guaranteed true if bits == 0, or LSB == -1U. */
+ if(bits <= lsb)
+ return lfExactlyZero;
+ if(bits == lsb + 1)
+ return lfExactlyHalf;
+ if(bits <= partCount * integerPartWidth
+ && APInt::tcExtractBit(parts, bits - 1))
+ return lfMoreThanHalf;
+
+ return lfLessThanHalf;
+}
+
+/* Shift DST right BITS bits noting lost fraction. */
+static lostFraction
+shiftRight(integerPart *dst, unsigned int parts, unsigned int bits)
+{
+ lostFraction lost_fraction;
+
+ lost_fraction = lostFractionThroughTruncation(dst, parts, bits);
+
+ APInt::tcShiftRight(dst, parts, bits);
+
+ return lost_fraction;
+}
+
+/* Combine the effect of two lost fractions. */
+static lostFraction
+combineLostFractions(lostFraction moreSignificant,
+ lostFraction lessSignificant)
+{
+ if(lessSignificant != lfExactlyZero) {
+ if(moreSignificant == lfExactlyZero)
+ moreSignificant = lfLessThanHalf;
+ else if(moreSignificant == lfExactlyHalf)
+ moreSignificant = lfMoreThanHalf;
+ }
+
+ return moreSignificant;
+}
+
+/* The error from the true value, in half-ulps, on multiplying two
+ floating point numbers, which differ from the value they
+ approximate by at most HUE1 and HUE2 half-ulps, is strictly less
+ than the returned value.
+
+ See "How to Read Floating Point Numbers Accurately" by William D
+ Clinger. */
+static unsigned int
+HUerrBound(bool inexactMultiply, unsigned int HUerr1, unsigned int HUerr2)
+{
+ assert(HUerr1 < 2 || HUerr2 < 2 || (HUerr1 + HUerr2 < 8));
+
+ if (HUerr1 + HUerr2 == 0)
+ return inexactMultiply * 2; /* <= inexactMultiply half-ulps. */
+ else
+ return inexactMultiply + 2 * (HUerr1 + HUerr2);
+}
+
+/* The number of ulps from the boundary (zero, or half if ISNEAREST)
+ when the least significant BITS are truncated. BITS cannot be
+ zero. */
+static integerPart
+ulpsFromBoundary(const integerPart *parts, unsigned int bits, bool isNearest)
+{
+ unsigned int count, partBits;
+ integerPart part, boundary;
+
+ assert (bits != 0);
+
+ bits--;
+ count = bits / integerPartWidth;
+ partBits = bits % integerPartWidth + 1;
+
+ part = parts[count] & (~(integerPart) 0 >> (integerPartWidth - partBits));
+
+ if (isNearest)
+ boundary = (integerPart) 1 << (partBits - 1);
+ else
+ boundary = 0;
+
+ if (count == 0) {
+ if (part - boundary <= boundary - part)
+ return part - boundary;
+ else
+ return boundary - part;
+ }
+
+ if (part == boundary) {
+ while (--count)
+ if (parts[count])
+ return ~(integerPart) 0; /* A lot. */
+
+ return parts[0];
+ } else if (part == boundary - 1) {
+ while (--count)
+ if (~parts[count])
+ return ~(integerPart) 0; /* A lot. */
+
+ return -parts[0];
+ }
+
+ return ~(integerPart) 0; /* A lot. */
+}
+
+/* Place pow(5, power) in DST, and return the number of parts used.
+ DST must be at least one part larger than size of the answer. */
+static unsigned int
+powerOf5(integerPart *dst, unsigned int power)
+{
+ static const integerPart firstEightPowers[] = { 1, 5, 25, 125, 625, 3125,
+ 15625, 78125 };
+ integerPart pow5s[maxPowerOfFiveParts * 2 + 5];
+ pow5s[0] = 78125 * 5;
+
+ unsigned int partsCount[16] = { 1 };
+ integerPart scratch[maxPowerOfFiveParts], *p1, *p2, *pow5;
+ unsigned int result;
+ assert(power <= maxExponent);
+
+ p1 = dst;
+ p2 = scratch;
+
+ *p1 = firstEightPowers[power & 7];
+ power >>= 3;
+
+ result = 1;
+ pow5 = pow5s;
+
+ for (unsigned int n = 0; power; power >>= 1, n++) {
+ unsigned int pc;
+
+ pc = partsCount[n];
+
+ /* Calculate pow(5,pow(2,n+3)) if we haven't yet. */
+ if (pc == 0) {
+ pc = partsCount[n - 1];
+ APInt::tcFullMultiply(pow5, pow5 - pc, pow5 - pc, pc, pc);
+ pc *= 2;
+ if (pow5[pc - 1] == 0)
+ pc--;
+ partsCount[n] = pc;
+ }
+
+ if (power & 1) {
+ integerPart *tmp;
+
+ APInt::tcFullMultiply(p2, p1, pow5, result, pc);
+ result += pc;
+ if (p2[result - 1] == 0)
+ result--;
+
+ /* Now result is in p1 with partsCount parts and p2 is scratch
+ space. */
+ tmp = p1, p1 = p2, p2 = tmp;
+ }
+
+ pow5 += pc;
+ }
+
+ if (p1 != dst)
+ APInt::tcAssign(dst, p1, result);
+
+ return result;
+}
+
+/* Zero at the end to avoid modular arithmetic when adding one; used
+ when rounding up during hexadecimal output. */
+static const char hexDigitsLower[] = "0123456789abcdef0";
+static const char hexDigitsUpper[] = "0123456789ABCDEF0";
+static const char infinityL[] = "infinity";
+static const char infinityU[] = "INFINITY";
+static const char NaNL[] = "nan";
+static const char NaNU[] = "NAN";
+
+/* Write out an integerPart in hexadecimal, starting with the most
+ significant nibble. Write out exactly COUNT hexdigits, return
+ COUNT. */
+static unsigned int
+partAsHex (char *dst, integerPart part, unsigned int count,
+ const char *hexDigitChars)
+{
+ unsigned int result = count;
+
+ assert (count != 0 && count <= integerPartWidth / 4);
+
+ part >>= (integerPartWidth - 4 * count);
+ while (count--) {
+ dst[count] = hexDigitChars[part & 0xf];
+ part >>= 4;
+ }
+
+ return result;
+}
+
+/* Write out an unsigned decimal integer. */
+static char *
+writeUnsignedDecimal (char *dst, unsigned int n)
+{
+ char buff[40], *p;
+
+ p = buff;
+ do
+ *p++ = '0' + n % 10;
+ while (n /= 10);
+
+ do
+ *dst++ = *--p;
+ while (p != buff);
+
+ return dst;
+}
+
+/* Write out a signed decimal integer. */
+static char *
+writeSignedDecimal (char *dst, int value)
+{
+ if (value < 0) {
+ *dst++ = '-';
+ dst = writeUnsignedDecimal(dst, -(unsigned) value);
+ } else
+ dst = writeUnsignedDecimal(dst, value);
+
+ return dst;
+}
+
+/* Constructors. */
+void
+APFloat::initialize(const fltSemantics *ourSemantics)
+{
+ unsigned int count;
+
+ semantics = ourSemantics;
+ count = partCount();
+ if(count > 1)
+ significand.parts = new integerPart[count];
+}
+
+void
+APFloat::freeSignificand()
+{
+ if(partCount() > 1)
+ delete [] significand.parts;
+}
+
+void
+APFloat::assign(const APFloat &rhs)
+{
+ assert(semantics == rhs.semantics);
+
+ sign = rhs.sign;
+ category = rhs.category;
+ exponent = rhs.exponent;
+ sign2 = rhs.sign2;
+ exponent2 = rhs.exponent2;
+ if(category == fcNormal || category == fcNaN)
+ copySignificand(rhs);
+}
+
+void
+APFloat::copySignificand(const APFloat &rhs)
+{
+ assert(category == fcNormal || category == fcNaN);
+ assert(rhs.partCount() >= partCount());
+
+ APInt::tcAssign(significandParts(), rhs.significandParts(),
+ partCount());
+}
+
+/* Make this number a NaN, with an arbitrary but deterministic value
+ for the significand. If double or longer, this is a signalling NaN,
+ which may not be ideal. If float, this is QNaN(0). */
+void
+APFloat::makeNaN(unsigned type)
+{
+ category = fcNaN;
+ // FIXME: Add double and long double support for QNaN(0).
+ if (semantics->precision == 24 && semantics->maxExponent == 127) {
+ type |= 0x7fc00000U;
+ type &= ~0x80000000U;
+ } else
+ type = ~0U;
+ APInt::tcSet(significandParts(), type, partCount());
+}
+
+APFloat &
+APFloat::operator=(const APFloat &rhs)
+{
+ if(this != &rhs) {
+ if(semantics != rhs.semantics) {
+ freeSignificand();
+ initialize(rhs.semantics);
+ }
+ assign(rhs);
+ }
+
+ return *this;
+}
+
+bool
+APFloat::bitwiseIsEqual(const APFloat &rhs) const {
+ if (this == &rhs)
+ return true;
+ if (semantics != rhs.semantics ||
+ category != rhs.category ||
+ sign != rhs.sign)
+ return false;
+ if (semantics==(const llvm::fltSemantics*)&PPCDoubleDouble &&
+ sign2 != rhs.sign2)
+ return false;
+ if (category==fcZero || category==fcInfinity)
+ return true;
+ else if (category==fcNormal && exponent!=rhs.exponent)
+ return false;
+ else if (semantics==(const llvm::fltSemantics*)&PPCDoubleDouble &&
+ exponent2!=rhs.exponent2)
+ return false;
+ else {
+ int i= partCount();
+ const integerPart* p=significandParts();
+ const integerPart* q=rhs.significandParts();
+ for (; i>0; i--, p++, q++) {
+ if (*p != *q)
+ return false;
+ }
+ return true;
+ }
+}
+
+APFloat::APFloat(const fltSemantics &ourSemantics, integerPart value)
+{
+ assertArithmeticOK(ourSemantics);
+ initialize(&ourSemantics);
+ sign = 0;
+ zeroSignificand();
+ exponent = ourSemantics.precision - 1;
+ significandParts()[0] = value;
+ normalize(rmNearestTiesToEven, lfExactlyZero);
+}
+
+APFloat::APFloat(const fltSemantics &ourSemantics,
+ fltCategory ourCategory, bool negative, unsigned type)
+{
+ assertArithmeticOK(ourSemantics);
+ initialize(&ourSemantics);
+ category = ourCategory;
+ sign = negative;
+ if (category == fcNormal)
+ category = fcZero;
+ else if (ourCategory == fcNaN)
+ makeNaN(type);
+}
+
+APFloat::APFloat(const fltSemantics &ourSemantics, const char *text)
+{
+ assertArithmeticOK(ourSemantics);
+ initialize(&ourSemantics);
+ convertFromString(text, rmNearestTiesToEven);
+}
+
+APFloat::APFloat(const APFloat &rhs)
+{
+ initialize(rhs.semantics);
+ assign(rhs);
+}
+
+APFloat::~APFloat()
+{
+ freeSignificand();
+}
+
+// Profile - This method 'profiles' an APFloat for use with FoldingSet.
+void APFloat::Profile(FoldingSetNodeID& ID) const {
+ ID.Add(bitcastToAPInt());
+}
+
+unsigned int
+APFloat::partCount() const
+{
+ return partCountForBits(semantics->precision + 1);
+}
+
+unsigned int
+APFloat::semanticsPrecision(const fltSemantics &semantics)
+{
+ return semantics.precision;
+}
+
+const integerPart *
+APFloat::significandParts() const
+{
+ return const_cast<APFloat *>(this)->significandParts();
+}
+
+integerPart *
+APFloat::significandParts()
+{
+ assert(category == fcNormal || category == fcNaN);
+
+ if(partCount() > 1)
+ return significand.parts;
+ else
+ return &significand.part;
+}
+
+void
+APFloat::zeroSignificand()
+{
+ category = fcNormal;
+ APInt::tcSet(significandParts(), 0, partCount());
+}
+
+/* Increment an fcNormal floating point number's significand. */
+void
+APFloat::incrementSignificand()
+{
+ integerPart carry;
+
+ carry = APInt::tcIncrement(significandParts(), partCount());
+
+ /* Our callers should never cause us to overflow. */
+ assert(carry == 0);
+}
+
+/* Add the significand of the RHS. Returns the carry flag. */
+integerPart
+APFloat::addSignificand(const APFloat &rhs)
+{
+ integerPart *parts;
+
+ parts = significandParts();
+
+ assert(semantics == rhs.semantics);
+ assert(exponent == rhs.exponent);
+
+ return APInt::tcAdd(parts, rhs.significandParts(), 0, partCount());
+}
+
+/* Subtract the significand of the RHS with a borrow flag. Returns
+ the borrow flag. */
+integerPart
+APFloat::subtractSignificand(const APFloat &rhs, integerPart borrow)
+{
+ integerPart *parts;
+
+ parts = significandParts();
+
+ assert(semantics == rhs.semantics);
+ assert(exponent == rhs.exponent);
+
+ return APInt::tcSubtract(parts, rhs.significandParts(), borrow,
+ partCount());
+}
+
+/* Multiply the significand of the RHS. If ADDEND is non-NULL, add it
+ on to the full-precision result of the multiplication. Returns the
+ lost fraction. */
+lostFraction
+APFloat::multiplySignificand(const APFloat &rhs, const APFloat *addend)
+{
+ unsigned int omsb; // One, not zero, based MSB.
+ unsigned int partsCount, newPartsCount, precision;
+ integerPart *lhsSignificand;
+ integerPart scratch[4];
+ integerPart *fullSignificand;
+ lostFraction lost_fraction;
+ bool ignored;
+
+ assert(semantics == rhs.semantics);
+
+ precision = semantics->precision;
+ newPartsCount = partCountForBits(precision * 2);
+
+ if(newPartsCount > 4)
+ fullSignificand = new integerPart[newPartsCount];
+ else
+ fullSignificand = scratch;
+
+ lhsSignificand = significandParts();
+ partsCount = partCount();
+
+ APInt::tcFullMultiply(fullSignificand, lhsSignificand,
+ rhs.significandParts(), partsCount, partsCount);
+
+ lost_fraction = lfExactlyZero;
+ omsb = APInt::tcMSB(fullSignificand, newPartsCount) + 1;
+ exponent += rhs.exponent;
+
+ if(addend) {
+ Significand savedSignificand = significand;
+ const fltSemantics *savedSemantics = semantics;
+ fltSemantics extendedSemantics;
+ opStatus status;
+ unsigned int extendedPrecision;
+
+ /* Normalize our MSB. */
+ extendedPrecision = precision + precision - 1;
+ if(omsb != extendedPrecision)
+ {
+ APInt::tcShiftLeft(fullSignificand, newPartsCount,
+ extendedPrecision - omsb);
+ exponent -= extendedPrecision - omsb;
+ }
+
+ /* Create new semantics. */
+ extendedSemantics = *semantics;
+ extendedSemantics.precision = extendedPrecision;
+
+ if(newPartsCount == 1)
+ significand.part = fullSignificand[0];
+ else
+ significand.parts = fullSignificand;
+ semantics = &extendedSemantics;
+
+ APFloat extendedAddend(*addend);
+ status = extendedAddend.convert(extendedSemantics, rmTowardZero, &ignored);
+ assert(status == opOK);
+ lost_fraction = addOrSubtractSignificand(extendedAddend, false);
+
+ /* Restore our state. */
+ if(newPartsCount == 1)
+ fullSignificand[0] = significand.part;
+ significand = savedSignificand;
+ semantics = savedSemantics;
+
+ omsb = APInt::tcMSB(fullSignificand, newPartsCount) + 1;
+ }
+
+ exponent -= (precision - 1);
+
+ if(omsb > precision) {
+ unsigned int bits, significantParts;
+ lostFraction lf;
+
+ bits = omsb - precision;
+ significantParts = partCountForBits(omsb);
+ lf = shiftRight(fullSignificand, significantParts, bits);
+ lost_fraction = combineLostFractions(lf, lost_fraction);
+ exponent += bits;
+ }
+
+ APInt::tcAssign(lhsSignificand, fullSignificand, partsCount);
+
+ if(newPartsCount > 4)
+ delete [] fullSignificand;
+
+ return lost_fraction;
+}
+
+/* Multiply the significands of LHS and RHS to DST. */
+lostFraction
+APFloat::divideSignificand(const APFloat &rhs)
+{
+ unsigned int bit, i, partsCount;
+ const integerPart *rhsSignificand;
+ integerPart *lhsSignificand, *dividend, *divisor;
+ integerPart scratch[4];
+ lostFraction lost_fraction;
+
+ assert(semantics == rhs.semantics);
+
+ lhsSignificand = significandParts();
+ rhsSignificand = rhs.significandParts();
+ partsCount = partCount();
+
+ if(partsCount > 2)
+ dividend = new integerPart[partsCount * 2];
+ else
+ dividend = scratch;
+
+ divisor = dividend + partsCount;
+
+ /* Copy the dividend and divisor as they will be modified in-place. */
+ for(i = 0; i < partsCount; i++) {
+ dividend[i] = lhsSignificand[i];
+ divisor[i] = rhsSignificand[i];
+ lhsSignificand[i] = 0;
+ }
+
+ exponent -= rhs.exponent;
+
+ unsigned int precision = semantics->precision;
+
+ /* Normalize the divisor. */
+ bit = precision - APInt::tcMSB(divisor, partsCount) - 1;
+ if(bit) {
+ exponent += bit;
+ APInt::tcShiftLeft(divisor, partsCount, bit);
+ }
+
+ /* Normalize the dividend. */
+ bit = precision - APInt::tcMSB(dividend, partsCount) - 1;
+ if(bit) {
+ exponent -= bit;
+ APInt::tcShiftLeft(dividend, partsCount, bit);
+ }
+
+ /* Ensure the dividend >= divisor initially for the loop below.
+ Incidentally, this means that the division loop below is
+ guaranteed to set the integer bit to one. */
+ if(APInt::tcCompare(dividend, divisor, partsCount) < 0) {
+ exponent--;
+ APInt::tcShiftLeft(dividend, partsCount, 1);
+ assert(APInt::tcCompare(dividend, divisor, partsCount) >= 0);
+ }
+
+ /* Long division. */
+ for(bit = precision; bit; bit -= 1) {
+ if(APInt::tcCompare(dividend, divisor, partsCount) >= 0) {
+ APInt::tcSubtract(dividend, divisor, 0, partsCount);
+ APInt::tcSetBit(lhsSignificand, bit - 1);
+ }
+
+ APInt::tcShiftLeft(dividend, partsCount, 1);
+ }
+
+ /* Figure out the lost fraction. */
+ int cmp = APInt::tcCompare(dividend, divisor, partsCount);
+
+ if(cmp > 0)
+ lost_fraction = lfMoreThanHalf;
+ else if(cmp == 0)
+ lost_fraction = lfExactlyHalf;
+ else if(APInt::tcIsZero(dividend, partsCount))
+ lost_fraction = lfExactlyZero;
+ else
+ lost_fraction = lfLessThanHalf;
+
+ if(partsCount > 2)
+ delete [] dividend;
+
+ return lost_fraction;
+}
+
+unsigned int
+APFloat::significandMSB() const
+{
+ return APInt::tcMSB(significandParts(), partCount());
+}
+
+unsigned int
+APFloat::significandLSB() const
+{
+ return APInt::tcLSB(significandParts(), partCount());
+}
+
+/* Note that a zero result is NOT normalized to fcZero. */
+lostFraction
+APFloat::shiftSignificandRight(unsigned int bits)
+{
+ /* Our exponent should not overflow. */
+ assert((exponent_t) (exponent + bits) >= exponent);
+
+ exponent += bits;
+
+ return shiftRight(significandParts(), partCount(), bits);
+}
+
+/* Shift the significand left BITS bits, subtract BITS from its exponent. */
+void
+APFloat::shiftSignificandLeft(unsigned int bits)
+{
+ assert(bits < semantics->precision);
+
+ if(bits) {
+ unsigned int partsCount = partCount();
+
+ APInt::tcShiftLeft(significandParts(), partsCount, bits);
+ exponent -= bits;
+
+ assert(!APInt::tcIsZero(significandParts(), partsCount));
+ }
+}
+
+APFloat::cmpResult
+APFloat::compareAbsoluteValue(const APFloat &rhs) const
+{
+ int compare;
+
+ assert(semantics == rhs.semantics);
+ assert(category == fcNormal);
+ assert(rhs.category == fcNormal);
+
+ compare = exponent - rhs.exponent;
+
+ /* If exponents are equal, do an unsigned bignum comparison of the
+ significands. */
+ if(compare == 0)
+ compare = APInt::tcCompare(significandParts(), rhs.significandParts(),
+ partCount());
+
+ if(compare > 0)
+ return cmpGreaterThan;
+ else if(compare < 0)
+ return cmpLessThan;
+ else
+ return cmpEqual;
+}
+
+/* Handle overflow. Sign is preserved. We either become infinity or
+ the largest finite number. */
+APFloat::opStatus
+APFloat::handleOverflow(roundingMode rounding_mode)
+{
+ /* Infinity? */
+ if(rounding_mode == rmNearestTiesToEven
+ || rounding_mode == rmNearestTiesToAway
+ || (rounding_mode == rmTowardPositive && !sign)
+ || (rounding_mode == rmTowardNegative && sign))
+ {
+ category = fcInfinity;
+ return (opStatus) (opOverflow | opInexact);
+ }
+
+ /* Otherwise we become the largest finite number. */
+ category = fcNormal;
+ exponent = semantics->maxExponent;
+ APInt::tcSetLeastSignificantBits(significandParts(), partCount(),
+ semantics->precision);
+
+ return opInexact;
+}
+
+/* Returns TRUE if, when truncating the current number, with BIT the
+ new LSB, with the given lost fraction and rounding mode, the result
+ would need to be rounded away from zero (i.e., by increasing the
+ signficand). This routine must work for fcZero of both signs, and
+ fcNormal numbers. */
+bool
+APFloat::roundAwayFromZero(roundingMode rounding_mode,
+ lostFraction lost_fraction,
+ unsigned int bit) const
+{
+ /* NaNs and infinities should not have lost fractions. */
+ assert(category == fcNormal || category == fcZero);
+
+ /* Current callers never pass this so we don't handle it. */
+ assert(lost_fraction != lfExactlyZero);
+
+ switch (rounding_mode) {
+ default:
+ assert(0);
+
+ case rmNearestTiesToAway:
+ return lost_fraction == lfExactlyHalf || lost_fraction == lfMoreThanHalf;
+
+ case rmNearestTiesToEven:
+ if(lost_fraction == lfMoreThanHalf)
+ return true;
+
+ /* Our zeroes don't have a significand to test. */
+ if(lost_fraction == lfExactlyHalf && category != fcZero)
+ return APInt::tcExtractBit(significandParts(), bit);
+
+ return false;
+
+ case rmTowardZero:
+ return false;
+
+ case rmTowardPositive:
+ return sign == false;
+
+ case rmTowardNegative:
+ return sign == true;
+ }
+}
+
+APFloat::opStatus
+APFloat::normalize(roundingMode rounding_mode,
+ lostFraction lost_fraction)
+{
+ unsigned int omsb; /* One, not zero, based MSB. */
+ int exponentChange;
+
+ if(category != fcNormal)
+ return opOK;
+
+ /* Before rounding normalize the exponent of fcNormal numbers. */
+ omsb = significandMSB() + 1;
+
+ if(omsb) {
+ /* OMSB is numbered from 1. We want to place it in the integer
+ bit numbered PRECISON if possible, with a compensating change in
+ the exponent. */
+ exponentChange = omsb - semantics->precision;
+
+ /* If the resulting exponent is too high, overflow according to
+ the rounding mode. */
+ if(exponent + exponentChange > semantics->maxExponent)
+ return handleOverflow(rounding_mode);
+
+ /* Subnormal numbers have exponent minExponent, and their MSB
+ is forced based on that. */
+ if(exponent + exponentChange < semantics->minExponent)
+ exponentChange = semantics->minExponent - exponent;
+
+ /* Shifting left is easy as we don't lose precision. */
+ if(exponentChange < 0) {
+ assert(lost_fraction == lfExactlyZero);
+
+ shiftSignificandLeft(-exponentChange);
+
+ return opOK;
+ }
+
+ if(exponentChange > 0) {
+ lostFraction lf;
+
+ /* Shift right and capture any new lost fraction. */
+ lf = shiftSignificandRight(exponentChange);
+
+ lost_fraction = combineLostFractions(lf, lost_fraction);
+
+ /* Keep OMSB up-to-date. */
+ if(omsb > (unsigned) exponentChange)
+ omsb -= exponentChange;
+ else
+ omsb = 0;
+ }
+ }
+
+ /* Now round the number according to rounding_mode given the lost
+ fraction. */
+
+ /* As specified in IEEE 754, since we do not trap we do not report
+ underflow for exact results. */
+ if(lost_fraction == lfExactlyZero) {
+ /* Canonicalize zeroes. */
+ if(omsb == 0)
+ category = fcZero;
+
+ return opOK;
+ }
+
+ /* Increment the significand if we're rounding away from zero. */
+ if(roundAwayFromZero(rounding_mode, lost_fraction, 0)) {
+ if(omsb == 0)
+ exponent = semantics->minExponent;
+
+ incrementSignificand();
+ omsb = significandMSB() + 1;
+
+ /* Did the significand increment overflow? */
+ if(omsb == (unsigned) semantics->precision + 1) {
+ /* Renormalize by incrementing the exponent and shifting our
+ significand right one. However if we already have the
+ maximum exponent we overflow to infinity. */
+ if(exponent == semantics->maxExponent) {
+ category = fcInfinity;
+
+ return (opStatus) (opOverflow | opInexact);
+ }
+
+ shiftSignificandRight(1);
+
+ return opInexact;
+ }
+ }
+
+ /* The normal case - we were and are not denormal, and any
+ significand increment above didn't overflow. */
+ if(omsb == semantics->precision)
+ return opInexact;
+
+ /* We have a non-zero denormal. */
+ assert(omsb < semantics->precision);
+
+ /* Canonicalize zeroes. */
+ if(omsb == 0)
+ category = fcZero;
+
+ /* The fcZero case is a denormal that underflowed to zero. */
+ return (opStatus) (opUnderflow | opInexact);
+}
+
+APFloat::opStatus
+APFloat::addOrSubtractSpecials(const APFloat &rhs, bool subtract)
+{
+ switch (convolve(category, rhs.category)) {
+ default:
+ assert(0);
+
+ case convolve(fcNaN, fcZero):
+ case convolve(fcNaN, fcNormal):
+ case convolve(fcNaN, fcInfinity):
+ case convolve(fcNaN, fcNaN):
+ case convolve(fcNormal, fcZero):
+ case convolve(fcInfinity, fcNormal):
+ case convolve(fcInfinity, fcZero):
+ return opOK;
+
+ case convolve(fcZero, fcNaN):
+ case convolve(fcNormal, fcNaN):
+ case convolve(fcInfinity, fcNaN):
+ category = fcNaN;
+ copySignificand(rhs);
+ return opOK;
+
+ case convolve(fcNormal, fcInfinity):
+ case convolve(fcZero, fcInfinity):
+ category = fcInfinity;
+ sign = rhs.sign ^ subtract;
+ return opOK;
+
+ case convolve(fcZero, fcNormal):
+ assign(rhs);
+ sign = rhs.sign ^ subtract;
+ return opOK;
+
+ case convolve(fcZero, fcZero):
+ /* Sign depends on rounding mode; handled by caller. */
+ return opOK;
+
+ case convolve(fcInfinity, fcInfinity):
+ /* Differently signed infinities can only be validly
+ subtracted. */
+ if(((sign ^ rhs.sign)!=0) != subtract) {
+ makeNaN();
+ return opInvalidOp;
+ }
+
+ return opOK;
+
+ case convolve(fcNormal, fcNormal):
+ return opDivByZero;
+ }
+}
+
+/* Add or subtract two normal numbers. */
+lostFraction
+APFloat::addOrSubtractSignificand(const APFloat &rhs, bool subtract)
+{
+ integerPart carry;
+ lostFraction lost_fraction;
+ int bits;
+
+ /* Determine if the operation on the absolute values is effectively
+ an addition or subtraction. */
+ subtract ^= (sign ^ rhs.sign) ? true : false;
+
+ /* Are we bigger exponent-wise than the RHS? */
+ bits = exponent - rhs.exponent;
+
+ /* Subtraction is more subtle than one might naively expect. */
+ if(subtract) {
+ APFloat temp_rhs(rhs);
+ bool reverse;
+
+ if (bits == 0) {
+ reverse = compareAbsoluteValue(temp_rhs) == cmpLessThan;
+ lost_fraction = lfExactlyZero;
+ } else if (bits > 0) {
+ lost_fraction = temp_rhs.shiftSignificandRight(bits - 1);
+ shiftSignificandLeft(1);
+ reverse = false;
+ } else {
+ lost_fraction = shiftSignificandRight(-bits - 1);
+ temp_rhs.shiftSignificandLeft(1);
+ reverse = true;
+ }
+
+ if (reverse) {
+ carry = temp_rhs.subtractSignificand
+ (*this, lost_fraction != lfExactlyZero);
+ copySignificand(temp_rhs);
+ sign = !sign;
+ } else {
+ carry = subtractSignificand
+ (temp_rhs, lost_fraction != lfExactlyZero);
+ }
+
+ /* Invert the lost fraction - it was on the RHS and
+ subtracted. */
+ if(lost_fraction == lfLessThanHalf)
+ lost_fraction = lfMoreThanHalf;
+ else if(lost_fraction == lfMoreThanHalf)
+ lost_fraction = lfLessThanHalf;
+
+ /* The code above is intended to ensure that no borrow is
+ necessary. */
+ assert(!carry);
+ } else {
+ if(bits > 0) {
+ APFloat temp_rhs(rhs);
+
+ lost_fraction = temp_rhs.shiftSignificandRight(bits);
+ carry = addSignificand(temp_rhs);
+ } else {
+ lost_fraction = shiftSignificandRight(-bits);
+ carry = addSignificand(rhs);
+ }
+
+ /* We have a guard bit; generating a carry cannot happen. */
+ assert(!carry);
+ }
+
+ return lost_fraction;
+}
+
+APFloat::opStatus
+APFloat::multiplySpecials(const APFloat &rhs)
+{
+ switch (convolve(category, rhs.category)) {
+ default:
+ assert(0);
+
+ case convolve(fcNaN, fcZero):
+ case convolve(fcNaN, fcNormal):
+ case convolve(fcNaN, fcInfinity):
+ case convolve(fcNaN, fcNaN):
+ return opOK;
+
+ case convolve(fcZero, fcNaN):
+ case convolve(fcNormal, fcNaN):
+ case convolve(fcInfinity, fcNaN):
+ category = fcNaN;
+ copySignificand(rhs);
+ return opOK;
+
+ case convolve(fcNormal, fcInfinity):
+ case convolve(fcInfinity, fcNormal):
+ case convolve(fcInfinity, fcInfinity):
+ category = fcInfinity;
+ return opOK;
+
+ case convolve(fcZero, fcNormal):
+ case convolve(fcNormal, fcZero):
+ case convolve(fcZero, fcZero):
+ category = fcZero;
+ return opOK;
+
+ case convolve(fcZero, fcInfinity):
+ case convolve(fcInfinity, fcZero):
+ makeNaN();
+ return opInvalidOp;
+
+ case convolve(fcNormal, fcNormal):
+ return opOK;
+ }
+}
+
+APFloat::opStatus
+APFloat::divideSpecials(const APFloat &rhs)
+{
+ switch (convolve(category, rhs.category)) {
+ default:
+ assert(0);
+
+ case convolve(fcNaN, fcZero):
+ case convolve(fcNaN, fcNormal):
+ case convolve(fcNaN, fcInfinity):
+ case convolve(fcNaN, fcNaN):
+ case convolve(fcInfinity, fcZero):
+ case convolve(fcInfinity, fcNormal):
+ case convolve(fcZero, fcInfinity):
+ case convolve(fcZero, fcNormal):
+ return opOK;
+
+ case convolve(fcZero, fcNaN):
+ case convolve(fcNormal, fcNaN):
+ case convolve(fcInfinity, fcNaN):
+ category = fcNaN;
+ copySignificand(rhs);
+ return opOK;
+
+ case convolve(fcNormal, fcInfinity):
+ category = fcZero;
+ return opOK;
+
+ case convolve(fcNormal, fcZero):
+ category = fcInfinity;
+ return opDivByZero;
+
+ case convolve(fcInfinity, fcInfinity):
+ case convolve(fcZero, fcZero):
+ makeNaN();
+ return opInvalidOp;
+
+ case convolve(fcNormal, fcNormal):
+ return opOK;
+ }
+}
+
+APFloat::opStatus
+APFloat::modSpecials(const APFloat &rhs)
+{
+ switch (convolve(category, rhs.category)) {
+ default:
+ assert(0);
+
+ case convolve(fcNaN, fcZero):
+ case convolve(fcNaN, fcNormal):
+ case convolve(fcNaN, fcInfinity):
+ case convolve(fcNaN, fcNaN):
+ case convolve(fcZero, fcInfinity):
+ case convolve(fcZero, fcNormal):
+ case convolve(fcNormal, fcInfinity):
+ return opOK;
+
+ case convolve(fcZero, fcNaN):
+ case convolve(fcNormal, fcNaN):
+ case convolve(fcInfinity, fcNaN):
+ category = fcNaN;
+ copySignificand(rhs);
+ return opOK;
+
+ case convolve(fcNormal, fcZero):
+ case convolve(fcInfinity, fcZero):
+ case convolve(fcInfinity, fcNormal):
+ case convolve(fcInfinity, fcInfinity):
+ case convolve(fcZero, fcZero):
+ makeNaN();
+ return opInvalidOp;
+
+ case convolve(fcNormal, fcNormal):
+ return opOK;
+ }
+}
+
+/* Change sign. */
+void
+APFloat::changeSign()
+{
+ /* Look mummy, this one's easy. */
+ sign = !sign;
+}
+
+void
+APFloat::clearSign()
+{
+ /* So is this one. */
+ sign = 0;
+}
+
+void
+APFloat::copySign(const APFloat &rhs)
+{
+ /* And this one. */
+ sign = rhs.sign;
+}
+
+/* Normalized addition or subtraction. */
+APFloat::opStatus
+APFloat::addOrSubtract(const APFloat &rhs, roundingMode rounding_mode,
+ bool subtract)
+{
+ opStatus fs;
+
+ assertArithmeticOK(*semantics);
+
+ fs = addOrSubtractSpecials(rhs, subtract);
+
+ /* This return code means it was not a simple case. */
+ if(fs == opDivByZero) {
+ lostFraction lost_fraction;
+
+ lost_fraction = addOrSubtractSignificand(rhs, subtract);
+ fs = normalize(rounding_mode, lost_fraction);
+
+ /* Can only be zero if we lost no fraction. */
+ assert(category != fcZero || lost_fraction == lfExactlyZero);
+ }
+
+ /* If two numbers add (exactly) to zero, IEEE 754 decrees it is a
+ positive zero unless rounding to minus infinity, except that
+ adding two like-signed zeroes gives that zero. */
+ if(category == fcZero) {
+ if(rhs.category != fcZero || (sign == rhs.sign) == subtract)
+ sign = (rounding_mode == rmTowardNegative);
+ }
+
+ return fs;
+}
+
+/* Normalized addition. */
+APFloat::opStatus
+APFloat::add(const APFloat &rhs, roundingMode rounding_mode)
+{
+ return addOrSubtract(rhs, rounding_mode, false);
+}
+
+/* Normalized subtraction. */
+APFloat::opStatus
+APFloat::subtract(const APFloat &rhs, roundingMode rounding_mode)
+{
+ return addOrSubtract(rhs, rounding_mode, true);
+}
+
+/* Normalized multiply. */
+APFloat::opStatus
+APFloat::multiply(const APFloat &rhs, roundingMode rounding_mode)
+{
+ opStatus fs;
+
+ assertArithmeticOK(*semantics);
+ sign ^= rhs.sign;
+ fs = multiplySpecials(rhs);
+
+ if(category == fcNormal) {
+ lostFraction lost_fraction = multiplySignificand(rhs, 0);
+ fs = normalize(rounding_mode, lost_fraction);
+ if(lost_fraction != lfExactlyZero)
+ fs = (opStatus) (fs | opInexact);
+ }
+
+ return fs;
+}
+
+/* Normalized divide. */
+APFloat::opStatus
+APFloat::divide(const APFloat &rhs, roundingMode rounding_mode)
+{
+ opStatus fs;
+
+ assertArithmeticOK(*semantics);
+ sign ^= rhs.sign;
+ fs = divideSpecials(rhs);
+
+ if(category == fcNormal) {
+ lostFraction lost_fraction = divideSignificand(rhs);
+ fs = normalize(rounding_mode, lost_fraction);
+ if(lost_fraction != lfExactlyZero)
+ fs = (opStatus) (fs | opInexact);
+ }
+
+ return fs;
+}
+
+/* Normalized remainder. This is not currently correct in all cases. */
+APFloat::opStatus
+APFloat::remainder(const APFloat &rhs)
+{
+ opStatus fs;
+ APFloat V = *this;
+ unsigned int origSign = sign;
+
+ assertArithmeticOK(*semantics);
+ fs = V.divide(rhs, rmNearestTiesToEven);
+ if (fs == opDivByZero)
+ return fs;
+
+ int parts = partCount();
+ integerPart *x = new integerPart[parts];
+ bool ignored;
+ fs = V.convertToInteger(x, parts * integerPartWidth, true,
+ rmNearestTiesToEven, &ignored);
+ if (fs==opInvalidOp)
+ return fs;
+
+ fs = V.convertFromZeroExtendedInteger(x, parts * integerPartWidth, true,
+ rmNearestTiesToEven);
+ assert(fs==opOK); // should always work
+
+ fs = V.multiply(rhs, rmNearestTiesToEven);
+ assert(fs==opOK || fs==opInexact); // should not overflow or underflow
+
+ fs = subtract(V, rmNearestTiesToEven);
+ assert(fs==opOK || fs==opInexact); // likewise
+
+ if (isZero())
+ sign = origSign; // IEEE754 requires this
+ delete[] x;
+ return fs;
+}
+
+/* Normalized llvm frem (C fmod).
+ This is not currently correct in all cases. */
+APFloat::opStatus
+APFloat::mod(const APFloat &rhs, roundingMode rounding_mode)
+{
+ opStatus fs;
+ assertArithmeticOK(*semantics);
+ fs = modSpecials(rhs);
+
+ if (category == fcNormal && rhs.category == fcNormal) {
+ APFloat V = *this;
+ unsigned int origSign = sign;
+
+ fs = V.divide(rhs, rmNearestTiesToEven);
+ if (fs == opDivByZero)
+ return fs;
+
+ int parts = partCount();
+ integerPart *x = new integerPart[parts];
+ bool ignored;
+ fs = V.convertToInteger(x, parts * integerPartWidth, true,
+ rmTowardZero, &ignored);
+ if (fs==opInvalidOp)
+ return fs;
+
+ fs = V.convertFromZeroExtendedInteger(x, parts * integerPartWidth, true,
+ rmNearestTiesToEven);
+ assert(fs==opOK); // should always work
+
+ fs = V.multiply(rhs, rounding_mode);
+ assert(fs==opOK || fs==opInexact); // should not overflow or underflow
+
+ fs = subtract(V, rounding_mode);
+ assert(fs==opOK || fs==opInexact); // likewise
+
+ if (isZero())
+ sign = origSign; // IEEE754 requires this
+ delete[] x;
+ }
+ return fs;
+}
+
+/* Normalized fused-multiply-add. */
+APFloat::opStatus
+APFloat::fusedMultiplyAdd(const APFloat &multiplicand,
+ const APFloat &addend,
+ roundingMode rounding_mode)
+{
+ opStatus fs;
+
+ assertArithmeticOK(*semantics);
+
+ /* Post-multiplication sign, before addition. */
+ sign ^= multiplicand.sign;
+
+ /* If and only if all arguments are normal do we need to do an
+ extended-precision calculation. */
+ if(category == fcNormal
+ && multiplicand.category == fcNormal
+ && addend.category == fcNormal) {
+ lostFraction lost_fraction;
+
+ lost_fraction = multiplySignificand(multiplicand, &addend);
+ fs = normalize(rounding_mode, lost_fraction);
+ if(lost_fraction != lfExactlyZero)
+ fs = (opStatus) (fs | opInexact);
+
+ /* If two numbers add (exactly) to zero, IEEE 754 decrees it is a
+ positive zero unless rounding to minus infinity, except that
+ adding two like-signed zeroes gives that zero. */
+ if(category == fcZero && sign != addend.sign)
+ sign = (rounding_mode == rmTowardNegative);
+ } else {
+ fs = multiplySpecials(multiplicand);
+
+ /* FS can only be opOK or opInvalidOp. There is no more work
+ to do in the latter case. The IEEE-754R standard says it is
+ implementation-defined in this case whether, if ADDEND is a
+ quiet NaN, we raise invalid op; this implementation does so.
+
+ If we need to do the addition we can do so with normal
+ precision. */
+ if(fs == opOK)
+ fs = addOrSubtract(addend, rounding_mode, false);
+ }
+
+ return fs;
+}
+
+/* Comparison requires normalized numbers. */
+APFloat::cmpResult
+APFloat::compare(const APFloat &rhs) const
+{
+ cmpResult result;
+
+ assertArithmeticOK(*semantics);
+ assert(semantics == rhs.semantics);
+
+ switch (convolve(category, rhs.category)) {
+ default:
+ assert(0);
+
+ case convolve(fcNaN, fcZero):
+ case convolve(fcNaN, fcNormal):
+ case convolve(fcNaN, fcInfinity):
+ case convolve(fcNaN, fcNaN):
+ case convolve(fcZero, fcNaN):
+ case convolve(fcNormal, fcNaN):
+ case convolve(fcInfinity, fcNaN):
+ return cmpUnordered;
+
+ case convolve(fcInfinity, fcNormal):
+ case convolve(fcInfinity, fcZero):
+ case convolve(fcNormal, fcZero):
+ if(sign)
+ return cmpLessThan;
+ else
+ return cmpGreaterThan;
+
+ case convolve(fcNormal, fcInfinity):
+ case convolve(fcZero, fcInfinity):
+ case convolve(fcZero, fcNormal):
+ if(rhs.sign)
+ return cmpGreaterThan;
+ else
+ return cmpLessThan;
+
+ case convolve(fcInfinity, fcInfinity):
+ if(sign == rhs.sign)
+ return cmpEqual;
+ else if(sign)
+ return cmpLessThan;
+ else
+ return cmpGreaterThan;
+
+ case convolve(fcZero, fcZero):
+ return cmpEqual;
+
+ case convolve(fcNormal, fcNormal):
+ break;
+ }
+
+ /* Two normal numbers. Do they have the same sign? */
+ if(sign != rhs.sign) {
+ if(sign)
+ result = cmpLessThan;
+ else
+ result = cmpGreaterThan;
+ } else {
+ /* Compare absolute values; invert result if negative. */
+ result = compareAbsoluteValue(rhs);
+
+ if(sign) {
+ if(result == cmpLessThan)
+ result = cmpGreaterThan;
+ else if(result == cmpGreaterThan)
+ result = cmpLessThan;
+ }
+ }
+
+ return result;
+}
+
+/// APFloat::convert - convert a value of one floating point type to another.
+/// The return value corresponds to the IEEE754 exceptions. *losesInfo
+/// records whether the transformation lost information, i.e. whether
+/// converting the result back to the original type will produce the
+/// original value (this is almost the same as return value==fsOK, but there
+/// are edge cases where this is not so).
+
+APFloat::opStatus
+APFloat::convert(const fltSemantics &toSemantics,
+ roundingMode rounding_mode, bool *losesInfo)
+{
+ lostFraction lostFraction;
+ unsigned int newPartCount, oldPartCount;
+ opStatus fs;
+
+ assertArithmeticOK(*semantics);
+ assertArithmeticOK(toSemantics);
+ lostFraction = lfExactlyZero;
+ newPartCount = partCountForBits(toSemantics.precision + 1);
+ oldPartCount = partCount();
+
+ /* Handle storage complications. If our new form is wider,
+ re-allocate our bit pattern into wider storage. If it is
+ narrower, we ignore the excess parts, but if narrowing to a
+ single part we need to free the old storage.
+ Be careful not to reference significandParts for zeroes
+ and infinities, since it aborts. */
+ if (newPartCount > oldPartCount) {
+ integerPart *newParts;
+ newParts = new integerPart[newPartCount];
+ APInt::tcSet(newParts, 0, newPartCount);
+ if (category==fcNormal || category==fcNaN)
+ APInt::tcAssign(newParts, significandParts(), oldPartCount);
+ freeSignificand();
+ significand.parts = newParts;
+ } else if (newPartCount < oldPartCount) {
+ /* Capture any lost fraction through truncation of parts so we get
+ correct rounding whilst normalizing. */
+ if (category==fcNormal)
+ lostFraction = lostFractionThroughTruncation
+ (significandParts(), oldPartCount, toSemantics.precision);
+ if (newPartCount == 1) {
+ integerPart newPart = 0;
+ if (category==fcNormal || category==fcNaN)
+ newPart = significandParts()[0];
+ freeSignificand();
+ significand.part = newPart;
+ }
+ }
+
+ if(category == fcNormal) {
+ /* Re-interpret our bit-pattern. */
+ exponent += toSemantics.precision - semantics->precision;
+ semantics = &toSemantics;
+ fs = normalize(rounding_mode, lostFraction);
+ *losesInfo = (fs != opOK);
+ } else if (category == fcNaN) {
+ int shift = toSemantics.precision - semantics->precision;
+ // Do this now so significandParts gets the right answer
+ const fltSemantics *oldSemantics = semantics;
+ semantics = &toSemantics;
+ *losesInfo = false;
+ // No normalization here, just truncate
+ if (shift>0)
+ APInt::tcShiftLeft(significandParts(), newPartCount, shift);
+ else if (shift < 0) {
+ unsigned ushift = -shift;
+ // Figure out if we are losing information. This happens
+ // if are shifting out something other than 0s, or if the x87 long
+ // double input did not have its integer bit set (pseudo-NaN), or if the
+ // x87 long double input did not have its QNan bit set (because the x87
+ // hardware sets this bit when converting a lower-precision NaN to
+ // x87 long double).
+ if (APInt::tcLSB(significandParts(), newPartCount) < ushift)
+ *losesInfo = true;
+ if (oldSemantics == &APFloat::x87DoubleExtended &&
+ (!(*significandParts() & 0x8000000000000000ULL) ||
+ !(*significandParts() & 0x4000000000000000ULL)))
+ *losesInfo = true;
+ APInt::tcShiftRight(significandParts(), newPartCount, ushift);
+ }
+ // gcc forces the Quiet bit on, which means (float)(double)(float_sNan)
+ // does not give you back the same bits. This is dubious, and we
+ // don't currently do it. You're really supposed to get
+ // an invalid operation signal at runtime, but nobody does that.
+ fs = opOK;
+ } else {
+ semantics = &toSemantics;
+ fs = opOK;
+ *losesInfo = false;
+ }
+
+ return fs;
+}
+
+/* Convert a floating point number to an integer according to the
+ rounding mode. If the rounded integer value is out of range this
+ returns an invalid operation exception and the contents of the
+ destination parts are unspecified. If the rounded value is in
+ range but the floating point number is not the exact integer, the C
+ standard doesn't require an inexact exception to be raised. IEEE
+ 854 does require it so we do that.
+
+ Note that for conversions to integer type the C standard requires
+ round-to-zero to always be used. */
+APFloat::opStatus
+APFloat::convertToSignExtendedInteger(integerPart *parts, unsigned int width,
+ bool isSigned,
+ roundingMode rounding_mode,
+ bool *isExact) const
+{
+ lostFraction lost_fraction;
+ const integerPart *src;
+ unsigned int dstPartsCount, truncatedBits;
+
+ assertArithmeticOK(*semantics);
+
+ *isExact = false;
+
+ /* Handle the three special cases first. */
+ if(category == fcInfinity || category == fcNaN)
+ return opInvalidOp;
+
+ dstPartsCount = partCountForBits(width);
+
+ if(category == fcZero) {
+ APInt::tcSet(parts, 0, dstPartsCount);
+ // Negative zero can't be represented as an int.
+ *isExact = !sign;
+ return opOK;
+ }
+
+ src = significandParts();
+
+ /* Step 1: place our absolute value, with any fraction truncated, in
+ the destination. */
+ if (exponent < 0) {
+ /* Our absolute value is less than one; truncate everything. */
+ APInt::tcSet(parts, 0, dstPartsCount);
+ /* For exponent -1 the integer bit represents .5, look at that.
+ For smaller exponents leftmost truncated bit is 0. */
+ truncatedBits = semantics->precision -1U - exponent;
+ } else {
+ /* We want the most significant (exponent + 1) bits; the rest are
+ truncated. */
+ unsigned int bits = exponent + 1U;
+
+ /* Hopelessly large in magnitude? */
+ if (bits > width)
+ return opInvalidOp;
+
+ if (bits < semantics->precision) {
+ /* We truncate (semantics->precision - bits) bits. */
+ truncatedBits = semantics->precision - bits;
+ APInt::tcExtract(parts, dstPartsCount, src, bits, truncatedBits);
+ } else {
+ /* We want at least as many bits as are available. */
+ APInt::tcExtract(parts, dstPartsCount, src, semantics->precision, 0);
+ APInt::tcShiftLeft(parts, dstPartsCount, bits - semantics->precision);
+ truncatedBits = 0;
+ }
+ }
+
+ /* Step 2: work out any lost fraction, and increment the absolute
+ value if we would round away from zero. */
+ if (truncatedBits) {
+ lost_fraction = lostFractionThroughTruncation(src, partCount(),
+ truncatedBits);
+ if (lost_fraction != lfExactlyZero
+ && roundAwayFromZero(rounding_mode, lost_fraction, truncatedBits)) {
+ if (APInt::tcIncrement(parts, dstPartsCount))
+ return opInvalidOp; /* Overflow. */
+ }
+ } else {
+ lost_fraction = lfExactlyZero;
+ }
+
+ /* Step 3: check if we fit in the destination. */
+ unsigned int omsb = APInt::tcMSB(parts, dstPartsCount) + 1;
+
+ if (sign) {
+ if (!isSigned) {
+ /* Negative numbers cannot be represented as unsigned. */
+ if (omsb != 0)
+ return opInvalidOp;
+ } else {
+ /* It takes omsb bits to represent the unsigned integer value.
+ We lose a bit for the sign, but care is needed as the
+ maximally negative integer is a special case. */
+ if (omsb == width && APInt::tcLSB(parts, dstPartsCount) + 1 != omsb)
+ return opInvalidOp;
+
+ /* This case can happen because of rounding. */
+ if (omsb > width)
+ return opInvalidOp;
+ }
+
+ APInt::tcNegate (parts, dstPartsCount);
+ } else {
+ if (omsb >= width + !isSigned)
+ return opInvalidOp;
+ }
+
+ if (lost_fraction == lfExactlyZero) {
+ *isExact = true;
+ return opOK;
+ } else
+ return opInexact;
+}
+
+/* Same as convertToSignExtendedInteger, except we provide
+ deterministic values in case of an invalid operation exception,
+ namely zero for NaNs and the minimal or maximal value respectively
+ for underflow or overflow.
+ The *isExact output tells whether the result is exact, in the sense
+ that converting it back to the original floating point type produces
+ the original value. This is almost equivalent to result==opOK,
+ except for negative zeroes.
+*/
+APFloat::opStatus
+APFloat::convertToInteger(integerPart *parts, unsigned int width,
+ bool isSigned,
+ roundingMode rounding_mode, bool *isExact) const
+{
+ opStatus fs;
+
+ fs = convertToSignExtendedInteger(parts, width, isSigned, rounding_mode,
+ isExact);
+
+ if (fs == opInvalidOp) {
+ unsigned int bits, dstPartsCount;
+
+ dstPartsCount = partCountForBits(width);
+
+ if (category == fcNaN)
+ bits = 0;
+ else if (sign)
+ bits = isSigned;
+ else
+ bits = width - isSigned;
+
+ APInt::tcSetLeastSignificantBits(parts, dstPartsCount, bits);
+ if (sign && isSigned)
+ APInt::tcShiftLeft(parts, dstPartsCount, width - 1);
+ }
+
+ return fs;
+}
+
+/* Convert an unsigned integer SRC to a floating point number,
+ rounding according to ROUNDING_MODE. The sign of the floating
+ point number is not modified. */
+APFloat::opStatus
+APFloat::convertFromUnsignedParts(const integerPart *src,
+ unsigned int srcCount,
+ roundingMode rounding_mode)
+{
+ unsigned int omsb, precision, dstCount;
+ integerPart *dst;
+ lostFraction lost_fraction;
+
+ assertArithmeticOK(*semantics);
+ category = fcNormal;
+ omsb = APInt::tcMSB(src, srcCount) + 1;
+ dst = significandParts();
+ dstCount = partCount();
+ precision = semantics->precision;
+
+ /* We want the most significant PRECISON bits of SRC. There may not
+ be that many; extract what we can. */
+ if (precision <= omsb) {
+ exponent = omsb - 1;
+ lost_fraction = lostFractionThroughTruncation(src, srcCount,
+ omsb - precision);
+ APInt::tcExtract(dst, dstCount, src, precision, omsb - precision);
+ } else {
+ exponent = precision - 1;
+ lost_fraction = lfExactlyZero;
+ APInt::tcExtract(dst, dstCount, src, omsb, 0);
+ }
+
+ return normalize(rounding_mode, lost_fraction);
+}
+
+APFloat::opStatus
+APFloat::convertFromAPInt(const APInt &Val,
+ bool isSigned,
+ roundingMode rounding_mode)
+{
+ unsigned int partCount = Val.getNumWords();
+ APInt api = Val;
+
+ sign = false;
+ if (isSigned && api.isNegative()) {
+ sign = true;
+ api = -api;
+ }
+
+ return convertFromUnsignedParts(api.getRawData(), partCount, rounding_mode);
+}
+
+/* Convert a two's complement integer SRC to a floating point number,
+ rounding according to ROUNDING_MODE. ISSIGNED is true if the
+ integer is signed, in which case it must be sign-extended. */
+APFloat::opStatus
+APFloat::convertFromSignExtendedInteger(const integerPart *src,
+ unsigned int srcCount,
+ bool isSigned,
+ roundingMode rounding_mode)
+{
+ opStatus status;
+
+ assertArithmeticOK(*semantics);
+ if (isSigned
+ && APInt::tcExtractBit(src, srcCount * integerPartWidth - 1)) {
+ integerPart *copy;
+
+ /* If we're signed and negative negate a copy. */
+ sign = true;
+ copy = new integerPart[srcCount];
+ APInt::tcAssign(copy, src, srcCount);
+ APInt::tcNegate(copy, srcCount);
+ status = convertFromUnsignedParts(copy, srcCount, rounding_mode);
+ delete [] copy;
+ } else {
+ sign = false;
+ status = convertFromUnsignedParts(src, srcCount, rounding_mode);
+ }
+
+ return status;
+}
+
+/* FIXME: should this just take a const APInt reference? */
+APFloat::opStatus
+APFloat::convertFromZeroExtendedInteger(const integerPart *parts,
+ unsigned int width, bool isSigned,
+ roundingMode rounding_mode)
+{
+ unsigned int partCount = partCountForBits(width);
+ APInt api = APInt(width, partCount, parts);
+
+ sign = false;
+ if(isSigned && APInt::tcExtractBit(parts, width - 1)) {
+ sign = true;
+ api = -api;
+ }
+
+ return convertFromUnsignedParts(api.getRawData(), partCount, rounding_mode);
+}
+
+APFloat::opStatus
+APFloat::convertFromHexadecimalString(const char *p,
+ roundingMode rounding_mode)
+{
+ lostFraction lost_fraction;
+ integerPart *significand;
+ unsigned int bitPos, partsCount;
+ const char *dot, *firstSignificantDigit;
+
+ zeroSignificand();
+ exponent = 0;
+ category = fcNormal;
+
+ significand = significandParts();
+ partsCount = partCount();
+ bitPos = partsCount * integerPartWidth;
+
+ /* Skip leading zeroes and any (hexa)decimal point. */
+ p = skipLeadingZeroesAndAnyDot(p, &dot);
+ firstSignificantDigit = p;
+
+ for(;;) {
+ integerPart hex_value;
+
+ if(*p == '.') {
+ assert(dot == 0);
+ dot = p++;
+ }
+
+ hex_value = hexDigitValue(*p);
+ if(hex_value == -1U) {
+ lost_fraction = lfExactlyZero;
+ break;
+ }
+
+ p++;
+
+ /* Store the number whilst 4-bit nibbles remain. */
+ if(bitPos) {
+ bitPos -= 4;
+ hex_value <<= bitPos % integerPartWidth;
+ significand[bitPos / integerPartWidth] |= hex_value;
+ } else {
+ lost_fraction = trailingHexadecimalFraction(p, hex_value);
+ while(hexDigitValue(*p) != -1U)
+ p++;
+ break;
+ }
+ }
+
+ /* Hex floats require an exponent but not a hexadecimal point. */
+ assert(*p == 'p' || *p == 'P');
+
+ /* Ignore the exponent if we are zero. */
+ if(p != firstSignificantDigit) {
+ int expAdjustment;
+
+ /* Implicit hexadecimal point? */
+ if(!dot)
+ dot = p;
+
+ /* Calculate the exponent adjustment implicit in the number of
+ significant digits. */
+ expAdjustment = static_cast<int>(dot - firstSignificantDigit);
+ if(expAdjustment < 0)
+ expAdjustment++;
+ expAdjustment = expAdjustment * 4 - 1;
+
+ /* Adjust for writing the significand starting at the most
+ significant nibble. */
+ expAdjustment += semantics->precision;
+ expAdjustment -= partsCount * integerPartWidth;
+
+ /* Adjust for the given exponent. */
+ exponent = totalExponent(p, expAdjustment);
+ }
+
+ return normalize(rounding_mode, lost_fraction);
+}
+
+APFloat::opStatus
+APFloat::roundSignificandWithExponent(const integerPart *decSigParts,
+ unsigned sigPartCount, int exp,
+ roundingMode rounding_mode)
+{
+ unsigned int parts, pow5PartCount;
+ fltSemantics calcSemantics = { 32767, -32767, 0, true };
+ integerPart pow5Parts[maxPowerOfFiveParts];
+ bool isNearest;
+
+ isNearest = (rounding_mode == rmNearestTiesToEven
+ || rounding_mode == rmNearestTiesToAway);
+
+ parts = partCountForBits(semantics->precision + 11);
+
+ /* Calculate pow(5, abs(exp)). */
+ pow5PartCount = powerOf5(pow5Parts, exp >= 0 ? exp: -exp);
+
+ for (;; parts *= 2) {
+ opStatus sigStatus, powStatus;
+ unsigned int excessPrecision, truncatedBits;
+
+ calcSemantics.precision = parts * integerPartWidth - 1;
+ excessPrecision = calcSemantics.precision - semantics->precision;
+ truncatedBits = excessPrecision;
+
+ APFloat decSig(calcSemantics, fcZero, sign);
+ APFloat pow5(calcSemantics, fcZero, false);
+
+ sigStatus = decSig.convertFromUnsignedParts(decSigParts, sigPartCount,
+ rmNearestTiesToEven);
+ powStatus = pow5.convertFromUnsignedParts(pow5Parts, pow5PartCount,
+ rmNearestTiesToEven);
+ /* Add exp, as 10^n = 5^n * 2^n. */
+ decSig.exponent += exp;
+
+ lostFraction calcLostFraction;
+ integerPart HUerr, HUdistance;
+ unsigned int powHUerr;
+
+ if (exp >= 0) {
+ /* multiplySignificand leaves the precision-th bit set to 1. */
+ calcLostFraction = decSig.multiplySignificand(pow5, NULL);
+ powHUerr = powStatus != opOK;
+ } else {
+ calcLostFraction = decSig.divideSignificand(pow5);
+ /* Denormal numbers have less precision. */
+ if (decSig.exponent < semantics->minExponent) {
+ excessPrecision += (semantics->minExponent - decSig.exponent);
+ truncatedBits = excessPrecision;
+ if (excessPrecision > calcSemantics.precision)
+ excessPrecision = calcSemantics.precision;
+ }
+ /* Extra half-ulp lost in reciprocal of exponent. */
+ powHUerr = (powStatus == opOK && calcLostFraction == lfExactlyZero) ? 0:2;
+ }
+
+ /* Both multiplySignificand and divideSignificand return the
+ result with the integer bit set. */
+ assert (APInt::tcExtractBit
+ (decSig.significandParts(), calcSemantics.precision - 1) == 1);
+
+ HUerr = HUerrBound(calcLostFraction != lfExactlyZero, sigStatus != opOK,
+ powHUerr);
+ HUdistance = 2 * ulpsFromBoundary(decSig.significandParts(),
+ excessPrecision, isNearest);
+
+ /* Are we guaranteed to round correctly if we truncate? */
+ if (HUdistance >= HUerr) {
+ APInt::tcExtract(significandParts(), partCount(), decSig.significandParts(),
+ calcSemantics.precision - excessPrecision,
+ excessPrecision);
+ /* Take the exponent of decSig. If we tcExtract-ed less bits
+ above we must adjust our exponent to compensate for the
+ implicit right shift. */
+ exponent = (decSig.exponent + semantics->precision
+ - (calcSemantics.precision - excessPrecision));
+ calcLostFraction = lostFractionThroughTruncation(decSig.significandParts(),
+ decSig.partCount(),
+ truncatedBits);
+ return normalize(rounding_mode, calcLostFraction);
+ }
+ }
+}
+
+APFloat::opStatus
+APFloat::convertFromDecimalString(const char *p, roundingMode rounding_mode)
+{
+ decimalInfo D;
+ opStatus fs;
+
+ /* Scan the text. */
+ interpretDecimal(p, &D);
+
+ /* Handle the quick cases. First the case of no significant digits,
+ i.e. zero, and then exponents that are obviously too large or too
+ small. Writing L for log 10 / log 2, a number d.ddddd*10^exp
+ definitely overflows if
+
+ (exp - 1) * L >= maxExponent
+
+ and definitely underflows to zero where
+
+ (exp + 1) * L <= minExponent - precision
+
+ With integer arithmetic the tightest bounds for L are
+
+ 93/28 < L < 196/59 [ numerator <= 256 ]
+ 42039/12655 < L < 28738/8651 [ numerator <= 65536 ]
+ */
+
+ if (decDigitValue(*D.firstSigDigit) >= 10U) {
+ category = fcZero;
+ fs = opOK;
+ } else if ((D.normalizedExponent + 1) * 28738
+ <= 8651 * (semantics->minExponent - (int) semantics->precision)) {
+ /* Underflow to zero and round. */
+ zeroSignificand();
+ fs = normalize(rounding_mode, lfLessThanHalf);
+ } else if ((D.normalizedExponent - 1) * 42039
+ >= 12655 * semantics->maxExponent) {
+ /* Overflow and round. */
+ fs = handleOverflow(rounding_mode);
+ } else {
+ integerPart *decSignificand;
+ unsigned int partCount;
+
+ /* A tight upper bound on number of bits required to hold an
+ N-digit decimal integer is N * 196 / 59. Allocate enough space
+ to hold the full significand, and an extra part required by
+ tcMultiplyPart. */
+ partCount = static_cast<unsigned int>(D.lastSigDigit - D.firstSigDigit) + 1;
+ partCount = partCountForBits(1 + 196 * partCount / 59);
+ decSignificand = new integerPart[partCount + 1];
+ partCount = 0;
+
+ /* Convert to binary efficiently - we do almost all multiplication
+ in an integerPart. When this would overflow do we do a single
+ bignum multiplication, and then revert again to multiplication
+ in an integerPart. */
+ do {
+ integerPart decValue, val, multiplier;
+
+ val = 0;
+ multiplier = 1;
+
+ do {
+ if (*p == '.')
+ p++;
+
+ decValue = decDigitValue(*p++);
+ multiplier *= 10;
+ val = val * 10 + decValue;
+ /* The maximum number that can be multiplied by ten with any
+ digit added without overflowing an integerPart. */
+ } while (p <= D.lastSigDigit && multiplier <= (~ (integerPart) 0 - 9) / 10);
+
+ /* Multiply out the current part. */
+ APInt::tcMultiplyPart(decSignificand, decSignificand, multiplier, val,
+ partCount, partCount + 1, false);
+
+ /* If we used another part (likely but not guaranteed), increase
+ the count. */
+ if (decSignificand[partCount])
+ partCount++;
+ } while (p <= D.lastSigDigit);
+
+ category = fcNormal;
+ fs = roundSignificandWithExponent(decSignificand, partCount,
+ D.exponent, rounding_mode);
+
+ delete [] decSignificand;
+ }
+
+ return fs;
+}
+
+APFloat::opStatus
+APFloat::convertFromString(const char *p, roundingMode rounding_mode)
+{
+ assertArithmeticOK(*semantics);
+
+ /* Handle a leading minus sign. */
+ if(*p == '-')
+ sign = 1, p++;
+ else
+ sign = 0;
+
+ if(p[0] == '0' && (p[1] == 'x' || p[1] == 'X'))
+ return convertFromHexadecimalString(p + 2, rounding_mode);
+
+ return convertFromDecimalString(p, rounding_mode);
+}
+
+/* Write out a hexadecimal representation of the floating point value
+ to DST, which must be of sufficient size, in the C99 form
+ [-]0xh.hhhhp[+-]d. Return the number of characters written,
+ excluding the terminating NUL.
+
+ If UPPERCASE, the output is in upper case, otherwise in lower case.
+
+ HEXDIGITS digits appear altogether, rounding the value if
+ necessary. If HEXDIGITS is 0, the minimal precision to display the
+ number precisely is used instead. If nothing would appear after
+ the decimal point it is suppressed.
+
+ The decimal exponent is always printed and has at least one digit.
+ Zero values display an exponent of zero. Infinities and NaNs
+ appear as "infinity" or "nan" respectively.
+
+ The above rules are as specified by C99. There is ambiguity about
+ what the leading hexadecimal digit should be. This implementation
+ uses whatever is necessary so that the exponent is displayed as
+ stored. This implies the exponent will fall within the IEEE format
+ range, and the leading hexadecimal digit will be 0 (for denormals),
+ 1 (normal numbers) or 2 (normal numbers rounded-away-from-zero with
+ any other digits zero).
+*/
+unsigned int
+APFloat::convertToHexString(char *dst, unsigned int hexDigits,
+ bool upperCase, roundingMode rounding_mode) const
+{
+ char *p;
+
+ assertArithmeticOK(*semantics);
+
+ p = dst;
+ if (sign)
+ *dst++ = '-';
+
+ switch (category) {
+ case fcInfinity:
+ memcpy (dst, upperCase ? infinityU: infinityL, sizeof infinityU - 1);
+ dst += sizeof infinityL - 1;
+ break;
+
+ case fcNaN:
+ memcpy (dst, upperCase ? NaNU: NaNL, sizeof NaNU - 1);
+ dst += sizeof NaNU - 1;
+ break;
+
+ case fcZero:
+ *dst++ = '0';
+ *dst++ = upperCase ? 'X': 'x';
+ *dst++ = '0';
+ if (hexDigits > 1) {
+ *dst++ = '.';
+ memset (dst, '0', hexDigits - 1);
+ dst += hexDigits - 1;
+ }
+ *dst++ = upperCase ? 'P': 'p';
+ *dst++ = '0';
+ break;
+
+ case fcNormal:
+ dst = convertNormalToHexString (dst, hexDigits, upperCase, rounding_mode);
+ break;
+ }
+
+ *dst = 0;
+
+ return static_cast<unsigned int>(dst - p);
+}
+
+/* Does the hard work of outputting the correctly rounded hexadecimal
+ form of a normal floating point number with the specified number of
+ hexadecimal digits. If HEXDIGITS is zero the minimum number of
+ digits necessary to print the value precisely is output. */
+char *
+APFloat::convertNormalToHexString(char *dst, unsigned int hexDigits,
+ bool upperCase,
+ roundingMode rounding_mode) const
+{
+ unsigned int count, valueBits, shift, partsCount, outputDigits;
+ const char *hexDigitChars;
+ const integerPart *significand;
+ char *p;
+ bool roundUp;
+
+ *dst++ = '0';
+ *dst++ = upperCase ? 'X': 'x';
+
+ roundUp = false;
+ hexDigitChars = upperCase ? hexDigitsUpper: hexDigitsLower;
+
+ significand = significandParts();
+ partsCount = partCount();
+
+ /* +3 because the first digit only uses the single integer bit, so
+ we have 3 virtual zero most-significant-bits. */
+ valueBits = semantics->precision + 3;
+ shift = integerPartWidth - valueBits % integerPartWidth;
+
+ /* The natural number of digits required ignoring trailing
+ insignificant zeroes. */
+ outputDigits = (valueBits - significandLSB () + 3) / 4;
+
+ /* hexDigits of zero means use the required number for the
+ precision. Otherwise, see if we are truncating. If we are,
+ find out if we need to round away from zero. */
+ if (hexDigits) {
+ if (hexDigits < outputDigits) {
+ /* We are dropping non-zero bits, so need to check how to round.
+ "bits" is the number of dropped bits. */
+ unsigned int bits;
+ lostFraction fraction;
+
+ bits = valueBits - hexDigits * 4;
+ fraction = lostFractionThroughTruncation (significand, partsCount, bits);
+ roundUp = roundAwayFromZero(rounding_mode, fraction, bits);
+ }
+ outputDigits = hexDigits;
+ }
+
+ /* Write the digits consecutively, and start writing in the location
+ of the hexadecimal point. We move the most significant digit
+ left and add the hexadecimal point later. */
+ p = ++dst;
+
+ count = (valueBits + integerPartWidth - 1) / integerPartWidth;
+
+ while (outputDigits && count) {
+ integerPart part;
+
+ /* Put the most significant integerPartWidth bits in "part". */
+ if (--count == partsCount)
+ part = 0; /* An imaginary higher zero part. */
+ else
+ part = significand[count] << shift;
+
+ if (count && shift)
+ part |= significand[count - 1] >> (integerPartWidth - shift);
+
+ /* Convert as much of "part" to hexdigits as we can. */
+ unsigned int curDigits = integerPartWidth / 4;
+
+ if (curDigits > outputDigits)
+ curDigits = outputDigits;
+ dst += partAsHex (dst, part, curDigits, hexDigitChars);
+ outputDigits -= curDigits;
+ }
+
+ if (roundUp) {
+ char *q = dst;
+
+ /* Note that hexDigitChars has a trailing '0'. */
+ do {
+ q--;
+ *q = hexDigitChars[hexDigitValue (*q) + 1];
+ } while (*q == '0');
+ assert (q >= p);
+ } else {
+ /* Add trailing zeroes. */
+ memset (dst, '0', outputDigits);
+ dst += outputDigits;
+ }
+
+ /* Move the most significant digit to before the point, and if there
+ is something after the decimal point add it. This must come
+ after rounding above. */
+ p[-1] = p[0];
+ if (dst -1 == p)
+ dst--;
+ else
+ p[0] = '.';
+
+ /* Finally output the exponent. */
+ *dst++ = upperCase ? 'P': 'p';
+
+ return writeSignedDecimal (dst, exponent);
+}
+
+// For good performance it is desirable for different APFloats
+// to produce different integers.
+uint32_t
+APFloat::getHashValue() const
+{
+ if (category==fcZero) return sign<<8 | semantics->precision ;
+ else if (category==fcInfinity) return sign<<9 | semantics->precision;
+ else if (category==fcNaN) return 1<<10 | semantics->precision;
+ else {
+ uint32_t hash = sign<<11 | semantics->precision | exponent<<12;
+ const integerPart* p = significandParts();
+ for (int i=partCount(); i>0; i--, p++)
+ hash ^= ((uint32_t)*p) ^ (uint32_t)((*p)>>32);
+ return hash;
+ }
+}
+
+// Conversion from APFloat to/from host float/double. It may eventually be
+// possible to eliminate these and have everybody deal with APFloats, but that
+// will take a while. This approach will not easily extend to long double.
+// Current implementation requires integerPartWidth==64, which is correct at
+// the moment but could be made more general.
+
+// Denormals have exponent minExponent in APFloat, but minExponent-1 in
+// the actual IEEE respresentations. We compensate for that here.
+
+APInt
+APFloat::convertF80LongDoubleAPFloatToAPInt() const
+{
+ assert(semantics == (const llvm::fltSemantics*)&x87DoubleExtended);
+ assert (partCount()==2);
+
+ uint64_t myexponent, mysignificand;
+
+ if (category==fcNormal) {
+ myexponent = exponent+16383; //bias
+ mysignificand = significandParts()[0];
+ if (myexponent==1 && !(mysignificand & 0x8000000000000000ULL))
+ myexponent = 0; // denormal
+ } else if (category==fcZero) {
+ myexponent = 0;
+ mysignificand = 0;
+ } else if (category==fcInfinity) {
+ myexponent = 0x7fff;
+ mysignificand = 0x8000000000000000ULL;
+ } else {
+ assert(category == fcNaN && "Unknown category");
+ myexponent = 0x7fff;
+ mysignificand = significandParts()[0];
+ }
+
+ uint64_t words[2];
+ words[0] = mysignificand;
+ words[1] = ((uint64_t)(sign & 1) << 15) |
+ (myexponent & 0x7fffLL);
+ return APInt(80, 2, words);
+}
+
+APInt
+APFloat::convertPPCDoubleDoubleAPFloatToAPInt() const
+{
+ assert(semantics == (const llvm::fltSemantics*)&PPCDoubleDouble);
+ assert (partCount()==2);
+
+ uint64_t myexponent, mysignificand, myexponent2, mysignificand2;
+
+ if (category==fcNormal) {
+ myexponent = exponent + 1023; //bias
+ myexponent2 = exponent2 + 1023;
+ mysignificand = significandParts()[0];
+ mysignificand2 = significandParts()[1];
+ if (myexponent==1 && !(mysignificand & 0x10000000000000LL))
+ myexponent = 0; // denormal
+ if (myexponent2==1 && !(mysignificand2 & 0x10000000000000LL))
+ myexponent2 = 0; // denormal
+ } else if (category==fcZero) {
+ myexponent = 0;
+ mysignificand = 0;
+ myexponent2 = 0;
+ mysignificand2 = 0;
+ } else if (category==fcInfinity) {
+ myexponent = 0x7ff;
+ myexponent2 = 0;
+ mysignificand = 0;
+ mysignificand2 = 0;
+ } else {
+ assert(category == fcNaN && "Unknown category");
+ myexponent = 0x7ff;
+ mysignificand = significandParts()[0];
+ myexponent2 = exponent2;
+ mysignificand2 = significandParts()[1];
+ }
+
+ uint64_t words[2];
+ words[0] = ((uint64_t)(sign & 1) << 63) |
+ ((myexponent & 0x7ff) << 52) |
+ (mysignificand & 0xfffffffffffffLL);
+ words[1] = ((uint64_t)(sign2 & 1) << 63) |
+ ((myexponent2 & 0x7ff) << 52) |
+ (mysignificand2 & 0xfffffffffffffLL);
+ return APInt(128, 2, words);
+}
+
+APInt
+APFloat::convertDoubleAPFloatToAPInt() const
+{
+ assert(semantics == (const llvm::fltSemantics*)&IEEEdouble);
+ assert (partCount()==1);
+
+ uint64_t myexponent, mysignificand;
+
+ if (category==fcNormal) {
+ myexponent = exponent+1023; //bias
+ mysignificand = *significandParts();
+ if (myexponent==1 && !(mysignificand & 0x10000000000000LL))
+ myexponent = 0; // denormal
+ } else if (category==fcZero) {
+ myexponent = 0;
+ mysignificand = 0;
+ } else if (category==fcInfinity) {
+ myexponent = 0x7ff;
+ mysignificand = 0;
+ } else {
+ assert(category == fcNaN && "Unknown category!");
+ myexponent = 0x7ff;
+ mysignificand = *significandParts();
+ }
+
+ return APInt(64, ((((uint64_t)(sign & 1) << 63) |
+ ((myexponent & 0x7ff) << 52) |
+ (mysignificand & 0xfffffffffffffLL))));
+}
+
+APInt
+APFloat::convertFloatAPFloatToAPInt() const
+{
+ assert(semantics == (const llvm::fltSemantics*)&IEEEsingle);
+ assert (partCount()==1);
+
+ uint32_t myexponent, mysignificand;
+
+ if (category==fcNormal) {
+ myexponent = exponent+127; //bias
+ mysignificand = (uint32_t)*significandParts();
+ if (myexponent == 1 && !(mysignificand & 0x800000))
+ myexponent = 0; // denormal
+ } else if (category==fcZero) {
+ myexponent = 0;
+ mysignificand = 0;
+ } else if (category==fcInfinity) {
+ myexponent = 0xff;
+ mysignificand = 0;
+ } else {
+ assert(category == fcNaN && "Unknown category!");
+ myexponent = 0xff;
+ mysignificand = (uint32_t)*significandParts();
+ }
+
+ return APInt(32, (((sign&1) << 31) | ((myexponent&0xff) << 23) |
+ (mysignificand & 0x7fffff)));
+}
+
+// This function creates an APInt that is just a bit map of the floating
+// point constant as it would appear in memory. It is not a conversion,
+// and treating the result as a normal integer is unlikely to be useful.
+
+APInt
+APFloat::bitcastToAPInt() const
+{
+ if (semantics == (const llvm::fltSemantics*)&IEEEsingle)
+ return convertFloatAPFloatToAPInt();
+
+ if (semantics == (const llvm::fltSemantics*)&IEEEdouble)
+ return convertDoubleAPFloatToAPInt();
+
+ if (semantics == (const llvm::fltSemantics*)&PPCDoubleDouble)
+ return convertPPCDoubleDoubleAPFloatToAPInt();
+
+ assert(semantics == (const llvm::fltSemantics*)&x87DoubleExtended &&
+ "unknown format!");
+ return convertF80LongDoubleAPFloatToAPInt();
+}
+
+float
+APFloat::convertToFloat() const
+{
+ assert(semantics == (const llvm::fltSemantics*)&IEEEsingle);
+ APInt api = bitcastToAPInt();
+ return api.bitsToFloat();
+}
+
+double
+APFloat::convertToDouble() const
+{
+ assert(semantics == (const llvm::fltSemantics*)&IEEEdouble);
+ APInt api = bitcastToAPInt();
+ return api.bitsToDouble();
+}
+
+/// Integer bit is explicit in this format. Intel hardware (387 and later)
+/// does not support these bit patterns:
+/// exponent = all 1's, integer bit 0, significand 0 ("pseudoinfinity")
+/// exponent = all 1's, integer bit 0, significand nonzero ("pseudoNaN")
+/// exponent = 0, integer bit 1 ("pseudodenormal")
+/// exponent!=0 nor all 1's, integer bit 0 ("unnormal")
+/// At the moment, the first two are treated as NaNs, the second two as Normal.
+void
+APFloat::initFromF80LongDoubleAPInt(const APInt &api)
+{
+ assert(api.getBitWidth()==80);
+ uint64_t i1 = api.getRawData()[0];
+ uint64_t i2 = api.getRawData()[1];
+ uint64_t myexponent = (i2 & 0x7fff);
+ uint64_t mysignificand = i1;
+
+ initialize(&APFloat::x87DoubleExtended);
+ assert(partCount()==2);
+
+ sign = static_cast<unsigned int>(i2>>15);
+ if (myexponent==0 && mysignificand==0) {
+ // exponent, significand meaningless
+ category = fcZero;
+ } else if (myexponent==0x7fff && mysignificand==0x8000000000000000ULL) {
+ // exponent, significand meaningless
+ category = fcInfinity;
+ } else if (myexponent==0x7fff && mysignificand!=0x8000000000000000ULL) {
+ // exponent meaningless
+ category = fcNaN;
+ significandParts()[0] = mysignificand;
+ significandParts()[1] = 0;
+ } else {
+ category = fcNormal;
+ exponent = myexponent - 16383;
+ significandParts()[0] = mysignificand;
+ significandParts()[1] = 0;
+ if (myexponent==0) // denormal
+ exponent = -16382;
+ }
+}
+
+void
+APFloat::initFromPPCDoubleDoubleAPInt(const APInt &api)
+{
+ assert(api.getBitWidth()==128);
+ uint64_t i1 = api.getRawData()[0];
+ uint64_t i2 = api.getRawData()[1];
+ uint64_t myexponent = (i1 >> 52) & 0x7ff;
+ uint64_t mysignificand = i1 & 0xfffffffffffffLL;
+ uint64_t myexponent2 = (i2 >> 52) & 0x7ff;
+ uint64_t mysignificand2 = i2 & 0xfffffffffffffLL;
+
+ initialize(&APFloat::PPCDoubleDouble);
+ assert(partCount()==2);
+
+ sign = static_cast<unsigned int>(i1>>63);
+ sign2 = static_cast<unsigned int>(i2>>63);
+ if (myexponent==0 && mysignificand==0) {
+ // exponent, significand meaningless
+ // exponent2 and significand2 are required to be 0; we don't check
+ category = fcZero;
+ } else if (myexponent==0x7ff && mysignificand==0) {
+ // exponent, significand meaningless
+ // exponent2 and significand2 are required to be 0; we don't check
+ category = fcInfinity;
+ } else if (myexponent==0x7ff && mysignificand!=0) {
+ // exponent meaningless. So is the whole second word, but keep it
+ // for determinism.
+ category = fcNaN;
+ exponent2 = myexponent2;
+ significandParts()[0] = mysignificand;
+ significandParts()[1] = mysignificand2;
+ } else {
+ category = fcNormal;
+ // Note there is no category2; the second word is treated as if it is
+ // fcNormal, although it might be something else considered by itself.
+ exponent = myexponent - 1023;
+ exponent2 = myexponent2 - 1023;
+ significandParts()[0] = mysignificand;
+ significandParts()[1] = mysignificand2;
+ if (myexponent==0) // denormal
+ exponent = -1022;
+ else
+ significandParts()[0] |= 0x10000000000000LL; // integer bit
+ if (myexponent2==0)
+ exponent2 = -1022;
+ else
+ significandParts()[1] |= 0x10000000000000LL; // integer bit
+ }
+}
+
+void
+APFloat::initFromDoubleAPInt(const APInt &api)
+{
+ assert(api.getBitWidth()==64);
+ uint64_t i = *api.getRawData();
+ uint64_t myexponent = (i >> 52) & 0x7ff;
+ uint64_t mysignificand = i & 0xfffffffffffffLL;
+
+ initialize(&APFloat::IEEEdouble);
+ assert(partCount()==1);
+
+ sign = static_cast<unsigned int>(i>>63);
+ if (myexponent==0 && mysignificand==0) {
+ // exponent, significand meaningless
+ category = fcZero;
+ } else if (myexponent==0x7ff && mysignificand==0) {
+ // exponent, significand meaningless
+ category = fcInfinity;
+ } else if (myexponent==0x7ff && mysignificand!=0) {
+ // exponent meaningless
+ category = fcNaN;
+ *significandParts() = mysignificand;
+ } else {
+ category = fcNormal;
+ exponent = myexponent - 1023;
+ *significandParts() = mysignificand;
+ if (myexponent==0) // denormal
+ exponent = -1022;
+ else
+ *significandParts() |= 0x10000000000000LL; // integer bit
+ }
+}
+
+void
+APFloat::initFromFloatAPInt(const APInt & api)
+{
+ assert(api.getBitWidth()==32);
+ uint32_t i = (uint32_t)*api.getRawData();
+ uint32_t myexponent = (i >> 23) & 0xff;
+ uint32_t mysignificand = i & 0x7fffff;
+
+ initialize(&APFloat::IEEEsingle);
+ assert(partCount()==1);
+
+ sign = i >> 31;
+ if (myexponent==0 && mysignificand==0) {
+ // exponent, significand meaningless
+ category = fcZero;
+ } else if (myexponent==0xff && mysignificand==0) {
+ // exponent, significand meaningless
+ category = fcInfinity;
+ } else if (myexponent==0xff && mysignificand!=0) {
+ // sign, exponent, significand meaningless
+ category = fcNaN;
+ *significandParts() = mysignificand;
+ } else {
+ category = fcNormal;
+ exponent = myexponent - 127; //bias
+ *significandParts() = mysignificand;
+ if (myexponent==0) // denormal
+ exponent = -126;
+ else
+ *significandParts() |= 0x800000; // integer bit
+ }
+}
+
+/// Treat api as containing the bits of a floating point number. Currently
+/// we infer the floating point type from the size of the APInt. The
+/// isIEEE argument distinguishes between PPC128 and IEEE128 (not meaningful
+/// when the size is anything else).
+void
+APFloat::initFromAPInt(const APInt& api, bool isIEEE)
+{
+ if (api.getBitWidth() == 32)
+ return initFromFloatAPInt(api);
+ else if (api.getBitWidth()==64)
+ return initFromDoubleAPInt(api);
+ else if (api.getBitWidth()==80)
+ return initFromF80LongDoubleAPInt(api);
+ else if (api.getBitWidth()==128 && !isIEEE)
+ return initFromPPCDoubleDoubleAPInt(api);
+ else
+ assert(0);
+}
+
+APFloat::APFloat(const APInt& api, bool isIEEE)
+{
+ initFromAPInt(api, isIEEE);
+}
+
+APFloat::APFloat(float f)
+{
+ APInt api = APInt(32, 0);
+ initFromAPInt(api.floatToBits(f));
+}
+
+APFloat::APFloat(double d)
+{
+ APInt api = APInt(64, 0);
+ initFromAPInt(api.doubleToBits(d));
+}
diff --git a/lib/Support/APInt.cpp b/lib/Support/APInt.cpp
new file mode 100644
index 0000000..73bf774
--- /dev/null
+++ b/lib/Support/APInt.cpp
@@ -0,0 +1,2816 @@
+//===-- APInt.cpp - Implement APInt class ---------------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements a class to represent arbitrary precision integer
+// constant values and provide a variety of arithmetic operations on them.
+//
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "apint"
+#include "llvm/ADT/APInt.h"
+#include "llvm/ADT/FoldingSet.h"
+#include "llvm/ADT/SmallString.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/MathExtras.h"
+#include "llvm/Support/raw_ostream.h"
+#include <cmath>
+#include <limits>
+#include <cstring>
+#include <cstdlib>
+using namespace llvm;
+
+/// A utility function for allocating memory, checking for allocation failures,
+/// and ensuring the contents are zeroed.
+inline static uint64_t* getClearedMemory(unsigned numWords) {
+ uint64_t * result = new uint64_t[numWords];
+ assert(result && "APInt memory allocation fails!");
+ memset(result, 0, numWords * sizeof(uint64_t));
+ return result;
+}
+
+/// A utility function for allocating memory and checking for allocation
+/// failure. The content is not zeroed.
+inline static uint64_t* getMemory(unsigned numWords) {
+ uint64_t * result = new uint64_t[numWords];
+ assert(result && "APInt memory allocation fails!");
+ return result;
+}
+
+void APInt::initSlowCase(unsigned numBits, uint64_t val, bool isSigned) {
+ pVal = getClearedMemory(getNumWords());
+ pVal[0] = val;
+ if (isSigned && int64_t(val) < 0)
+ for (unsigned i = 1; i < getNumWords(); ++i)
+ pVal[i] = -1ULL;
+}
+
+void APInt::initSlowCase(const APInt& that) {
+ pVal = getMemory(getNumWords());
+ memcpy(pVal, that.pVal, getNumWords() * APINT_WORD_SIZE);
+}
+
+
+APInt::APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[])
+ : BitWidth(numBits), VAL(0) {
+ assert(BitWidth && "bitwidth too small");
+ assert(bigVal && "Null pointer detected!");
+ if (isSingleWord())
+ VAL = bigVal[0];
+ else {
+ // Get memory, cleared to 0
+ pVal = getClearedMemory(getNumWords());
+ // Calculate the number of words to copy
+ unsigned words = std::min<unsigned>(numWords, getNumWords());
+ // Copy the words from bigVal to pVal
+ memcpy(pVal, bigVal, words * APINT_WORD_SIZE);
+ }
+ // Make sure unused high bits are cleared
+ clearUnusedBits();
+}
+
+APInt::APInt(unsigned numbits, const char StrStart[], unsigned slen,
+ uint8_t radix)
+ : BitWidth(numbits), VAL(0) {
+ assert(BitWidth && "bitwidth too small");
+ fromString(numbits, StrStart, slen, radix);
+}
+
+APInt& APInt::AssignSlowCase(const APInt& RHS) {
+ // Don't do anything for X = X
+ if (this == &RHS)
+ return *this;
+
+ if (BitWidth == RHS.getBitWidth()) {
+ // assume same bit-width single-word case is already handled
+ assert(!isSingleWord());
+ memcpy(pVal, RHS.pVal, getNumWords() * APINT_WORD_SIZE);
+ return *this;
+ }
+
+ if (isSingleWord()) {
+ // assume case where both are single words is already handled
+ assert(!RHS.isSingleWord());
+ VAL = 0;
+ pVal = getMemory(RHS.getNumWords());
+ memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE);
+ } else if (getNumWords() == RHS.getNumWords())
+ memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE);
+ else if (RHS.isSingleWord()) {
+ delete [] pVal;
+ VAL = RHS.VAL;
+ } else {
+ delete [] pVal;
+ pVal = getMemory(RHS.getNumWords());
+ memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE);
+ }
+ BitWidth = RHS.BitWidth;
+ return clearUnusedBits();
+}
+
+APInt& APInt::operator=(uint64_t RHS) {
+ if (isSingleWord())
+ VAL = RHS;
+ else {
+ pVal[0] = RHS;
+ memset(pVal+1, 0, (getNumWords() - 1) * APINT_WORD_SIZE);
+ }
+ return clearUnusedBits();
+}
+
+/// Profile - This method 'profiles' an APInt for use with FoldingSet.
+void APInt::Profile(FoldingSetNodeID& ID) const {
+ ID.AddInteger(BitWidth);
+
+ if (isSingleWord()) {
+ ID.AddInteger(VAL);
+ return;
+ }
+
+ unsigned NumWords = getNumWords();
+ for (unsigned i = 0; i < NumWords; ++i)
+ ID.AddInteger(pVal[i]);
+}
+
+/// add_1 - This function adds a single "digit" integer, y, to the multiple
+/// "digit" integer array, x[]. x[] is modified to reflect the addition and
+/// 1 is returned if there is a carry out, otherwise 0 is returned.
+/// @returns the carry of the addition.
+static bool add_1(uint64_t dest[], uint64_t x[], unsigned len, uint64_t y) {
+ for (unsigned i = 0; i < len; ++i) {
+ dest[i] = y + x[i];
+ if (dest[i] < y)
+ y = 1; // Carry one to next digit.
+ else {
+ y = 0; // No need to carry so exit early
+ break;
+ }
+ }
+ return y;
+}
+
+/// @brief Prefix increment operator. Increments the APInt by one.
+APInt& APInt::operator++() {
+ if (isSingleWord())
+ ++VAL;
+ else
+ add_1(pVal, pVal, getNumWords(), 1);
+ return clearUnusedBits();
+}
+
+/// sub_1 - This function subtracts a single "digit" (64-bit word), y, from
+/// the multi-digit integer array, x[], propagating the borrowed 1 value until
+/// no further borrowing is neeeded or it runs out of "digits" in x. The result
+/// is 1 if "borrowing" exhausted the digits in x, or 0 if x was not exhausted.
+/// In other words, if y > x then this function returns 1, otherwise 0.
+/// @returns the borrow out of the subtraction
+static bool sub_1(uint64_t x[], unsigned len, uint64_t y) {
+ for (unsigned i = 0; i < len; ++i) {
+ uint64_t X = x[i];
+ x[i] -= y;
+ if (y > X)
+ y = 1; // We have to "borrow 1" from next "digit"
+ else {
+ y = 0; // No need to borrow
+ break; // Remaining digits are unchanged so exit early
+ }
+ }
+ return bool(y);
+}
+
+/// @brief Prefix decrement operator. Decrements the APInt by one.
+APInt& APInt::operator--() {
+ if (isSingleWord())
+ --VAL;
+ else
+ sub_1(pVal, getNumWords(), 1);
+ return clearUnusedBits();
+}
+
+/// add - This function adds the integer array x to the integer array Y and
+/// places the result in dest.
+/// @returns the carry out from the addition
+/// @brief General addition of 64-bit integer arrays
+static bool add(uint64_t *dest, const uint64_t *x, const uint64_t *y,
+ unsigned len) {
+ bool carry = false;
+ for (unsigned i = 0; i< len; ++i) {
+ uint64_t limit = std::min(x[i],y[i]); // must come first in case dest == x
+ dest[i] = x[i] + y[i] + carry;
+ carry = dest[i] < limit || (carry && dest[i] == limit);
+ }
+ return carry;
+}
+
+/// Adds the RHS APint to this APInt.
+/// @returns this, after addition of RHS.
+/// @brief Addition assignment operator.
+APInt& APInt::operator+=(const APInt& RHS) {
+ assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
+ if (isSingleWord())
+ VAL += RHS.VAL;
+ else {
+ add(pVal, pVal, RHS.pVal, getNumWords());
+ }
+ return clearUnusedBits();
+}
+
+/// Subtracts the integer array y from the integer array x
+/// @returns returns the borrow out.
+/// @brief Generalized subtraction of 64-bit integer arrays.
+static bool sub(uint64_t *dest, const uint64_t *x, const uint64_t *y,
+ unsigned len) {
+ bool borrow = false;
+ for (unsigned i = 0; i < len; ++i) {
+ uint64_t x_tmp = borrow ? x[i] - 1 : x[i];
+ borrow = y[i] > x_tmp || (borrow && x[i] == 0);
+ dest[i] = x_tmp - y[i];
+ }
+ return borrow;
+}
+
+/// Subtracts the RHS APInt from this APInt
+/// @returns this, after subtraction
+/// @brief Subtraction assignment operator.
+APInt& APInt::operator-=(const APInt& RHS) {
+ assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
+ if (isSingleWord())
+ VAL -= RHS.VAL;
+ else
+ sub(pVal, pVal, RHS.pVal, getNumWords());
+ return clearUnusedBits();
+}
+
+/// Multiplies an integer array, x by a a uint64_t integer and places the result
+/// into dest.
+/// @returns the carry out of the multiplication.
+/// @brief Multiply a multi-digit APInt by a single digit (64-bit) integer.
+static uint64_t mul_1(uint64_t dest[], uint64_t x[], unsigned len, uint64_t y) {
+ // Split y into high 32-bit part (hy) and low 32-bit part (ly)
+ uint64_t ly = y & 0xffffffffULL, hy = y >> 32;
+ uint64_t carry = 0;
+
+ // For each digit of x.
+ for (unsigned i = 0; i < len; ++i) {
+ // Split x into high and low words
+ uint64_t lx = x[i] & 0xffffffffULL;
+ uint64_t hx = x[i] >> 32;
+ // hasCarry - A flag to indicate if there is a carry to the next digit.
+ // hasCarry == 0, no carry
+ // hasCarry == 1, has carry
+ // hasCarry == 2, no carry and the calculation result == 0.
+ uint8_t hasCarry = 0;
+ dest[i] = carry + lx * ly;
+ // Determine if the add above introduces carry.
+ hasCarry = (dest[i] < carry) ? 1 : 0;
+ carry = hx * ly + (dest[i] >> 32) + (hasCarry ? (1ULL << 32) : 0);
+ // The upper limit of carry can be (2^32 - 1)(2^32 - 1) +
+ // (2^32 - 1) + 2^32 = 2^64.
+ hasCarry = (!carry && hasCarry) ? 1 : (!carry ? 2 : 0);
+
+ carry += (lx * hy) & 0xffffffffULL;
+ dest[i] = (carry << 32) | (dest[i] & 0xffffffffULL);
+ carry = (((!carry && hasCarry != 2) || hasCarry == 1) ? (1ULL << 32) : 0) +
+ (carry >> 32) + ((lx * hy) >> 32) + hx * hy;
+ }
+ return carry;
+}
+
+/// Multiplies integer array x by integer array y and stores the result into
+/// the integer array dest. Note that dest's size must be >= xlen + ylen.
+/// @brief Generalized multiplicate of integer arrays.
+static void mul(uint64_t dest[], uint64_t x[], unsigned xlen, uint64_t y[],
+ unsigned ylen) {
+ dest[xlen] = mul_1(dest, x, xlen, y[0]);
+ for (unsigned i = 1; i < ylen; ++i) {
+ uint64_t ly = y[i] & 0xffffffffULL, hy = y[i] >> 32;
+ uint64_t carry = 0, lx = 0, hx = 0;
+ for (unsigned j = 0; j < xlen; ++j) {
+ lx = x[j] & 0xffffffffULL;
+ hx = x[j] >> 32;
+ // hasCarry - A flag to indicate if has carry.
+ // hasCarry == 0, no carry
+ // hasCarry == 1, has carry
+ // hasCarry == 2, no carry and the calculation result == 0.
+ uint8_t hasCarry = 0;
+ uint64_t resul = carry + lx * ly;
+ hasCarry = (resul < carry) ? 1 : 0;
+ carry = (hasCarry ? (1ULL << 32) : 0) + hx * ly + (resul >> 32);
+ hasCarry = (!carry && hasCarry) ? 1 : (!carry ? 2 : 0);
+
+ carry += (lx * hy) & 0xffffffffULL;
+ resul = (carry << 32) | (resul & 0xffffffffULL);
+ dest[i+j] += resul;
+ carry = (((!carry && hasCarry != 2) || hasCarry == 1) ? (1ULL << 32) : 0)+
+ (carry >> 32) + (dest[i+j] < resul ? 1 : 0) +
+ ((lx * hy) >> 32) + hx * hy;
+ }
+ dest[i+xlen] = carry;
+ }
+}
+
+APInt& APInt::operator*=(const APInt& RHS) {
+ assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
+ if (isSingleWord()) {
+ VAL *= RHS.VAL;
+ clearUnusedBits();
+ return *this;
+ }
+
+ // Get some bit facts about LHS and check for zero
+ unsigned lhsBits = getActiveBits();
+ unsigned lhsWords = !lhsBits ? 0 : whichWord(lhsBits - 1) + 1;
+ if (!lhsWords)
+ // 0 * X ===> 0
+ return *this;
+
+ // Get some bit facts about RHS and check for zero
+ unsigned rhsBits = RHS.getActiveBits();
+ unsigned rhsWords = !rhsBits ? 0 : whichWord(rhsBits - 1) + 1;
+ if (!rhsWords) {
+ // X * 0 ===> 0
+ clear();
+ return *this;
+ }
+
+ // Allocate space for the result
+ unsigned destWords = rhsWords + lhsWords;
+ uint64_t *dest = getMemory(destWords);
+
+ // Perform the long multiply
+ mul(dest, pVal, lhsWords, RHS.pVal, rhsWords);
+
+ // Copy result back into *this
+ clear();
+ unsigned wordsToCopy = destWords >= getNumWords() ? getNumWords() : destWords;
+ memcpy(pVal, dest, wordsToCopy * APINT_WORD_SIZE);
+
+ // delete dest array and return
+ delete[] dest;
+ return *this;
+}
+
+APInt& APInt::operator&=(const APInt& RHS) {
+ assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
+ if (isSingleWord()) {
+ VAL &= RHS.VAL;
+ return *this;
+ }
+ unsigned numWords = getNumWords();
+ for (unsigned i = 0; i < numWords; ++i)
+ pVal[i] &= RHS.pVal[i];
+ return *this;
+}
+
+APInt& APInt::operator|=(const APInt& RHS) {
+ assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
+ if (isSingleWord()) {
+ VAL |= RHS.VAL;
+ return *this;
+ }
+ unsigned numWords = getNumWords();
+ for (unsigned i = 0; i < numWords; ++i)
+ pVal[i] |= RHS.pVal[i];
+ return *this;
+}
+
+APInt& APInt::operator^=(const APInt& RHS) {
+ assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
+ if (isSingleWord()) {
+ VAL ^= RHS.VAL;
+ this->clearUnusedBits();
+ return *this;
+ }
+ unsigned numWords = getNumWords();
+ for (unsigned i = 0; i < numWords; ++i)
+ pVal[i] ^= RHS.pVal[i];
+ return clearUnusedBits();
+}
+
+APInt APInt::AndSlowCase(const APInt& RHS) const {
+ unsigned numWords = getNumWords();
+ uint64_t* val = getMemory(numWords);
+ for (unsigned i = 0; i < numWords; ++i)
+ val[i] = pVal[i] & RHS.pVal[i];
+ return APInt(val, getBitWidth());
+}
+
+APInt APInt::OrSlowCase(const APInt& RHS) const {
+ unsigned numWords = getNumWords();
+ uint64_t *val = getMemory(numWords);
+ for (unsigned i = 0; i < numWords; ++i)
+ val[i] = pVal[i] | RHS.pVal[i];
+ return APInt(val, getBitWidth());
+}
+
+APInt APInt::XorSlowCase(const APInt& RHS) const {
+ unsigned numWords = getNumWords();
+ uint64_t *val = getMemory(numWords);
+ for (unsigned i = 0; i < numWords; ++i)
+ val[i] = pVal[i] ^ RHS.pVal[i];
+
+ // 0^0==1 so clear the high bits in case they got set.
+ return APInt(val, getBitWidth()).clearUnusedBits();
+}
+
+bool APInt::operator !() const {
+ if (isSingleWord())
+ return !VAL;
+
+ for (unsigned i = 0; i < getNumWords(); ++i)
+ if (pVal[i])
+ return false;
+ return true;
+}
+
+APInt APInt::operator*(const APInt& RHS) const {
+ assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
+ if (isSingleWord())
+ return APInt(BitWidth, VAL * RHS.VAL);
+ APInt Result(*this);
+ Result *= RHS;
+ return Result.clearUnusedBits();
+}
+
+APInt APInt::operator+(const APInt& RHS) const {
+ assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
+ if (isSingleWord())
+ return APInt(BitWidth, VAL + RHS.VAL);
+ APInt Result(BitWidth, 0);
+ add(Result.pVal, this->pVal, RHS.pVal, getNumWords());
+ return Result.clearUnusedBits();
+}
+
+APInt APInt::operator-(const APInt& RHS) const {
+ assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
+ if (isSingleWord())
+ return APInt(BitWidth, VAL - RHS.VAL);
+ APInt Result(BitWidth, 0);
+ sub(Result.pVal, this->pVal, RHS.pVal, getNumWords());
+ return Result.clearUnusedBits();
+}
+
+bool APInt::operator[](unsigned bitPosition) const {
+ return (maskBit(bitPosition) &
+ (isSingleWord() ? VAL : pVal[whichWord(bitPosition)])) != 0;
+}
+
+bool APInt::EqualSlowCase(const APInt& RHS) const {
+ // Get some facts about the number of bits used in the two operands.
+ unsigned n1 = getActiveBits();
+ unsigned n2 = RHS.getActiveBits();
+
+ // If the number of bits isn't the same, they aren't equal
+ if (n1 != n2)
+ return false;
+
+ // If the number of bits fits in a word, we only need to compare the low word.
+ if (n1 <= APINT_BITS_PER_WORD)
+ return pVal[0] == RHS.pVal[0];
+
+ // Otherwise, compare everything
+ for (int i = whichWord(n1 - 1); i >= 0; --i)
+ if (pVal[i] != RHS.pVal[i])
+ return false;
+ return true;
+}
+
+bool APInt::EqualSlowCase(uint64_t Val) const {
+ unsigned n = getActiveBits();
+ if (n <= APINT_BITS_PER_WORD)
+ return pVal[0] == Val;
+ else
+ return false;
+}
+
+bool APInt::ult(const APInt& RHS) const {
+ assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison");
+ if (isSingleWord())
+ return VAL < RHS.VAL;
+
+ // Get active bit length of both operands
+ unsigned n1 = getActiveBits();
+ unsigned n2 = RHS.getActiveBits();
+
+ // If magnitude of LHS is less than RHS, return true.
+ if (n1 < n2)
+ return true;
+
+ // If magnitude of RHS is greather than LHS, return false.
+ if (n2 < n1)
+ return false;
+
+ // If they bot fit in a word, just compare the low order word
+ if (n1 <= APINT_BITS_PER_WORD && n2 <= APINT_BITS_PER_WORD)
+ return pVal[0] < RHS.pVal[0];
+
+ // Otherwise, compare all words
+ unsigned topWord = whichWord(std::max(n1,n2)-1);
+ for (int i = topWord; i >= 0; --i) {
+ if (pVal[i] > RHS.pVal[i])
+ return false;
+ if (pVal[i] < RHS.pVal[i])
+ return true;
+ }
+ return false;
+}
+
+bool APInt::slt(const APInt& RHS) const {
+ assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison");
+ if (isSingleWord()) {
+ int64_t lhsSext = (int64_t(VAL) << (64-BitWidth)) >> (64-BitWidth);
+ int64_t rhsSext = (int64_t(RHS.VAL) << (64-BitWidth)) >> (64-BitWidth);
+ return lhsSext < rhsSext;
+ }
+
+ APInt lhs(*this);
+ APInt rhs(RHS);
+ bool lhsNeg = isNegative();
+ bool rhsNeg = rhs.isNegative();
+ if (lhsNeg) {
+ // Sign bit is set so perform two's complement to make it positive
+ lhs.flip();
+ lhs++;
+ }
+ if (rhsNeg) {
+ // Sign bit is set so perform two's complement to make it positive
+ rhs.flip();
+ rhs++;
+ }
+
+ // Now we have unsigned values to compare so do the comparison if necessary
+ // based on the negativeness of the values.
+ if (lhsNeg)
+ if (rhsNeg)
+ return lhs.ugt(rhs);
+ else
+ return true;
+ else if (rhsNeg)
+ return false;
+ else
+ return lhs.ult(rhs);
+}
+
+APInt& APInt::set(unsigned bitPosition) {
+ if (isSingleWord())
+ VAL |= maskBit(bitPosition);
+ else
+ pVal[whichWord(bitPosition)] |= maskBit(bitPosition);
+ return *this;
+}
+
+/// Set the given bit to 0 whose position is given as "bitPosition".
+/// @brief Set a given bit to 0.
+APInt& APInt::clear(unsigned bitPosition) {
+ if (isSingleWord())
+ VAL &= ~maskBit(bitPosition);
+ else
+ pVal[whichWord(bitPosition)] &= ~maskBit(bitPosition);
+ return *this;
+}
+
+/// @brief Toggle every bit to its opposite value.
+
+/// Toggle a given bit to its opposite value whose position is given
+/// as "bitPosition".
+/// @brief Toggles a given bit to its opposite value.
+APInt& APInt::flip(unsigned bitPosition) {
+ assert(bitPosition < BitWidth && "Out of the bit-width range!");
+ if ((*this)[bitPosition]) clear(bitPosition);
+ else set(bitPosition);
+ return *this;
+}
+
+unsigned APInt::getBitsNeeded(const char* str, unsigned slen, uint8_t radix) {
+ assert(str != 0 && "Invalid value string");
+ assert(slen > 0 && "Invalid string length");
+
+ // Each computation below needs to know if its negative
+ unsigned isNegative = str[0] == '-';
+ if (isNegative) {
+ slen--;
+ str++;
+ }
+ // For radixes of power-of-two values, the bits required is accurately and
+ // easily computed
+ if (radix == 2)
+ return slen + isNegative;
+ if (radix == 8)
+ return slen * 3 + isNegative;
+ if (radix == 16)
+ return slen * 4 + isNegative;
+
+ // Otherwise it must be radix == 10, the hard case
+ assert(radix == 10 && "Invalid radix");
+
+ // This is grossly inefficient but accurate. We could probably do something
+ // with a computation of roughly slen*64/20 and then adjust by the value of
+ // the first few digits. But, I'm not sure how accurate that could be.
+
+ // Compute a sufficient number of bits that is always large enough but might
+ // be too large. This avoids the assertion in the constructor.
+ unsigned sufficient = slen*64/18;
+
+ // Convert to the actual binary value.
+ APInt tmp(sufficient, str, slen, radix);
+
+ // Compute how many bits are required.
+ return isNegative + tmp.logBase2() + 1;
+}
+
+// From http://www.burtleburtle.net, byBob Jenkins.
+// When targeting x86, both GCC and LLVM seem to recognize this as a
+// rotate instruction.
+#define rot(x,k) (((x)<<(k)) | ((x)>>(32-(k))))
+
+// From http://www.burtleburtle.net, by Bob Jenkins.
+#define mix(a,b,c) \
+ { \
+ a -= c; a ^= rot(c, 4); c += b; \
+ b -= a; b ^= rot(a, 6); a += c; \
+ c -= b; c ^= rot(b, 8); b += a; \
+ a -= c; a ^= rot(c,16); c += b; \
+ b -= a; b ^= rot(a,19); a += c; \
+ c -= b; c ^= rot(b, 4); b += a; \
+ }
+
+// From http://www.burtleburtle.net, by Bob Jenkins.
+#define final(a,b,c) \
+ { \
+ c ^= b; c -= rot(b,14); \
+ a ^= c; a -= rot(c,11); \
+ b ^= a; b -= rot(a,25); \
+ c ^= b; c -= rot(b,16); \
+ a ^= c; a -= rot(c,4); \
+ b ^= a; b -= rot(a,14); \
+ c ^= b; c -= rot(b,24); \
+ }
+
+// hashword() was adapted from http://www.burtleburtle.net, by Bob
+// Jenkins. k is a pointer to an array of uint32_t values; length is
+// the length of the key, in 32-bit chunks. This version only handles
+// keys that are a multiple of 32 bits in size.
+static inline uint32_t hashword(const uint64_t *k64, size_t length)
+{
+ const uint32_t *k = reinterpret_cast<const uint32_t *>(k64);
+ uint32_t a,b,c;
+
+ /* Set up the internal state */
+ a = b = c = 0xdeadbeef + (((uint32_t)length)<<2);
+
+ /*------------------------------------------------- handle most of the key */
+ while (length > 3)
+ {
+ a += k[0];
+ b += k[1];
+ c += k[2];
+ mix(a,b,c);
+ length -= 3;
+ k += 3;
+ }
+
+ /*------------------------------------------- handle the last 3 uint32_t's */
+ switch (length) { /* all the case statements fall through */
+ case 3 : c+=k[2];
+ case 2 : b+=k[1];
+ case 1 : a+=k[0];
+ final(a,b,c);
+ case 0: /* case 0: nothing left to add */
+ break;
+ }
+ /*------------------------------------------------------ report the result */
+ return c;
+}
+
+// hashword8() was adapted from http://www.burtleburtle.net, by Bob
+// Jenkins. This computes a 32-bit hash from one 64-bit word. When
+// targeting x86 (32 or 64 bit), both LLVM and GCC compile this
+// function into about 35 instructions when inlined.
+static inline uint32_t hashword8(const uint64_t k64)
+{
+ uint32_t a,b,c;
+ a = b = c = 0xdeadbeef + 4;
+ b += k64 >> 32;
+ a += k64 & 0xffffffff;
+ final(a,b,c);
+ return c;
+}
+#undef final
+#undef mix
+#undef rot
+
+uint64_t APInt::getHashValue() const {
+ uint64_t hash;
+ if (isSingleWord())
+ hash = hashword8(VAL);
+ else
+ hash = hashword(pVal, getNumWords()*2);
+ return hash;
+}
+
+/// HiBits - This function returns the high "numBits" bits of this APInt.
+APInt APInt::getHiBits(unsigned numBits) const {
+ return APIntOps::lshr(*this, BitWidth - numBits);
+}
+
+/// LoBits - This function returns the low "numBits" bits of this APInt.
+APInt APInt::getLoBits(unsigned numBits) const {
+ return APIntOps::lshr(APIntOps::shl(*this, BitWidth - numBits),
+ BitWidth - numBits);
+}
+
+bool APInt::isPowerOf2() const {
+ return (!!*this) && !(*this & (*this - APInt(BitWidth,1)));
+}
+
+unsigned APInt::countLeadingZerosSlowCase() const {
+ unsigned Count = 0;
+ for (unsigned i = getNumWords(); i > 0u; --i) {
+ if (pVal[i-1] == 0)
+ Count += APINT_BITS_PER_WORD;
+ else {
+ Count += CountLeadingZeros_64(pVal[i-1]);
+ break;
+ }
+ }
+ unsigned remainder = BitWidth % APINT_BITS_PER_WORD;
+ if (remainder)
+ Count -= APINT_BITS_PER_WORD - remainder;
+ return std::min(Count, BitWidth);
+}
+
+static unsigned countLeadingOnes_64(uint64_t V, unsigned skip) {
+ unsigned Count = 0;
+ if (skip)
+ V <<= skip;
+ while (V && (V & (1ULL << 63))) {
+ Count++;
+ V <<= 1;
+ }
+ return Count;
+}
+
+unsigned APInt::countLeadingOnes() const {
+ if (isSingleWord())
+ return countLeadingOnes_64(VAL, APINT_BITS_PER_WORD - BitWidth);
+
+ unsigned highWordBits = BitWidth % APINT_BITS_PER_WORD;
+ unsigned shift;
+ if (!highWordBits) {
+ highWordBits = APINT_BITS_PER_WORD;
+ shift = 0;
+ } else {
+ shift = APINT_BITS_PER_WORD - highWordBits;
+ }
+ int i = getNumWords() - 1;
+ unsigned Count = countLeadingOnes_64(pVal[i], shift);
+ if (Count == highWordBits) {
+ for (i--; i >= 0; --i) {
+ if (pVal[i] == -1ULL)
+ Count += APINT_BITS_PER_WORD;
+ else {
+ Count += countLeadingOnes_64(pVal[i], 0);
+ break;
+ }
+ }
+ }
+ return Count;
+}
+
+unsigned APInt::countTrailingZeros() const {
+ if (isSingleWord())
+ return std::min(unsigned(CountTrailingZeros_64(VAL)), BitWidth);
+ unsigned Count = 0;
+ unsigned i = 0;
+ for (; i < getNumWords() && pVal[i] == 0; ++i)
+ Count += APINT_BITS_PER_WORD;
+ if (i < getNumWords())
+ Count += CountTrailingZeros_64(pVal[i]);
+ return std::min(Count, BitWidth);
+}
+
+unsigned APInt::countTrailingOnesSlowCase() const {
+ unsigned Count = 0;
+ unsigned i = 0;
+ for (; i < getNumWords() && pVal[i] == -1ULL; ++i)
+ Count += APINT_BITS_PER_WORD;
+ if (i < getNumWords())
+ Count += CountTrailingOnes_64(pVal[i]);
+ return std::min(Count, BitWidth);
+}
+
+unsigned APInt::countPopulationSlowCase() const {
+ unsigned Count = 0;
+ for (unsigned i = 0; i < getNumWords(); ++i)
+ Count += CountPopulation_64(pVal[i]);
+ return Count;
+}
+
+APInt APInt::byteSwap() const {
+ assert(BitWidth >= 16 && BitWidth % 16 == 0 && "Cannot byteswap!");
+ if (BitWidth == 16)
+ return APInt(BitWidth, ByteSwap_16(uint16_t(VAL)));
+ else if (BitWidth == 32)
+ return APInt(BitWidth, ByteSwap_32(unsigned(VAL)));
+ else if (BitWidth == 48) {
+ unsigned Tmp1 = unsigned(VAL >> 16);
+ Tmp1 = ByteSwap_32(Tmp1);
+ uint16_t Tmp2 = uint16_t(VAL);
+ Tmp2 = ByteSwap_16(Tmp2);
+ return APInt(BitWidth, (uint64_t(Tmp2) << 32) | Tmp1);
+ } else if (BitWidth == 64)
+ return APInt(BitWidth, ByteSwap_64(VAL));
+ else {
+ APInt Result(BitWidth, 0);
+ char *pByte = (char*)Result.pVal;
+ for (unsigned i = 0; i < BitWidth / APINT_WORD_SIZE / 2; ++i) {
+ char Tmp = pByte[i];
+ pByte[i] = pByte[BitWidth / APINT_WORD_SIZE - 1 - i];
+ pByte[BitWidth / APINT_WORD_SIZE - i - 1] = Tmp;
+ }
+ return Result;
+ }
+}
+
+APInt llvm::APIntOps::GreatestCommonDivisor(const APInt& API1,
+ const APInt& API2) {
+ APInt A = API1, B = API2;
+ while (!!B) {
+ APInt T = B;
+ B = APIntOps::urem(A, B);
+ A = T;
+ }
+ return A;
+}
+
+APInt llvm::APIntOps::RoundDoubleToAPInt(double Double, unsigned width) {
+ union {
+ double D;
+ uint64_t I;
+ } T;
+ T.D = Double;
+
+ // Get the sign bit from the highest order bit
+ bool isNeg = T.I >> 63;
+
+ // Get the 11-bit exponent and adjust for the 1023 bit bias
+ int64_t exp = ((T.I >> 52) & 0x7ff) - 1023;
+
+ // If the exponent is negative, the value is < 0 so just return 0.
+ if (exp < 0)
+ return APInt(width, 0u);
+
+ // Extract the mantissa by clearing the top 12 bits (sign + exponent).
+ uint64_t mantissa = (T.I & (~0ULL >> 12)) | 1ULL << 52;
+
+ // If the exponent doesn't shift all bits out of the mantissa
+ if (exp < 52)
+ return isNeg ? -APInt(width, mantissa >> (52 - exp)) :
+ APInt(width, mantissa >> (52 - exp));
+
+ // If the client didn't provide enough bits for us to shift the mantissa into
+ // then the result is undefined, just return 0
+ if (width <= exp - 52)
+ return APInt(width, 0);
+
+ // Otherwise, we have to shift the mantissa bits up to the right location
+ APInt Tmp(width, mantissa);
+ Tmp = Tmp.shl((unsigned)exp - 52);
+ return isNeg ? -Tmp : Tmp;
+}
+
+/// RoundToDouble - This function convert this APInt to a double.
+/// The layout for double is as following (IEEE Standard 754):
+/// --------------------------------------
+/// | Sign Exponent Fraction Bias |
+/// |-------------------------------------- |
+/// | 1[63] 11[62-52] 52[51-00] 1023 |
+/// --------------------------------------
+double APInt::roundToDouble(bool isSigned) const {
+
+ // Handle the simple case where the value is contained in one uint64_t.
+ if (isSingleWord() || getActiveBits() <= APINT_BITS_PER_WORD) {
+ if (isSigned) {
+ int64_t sext = (int64_t(VAL) << (64-BitWidth)) >> (64-BitWidth);
+ return double(sext);
+ } else
+ return double(VAL);
+ }
+
+ // Determine if the value is negative.
+ bool isNeg = isSigned ? (*this)[BitWidth-1] : false;
+
+ // Construct the absolute value if we're negative.
+ APInt Tmp(isNeg ? -(*this) : (*this));
+
+ // Figure out how many bits we're using.
+ unsigned n = Tmp.getActiveBits();
+
+ // The exponent (without bias normalization) is just the number of bits
+ // we are using. Note that the sign bit is gone since we constructed the
+ // absolute value.
+ uint64_t exp = n;
+
+ // Return infinity for exponent overflow
+ if (exp > 1023) {
+ if (!isSigned || !isNeg)
+ return std::numeric_limits<double>::infinity();
+ else
+ return -std::numeric_limits<double>::infinity();
+ }
+ exp += 1023; // Increment for 1023 bias
+
+ // Number of bits in mantissa is 52. To obtain the mantissa value, we must
+ // extract the high 52 bits from the correct words in pVal.
+ uint64_t mantissa;
+ unsigned hiWord = whichWord(n-1);
+ if (hiWord == 0) {
+ mantissa = Tmp.pVal[0];
+ if (n > 52)
+ mantissa >>= n - 52; // shift down, we want the top 52 bits.
+ } else {
+ assert(hiWord > 0 && "huh?");
+ uint64_t hibits = Tmp.pVal[hiWord] << (52 - n % APINT_BITS_PER_WORD);
+ uint64_t lobits = Tmp.pVal[hiWord-1] >> (11 + n % APINT_BITS_PER_WORD);
+ mantissa = hibits | lobits;
+ }
+
+ // The leading bit of mantissa is implicit, so get rid of it.
+ uint64_t sign = isNeg ? (1ULL << (APINT_BITS_PER_WORD - 1)) : 0;
+ union {
+ double D;
+ uint64_t I;
+ } T;
+ T.I = sign | (exp << 52) | mantissa;
+ return T.D;
+}
+
+// Truncate to new width.
+APInt &APInt::trunc(unsigned width) {
+ assert(width < BitWidth && "Invalid APInt Truncate request");
+ assert(width && "Can't truncate to 0 bits");
+ unsigned wordsBefore = getNumWords();
+ BitWidth = width;
+ unsigned wordsAfter = getNumWords();
+ if (wordsBefore != wordsAfter) {
+ if (wordsAfter == 1) {
+ uint64_t *tmp = pVal;
+ VAL = pVal[0];
+ delete [] tmp;
+ } else {
+ uint64_t *newVal = getClearedMemory(wordsAfter);
+ for (unsigned i = 0; i < wordsAfter; ++i)
+ newVal[i] = pVal[i];
+ delete [] pVal;
+ pVal = newVal;
+ }
+ }
+ return clearUnusedBits();
+}
+
+// Sign extend to a new width.
+APInt &APInt::sext(unsigned width) {
+ assert(width > BitWidth && "Invalid APInt SignExtend request");
+ // If the sign bit isn't set, this is the same as zext.
+ if (!isNegative()) {
+ zext(width);
+ return *this;
+ }
+
+ // The sign bit is set. First, get some facts
+ unsigned wordsBefore = getNumWords();
+ unsigned wordBits = BitWidth % APINT_BITS_PER_WORD;
+ BitWidth = width;
+ unsigned wordsAfter = getNumWords();
+
+ // Mask the high order word appropriately
+ if (wordsBefore == wordsAfter) {
+ unsigned newWordBits = width % APINT_BITS_PER_WORD;
+ // The extension is contained to the wordsBefore-1th word.
+ uint64_t mask = ~0ULL;
+ if (newWordBits)
+ mask >>= APINT_BITS_PER_WORD - newWordBits;
+ mask <<= wordBits;
+ if (wordsBefore == 1)
+ VAL |= mask;
+ else
+ pVal[wordsBefore-1] |= mask;
+ return clearUnusedBits();
+ }
+
+ uint64_t mask = wordBits == 0 ? 0 : ~0ULL << wordBits;
+ uint64_t *newVal = getMemory(wordsAfter);
+ if (wordsBefore == 1)
+ newVal[0] = VAL | mask;
+ else {
+ for (unsigned i = 0; i < wordsBefore; ++i)
+ newVal[i] = pVal[i];
+ newVal[wordsBefore-1] |= mask;
+ }
+ for (unsigned i = wordsBefore; i < wordsAfter; i++)
+ newVal[i] = -1ULL;
+ if (wordsBefore != 1)
+ delete [] pVal;
+ pVal = newVal;
+ return clearUnusedBits();
+}
+
+// Zero extend to a new width.
+APInt &APInt::zext(unsigned width) {
+ assert(width > BitWidth && "Invalid APInt ZeroExtend request");
+ unsigned wordsBefore = getNumWords();
+ BitWidth = width;
+ unsigned wordsAfter = getNumWords();
+ if (wordsBefore != wordsAfter) {
+ uint64_t *newVal = getClearedMemory(wordsAfter);
+ if (wordsBefore == 1)
+ newVal[0] = VAL;
+ else
+ for (unsigned i = 0; i < wordsBefore; ++i)
+ newVal[i] = pVal[i];
+ if (wordsBefore != 1)
+ delete [] pVal;
+ pVal = newVal;
+ }
+ return *this;
+}
+
+APInt &APInt::zextOrTrunc(unsigned width) {
+ if (BitWidth < width)
+ return zext(width);
+ if (BitWidth > width)
+ return trunc(width);
+ return *this;
+}
+
+APInt &APInt::sextOrTrunc(unsigned width) {
+ if (BitWidth < width)
+ return sext(width);
+ if (BitWidth > width)
+ return trunc(width);
+ return *this;
+}
+
+/// Arithmetic right-shift this APInt by shiftAmt.
+/// @brief Arithmetic right-shift function.
+APInt APInt::ashr(const APInt &shiftAmt) const {
+ return ashr((unsigned)shiftAmt.getLimitedValue(BitWidth));
+}
+
+/// Arithmetic right-shift this APInt by shiftAmt.
+/// @brief Arithmetic right-shift function.
+APInt APInt::ashr(unsigned shiftAmt) const {
+ assert(shiftAmt <= BitWidth && "Invalid shift amount");
+ // Handle a degenerate case
+ if (shiftAmt == 0)
+ return *this;
+
+ // Handle single word shifts with built-in ashr
+ if (isSingleWord()) {
+ if (shiftAmt == BitWidth)
+ return APInt(BitWidth, 0); // undefined
+ else {
+ unsigned SignBit = APINT_BITS_PER_WORD - BitWidth;
+ return APInt(BitWidth,
+ (((int64_t(VAL) << SignBit) >> SignBit) >> shiftAmt));
+ }
+ }
+
+ // If all the bits were shifted out, the result is, technically, undefined.
+ // We return -1 if it was negative, 0 otherwise. We check this early to avoid
+ // issues in the algorithm below.
+ if (shiftAmt == BitWidth) {
+ if (isNegative())
+ return APInt(BitWidth, -1ULL, true);
+ else
+ return APInt(BitWidth, 0);
+ }
+
+ // Create some space for the result.
+ uint64_t * val = new uint64_t[getNumWords()];
+
+ // Compute some values needed by the following shift algorithms
+ unsigned wordShift = shiftAmt % APINT_BITS_PER_WORD; // bits to shift per word
+ unsigned offset = shiftAmt / APINT_BITS_PER_WORD; // word offset for shift
+ unsigned breakWord = getNumWords() - 1 - offset; // last word affected
+ unsigned bitsInWord = whichBit(BitWidth); // how many bits in last word?
+ if (bitsInWord == 0)
+ bitsInWord = APINT_BITS_PER_WORD;
+
+ // If we are shifting whole words, just move whole words
+ if (wordShift == 0) {
+ // Move the words containing significant bits
+ for (unsigned i = 0; i <= breakWord; ++i)
+ val[i] = pVal[i+offset]; // move whole word
+
+ // Adjust the top significant word for sign bit fill, if negative
+ if (isNegative())
+ if (bitsInWord < APINT_BITS_PER_WORD)
+ val[breakWord] |= ~0ULL << bitsInWord; // set high bits
+ } else {
+ // Shift the low order words
+ for (unsigned i = 0; i < breakWord; ++i) {
+ // This combines the shifted corresponding word with the low bits from
+ // the next word (shifted into this word's high bits).
+ val[i] = (pVal[i+offset] >> wordShift) |
+ (pVal[i+offset+1] << (APINT_BITS_PER_WORD - wordShift));
+ }
+
+ // Shift the break word. In this case there are no bits from the next word
+ // to include in this word.
+ val[breakWord] = pVal[breakWord+offset] >> wordShift;
+
+ // Deal with sign extenstion in the break word, and possibly the word before
+ // it.
+ if (isNegative()) {
+ if (wordShift > bitsInWord) {
+ if (breakWord > 0)
+ val[breakWord-1] |=
+ ~0ULL << (APINT_BITS_PER_WORD - (wordShift - bitsInWord));
+ val[breakWord] |= ~0ULL;
+ } else
+ val[breakWord] |= (~0ULL << (bitsInWord - wordShift));
+ }
+ }
+
+ // Remaining words are 0 or -1, just assign them.
+ uint64_t fillValue = (isNegative() ? -1ULL : 0);
+ for (unsigned i = breakWord+1; i < getNumWords(); ++i)
+ val[i] = fillValue;
+ return APInt(val, BitWidth).clearUnusedBits();
+}
+
+/// Logical right-shift this APInt by shiftAmt.
+/// @brief Logical right-shift function.
+APInt APInt::lshr(const APInt &shiftAmt) const {
+ return lshr((unsigned)shiftAmt.getLimitedValue(BitWidth));
+}
+
+/// Logical right-shift this APInt by shiftAmt.
+/// @brief Logical right-shift function.
+APInt APInt::lshr(unsigned shiftAmt) const {
+ if (isSingleWord()) {
+ if (shiftAmt == BitWidth)
+ return APInt(BitWidth, 0);
+ else
+ return APInt(BitWidth, this->VAL >> shiftAmt);
+ }
+
+ // If all the bits were shifted out, the result is 0. This avoids issues
+ // with shifting by the size of the integer type, which produces undefined
+ // results. We define these "undefined results" to always be 0.
+ if (shiftAmt == BitWidth)
+ return APInt(BitWidth, 0);
+
+ // If none of the bits are shifted out, the result is *this. This avoids
+ // issues with shifting by the size of the integer type, which produces
+ // undefined results in the code below. This is also an optimization.
+ if (shiftAmt == 0)
+ return *this;
+
+ // Create some space for the result.
+ uint64_t * val = new uint64_t[getNumWords()];
+
+ // If we are shifting less than a word, compute the shift with a simple carry
+ if (shiftAmt < APINT_BITS_PER_WORD) {
+ uint64_t carry = 0;
+ for (int i = getNumWords()-1; i >= 0; --i) {
+ val[i] = (pVal[i] >> shiftAmt) | carry;
+ carry = pVal[i] << (APINT_BITS_PER_WORD - shiftAmt);
+ }
+ return APInt(val, BitWidth).clearUnusedBits();
+ }
+
+ // Compute some values needed by the remaining shift algorithms
+ unsigned wordShift = shiftAmt % APINT_BITS_PER_WORD;
+ unsigned offset = shiftAmt / APINT_BITS_PER_WORD;
+
+ // If we are shifting whole words, just move whole words
+ if (wordShift == 0) {
+ for (unsigned i = 0; i < getNumWords() - offset; ++i)
+ val[i] = pVal[i+offset];
+ for (unsigned i = getNumWords()-offset; i < getNumWords(); i++)
+ val[i] = 0;
+ return APInt(val,BitWidth).clearUnusedBits();
+ }
+
+ // Shift the low order words
+ unsigned breakWord = getNumWords() - offset -1;
+ for (unsigned i = 0; i < breakWord; ++i)
+ val[i] = (pVal[i+offset] >> wordShift) |
+ (pVal[i+offset+1] << (APINT_BITS_PER_WORD - wordShift));
+ // Shift the break word.
+ val[breakWord] = pVal[breakWord+offset] >> wordShift;
+
+ // Remaining words are 0
+ for (unsigned i = breakWord+1; i < getNumWords(); ++i)
+ val[i] = 0;
+ return APInt(val, BitWidth).clearUnusedBits();
+}
+
+/// Left-shift this APInt by shiftAmt.
+/// @brief Left-shift function.
+APInt APInt::shl(const APInt &shiftAmt) const {
+ // It's undefined behavior in C to shift by BitWidth or greater.
+ return shl((unsigned)shiftAmt.getLimitedValue(BitWidth));
+}
+
+APInt APInt::shlSlowCase(unsigned shiftAmt) const {
+ // If all the bits were shifted out, the result is 0. This avoids issues
+ // with shifting by the size of the integer type, which produces undefined
+ // results. We define these "undefined results" to always be 0.
+ if (shiftAmt == BitWidth)
+ return APInt(BitWidth, 0);
+
+ // If none of the bits are shifted out, the result is *this. This avoids a
+ // lshr by the words size in the loop below which can produce incorrect
+ // results. It also avoids the expensive computation below for a common case.
+ if (shiftAmt == 0)
+ return *this;
+
+ // Create some space for the result.
+ uint64_t * val = new uint64_t[getNumWords()];
+
+ // If we are shifting less than a word, do it the easy way
+ if (shiftAmt < APINT_BITS_PER_WORD) {
+ uint64_t carry = 0;
+ for (unsigned i = 0; i < getNumWords(); i++) {
+ val[i] = pVal[i] << shiftAmt | carry;
+ carry = pVal[i] >> (APINT_BITS_PER_WORD - shiftAmt);
+ }
+ return APInt(val, BitWidth).clearUnusedBits();
+ }
+
+ // Compute some values needed by the remaining shift algorithms
+ unsigned wordShift = shiftAmt % APINT_BITS_PER_WORD;
+ unsigned offset = shiftAmt / APINT_BITS_PER_WORD;
+
+ // If we are shifting whole words, just move whole words
+ if (wordShift == 0) {
+ for (unsigned i = 0; i < offset; i++)
+ val[i] = 0;
+ for (unsigned i = offset; i < getNumWords(); i++)
+ val[i] = pVal[i-offset];
+ return APInt(val,BitWidth).clearUnusedBits();
+ }
+
+ // Copy whole words from this to Result.
+ unsigned i = getNumWords() - 1;
+ for (; i > offset; --i)
+ val[i] = pVal[i-offset] << wordShift |
+ pVal[i-offset-1] >> (APINT_BITS_PER_WORD - wordShift);
+ val[offset] = pVal[0] << wordShift;
+ for (i = 0; i < offset; ++i)
+ val[i] = 0;
+ return APInt(val, BitWidth).clearUnusedBits();
+}
+
+APInt APInt::rotl(const APInt &rotateAmt) const {
+ return rotl((unsigned)rotateAmt.getLimitedValue(BitWidth));
+}
+
+APInt APInt::rotl(unsigned rotateAmt) const {
+ if (rotateAmt == 0)
+ return *this;
+ // Don't get too fancy, just use existing shift/or facilities
+ APInt hi(*this);
+ APInt lo(*this);
+ hi.shl(rotateAmt);
+ lo.lshr(BitWidth - rotateAmt);
+ return hi | lo;
+}
+
+APInt APInt::rotr(const APInt &rotateAmt) const {
+ return rotr((unsigned)rotateAmt.getLimitedValue(BitWidth));
+}
+
+APInt APInt::rotr(unsigned rotateAmt) const {
+ if (rotateAmt == 0)
+ return *this;
+ // Don't get too fancy, just use existing shift/or facilities
+ APInt hi(*this);
+ APInt lo(*this);
+ lo.lshr(rotateAmt);
+ hi.shl(BitWidth - rotateAmt);
+ return hi | lo;
+}
+
+// Square Root - this method computes and returns the square root of "this".
+// Three mechanisms are used for computation. For small values (<= 5 bits),
+// a table lookup is done. This gets some performance for common cases. For
+// values using less than 52 bits, the value is converted to double and then
+// the libc sqrt function is called. The result is rounded and then converted
+// back to a uint64_t which is then used to construct the result. Finally,
+// the Babylonian method for computing square roots is used.
+APInt APInt::sqrt() const {
+
+ // Determine the magnitude of the value.
+ unsigned magnitude = getActiveBits();
+
+ // Use a fast table for some small values. This also gets rid of some
+ // rounding errors in libc sqrt for small values.
+ if (magnitude <= 5) {
+ static const uint8_t results[32] = {
+ /* 0 */ 0,
+ /* 1- 2 */ 1, 1,
+ /* 3- 6 */ 2, 2, 2, 2,
+ /* 7-12 */ 3, 3, 3, 3, 3, 3,
+ /* 13-20 */ 4, 4, 4, 4, 4, 4, 4, 4,
+ /* 21-30 */ 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
+ /* 31 */ 6
+ };
+ return APInt(BitWidth, results[ (isSingleWord() ? VAL : pVal[0]) ]);
+ }
+
+ // If the magnitude of the value fits in less than 52 bits (the precision of
+ // an IEEE double precision floating point value), then we can use the
+ // libc sqrt function which will probably use a hardware sqrt computation.
+ // This should be faster than the algorithm below.
+ if (magnitude < 52) {
+#ifdef _MSC_VER
+ // Amazingly, VC++ doesn't have round().
+ return APInt(BitWidth,
+ uint64_t(::sqrt(double(isSingleWord()?VAL:pVal[0]))) + 0.5);
+#else
+ return APInt(BitWidth,
+ uint64_t(::round(::sqrt(double(isSingleWord()?VAL:pVal[0])))));
+#endif
+ }
+
+ // Okay, all the short cuts are exhausted. We must compute it. The following
+ // is a classical Babylonian method for computing the square root. This code
+ // was adapted to APINt from a wikipedia article on such computations.
+ // See http://www.wikipedia.org/ and go to the page named
+ // Calculate_an_integer_square_root.
+ unsigned nbits = BitWidth, i = 4;
+ APInt testy(BitWidth, 16);
+ APInt x_old(BitWidth, 1);
+ APInt x_new(BitWidth, 0);
+ APInt two(BitWidth, 2);
+
+ // Select a good starting value using binary logarithms.
+ for (;; i += 2, testy = testy.shl(2))
+ if (i >= nbits || this->ule(testy)) {
+ x_old = x_old.shl(i / 2);
+ break;
+ }
+
+ // Use the Babylonian method to arrive at the integer square root:
+ for (;;) {
+ x_new = (this->udiv(x_old) + x_old).udiv(two);
+ if (x_old.ule(x_new))
+ break;
+ x_old = x_new;
+ }
+
+ // Make sure we return the closest approximation
+ // NOTE: The rounding calculation below is correct. It will produce an
+ // off-by-one discrepancy with results from pari/gp. That discrepancy has been
+ // determined to be a rounding issue with pari/gp as it begins to use a
+ // floating point representation after 192 bits. There are no discrepancies
+ // between this algorithm and pari/gp for bit widths < 192 bits.
+ APInt square(x_old * x_old);
+ APInt nextSquare((x_old + 1) * (x_old +1));
+ if (this->ult(square))
+ return x_old;
+ else if (this->ule(nextSquare)) {
+ APInt midpoint((nextSquare - square).udiv(two));
+ APInt offset(*this - square);
+ if (offset.ult(midpoint))
+ return x_old;
+ else
+ return x_old + 1;
+ } else
+ assert(0 && "Error in APInt::sqrt computation");
+ return x_old + 1;
+}
+
+/// Computes the multiplicative inverse of this APInt for a given modulo. The
+/// iterative extended Euclidean algorithm is used to solve for this value,
+/// however we simplify it to speed up calculating only the inverse, and take
+/// advantage of div+rem calculations. We also use some tricks to avoid copying
+/// (potentially large) APInts around.
+APInt APInt::multiplicativeInverse(const APInt& modulo) const {
+ assert(ult(modulo) && "This APInt must be smaller than the modulo");
+
+ // Using the properties listed at the following web page (accessed 06/21/08):
+ // http://www.numbertheory.org/php/euclid.html
+ // (especially the properties numbered 3, 4 and 9) it can be proved that
+ // BitWidth bits suffice for all the computations in the algorithm implemented
+ // below. More precisely, this number of bits suffice if the multiplicative
+ // inverse exists, but may not suffice for the general extended Euclidean
+ // algorithm.
+
+ APInt r[2] = { modulo, *this };
+ APInt t[2] = { APInt(BitWidth, 0), APInt(BitWidth, 1) };
+ APInt q(BitWidth, 0);
+
+ unsigned i;
+ for (i = 0; r[i^1] != 0; i ^= 1) {
+ // An overview of the math without the confusing bit-flipping:
+ // q = r[i-2] / r[i-1]
+ // r[i] = r[i-2] % r[i-1]
+ // t[i] = t[i-2] - t[i-1] * q
+ udivrem(r[i], r[i^1], q, r[i]);
+ t[i] -= t[i^1] * q;
+ }
+
+ // If this APInt and the modulo are not coprime, there is no multiplicative
+ // inverse, so return 0. We check this by looking at the next-to-last
+ // remainder, which is the gcd(*this,modulo) as calculated by the Euclidean
+ // algorithm.
+ if (r[i] != 1)
+ return APInt(BitWidth, 0);
+
+ // The next-to-last t is the multiplicative inverse. However, we are
+ // interested in a positive inverse. Calcuate a positive one from a negative
+ // one if necessary. A simple addition of the modulo suffices because
+ // abs(t[i]) is known to be less than *this/2 (see the link above).
+ return t[i].isNegative() ? t[i] + modulo : t[i];
+}
+
+/// Calculate the magic numbers required to implement a signed integer division
+/// by a constant as a sequence of multiplies, adds and shifts. Requires that
+/// the divisor not be 0, 1, or -1. Taken from "Hacker's Delight", Henry S.
+/// Warren, Jr., chapter 10.
+APInt::ms APInt::magic() const {
+ const APInt& d = *this;
+ unsigned p;
+ APInt ad, anc, delta, q1, r1, q2, r2, t;
+ APInt allOnes = APInt::getAllOnesValue(d.getBitWidth());
+ APInt signedMin = APInt::getSignedMinValue(d.getBitWidth());
+ APInt signedMax = APInt::getSignedMaxValue(d.getBitWidth());
+ struct ms mag;
+
+ ad = d.abs();
+ t = signedMin + (d.lshr(d.getBitWidth() - 1));
+ anc = t - 1 - t.urem(ad); // absolute value of nc
+ p = d.getBitWidth() - 1; // initialize p
+ q1 = signedMin.udiv(anc); // initialize q1 = 2p/abs(nc)
+ r1 = signedMin - q1*anc; // initialize r1 = rem(2p,abs(nc))
+ q2 = signedMin.udiv(ad); // initialize q2 = 2p/abs(d)
+ r2 = signedMin - q2*ad; // initialize r2 = rem(2p,abs(d))
+ do {
+ p = p + 1;
+ q1 = q1<<1; // update q1 = 2p/abs(nc)
+ r1 = r1<<1; // update r1 = rem(2p/abs(nc))
+ if (r1.uge(anc)) { // must be unsigned comparison
+ q1 = q1 + 1;
+ r1 = r1 - anc;
+ }
+ q2 = q2<<1; // update q2 = 2p/abs(d)
+ r2 = r2<<1; // update r2 = rem(2p/abs(d))
+ if (r2.uge(ad)) { // must be unsigned comparison
+ q2 = q2 + 1;
+ r2 = r2 - ad;
+ }
+ delta = ad - r2;
+ } while (q1.ule(delta) || (q1 == delta && r1 == 0));
+
+ mag.m = q2 + 1;
+ if (d.isNegative()) mag.m = -mag.m; // resulting magic number
+ mag.s = p - d.getBitWidth(); // resulting shift
+ return mag;
+}
+
+/// Calculate the magic numbers required to implement an unsigned integer
+/// division by a constant as a sequence of multiplies, adds and shifts.
+/// Requires that the divisor not be 0. Taken from "Hacker's Delight", Henry
+/// S. Warren, Jr., chapter 10.
+APInt::mu APInt::magicu() const {
+ const APInt& d = *this;
+ unsigned p;
+ APInt nc, delta, q1, r1, q2, r2;
+ struct mu magu;
+ magu.a = 0; // initialize "add" indicator
+ APInt allOnes = APInt::getAllOnesValue(d.getBitWidth());
+ APInt signedMin = APInt::getSignedMinValue(d.getBitWidth());
+ APInt signedMax = APInt::getSignedMaxValue(d.getBitWidth());
+
+ nc = allOnes - (-d).urem(d);
+ p = d.getBitWidth() - 1; // initialize p
+ q1 = signedMin.udiv(nc); // initialize q1 = 2p/nc
+ r1 = signedMin - q1*nc; // initialize r1 = rem(2p,nc)
+ q2 = signedMax.udiv(d); // initialize q2 = (2p-1)/d
+ r2 = signedMax - q2*d; // initialize r2 = rem((2p-1),d)
+ do {
+ p = p + 1;
+ if (r1.uge(nc - r1)) {
+ q1 = q1 + q1 + 1; // update q1
+ r1 = r1 + r1 - nc; // update r1
+ }
+ else {
+ q1 = q1+q1; // update q1
+ r1 = r1+r1; // update r1
+ }
+ if ((r2 + 1).uge(d - r2)) {
+ if (q2.uge(signedMax)) magu.a = 1;
+ q2 = q2+q2 + 1; // update q2
+ r2 = r2+r2 + 1 - d; // update r2
+ }
+ else {
+ if (q2.uge(signedMin)) magu.a = 1;
+ q2 = q2+q2; // update q2
+ r2 = r2+r2 + 1; // update r2
+ }
+ delta = d - 1 - r2;
+ } while (p < d.getBitWidth()*2 &&
+ (q1.ult(delta) || (q1 == delta && r1 == 0)));
+ magu.m = q2 + 1; // resulting magic number
+ magu.s = p - d.getBitWidth(); // resulting shift
+ return magu;
+}
+
+/// Implementation of Knuth's Algorithm D (Division of nonnegative integers)
+/// from "Art of Computer Programming, Volume 2", section 4.3.1, p. 272. The
+/// variables here have the same names as in the algorithm. Comments explain
+/// the algorithm and any deviation from it.
+static void KnuthDiv(unsigned *u, unsigned *v, unsigned *q, unsigned* r,
+ unsigned m, unsigned n) {
+ assert(u && "Must provide dividend");
+ assert(v && "Must provide divisor");
+ assert(q && "Must provide quotient");
+ assert(u != v && u != q && v != q && "Must us different memory");
+ assert(n>1 && "n must be > 1");
+
+ // Knuth uses the value b as the base of the number system. In our case b
+ // is 2^31 so we just set it to -1u.
+ uint64_t b = uint64_t(1) << 32;
+
+#if 0
+ DEBUG(cerr << "KnuthDiv: m=" << m << " n=" << n << '\n');
+ DEBUG(cerr << "KnuthDiv: original:");
+ DEBUG(for (int i = m+n; i >=0; i--) cerr << " " << std::setbase(16) << u[i]);
+ DEBUG(cerr << " by");
+ DEBUG(for (int i = n; i >0; i--) cerr << " " << std::setbase(16) << v[i-1]);
+ DEBUG(cerr << '\n');
+#endif
+ // D1. [Normalize.] Set d = b / (v[n-1] + 1) and multiply all the digits of
+ // u and v by d. Note that we have taken Knuth's advice here to use a power
+ // of 2 value for d such that d * v[n-1] >= b/2 (b is the base). A power of
+ // 2 allows us to shift instead of multiply and it is easy to determine the
+ // shift amount from the leading zeros. We are basically normalizing the u
+ // and v so that its high bits are shifted to the top of v's range without
+ // overflow. Note that this can require an extra word in u so that u must
+ // be of length m+n+1.
+ unsigned shift = CountLeadingZeros_32(v[n-1]);
+ unsigned v_carry = 0;
+ unsigned u_carry = 0;
+ if (shift) {
+ for (unsigned i = 0; i < m+n; ++i) {
+ unsigned u_tmp = u[i] >> (32 - shift);
+ u[i] = (u[i] << shift) | u_carry;
+ u_carry = u_tmp;
+ }
+ for (unsigned i = 0; i < n; ++i) {
+ unsigned v_tmp = v[i] >> (32 - shift);
+ v[i] = (v[i] << shift) | v_carry;
+ v_carry = v_tmp;
+ }
+ }
+ u[m+n] = u_carry;
+#if 0
+ DEBUG(cerr << "KnuthDiv: normal:");
+ DEBUG(for (int i = m+n; i >=0; i--) cerr << " " << std::setbase(16) << u[i]);
+ DEBUG(cerr << " by");
+ DEBUG(for (int i = n; i >0; i--) cerr << " " << std::setbase(16) << v[i-1]);
+ DEBUG(cerr << '\n');
+#endif
+
+ // D2. [Initialize j.] Set j to m. This is the loop counter over the places.
+ int j = m;
+ do {
+ DEBUG(cerr << "KnuthDiv: quotient digit #" << j << '\n');
+ // D3. [Calculate q'.].
+ // Set qp = (u[j+n]*b + u[j+n-1]) / v[n-1]. (qp=qprime=q')
+ // Set rp = (u[j+n]*b + u[j+n-1]) % v[n-1]. (rp=rprime=r')
+ // Now test if qp == b or qp*v[n-2] > b*rp + u[j+n-2]; if so, decrease
+ // qp by 1, inrease rp by v[n-1], and repeat this test if rp < b. The test
+ // on v[n-2] determines at high speed most of the cases in which the trial
+ // value qp is one too large, and it eliminates all cases where qp is two
+ // too large.
+ uint64_t dividend = ((uint64_t(u[j+n]) << 32) + u[j+n-1]);
+ DEBUG(cerr << "KnuthDiv: dividend == " << dividend << '\n');
+ uint64_t qp = dividend / v[n-1];
+ uint64_t rp = dividend % v[n-1];
+ if (qp == b || qp*v[n-2] > b*rp + u[j+n-2]) {
+ qp--;
+ rp += v[n-1];
+ if (rp < b && (qp == b || qp*v[n-2] > b*rp + u[j+n-2]))
+ qp--;
+ }
+ DEBUG(cerr << "KnuthDiv: qp == " << qp << ", rp == " << rp << '\n');
+
+ // D4. [Multiply and subtract.] Replace (u[j+n]u[j+n-1]...u[j]) with
+ // (u[j+n]u[j+n-1]..u[j]) - qp * (v[n-1]...v[1]v[0]). This computation
+ // consists of a simple multiplication by a one-place number, combined with
+ // a subtraction.
+ bool isNeg = false;
+ for (unsigned i = 0; i < n; ++i) {
+ uint64_t u_tmp = uint64_t(u[j+i]) | (uint64_t(u[j+i+1]) << 32);
+ uint64_t subtrahend = uint64_t(qp) * uint64_t(v[i]);
+ bool borrow = subtrahend > u_tmp;
+ DEBUG(cerr << "KnuthDiv: u_tmp == " << u_tmp
+ << ", subtrahend == " << subtrahend
+ << ", borrow = " << borrow << '\n');
+
+ uint64_t result = u_tmp - subtrahend;
+ unsigned k = j + i;
+ u[k++] = (unsigned)(result & (b-1)); // subtract low word
+ u[k++] = (unsigned)(result >> 32); // subtract high word
+ while (borrow && k <= m+n) { // deal with borrow to the left
+ borrow = u[k] == 0;
+ u[k]--;
+ k++;
+ }
+ isNeg |= borrow;
+ DEBUG(cerr << "KnuthDiv: u[j+i] == " << u[j+i] << ", u[j+i+1] == " <<
+ u[j+i+1] << '\n');
+ }
+ DEBUG(cerr << "KnuthDiv: after subtraction:");
+ DEBUG(for (int i = m+n; i >=0; i--) cerr << " " << u[i]);
+ DEBUG(cerr << '\n');
+ // The digits (u[j+n]...u[j]) should be kept positive; if the result of
+ // this step is actually negative, (u[j+n]...u[j]) should be left as the
+ // true value plus b**(n+1), namely as the b's complement of
+ // the true value, and a "borrow" to the left should be remembered.
+ //
+ if (isNeg) {
+ bool carry = true; // true because b's complement is "complement + 1"
+ for (unsigned i = 0; i <= m+n; ++i) {
+ u[i] = ~u[i] + carry; // b's complement
+ carry = carry && u[i] == 0;
+ }
+ }
+ DEBUG(cerr << "KnuthDiv: after complement:");
+ DEBUG(for (int i = m+n; i >=0; i--) cerr << " " << u[i]);
+ DEBUG(cerr << '\n');
+
+ // D5. [Test remainder.] Set q[j] = qp. If the result of step D4 was
+ // negative, go to step D6; otherwise go on to step D7.
+ q[j] = (unsigned)qp;
+ if (isNeg) {
+ // D6. [Add back]. The probability that this step is necessary is very
+ // small, on the order of only 2/b. Make sure that test data accounts for
+ // this possibility. Decrease q[j] by 1
+ q[j]--;
+ // and add (0v[n-1]...v[1]v[0]) to (u[j+n]u[j+n-1]...u[j+1]u[j]).
+ // A carry will occur to the left of u[j+n], and it should be ignored
+ // since it cancels with the borrow that occurred in D4.
+ bool carry = false;
+ for (unsigned i = 0; i < n; i++) {
+ unsigned limit = std::min(u[j+i],v[i]);
+ u[j+i] += v[i] + carry;
+ carry = u[j+i] < limit || (carry && u[j+i] == limit);
+ }
+ u[j+n] += carry;
+ }
+ DEBUG(cerr << "KnuthDiv: after correction:");
+ DEBUG(for (int i = m+n; i >=0; i--) cerr <<" " << u[i]);
+ DEBUG(cerr << "\nKnuthDiv: digit result = " << q[j] << '\n');
+
+ // D7. [Loop on j.] Decrease j by one. Now if j >= 0, go back to D3.
+ } while (--j >= 0);
+
+ DEBUG(cerr << "KnuthDiv: quotient:");
+ DEBUG(for (int i = m; i >=0; i--) cerr <<" " << q[i]);
+ DEBUG(cerr << '\n');
+
+ // D8. [Unnormalize]. Now q[...] is the desired quotient, and the desired
+ // remainder may be obtained by dividing u[...] by d. If r is non-null we
+ // compute the remainder (urem uses this).
+ if (r) {
+ // The value d is expressed by the "shift" value above since we avoided
+ // multiplication by d by using a shift left. So, all we have to do is
+ // shift right here. In order to mak
+ if (shift) {
+ unsigned carry = 0;
+ DEBUG(cerr << "KnuthDiv: remainder:");
+ for (int i = n-1; i >= 0; i--) {
+ r[i] = (u[i] >> shift) | carry;
+ carry = u[i] << (32 - shift);
+ DEBUG(cerr << " " << r[i]);
+ }
+ } else {
+ for (int i = n-1; i >= 0; i--) {
+ r[i] = u[i];
+ DEBUG(cerr << " " << r[i]);
+ }
+ }
+ DEBUG(cerr << '\n');
+ }
+#if 0
+ DEBUG(cerr << std::setbase(10) << '\n');
+#endif
+}
+
+void APInt::divide(const APInt LHS, unsigned lhsWords,
+ const APInt &RHS, unsigned rhsWords,
+ APInt *Quotient, APInt *Remainder)
+{
+ assert(lhsWords >= rhsWords && "Fractional result");
+
+ // First, compose the values into an array of 32-bit words instead of
+ // 64-bit words. This is a necessity of both the "short division" algorithm
+ // and the the Knuth "classical algorithm" which requires there to be native
+ // operations for +, -, and * on an m bit value with an m*2 bit result. We
+ // can't use 64-bit operands here because we don't have native results of
+ // 128-bits. Furthermore, casting the 64-bit values to 32-bit values won't
+ // work on large-endian machines.
+ uint64_t mask = ~0ull >> (sizeof(unsigned)*CHAR_BIT);
+ unsigned n = rhsWords * 2;
+ unsigned m = (lhsWords * 2) - n;
+
+ // Allocate space for the temporary values we need either on the stack, if
+ // it will fit, or on the heap if it won't.
+ unsigned SPACE[128];
+ unsigned *U = 0;
+ unsigned *V = 0;
+ unsigned *Q = 0;
+ unsigned *R = 0;
+ if ((Remainder?4:3)*n+2*m+1 <= 128) {
+ U = &SPACE[0];
+ V = &SPACE[m+n+1];
+ Q = &SPACE[(m+n+1) + n];
+ if (Remainder)
+ R = &SPACE[(m+n+1) + n + (m+n)];
+ } else {
+ U = new unsigned[m + n + 1];
+ V = new unsigned[n];
+ Q = new unsigned[m+n];
+ if (Remainder)
+ R = new unsigned[n];
+ }
+
+ // Initialize the dividend
+ memset(U, 0, (m+n+1)*sizeof(unsigned));
+ for (unsigned i = 0; i < lhsWords; ++i) {
+ uint64_t tmp = (LHS.getNumWords() == 1 ? LHS.VAL : LHS.pVal[i]);
+ U[i * 2] = (unsigned)(tmp & mask);
+ U[i * 2 + 1] = (unsigned)(tmp >> (sizeof(unsigned)*CHAR_BIT));
+ }
+ U[m+n] = 0; // this extra word is for "spill" in the Knuth algorithm.
+
+ // Initialize the divisor
+ memset(V, 0, (n)*sizeof(unsigned));
+ for (unsigned i = 0; i < rhsWords; ++i) {
+ uint64_t tmp = (RHS.getNumWords() == 1 ? RHS.VAL : RHS.pVal[i]);
+ V[i * 2] = (unsigned)(tmp & mask);
+ V[i * 2 + 1] = (unsigned)(tmp >> (sizeof(unsigned)*CHAR_BIT));
+ }
+
+ // initialize the quotient and remainder
+ memset(Q, 0, (m+n) * sizeof(unsigned));
+ if (Remainder)
+ memset(R, 0, n * sizeof(unsigned));
+
+ // Now, adjust m and n for the Knuth division. n is the number of words in
+ // the divisor. m is the number of words by which the dividend exceeds the
+ // divisor (i.e. m+n is the length of the dividend). These sizes must not
+ // contain any zero words or the Knuth algorithm fails.
+ for (unsigned i = n; i > 0 && V[i-1] == 0; i--) {
+ n--;
+ m++;
+ }
+ for (unsigned i = m+n; i > 0 && U[i-1] == 0; i--)
+ m--;
+
+ // If we're left with only a single word for the divisor, Knuth doesn't work
+ // so we implement the short division algorithm here. This is much simpler
+ // and faster because we are certain that we can divide a 64-bit quantity
+ // by a 32-bit quantity at hardware speed and short division is simply a
+ // series of such operations. This is just like doing short division but we
+ // are using base 2^32 instead of base 10.
+ assert(n != 0 && "Divide by zero?");
+ if (n == 1) {
+ unsigned divisor = V[0];
+ unsigned remainder = 0;
+ for (int i = m+n-1; i >= 0; i--) {
+ uint64_t partial_dividend = uint64_t(remainder) << 32 | U[i];
+ if (partial_dividend == 0) {
+ Q[i] = 0;
+ remainder = 0;
+ } else if (partial_dividend < divisor) {
+ Q[i] = 0;
+ remainder = (unsigned)partial_dividend;
+ } else if (partial_dividend == divisor) {
+ Q[i] = 1;
+ remainder = 0;
+ } else {
+ Q[i] = (unsigned)(partial_dividend / divisor);
+ remainder = (unsigned)(partial_dividend - (Q[i] * divisor));
+ }
+ }
+ if (R)
+ R[0] = remainder;
+ } else {
+ // Now we're ready to invoke the Knuth classical divide algorithm. In this
+ // case n > 1.
+ KnuthDiv(U, V, Q, R, m, n);
+ }
+
+ // If the caller wants the quotient
+ if (Quotient) {
+ // Set up the Quotient value's memory.
+ if (Quotient->BitWidth != LHS.BitWidth) {
+ if (Quotient->isSingleWord())
+ Quotient->VAL = 0;
+ else
+ delete [] Quotient->pVal;
+ Quotient->BitWidth = LHS.BitWidth;
+ if (!Quotient->isSingleWord())
+ Quotient->pVal = getClearedMemory(Quotient->getNumWords());
+ } else
+ Quotient->clear();
+
+ // The quotient is in Q. Reconstitute the quotient into Quotient's low
+ // order words.
+ if (lhsWords == 1) {
+ uint64_t tmp =
+ uint64_t(Q[0]) | (uint64_t(Q[1]) << (APINT_BITS_PER_WORD / 2));
+ if (Quotient->isSingleWord())
+ Quotient->VAL = tmp;
+ else
+ Quotient->pVal[0] = tmp;
+ } else {
+ assert(!Quotient->isSingleWord() && "Quotient APInt not large enough");
+ for (unsigned i = 0; i < lhsWords; ++i)
+ Quotient->pVal[i] =
+ uint64_t(Q[i*2]) | (uint64_t(Q[i*2+1]) << (APINT_BITS_PER_WORD / 2));
+ }
+ }
+
+ // If the caller wants the remainder
+ if (Remainder) {
+ // Set up the Remainder value's memory.
+ if (Remainder->BitWidth != RHS.BitWidth) {
+ if (Remainder->isSingleWord())
+ Remainder->VAL = 0;
+ else
+ delete [] Remainder->pVal;
+ Remainder->BitWidth = RHS.BitWidth;
+ if (!Remainder->isSingleWord())
+ Remainder->pVal = getClearedMemory(Remainder->getNumWords());
+ } else
+ Remainder->clear();
+
+ // The remainder is in R. Reconstitute the remainder into Remainder's low
+ // order words.
+ if (rhsWords == 1) {
+ uint64_t tmp =
+ uint64_t(R[0]) | (uint64_t(R[1]) << (APINT_BITS_PER_WORD / 2));
+ if (Remainder->isSingleWord())
+ Remainder->VAL = tmp;
+ else
+ Remainder->pVal[0] = tmp;
+ } else {
+ assert(!Remainder->isSingleWord() && "Remainder APInt not large enough");
+ for (unsigned i = 0; i < rhsWords; ++i)
+ Remainder->pVal[i] =
+ uint64_t(R[i*2]) | (uint64_t(R[i*2+1]) << (APINT_BITS_PER_WORD / 2));
+ }
+ }
+
+ // Clean up the memory we allocated.
+ if (U != &SPACE[0]) {
+ delete [] U;
+ delete [] V;
+ delete [] Q;
+ delete [] R;
+ }
+}
+
+APInt APInt::udiv(const APInt& RHS) const {
+ assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
+
+ // First, deal with the easy case
+ if (isSingleWord()) {
+ assert(RHS.VAL != 0 && "Divide by zero?");
+ return APInt(BitWidth, VAL / RHS.VAL);
+ }
+
+ // Get some facts about the LHS and RHS number of bits and words
+ unsigned rhsBits = RHS.getActiveBits();
+ unsigned rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1);
+ assert(rhsWords && "Divided by zero???");
+ unsigned lhsBits = this->getActiveBits();
+ unsigned lhsWords = !lhsBits ? 0 : (APInt::whichWord(lhsBits - 1) + 1);
+
+ // Deal with some degenerate cases
+ if (!lhsWords)
+ // 0 / X ===> 0
+ return APInt(BitWidth, 0);
+ else if (lhsWords < rhsWords || this->ult(RHS)) {
+ // X / Y ===> 0, iff X < Y
+ return APInt(BitWidth, 0);
+ } else if (*this == RHS) {
+ // X / X ===> 1
+ return APInt(BitWidth, 1);
+ } else if (lhsWords == 1 && rhsWords == 1) {
+ // All high words are zero, just use native divide
+ return APInt(BitWidth, this->pVal[0] / RHS.pVal[0]);
+ }
+
+ // We have to compute it the hard way. Invoke the Knuth divide algorithm.
+ APInt Quotient(1,0); // to hold result.
+ divide(*this, lhsWords, RHS, rhsWords, &Quotient, 0);
+ return Quotient;
+}
+
+APInt APInt::urem(const APInt& RHS) const {
+ assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
+ if (isSingleWord()) {
+ assert(RHS.VAL != 0 && "Remainder by zero?");
+ return APInt(BitWidth, VAL % RHS.VAL);
+ }
+
+ // Get some facts about the LHS
+ unsigned lhsBits = getActiveBits();
+ unsigned lhsWords = !lhsBits ? 0 : (whichWord(lhsBits - 1) + 1);
+
+ // Get some facts about the RHS
+ unsigned rhsBits = RHS.getActiveBits();
+ unsigned rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1);
+ assert(rhsWords && "Performing remainder operation by zero ???");
+
+ // Check the degenerate cases
+ if (lhsWords == 0) {
+ // 0 % Y ===> 0
+ return APInt(BitWidth, 0);
+ } else if (lhsWords < rhsWords || this->ult(RHS)) {
+ // X % Y ===> X, iff X < Y
+ return *this;
+ } else if (*this == RHS) {
+ // X % X == 0;
+ return APInt(BitWidth, 0);
+ } else if (lhsWords == 1) {
+ // All high words are zero, just use native remainder
+ return APInt(BitWidth, pVal[0] % RHS.pVal[0]);
+ }
+
+ // We have to compute it the hard way. Invoke the Knuth divide algorithm.
+ APInt Remainder(1,0);
+ divide(*this, lhsWords, RHS, rhsWords, 0, &Remainder);
+ return Remainder;
+}
+
+void APInt::udivrem(const APInt &LHS, const APInt &RHS,
+ APInt &Quotient, APInt &Remainder) {
+ // Get some size facts about the dividend and divisor
+ unsigned lhsBits = LHS.getActiveBits();
+ unsigned lhsWords = !lhsBits ? 0 : (APInt::whichWord(lhsBits - 1) + 1);
+ unsigned rhsBits = RHS.getActiveBits();
+ unsigned rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1);
+
+ // Check the degenerate cases
+ if (lhsWords == 0) {
+ Quotient = 0; // 0 / Y ===> 0
+ Remainder = 0; // 0 % Y ===> 0
+ return;
+ }
+
+ if (lhsWords < rhsWords || LHS.ult(RHS)) {
+ Quotient = 0; // X / Y ===> 0, iff X < Y
+ Remainder = LHS; // X % Y ===> X, iff X < Y
+ return;
+ }
+
+ if (LHS == RHS) {
+ Quotient = 1; // X / X ===> 1
+ Remainder = 0; // X % X ===> 0;
+ return;
+ }
+
+ if (lhsWords == 1 && rhsWords == 1) {
+ // There is only one word to consider so use the native versions.
+ uint64_t lhsValue = LHS.isSingleWord() ? LHS.VAL : LHS.pVal[0];
+ uint64_t rhsValue = RHS.isSingleWord() ? RHS.VAL : RHS.pVal[0];
+ Quotient = APInt(LHS.getBitWidth(), lhsValue / rhsValue);
+ Remainder = APInt(LHS.getBitWidth(), lhsValue % rhsValue);
+ return;
+ }
+
+ // Okay, lets do it the long way
+ divide(LHS, lhsWords, RHS, rhsWords, &Quotient, &Remainder);
+}
+
+void APInt::fromString(unsigned numbits, const char *str, unsigned slen,
+ uint8_t radix) {
+ // Check our assumptions here
+ assert((radix == 10 || radix == 8 || radix == 16 || radix == 2) &&
+ "Radix should be 2, 8, 10, or 16!");
+ assert(str && "String is null?");
+ bool isNeg = str[0] == '-';
+ if (isNeg)
+ str++, slen--;
+ assert((slen <= numbits || radix != 2) && "Insufficient bit width");
+ assert(((slen-1)*3 <= numbits || radix != 8) && "Insufficient bit width");
+ assert(((slen-1)*4 <= numbits || radix != 16) && "Insufficient bit width");
+ assert((((slen-1)*64)/22 <= numbits || radix != 10) && "Insufficient bit width");
+
+ // Allocate memory
+ if (!isSingleWord())
+ pVal = getClearedMemory(getNumWords());
+
+ // Figure out if we can shift instead of multiply
+ unsigned shift = (radix == 16 ? 4 : radix == 8 ? 3 : radix == 2 ? 1 : 0);
+
+ // Set up an APInt for the digit to add outside the loop so we don't
+ // constantly construct/destruct it.
+ APInt apdigit(getBitWidth(), 0);
+ APInt apradix(getBitWidth(), radix);
+
+ // Enter digit traversal loop
+ for (unsigned i = 0; i < slen; i++) {
+ // Get a digit
+ unsigned digit = 0;
+ char cdigit = str[i];
+ if (radix == 16) {
+ if (!isxdigit(cdigit))
+ assert(0 && "Invalid hex digit in string");
+ if (isdigit(cdigit))
+ digit = cdigit - '0';
+ else if (cdigit >= 'a')
+ digit = cdigit - 'a' + 10;
+ else if (cdigit >= 'A')
+ digit = cdigit - 'A' + 10;
+ else
+ assert(0 && "huh? we shouldn't get here");
+ } else if (isdigit(cdigit)) {
+ digit = cdigit - '0';
+ assert((radix == 10 ||
+ (radix == 8 && digit != 8 && digit != 9) ||
+ (radix == 2 && (digit == 0 || digit == 1))) &&
+ "Invalid digit in string for given radix");
+ } else {
+ assert(0 && "Invalid character in digit string");
+ }
+
+ // Shift or multiply the value by the radix
+ if (slen > 1) {
+ if (shift)
+ *this <<= shift;
+ else
+ *this *= apradix;
+ }
+
+ // Add in the digit we just interpreted
+ if (apdigit.isSingleWord())
+ apdigit.VAL = digit;
+ else
+ apdigit.pVal[0] = digit;
+ *this += apdigit;
+ }
+ // If its negative, put it in two's complement form
+ if (isNeg) {
+ (*this)--;
+ this->flip();
+ }
+}
+
+void APInt::toString(SmallVectorImpl<char> &Str, unsigned Radix,
+ bool Signed) const {
+ assert((Radix == 10 || Radix == 8 || Radix == 16 || Radix == 2) &&
+ "Radix should be 2, 8, 10, or 16!");
+
+ // First, check for a zero value and just short circuit the logic below.
+ if (*this == 0) {
+ Str.push_back('0');
+ return;
+ }
+
+ static const char Digits[] = "0123456789ABCDEF";
+
+ if (isSingleWord()) {
+ char Buffer[65];
+ char *BufPtr = Buffer+65;
+
+ uint64_t N;
+ if (Signed) {
+ int64_t I = getSExtValue();
+ if (I < 0) {
+ Str.push_back('-');
+ I = -I;
+ }
+ N = I;
+ } else {
+ N = getZExtValue();
+ }
+
+ while (N) {
+ *--BufPtr = Digits[N % Radix];
+ N /= Radix;
+ }
+ Str.append(BufPtr, Buffer+65);
+ return;
+ }
+
+ APInt Tmp(*this);
+
+ if (Signed && isNegative()) {
+ // They want to print the signed version and it is a negative value
+ // Flip the bits and add one to turn it into the equivalent positive
+ // value and put a '-' in the result.
+ Tmp.flip();
+ Tmp++;
+ Str.push_back('-');
+ }
+
+ // We insert the digits backward, then reverse them to get the right order.
+ unsigned StartDig = Str.size();
+
+ // For the 2, 8 and 16 bit cases, we can just shift instead of divide
+ // because the number of bits per digit (1, 3 and 4 respectively) divides
+ // equaly. We just shift until the value is zero.
+ if (Radix != 10) {
+ // Just shift tmp right for each digit width until it becomes zero
+ unsigned ShiftAmt = (Radix == 16 ? 4 : (Radix == 8 ? 3 : 1));
+ unsigned MaskAmt = Radix - 1;
+
+ while (Tmp != 0) {
+ unsigned Digit = unsigned(Tmp.getRawData()[0]) & MaskAmt;
+ Str.push_back(Digits[Digit]);
+ Tmp = Tmp.lshr(ShiftAmt);
+ }
+ } else {
+ APInt divisor(4, 10);
+ while (Tmp != 0) {
+ APInt APdigit(1, 0);
+ APInt tmp2(Tmp.getBitWidth(), 0);
+ divide(Tmp, Tmp.getNumWords(), divisor, divisor.getNumWords(), &tmp2,
+ &APdigit);
+ unsigned Digit = (unsigned)APdigit.getZExtValue();
+ assert(Digit < Radix && "divide failed");
+ Str.push_back(Digits[Digit]);
+ Tmp = tmp2;
+ }
+ }
+
+ // Reverse the digits before returning.
+ std::reverse(Str.begin()+StartDig, Str.end());
+}
+
+/// toString - This returns the APInt as a std::string. Note that this is an
+/// inefficient method. It is better to pass in a SmallVector/SmallString
+/// to the methods above.
+std::string APInt::toString(unsigned Radix = 10, bool Signed = true) const {
+ SmallString<40> S;
+ toString(S, Radix, Signed);
+ return S.c_str();
+}
+
+
+void APInt::dump() const {
+ SmallString<40> S, U;
+ this->toStringUnsigned(U);
+ this->toStringSigned(S);
+ fprintf(stderr, "APInt(%db, %su %ss)", BitWidth, U.c_str(), S.c_str());
+}
+
+void APInt::print(raw_ostream &OS, bool isSigned) const {
+ SmallString<40> S;
+ this->toString(S, 10, isSigned);
+ OS << S.c_str();
+}
+
+// This implements a variety of operations on a representation of
+// arbitrary precision, two's-complement, bignum integer values.
+
+/* Assumed by lowHalf, highHalf, partMSB and partLSB. A fairly safe
+ and unrestricting assumption. */
+#define COMPILE_TIME_ASSERT(cond) extern int CTAssert[(cond) ? 1 : -1]
+COMPILE_TIME_ASSERT(integerPartWidth % 2 == 0);
+
+/* Some handy functions local to this file. */
+namespace {
+
+ /* Returns the integer part with the least significant BITS set.
+ BITS cannot be zero. */
+ static inline integerPart
+ lowBitMask(unsigned int bits)
+ {
+ assert (bits != 0 && bits <= integerPartWidth);
+
+ return ~(integerPart) 0 >> (integerPartWidth - bits);
+ }
+
+ /* Returns the value of the lower half of PART. */
+ static inline integerPart
+ lowHalf(integerPart part)
+ {
+ return part & lowBitMask(integerPartWidth / 2);
+ }
+
+ /* Returns the value of the upper half of PART. */
+ static inline integerPart
+ highHalf(integerPart part)
+ {
+ return part >> (integerPartWidth / 2);
+ }
+
+ /* Returns the bit number of the most significant set bit of a part.
+ If the input number has no bits set -1U is returned. */
+ static unsigned int
+ partMSB(integerPart value)
+ {
+ unsigned int n, msb;
+
+ if (value == 0)
+ return -1U;
+
+ n = integerPartWidth / 2;
+
+ msb = 0;
+ do {
+ if (value >> n) {
+ value >>= n;
+ msb += n;
+ }
+
+ n >>= 1;
+ } while (n);
+
+ return msb;
+ }
+
+ /* Returns the bit number of the least significant set bit of a
+ part. If the input number has no bits set -1U is returned. */
+ static unsigned int
+ partLSB(integerPart value)
+ {
+ unsigned int n, lsb;
+
+ if (value == 0)
+ return -1U;
+
+ lsb = integerPartWidth - 1;
+ n = integerPartWidth / 2;
+
+ do {
+ if (value << n) {
+ value <<= n;
+ lsb -= n;
+ }
+
+ n >>= 1;
+ } while (n);
+
+ return lsb;
+ }
+}
+
+/* Sets the least significant part of a bignum to the input value, and
+ zeroes out higher parts. */
+void
+APInt::tcSet(integerPart *dst, integerPart part, unsigned int parts)
+{
+ unsigned int i;
+
+ assert (parts > 0);
+
+ dst[0] = part;
+ for(i = 1; i < parts; i++)
+ dst[i] = 0;
+}
+
+/* Assign one bignum to another. */
+void
+APInt::tcAssign(integerPart *dst, const integerPart *src, unsigned int parts)
+{
+ unsigned int i;
+
+ for(i = 0; i < parts; i++)
+ dst[i] = src[i];
+}
+
+/* Returns true if a bignum is zero, false otherwise. */
+bool
+APInt::tcIsZero(const integerPart *src, unsigned int parts)
+{
+ unsigned int i;
+
+ for(i = 0; i < parts; i++)
+ if (src[i])
+ return false;
+
+ return true;
+}
+
+/* Extract the given bit of a bignum; returns 0 or 1. */
+int
+APInt::tcExtractBit(const integerPart *parts, unsigned int bit)
+{
+ return(parts[bit / integerPartWidth]
+ & ((integerPart) 1 << bit % integerPartWidth)) != 0;
+}
+
+/* Set the given bit of a bignum. */
+void
+APInt::tcSetBit(integerPart *parts, unsigned int bit)
+{
+ parts[bit / integerPartWidth] |= (integerPart) 1 << (bit % integerPartWidth);
+}
+
+/* Returns the bit number of the least significant set bit of a
+ number. If the input number has no bits set -1U is returned. */
+unsigned int
+APInt::tcLSB(const integerPart *parts, unsigned int n)
+{
+ unsigned int i, lsb;
+
+ for(i = 0; i < n; i++) {
+ if (parts[i] != 0) {
+ lsb = partLSB(parts[i]);
+
+ return lsb + i * integerPartWidth;
+ }
+ }
+
+ return -1U;
+}
+
+/* Returns the bit number of the most significant set bit of a number.
+ If the input number has no bits set -1U is returned. */
+unsigned int
+APInt::tcMSB(const integerPart *parts, unsigned int n)
+{
+ unsigned int msb;
+
+ do {
+ --n;
+
+ if (parts[n] != 0) {
+ msb = partMSB(parts[n]);
+
+ return msb + n * integerPartWidth;
+ }
+ } while (n);
+
+ return -1U;
+}
+
+/* Copy the bit vector of width srcBITS from SRC, starting at bit
+ srcLSB, to DST, of dstCOUNT parts, such that the bit srcLSB becomes
+ the least significant bit of DST. All high bits above srcBITS in
+ DST are zero-filled. */
+void
+APInt::tcExtract(integerPart *dst, unsigned int dstCount,const integerPart *src,
+ unsigned int srcBits, unsigned int srcLSB)
+{
+ unsigned int firstSrcPart, dstParts, shift, n;
+
+ dstParts = (srcBits + integerPartWidth - 1) / integerPartWidth;
+ assert (dstParts <= dstCount);
+
+ firstSrcPart = srcLSB / integerPartWidth;
+ tcAssign (dst, src + firstSrcPart, dstParts);
+
+ shift = srcLSB % integerPartWidth;
+ tcShiftRight (dst, dstParts, shift);
+
+ /* We now have (dstParts * integerPartWidth - shift) bits from SRC
+ in DST. If this is less that srcBits, append the rest, else
+ clear the high bits. */
+ n = dstParts * integerPartWidth - shift;
+ if (n < srcBits) {
+ integerPart mask = lowBitMask (srcBits - n);
+ dst[dstParts - 1] |= ((src[firstSrcPart + dstParts] & mask)
+ << n % integerPartWidth);
+ } else if (n > srcBits) {
+ if (srcBits % integerPartWidth)
+ dst[dstParts - 1] &= lowBitMask (srcBits % integerPartWidth);
+ }
+
+ /* Clear high parts. */
+ while (dstParts < dstCount)
+ dst[dstParts++] = 0;
+}
+
+/* DST += RHS + C where C is zero or one. Returns the carry flag. */
+integerPart
+APInt::tcAdd(integerPart *dst, const integerPart *rhs,
+ integerPart c, unsigned int parts)
+{
+ unsigned int i;
+
+ assert(c <= 1);
+
+ for(i = 0; i < parts; i++) {
+ integerPart l;
+
+ l = dst[i];
+ if (c) {
+ dst[i] += rhs[i] + 1;
+ c = (dst[i] <= l);
+ } else {
+ dst[i] += rhs[i];
+ c = (dst[i] < l);
+ }
+ }
+
+ return c;
+}
+
+/* DST -= RHS + C where C is zero or one. Returns the carry flag. */
+integerPart
+APInt::tcSubtract(integerPart *dst, const integerPart *rhs,
+ integerPart c, unsigned int parts)
+{
+ unsigned int i;
+
+ assert(c <= 1);
+
+ for(i = 0; i < parts; i++) {
+ integerPart l;
+
+ l = dst[i];
+ if (c) {
+ dst[i] -= rhs[i] + 1;
+ c = (dst[i] >= l);
+ } else {
+ dst[i] -= rhs[i];
+ c = (dst[i] > l);
+ }
+ }
+
+ return c;
+}
+
+/* Negate a bignum in-place. */
+void
+APInt::tcNegate(integerPart *dst, unsigned int parts)
+{
+ tcComplement(dst, parts);
+ tcIncrement(dst, parts);
+}
+
+/* DST += SRC * MULTIPLIER + CARRY if add is true
+ DST = SRC * MULTIPLIER + CARRY if add is false
+
+ Requires 0 <= DSTPARTS <= SRCPARTS + 1. If DST overlaps SRC
+ they must start at the same point, i.e. DST == SRC.
+
+ If DSTPARTS == SRCPARTS + 1 no overflow occurs and zero is
+ returned. Otherwise DST is filled with the least significant
+ DSTPARTS parts of the result, and if all of the omitted higher
+ parts were zero return zero, otherwise overflow occurred and
+ return one. */
+int
+APInt::tcMultiplyPart(integerPart *dst, const integerPart *src,
+ integerPart multiplier, integerPart carry,
+ unsigned int srcParts, unsigned int dstParts,
+ bool add)
+{
+ unsigned int i, n;
+
+ /* Otherwise our writes of DST kill our later reads of SRC. */
+ assert(dst <= src || dst >= src + srcParts);
+ assert(dstParts <= srcParts + 1);
+
+ /* N loops; minimum of dstParts and srcParts. */
+ n = dstParts < srcParts ? dstParts: srcParts;
+
+ for(i = 0; i < n; i++) {
+ integerPart low, mid, high, srcPart;
+
+ /* [ LOW, HIGH ] = MULTIPLIER * SRC[i] + DST[i] + CARRY.
+
+ This cannot overflow, because
+
+ (n - 1) * (n - 1) + 2 (n - 1) = (n - 1) * (n + 1)
+
+ which is less than n^2. */
+
+ srcPart = src[i];
+
+ if (multiplier == 0 || srcPart == 0) {
+ low = carry;
+ high = 0;
+ } else {
+ low = lowHalf(srcPart) * lowHalf(multiplier);
+ high = highHalf(srcPart) * highHalf(multiplier);
+
+ mid = lowHalf(srcPart) * highHalf(multiplier);
+ high += highHalf(mid);
+ mid <<= integerPartWidth / 2;
+ if (low + mid < low)
+ high++;
+ low += mid;
+
+ mid = highHalf(srcPart) * lowHalf(multiplier);
+ high += highHalf(mid);
+ mid <<= integerPartWidth / 2;
+ if (low + mid < low)
+ high++;
+ low += mid;
+
+ /* Now add carry. */
+ if (low + carry < low)
+ high++;
+ low += carry;
+ }
+
+ if (add) {
+ /* And now DST[i], and store the new low part there. */
+ if (low + dst[i] < low)
+ high++;
+ dst[i] += low;
+ } else
+ dst[i] = low;
+
+ carry = high;
+ }
+
+ if (i < dstParts) {
+ /* Full multiplication, there is no overflow. */
+ assert(i + 1 == dstParts);
+ dst[i] = carry;
+ return 0;
+ } else {
+ /* We overflowed if there is carry. */
+ if (carry)
+ return 1;
+
+ /* We would overflow if any significant unwritten parts would be
+ non-zero. This is true if any remaining src parts are non-zero
+ and the multiplier is non-zero. */
+ if (multiplier)
+ for(; i < srcParts; i++)
+ if (src[i])
+ return 1;
+
+ /* We fitted in the narrow destination. */
+ return 0;
+ }
+}
+
+/* DST = LHS * RHS, where DST has the same width as the operands and
+ is filled with the least significant parts of the result. Returns
+ one if overflow occurred, otherwise zero. DST must be disjoint
+ from both operands. */
+int
+APInt::tcMultiply(integerPart *dst, const integerPart *lhs,
+ const integerPart *rhs, unsigned int parts)
+{
+ unsigned int i;
+ int overflow;
+
+ assert(dst != lhs && dst != rhs);
+
+ overflow = 0;
+ tcSet(dst, 0, parts);
+
+ for(i = 0; i < parts; i++)
+ overflow |= tcMultiplyPart(&dst[i], lhs, rhs[i], 0, parts,
+ parts - i, true);
+
+ return overflow;
+}
+
+/* DST = LHS * RHS, where DST has width the sum of the widths of the
+ operands. No overflow occurs. DST must be disjoint from both
+ operands. Returns the number of parts required to hold the
+ result. */
+unsigned int
+APInt::tcFullMultiply(integerPart *dst, const integerPart *lhs,
+ const integerPart *rhs, unsigned int lhsParts,
+ unsigned int rhsParts)
+{
+ /* Put the narrower number on the LHS for less loops below. */
+ if (lhsParts > rhsParts) {
+ return tcFullMultiply (dst, rhs, lhs, rhsParts, lhsParts);
+ } else {
+ unsigned int n;
+
+ assert(dst != lhs && dst != rhs);
+
+ tcSet(dst, 0, rhsParts);
+
+ for(n = 0; n < lhsParts; n++)
+ tcMultiplyPart(&dst[n], rhs, lhs[n], 0, rhsParts, rhsParts + 1, true);
+
+ n = lhsParts + rhsParts;
+
+ return n - (dst[n - 1] == 0);
+ }
+}
+
+/* If RHS is zero LHS and REMAINDER are left unchanged, return one.
+ Otherwise set LHS to LHS / RHS with the fractional part discarded,
+ set REMAINDER to the remainder, return zero. i.e.
+
+ OLD_LHS = RHS * LHS + REMAINDER
+
+ SCRATCH is a bignum of the same size as the operands and result for
+ use by the routine; its contents need not be initialized and are
+ destroyed. LHS, REMAINDER and SCRATCH must be distinct.
+*/
+int
+APInt::tcDivide(integerPart *lhs, const integerPart *rhs,
+ integerPart *remainder, integerPart *srhs,
+ unsigned int parts)
+{
+ unsigned int n, shiftCount;
+ integerPart mask;
+
+ assert(lhs != remainder && lhs != srhs && remainder != srhs);
+
+ shiftCount = tcMSB(rhs, parts) + 1;
+ if (shiftCount == 0)
+ return true;
+
+ shiftCount = parts * integerPartWidth - shiftCount;
+ n = shiftCount / integerPartWidth;
+ mask = (integerPart) 1 << (shiftCount % integerPartWidth);
+
+ tcAssign(srhs, rhs, parts);
+ tcShiftLeft(srhs, parts, shiftCount);
+ tcAssign(remainder, lhs, parts);
+ tcSet(lhs, 0, parts);
+
+ /* Loop, subtracting SRHS if REMAINDER is greater and adding that to
+ the total. */
+ for(;;) {
+ int compare;
+
+ compare = tcCompare(remainder, srhs, parts);
+ if (compare >= 0) {
+ tcSubtract(remainder, srhs, 0, parts);
+ lhs[n] |= mask;
+ }
+
+ if (shiftCount == 0)
+ break;
+ shiftCount--;
+ tcShiftRight(srhs, parts, 1);
+ if ((mask >>= 1) == 0)
+ mask = (integerPart) 1 << (integerPartWidth - 1), n--;
+ }
+
+ return false;
+}
+
+/* Shift a bignum left COUNT bits in-place. Shifted in bits are zero.
+ There are no restrictions on COUNT. */
+void
+APInt::tcShiftLeft(integerPart *dst, unsigned int parts, unsigned int count)
+{
+ if (count) {
+ unsigned int jump, shift;
+
+ /* Jump is the inter-part jump; shift is is intra-part shift. */
+ jump = count / integerPartWidth;
+ shift = count % integerPartWidth;
+
+ while (parts > jump) {
+ integerPart part;
+
+ parts--;
+
+ /* dst[i] comes from the two parts src[i - jump] and, if we have
+ an intra-part shift, src[i - jump - 1]. */
+ part = dst[parts - jump];
+ if (shift) {
+ part <<= shift;
+ if (parts >= jump + 1)
+ part |= dst[parts - jump - 1] >> (integerPartWidth - shift);
+ }
+
+ dst[parts] = part;
+ }
+
+ while (parts > 0)
+ dst[--parts] = 0;
+ }
+}
+
+/* Shift a bignum right COUNT bits in-place. Shifted in bits are
+ zero. There are no restrictions on COUNT. */
+void
+APInt::tcShiftRight(integerPart *dst, unsigned int parts, unsigned int count)
+{
+ if (count) {
+ unsigned int i, jump, shift;
+
+ /* Jump is the inter-part jump; shift is is intra-part shift. */
+ jump = count / integerPartWidth;
+ shift = count % integerPartWidth;
+
+ /* Perform the shift. This leaves the most significant COUNT bits
+ of the result at zero. */
+ for(i = 0; i < parts; i++) {
+ integerPart part;
+
+ if (i + jump >= parts) {
+ part = 0;
+ } else {
+ part = dst[i + jump];
+ if (shift) {
+ part >>= shift;
+ if (i + jump + 1 < parts)
+ part |= dst[i + jump + 1] << (integerPartWidth - shift);
+ }
+ }
+
+ dst[i] = part;
+ }
+ }
+}
+
+/* Bitwise and of two bignums. */
+void
+APInt::tcAnd(integerPart *dst, const integerPart *rhs, unsigned int parts)
+{
+ unsigned int i;
+
+ for(i = 0; i < parts; i++)
+ dst[i] &= rhs[i];
+}
+
+/* Bitwise inclusive or of two bignums. */
+void
+APInt::tcOr(integerPart *dst, const integerPart *rhs, unsigned int parts)
+{
+ unsigned int i;
+
+ for(i = 0; i < parts; i++)
+ dst[i] |= rhs[i];
+}
+
+/* Bitwise exclusive or of two bignums. */
+void
+APInt::tcXor(integerPart *dst, const integerPart *rhs, unsigned int parts)
+{
+ unsigned int i;
+
+ for(i = 0; i < parts; i++)
+ dst[i] ^= rhs[i];
+}
+
+/* Complement a bignum in-place. */
+void
+APInt::tcComplement(integerPart *dst, unsigned int parts)
+{
+ unsigned int i;
+
+ for(i = 0; i < parts; i++)
+ dst[i] = ~dst[i];
+}
+
+/* Comparison (unsigned) of two bignums. */
+int
+APInt::tcCompare(const integerPart *lhs, const integerPart *rhs,
+ unsigned int parts)
+{
+ while (parts) {
+ parts--;
+ if (lhs[parts] == rhs[parts])
+ continue;
+
+ if (lhs[parts] > rhs[parts])
+ return 1;
+ else
+ return -1;
+ }
+
+ return 0;
+}
+
+/* Increment a bignum in-place, return the carry flag. */
+integerPart
+APInt::tcIncrement(integerPart *dst, unsigned int parts)
+{
+ unsigned int i;
+
+ for(i = 0; i < parts; i++)
+ if (++dst[i] != 0)
+ break;
+
+ return i == parts;
+}
+
+/* Set the least significant BITS bits of a bignum, clear the
+ rest. */
+void
+APInt::tcSetLeastSignificantBits(integerPart *dst, unsigned int parts,
+ unsigned int bits)
+{
+ unsigned int i;
+
+ i = 0;
+ while (bits > integerPartWidth) {
+ dst[i++] = ~(integerPart) 0;
+ bits -= integerPartWidth;
+ }
+
+ if (bits)
+ dst[i++] = ~(integerPart) 0 >> (integerPartWidth - bits);
+
+ while (i < parts)
+ dst[i++] = 0;
+}
diff --git a/lib/Support/APSInt.cpp b/lib/Support/APSInt.cpp
new file mode 100644
index 0000000..73acafa
--- /dev/null
+++ b/lib/Support/APSInt.cpp
@@ -0,0 +1,23 @@
+//===-- llvm/ADT/APSInt.cpp - Arbitrary Precision Signed Int ---*- C++ -*--===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the APSInt class, which is a simple class that
+// represents an arbitrary sized integer that knows its signedness.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/ADT/APSInt.h"
+#include "llvm/ADT/FoldingSet.h"
+
+using namespace llvm;
+
+void APSInt::Profile(FoldingSetNodeID& ID) const {
+ ID.AddInteger((unsigned) (IsUnsigned ? 1 : 0));
+ APInt::Profile(ID);
+}
diff --git a/lib/Support/Allocator.cpp b/lib/Support/Allocator.cpp
new file mode 100644
index 0000000..db0d8f3
--- /dev/null
+++ b/lib/Support/Allocator.cpp
@@ -0,0 +1,141 @@
+//===--- Allocator.cpp - Simple memory allocation abstraction -------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the BumpPtrAllocator interface.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Support/Allocator.h"
+#include "llvm/Support/Recycler.h"
+#include "llvm/Support/DataTypes.h"
+#include "llvm/Support/Streams.h"
+#include <ostream>
+using namespace llvm;
+
+//===----------------------------------------------------------------------===//
+// MemRegion class implementation
+//===----------------------------------------------------------------------===//
+
+namespace {
+/// MemRegion - This is one chunk of the BumpPtrAllocator.
+class MemRegion {
+ unsigned RegionSize;
+ MemRegion *Next;
+ char *NextPtr;
+public:
+ void Init(unsigned size, unsigned Alignment, MemRegion *next) {
+ RegionSize = size;
+ Next = next;
+ NextPtr = (char*)(this+1);
+
+ // Align NextPtr.
+ NextPtr = (char*)((intptr_t)(NextPtr+Alignment-1) &
+ ~(intptr_t)(Alignment-1));
+ }
+
+ const MemRegion *getNext() const { return Next; }
+ unsigned getNumBytesAllocated() const {
+ return NextPtr-(const char*)this;
+ }
+
+ /// Allocate - Allocate and return at least the specified number of bytes.
+ ///
+ void *Allocate(size_t AllocSize, size_t Alignment, MemRegion **RegPtr) {
+
+ char* Result = (char*) (((uintptr_t) (NextPtr+Alignment-1))
+ & ~((uintptr_t) Alignment-1));
+
+ // Speculate the new value of NextPtr.
+ char* NextPtrTmp = Result + AllocSize;
+
+ // If we are still within the current region, return Result.
+ if (unsigned (NextPtrTmp - (char*) this) <= RegionSize) {
+ NextPtr = NextPtrTmp;
+ return Result;
+ }
+
+ // Otherwise, we have to allocate a new chunk. Create one twice as big as
+ // this one.
+ MemRegion *NewRegion = (MemRegion *)malloc(RegionSize*2);
+ NewRegion->Init(RegionSize*2, Alignment, this);
+
+ // Update the current "first region" pointer to point to the new region.
+ *RegPtr = NewRegion;
+
+ // Try allocating from it now.
+ return NewRegion->Allocate(AllocSize, Alignment, RegPtr);
+ }
+
+ /// Deallocate - Recursively release all memory for this and its next regions
+ /// to the system.
+ void Deallocate() {
+ MemRegion *next = Next;
+ free(this);
+ if (next)
+ next->Deallocate();
+ }
+
+ /// DeallocateAllButLast - Recursively release all memory for this and its
+ /// next regions to the system stopping at the last region in the list.
+ /// Returns the pointer to the last region.
+ MemRegion *DeallocateAllButLast() {
+ MemRegion *next = Next;
+ if (!next)
+ return this;
+ free(this);
+ return next->DeallocateAllButLast();
+ }
+};
+}
+
+//===----------------------------------------------------------------------===//
+// BumpPtrAllocator class implementation
+//===----------------------------------------------------------------------===//
+
+BumpPtrAllocator::BumpPtrAllocator() {
+ TheMemory = malloc(4096);
+ ((MemRegion*)TheMemory)->Init(4096, 1, 0);
+}
+
+BumpPtrAllocator::~BumpPtrAllocator() {
+ ((MemRegion*)TheMemory)->Deallocate();
+}
+
+void BumpPtrAllocator::Reset() {
+ MemRegion *MRP = (MemRegion*)TheMemory;
+ MRP = MRP->DeallocateAllButLast();
+ MRP->Init(4096, 1, 0);
+ TheMemory = MRP;
+}
+
+void *BumpPtrAllocator::Allocate(size_t Size, size_t Align) {
+ MemRegion *MRP = (MemRegion*)TheMemory;
+ void *Ptr = MRP->Allocate(Size, Align, &MRP);
+ TheMemory = MRP;
+ return Ptr;
+}
+
+void BumpPtrAllocator::PrintStats() const {
+ unsigned BytesUsed = 0;
+ unsigned NumRegions = 0;
+ const MemRegion *R = (MemRegion*)TheMemory;
+ for (; R; R = R->getNext(), ++NumRegions)
+ BytesUsed += R->getNumBytesAllocated();
+
+ cerr << "\nNumber of memory regions: " << NumRegions << "\n";
+ cerr << "Bytes allocated: " << BytesUsed << "\n";
+}
+
+void llvm::PrintRecyclerStats(size_t Size,
+ size_t Align,
+ size_t FreeListSize) {
+ cerr << "Recycler element size: " << Size << '\n';
+ cerr << "Recycler element alignment: " << Align << '\n';
+ cerr << "Number of elements free for recycling: " << FreeListSize << '\n';
+}
diff --git a/lib/Support/Annotation.cpp b/lib/Support/Annotation.cpp
new file mode 100644
index 0000000..9764b5e
--- /dev/null
+++ b/lib/Support/Annotation.cpp
@@ -0,0 +1,115 @@
+//===-- Annotation.cpp - Implement the Annotation Classes -----------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the AnnotationManager class.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Support/Annotation.h"
+#include "llvm/Support/ManagedStatic.h"
+#include <map>
+#include <cstring>
+using namespace llvm;
+
+Annotation::~Annotation() {} // Designed to be subclassed
+
+Annotable::~Annotable() { // Virtual because it's designed to be subclassed...
+ Annotation *A = AnnotationList;
+ while (A) {
+ Annotation *Next = A->getNext();
+ delete A;
+ A = Next;
+ }
+}
+
+namespace {
+ class StrCmp {
+ public:
+ bool operator()(const char *a, const char *b) const {
+ return strcmp(a, b) < 0;
+ }
+ };
+}
+
+typedef std::map<const char*, unsigned, StrCmp> IDMapType;
+static unsigned IDCounter = 0; // Unique ID counter
+
+// Static member to ensure initialiation on demand.
+static ManagedStatic<IDMapType> IDMap;
+
+// On demand annotation creation support...
+typedef Annotation *(*AnnFactory)(AnnotationID, const Annotable *, void *);
+typedef std::map<unsigned, std::pair<AnnFactory,void*> > FactMapType;
+
+static FactMapType *TheFactMap = 0;
+static FactMapType &getFactMap() {
+ if (TheFactMap == 0)
+ TheFactMap = new FactMapType();
+ return *TheFactMap;
+}
+
+static void eraseFromFactMap(unsigned ID) {
+ assert(TheFactMap && "No entries found!");
+ TheFactMap->erase(ID);
+ if (TheFactMap->empty()) { // Delete when empty
+ delete TheFactMap;
+ TheFactMap = 0;
+ }
+}
+
+AnnotationID AnnotationManager::getID(const char *Name) { // Name -> ID
+ IDMapType::iterator I = IDMap->find(Name);
+ if (I == IDMap->end()) {
+ (*IDMap)[Name] = IDCounter++; // Add a new element
+ return AnnotationID(IDCounter-1);
+ }
+ return AnnotationID(I->second);
+}
+
+// getID - Name -> ID + registration of a factory function for demand driven
+// annotation support.
+AnnotationID AnnotationManager::getID(const char *Name, Factory Fact,
+ void *Data) {
+ AnnotationID Result(getID(Name));
+ registerAnnotationFactory(Result, Fact, Data);
+ return Result;
+}
+
+// getName - This function is especially slow, but that's okay because it should
+// only be used for debugging.
+//
+const char *AnnotationManager::getName(AnnotationID ID) { // ID -> Name
+ IDMapType &TheMap = *IDMap;
+ for (IDMapType::iterator I = TheMap.begin(); ; ++I) {
+ assert(I != TheMap.end() && "Annotation ID is unknown!");
+ if (I->second == ID.ID) return I->first;
+ }
+}
+
+// registerAnnotationFactory - This method is used to register a callback
+// function used to create an annotation on demand if it is needed by the
+// Annotable::findOrCreateAnnotation method.
+//
+void AnnotationManager::registerAnnotationFactory(AnnotationID ID, AnnFactory F,
+ void *ExtraData) {
+ if (F)
+ getFactMap()[ID.ID] = std::make_pair(F, ExtraData);
+ else
+ eraseFromFactMap(ID.ID);
+}
+
+// createAnnotation - Create an annotation of the specified ID for the
+// specified object, using a register annotation creation function.
+//
+Annotation *AnnotationManager::createAnnotation(AnnotationID ID,
+ const Annotable *Obj) {
+ FactMapType::iterator I = getFactMap().find(ID.ID);
+ if (I == getFactMap().end()) return 0;
+ return I->second.first(ID, Obj, I->second.second);
+}
diff --git a/lib/Support/CMakeLists.txt b/lib/Support/CMakeLists.txt
new file mode 100644
index 0000000..7c8ce70
--- /dev/null
+++ b/lib/Support/CMakeLists.txt
@@ -0,0 +1,31 @@
+add_llvm_library(LLVMSupport
+ APFloat.cpp
+ APInt.cpp
+ APSInt.cpp
+ Allocator.cpp
+ Annotation.cpp
+ CommandLine.cpp
+ ConstantRange.cpp
+ Debug.cpp
+ Dwarf.cpp
+ FileUtilities.cpp
+ FoldingSet.cpp
+ GraphWriter.cpp
+ IsInf.cpp
+ IsNAN.cpp
+ ManagedStatic.cpp
+ MemoryBuffer.cpp
+ PluginLoader.cpp
+ PrettyStackTrace.cpp
+ SlowOperationInformer.cpp
+ SmallPtrSet.cpp
+ Statistic.cpp
+ Streams.cpp
+ StringExtras.cpp
+ StringMap.cpp
+ StringPool.cpp
+ SystemUtils.cpp
+ Timer.cpp
+ Triple.cpp
+ raw_ostream.cpp
+ )
diff --git a/lib/Support/CommandLine.cpp b/lib/Support/CommandLine.cpp
new file mode 100644
index 0000000..4922560
--- /dev/null
+++ b/lib/Support/CommandLine.cpp
@@ -0,0 +1,1184 @@
+//===-- CommandLine.cpp - Command line parser implementation --------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This class implements a command line argument processor that is useful when
+// creating a tool. It provides a simple, minimalistic interface that is easily
+// extensible and supports nonlocal (library) command line options.
+//
+// Note that rather than trying to figure out what this code does, you could try
+// reading the library documentation located in docs/CommandLine.html
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Config/config.h"
+#include "llvm/ADT/OwningPtr.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/MemoryBuffer.h"
+#include "llvm/Support/ManagedStatic.h"
+#include "llvm/Support/Streams.h"
+#include "llvm/System/Path.h"
+#include <algorithm>
+#include <functional>
+#include <map>
+#include <ostream>
+#include <set>
+#include <cstdlib>
+#include <cerrno>
+#include <cstring>
+#include <climits>
+using namespace llvm;
+using namespace cl;
+
+//===----------------------------------------------------------------------===//
+// Template instantiations and anchors.
+//
+TEMPLATE_INSTANTIATION(class basic_parser<bool>);
+TEMPLATE_INSTANTIATION(class basic_parser<boolOrDefault>);
+TEMPLATE_INSTANTIATION(class basic_parser<int>);
+TEMPLATE_INSTANTIATION(class basic_parser<unsigned>);
+TEMPLATE_INSTANTIATION(class basic_parser<double>);
+TEMPLATE_INSTANTIATION(class basic_parser<float>);
+TEMPLATE_INSTANTIATION(class basic_parser<std::string>);
+TEMPLATE_INSTANTIATION(class basic_parser<char>);
+
+TEMPLATE_INSTANTIATION(class opt<unsigned>);
+TEMPLATE_INSTANTIATION(class opt<int>);
+TEMPLATE_INSTANTIATION(class opt<std::string>);
+TEMPLATE_INSTANTIATION(class opt<char>);
+TEMPLATE_INSTANTIATION(class opt<bool>);
+
+void Option::anchor() {}
+void basic_parser_impl::anchor() {}
+void parser<bool>::anchor() {}
+void parser<boolOrDefault>::anchor() {}
+void parser<int>::anchor() {}
+void parser<unsigned>::anchor() {}
+void parser<double>::anchor() {}
+void parser<float>::anchor() {}
+void parser<std::string>::anchor() {}
+void parser<char>::anchor() {}
+
+//===----------------------------------------------------------------------===//
+
+// Globals for name and overview of program. Program name is not a string to
+// avoid static ctor/dtor issues.
+static char ProgramName[80] = "<premain>";
+static const char *ProgramOverview = 0;
+
+// This collects additional help to be printed.
+static ManagedStatic<std::vector<const char*> > MoreHelp;
+
+extrahelp::extrahelp(const char *Help)
+ : morehelp(Help) {
+ MoreHelp->push_back(Help);
+}
+
+static bool OptionListChanged = false;
+
+// MarkOptionsChanged - Internal helper function.
+void cl::MarkOptionsChanged() {
+ OptionListChanged = true;
+}
+
+/// RegisteredOptionList - This is the list of the command line options that
+/// have statically constructed themselves.
+static Option *RegisteredOptionList = 0;
+
+void Option::addArgument() {
+ assert(NextRegistered == 0 && "argument multiply registered!");
+
+ NextRegistered = RegisteredOptionList;
+ RegisteredOptionList = this;
+ MarkOptionsChanged();
+}
+
+
+//===----------------------------------------------------------------------===//
+// Basic, shared command line option processing machinery.
+//
+
+/// GetOptionInfo - Scan the list of registered options, turning them into data
+/// structures that are easier to handle.
+static void GetOptionInfo(std::vector<Option*> &PositionalOpts,
+ std::vector<Option*> &SinkOpts,
+ std::map<std::string, Option*> &OptionsMap) {
+ std::vector<const char*> OptionNames;
+ Option *CAOpt = 0; // The ConsumeAfter option if it exists.
+ for (Option *O = RegisteredOptionList; O; O = O->getNextRegisteredOption()) {
+ // If this option wants to handle multiple option names, get the full set.
+ // This handles enum options like "-O1 -O2" etc.
+ O->getExtraOptionNames(OptionNames);
+ if (O->ArgStr[0])
+ OptionNames.push_back(O->ArgStr);
+
+ // Handle named options.
+ for (size_t i = 0, e = OptionNames.size(); i != e; ++i) {
+ // Add argument to the argument map!
+ if (!OptionsMap.insert(std::pair<std::string,Option*>(OptionNames[i],
+ O)).second) {
+ cerr << ProgramName << ": CommandLine Error: Argument '"
+ << OptionNames[i] << "' defined more than once!\n";
+ }
+ }
+
+ OptionNames.clear();
+
+ // Remember information about positional options.
+ if (O->getFormattingFlag() == cl::Positional)
+ PositionalOpts.push_back(O);
+ else if (O->getMiscFlags() & cl::Sink) // Remember sink options
+ SinkOpts.push_back(O);
+ else if (O->getNumOccurrencesFlag() == cl::ConsumeAfter) {
+ if (CAOpt)
+ O->error("Cannot specify more than one option with cl::ConsumeAfter!");
+ CAOpt = O;
+ }
+ }
+
+ if (CAOpt)
+ PositionalOpts.push_back(CAOpt);
+
+ // Make sure that they are in order of registration not backwards.
+ std::reverse(PositionalOpts.begin(), PositionalOpts.end());
+}
+
+
+/// LookupOption - Lookup the option specified by the specified option on the
+/// command line. If there is a value specified (after an equal sign) return
+/// that as well.
+static Option *LookupOption(const char *&Arg, const char *&Value,
+ std::map<std::string, Option*> &OptionsMap) {
+ while (*Arg == '-') ++Arg; // Eat leading dashes
+
+ const char *ArgEnd = Arg;
+ while (*ArgEnd && *ArgEnd != '=')
+ ++ArgEnd; // Scan till end of argument name.
+
+ if (*ArgEnd == '=') // If we have an equals sign...
+ Value = ArgEnd+1; // Get the value, not the equals
+
+
+ if (*Arg == 0) return 0;
+
+ // Look up the option.
+ std::map<std::string, Option*>::iterator I =
+ OptionsMap.find(std::string(Arg, ArgEnd));
+ return I != OptionsMap.end() ? I->second : 0;
+}
+
+static inline bool ProvideOption(Option *Handler, const char *ArgName,
+ const char *Value, int argc, char **argv,
+ int &i) {
+ // Is this a multi-argument option?
+ unsigned NumAdditionalVals = Handler->getNumAdditionalVals();
+
+ // Enforce value requirements
+ switch (Handler->getValueExpectedFlag()) {
+ case ValueRequired:
+ if (Value == 0) { // No value specified?
+ if (i+1 < argc) { // Steal the next argument, like for '-o filename'
+ Value = argv[++i];
+ } else {
+ return Handler->error(" requires a value!");
+ }
+ }
+ break;
+ case ValueDisallowed:
+ if (NumAdditionalVals > 0)
+ return Handler->error(": multi-valued option specified"
+ " with ValueDisallowed modifier!");
+
+ if (Value)
+ return Handler->error(" does not allow a value! '" +
+ std::string(Value) + "' specified.");
+ break;
+ case ValueOptional:
+ break;
+ default:
+ cerr << ProgramName
+ << ": Bad ValueMask flag! CommandLine usage error:"
+ << Handler->getValueExpectedFlag() << "\n";
+ abort();
+ break;
+ }
+
+ // If this isn't a multi-arg option, just run the handler.
+ if (NumAdditionalVals == 0) {
+ return Handler->addOccurrence(i, ArgName, Value ? Value : "");
+ }
+ // If it is, run the handle several times.
+ else {
+ bool MultiArg = false;
+
+ if (Value) {
+ if (Handler->addOccurrence(i, ArgName, Value, MultiArg))
+ return true;
+ --NumAdditionalVals;
+ MultiArg = true;
+ }
+
+ while (NumAdditionalVals > 0) {
+
+ if (i+1 < argc) {
+ Value = argv[++i];
+ } else {
+ return Handler->error(": not enough values!");
+ }
+ if (Handler->addOccurrence(i, ArgName, Value, MultiArg))
+ return true;
+ MultiArg = true;
+ --NumAdditionalVals;
+ }
+ return false;
+ }
+}
+
+static bool ProvidePositionalOption(Option *Handler, const std::string &Arg,
+ int i) {
+ int Dummy = i;
+ return ProvideOption(Handler, Handler->ArgStr, Arg.c_str(), 0, 0, Dummy);
+}
+
+
+// Option predicates...
+static inline bool isGrouping(const Option *O) {
+ return O->getFormattingFlag() == cl::Grouping;
+}
+static inline bool isPrefixedOrGrouping(const Option *O) {
+ return isGrouping(O) || O->getFormattingFlag() == cl::Prefix;
+}
+
+// getOptionPred - Check to see if there are any options that satisfy the
+// specified predicate with names that are the prefixes in Name. This is
+// checked by progressively stripping characters off of the name, checking to
+// see if there options that satisfy the predicate. If we find one, return it,
+// otherwise return null.
+//
+static Option *getOptionPred(std::string Name, size_t &Length,
+ bool (*Pred)(const Option*),
+ std::map<std::string, Option*> &OptionsMap) {
+
+ std::map<std::string, Option*>::iterator OMI = OptionsMap.find(Name);
+ if (OMI != OptionsMap.end() && Pred(OMI->second)) {
+ Length = Name.length();
+ return OMI->second;
+ }
+
+ if (Name.size() == 1) return 0;
+ do {
+ Name.erase(Name.end()-1, Name.end()); // Chop off the last character...
+ OMI = OptionsMap.find(Name);
+
+ // Loop while we haven't found an option and Name still has at least two
+ // characters in it (so that the next iteration will not be the empty
+ // string...
+ } while ((OMI == OptionsMap.end() || !Pred(OMI->second)) && Name.size() > 1);
+
+ if (OMI != OptionsMap.end() && Pred(OMI->second)) {
+ Length = Name.length();
+ return OMI->second; // Found one!
+ }
+ return 0; // No option found!
+}
+
+static bool RequiresValue(const Option *O) {
+ return O->getNumOccurrencesFlag() == cl::Required ||
+ O->getNumOccurrencesFlag() == cl::OneOrMore;
+}
+
+static bool EatsUnboundedNumberOfValues(const Option *O) {
+ return O->getNumOccurrencesFlag() == cl::ZeroOrMore ||
+ O->getNumOccurrencesFlag() == cl::OneOrMore;
+}
+
+/// ParseCStringVector - Break INPUT up wherever one or more
+/// whitespace characters are found, and store the resulting tokens in
+/// OUTPUT. The tokens stored in OUTPUT are dynamically allocated
+/// using strdup (), so it is the caller's responsibility to free ()
+/// them later.
+///
+static void ParseCStringVector(std::vector<char *> &output,
+ const char *input) {
+ // Characters which will be treated as token separators:
+ static const char *const delims = " \v\f\t\r\n";
+
+ std::string work (input);
+ // Skip past any delims at head of input string.
+ size_t pos = work.find_first_not_of (delims);
+ // If the string consists entirely of delims, then exit early.
+ if (pos == std::string::npos) return;
+ // Otherwise, jump forward to beginning of first word.
+ work = work.substr (pos);
+ // Find position of first delimiter.
+ pos = work.find_first_of (delims);
+
+ while (!work.empty() && pos != std::string::npos) {
+ // Everything from 0 to POS is the next word to copy.
+ output.push_back (strdup (work.substr (0,pos).c_str ()));
+ // Is there another word in the string?
+ size_t nextpos = work.find_first_not_of (delims, pos + 1);
+ if (nextpos != std::string::npos) {
+ // Yes? Then remove delims from beginning ...
+ work = work.substr (work.find_first_not_of (delims, pos + 1));
+ // and find the end of the word.
+ pos = work.find_first_of (delims);
+ } else {
+ // No? (Remainder of string is delims.) End the loop.
+ work = "";
+ pos = std::string::npos;
+ }
+ }
+
+ // If `input' ended with non-delim char, then we'll get here with
+ // the last word of `input' in `work'; copy it now.
+ if (!work.empty ()) {
+ output.push_back (strdup (work.c_str ()));
+ }
+}
+
+/// ParseEnvironmentOptions - An alternative entry point to the
+/// CommandLine library, which allows you to read the program's name
+/// from the caller (as PROGNAME) and its command-line arguments from
+/// an environment variable (whose name is given in ENVVAR).
+///
+void cl::ParseEnvironmentOptions(const char *progName, const char *envVar,
+ const char *Overview, bool ReadResponseFiles) {
+ // Check args.
+ assert(progName && "Program name not specified");
+ assert(envVar && "Environment variable name missing");
+
+ // Get the environment variable they want us to parse options out of.
+ const char *envValue = getenv(envVar);
+ if (!envValue)
+ return;
+
+ // Get program's "name", which we wouldn't know without the caller
+ // telling us.
+ std::vector<char*> newArgv;
+ newArgv.push_back(strdup(progName));
+
+ // Parse the value of the environment variable into a "command line"
+ // and hand it off to ParseCommandLineOptions().
+ ParseCStringVector(newArgv, envValue);
+ int newArgc = static_cast<int>(newArgv.size());
+ ParseCommandLineOptions(newArgc, &newArgv[0], Overview, ReadResponseFiles);
+
+ // Free all the strdup()ed strings.
+ for (std::vector<char*>::iterator i = newArgv.begin(), e = newArgv.end();
+ i != e; ++i)
+ free (*i);
+}
+
+
+/// ExpandResponseFiles - Copy the contents of argv into newArgv,
+/// substituting the contents of the response files for the arguments
+/// of type @file.
+static void ExpandResponseFiles(int argc, char** argv,
+ std::vector<char*>& newArgv) {
+ for (int i = 1; i != argc; ++i) {
+ char* arg = argv[i];
+
+ if (arg[0] == '@') {
+
+ sys::PathWithStatus respFile(++arg);
+
+ // Check that the response file is not empty (mmap'ing empty
+ // files can be problematic).
+ const sys::FileStatus *FileStat = respFile.getFileStatus();
+ if (FileStat && FileStat->getSize() != 0) {
+
+ // Mmap the response file into memory.
+ OwningPtr<MemoryBuffer>
+ respFilePtr(MemoryBuffer::getFile(respFile.c_str()));
+
+ // If we could open the file, parse its contents, otherwise
+ // pass the @file option verbatim.
+
+ // TODO: we should also support recursive loading of response files,
+ // since this is how gcc behaves. (From their man page: "The file may
+ // itself contain additional @file options; any such options will be
+ // processed recursively.")
+
+ if (respFilePtr != 0) {
+ ParseCStringVector(newArgv, respFilePtr->getBufferStart());
+ continue;
+ }
+ }
+ }
+ newArgv.push_back(strdup(arg));
+ }
+}
+
+void cl::ParseCommandLineOptions(int argc, char **argv,
+ const char *Overview, bool ReadResponseFiles) {
+ // Process all registered options.
+ std::vector<Option*> PositionalOpts;
+ std::vector<Option*> SinkOpts;
+ std::map<std::string, Option*> Opts;
+ GetOptionInfo(PositionalOpts, SinkOpts, Opts);
+
+ assert((!Opts.empty() || !PositionalOpts.empty()) &&
+ "No options specified!");
+
+ // Expand response files.
+ std::vector<char*> newArgv;
+ if (ReadResponseFiles) {
+ newArgv.push_back(strdup(argv[0]));
+ ExpandResponseFiles(argc, argv, newArgv);
+ argv = &newArgv[0];
+ argc = static_cast<int>(newArgv.size());
+ }
+
+ // Copy the program name into ProgName, making sure not to overflow it.
+ std::string ProgName = sys::Path(argv[0]).getLast();
+ if (ProgName.size() > 79) ProgName.resize(79);
+ strcpy(ProgramName, ProgName.c_str());
+
+ ProgramOverview = Overview;
+ bool ErrorParsing = false;
+
+ // Check out the positional arguments to collect information about them.
+ unsigned NumPositionalRequired = 0;
+
+ // Determine whether or not there are an unlimited number of positionals
+ bool HasUnlimitedPositionals = false;
+
+ Option *ConsumeAfterOpt = 0;
+ if (!PositionalOpts.empty()) {
+ if (PositionalOpts[0]->getNumOccurrencesFlag() == cl::ConsumeAfter) {
+ assert(PositionalOpts.size() > 1 &&
+ "Cannot specify cl::ConsumeAfter without a positional argument!");
+ ConsumeAfterOpt = PositionalOpts[0];
+ }
+
+ // Calculate how many positional values are _required_.
+ bool UnboundedFound = false;
+ for (size_t i = ConsumeAfterOpt != 0, e = PositionalOpts.size();
+ i != e; ++i) {
+ Option *Opt = PositionalOpts[i];
+ if (RequiresValue(Opt))
+ ++NumPositionalRequired;
+ else if (ConsumeAfterOpt) {
+ // ConsumeAfter cannot be combined with "optional" positional options
+ // unless there is only one positional argument...
+ if (PositionalOpts.size() > 2)
+ ErrorParsing |=
+ Opt->error(" error - this positional option will never be matched, "
+ "because it does not Require a value, and a "
+ "cl::ConsumeAfter option is active!");
+ } else if (UnboundedFound && !Opt->ArgStr[0]) {
+ // This option does not "require" a value... Make sure this option is
+ // not specified after an option that eats all extra arguments, or this
+ // one will never get any!
+ //
+ ErrorParsing |= Opt->error(" error - option can never match, because "
+ "another positional argument will match an "
+ "unbounded number of values, and this option"
+ " does not require a value!");
+ }
+ UnboundedFound |= EatsUnboundedNumberOfValues(Opt);
+ }
+ HasUnlimitedPositionals = UnboundedFound || ConsumeAfterOpt;
+ }
+
+ // PositionalVals - A vector of "positional" arguments we accumulate into
+ // the process at the end...
+ //
+ std::vector<std::pair<std::string,unsigned> > PositionalVals;
+
+ // If the program has named positional arguments, and the name has been run
+ // across, keep track of which positional argument was named. Otherwise put
+ // the positional args into the PositionalVals list...
+ Option *ActivePositionalArg = 0;
+
+ // Loop over all of the arguments... processing them.
+ bool DashDashFound = false; // Have we read '--'?
+ for (int i = 1; i < argc; ++i) {
+ Option *Handler = 0;
+ const char *Value = 0;
+ const char *ArgName = "";
+
+ // If the option list changed, this means that some command line
+ // option has just been registered or deregistered. This can occur in
+ // response to things like -load, etc. If this happens, rescan the options.
+ if (OptionListChanged) {
+ PositionalOpts.clear();
+ SinkOpts.clear();
+ Opts.clear();
+ GetOptionInfo(PositionalOpts, SinkOpts, Opts);
+ OptionListChanged = false;
+ }
+
+ // Check to see if this is a positional argument. This argument is
+ // considered to be positional if it doesn't start with '-', if it is "-"
+ // itself, or if we have seen "--" already.
+ //
+ if (argv[i][0] != '-' || argv[i][1] == 0 || DashDashFound) {
+ // Positional argument!
+ if (ActivePositionalArg) {
+ ProvidePositionalOption(ActivePositionalArg, argv[i], i);
+ continue; // We are done!
+ } else if (!PositionalOpts.empty()) {
+ PositionalVals.push_back(std::make_pair(argv[i],i));
+
+ // All of the positional arguments have been fulfulled, give the rest to
+ // the consume after option... if it's specified...
+ //
+ if (PositionalVals.size() >= NumPositionalRequired &&
+ ConsumeAfterOpt != 0) {
+ for (++i; i < argc; ++i)
+ PositionalVals.push_back(std::make_pair(argv[i],i));
+ break; // Handle outside of the argument processing loop...
+ }
+
+ // Delay processing positional arguments until the end...
+ continue;
+ }
+ } else if (argv[i][0] == '-' && argv[i][1] == '-' && argv[i][2] == 0 &&
+ !DashDashFound) {
+ DashDashFound = true; // This is the mythical "--"?
+ continue; // Don't try to process it as an argument itself.
+ } else if (ActivePositionalArg &&
+ (ActivePositionalArg->getMiscFlags() & PositionalEatsArgs)) {
+ // If there is a positional argument eating options, check to see if this
+ // option is another positional argument. If so, treat it as an argument,
+ // otherwise feed it to the eating positional.
+ ArgName = argv[i]+1;
+ Handler = LookupOption(ArgName, Value, Opts);
+ if (!Handler || Handler->getFormattingFlag() != cl::Positional) {
+ ProvidePositionalOption(ActivePositionalArg, argv[i], i);
+ continue; // We are done!
+ }
+
+ } else { // We start with a '-', must be an argument...
+ ArgName = argv[i]+1;
+ Handler = LookupOption(ArgName, Value, Opts);
+
+ // Check to see if this "option" is really a prefixed or grouped argument.
+ if (Handler == 0) {
+ std::string RealName(ArgName);
+ if (RealName.size() > 1) {
+ size_t Length = 0;
+ Option *PGOpt = getOptionPred(RealName, Length, isPrefixedOrGrouping,
+ Opts);
+
+ // If the option is a prefixed option, then the value is simply the
+ // rest of the name... so fall through to later processing, by
+ // setting up the argument name flags and value fields.
+ //
+ if (PGOpt && PGOpt->getFormattingFlag() == cl::Prefix) {
+ Value = ArgName+Length;
+ assert(Opts.find(std::string(ArgName, Value)) != Opts.end() &&
+ Opts.find(std::string(ArgName, Value))->second == PGOpt);
+ Handler = PGOpt;
+ } else if (PGOpt) {
+ // This must be a grouped option... handle them now.
+ assert(isGrouping(PGOpt) && "Broken getOptionPred!");
+
+ do {
+ // Move current arg name out of RealName into RealArgName...
+ std::string RealArgName(RealName.begin(),
+ RealName.begin() + Length);
+ RealName.erase(RealName.begin(), RealName.begin() + Length);
+
+ // Because ValueRequired is an invalid flag for grouped arguments,
+ // we don't need to pass argc/argv in...
+ //
+ assert(PGOpt->getValueExpectedFlag() != cl::ValueRequired &&
+ "Option can not be cl::Grouping AND cl::ValueRequired!");
+ int Dummy;
+ ErrorParsing |= ProvideOption(PGOpt, RealArgName.c_str(),
+ 0, 0, 0, Dummy);
+
+ // Get the next grouping option...
+ PGOpt = getOptionPred(RealName, Length, isGrouping, Opts);
+ } while (PGOpt && Length != RealName.size());
+
+ Handler = PGOpt; // Ate all of the options.
+ }
+ }
+ }
+ }
+
+ if (Handler == 0) {
+ if (SinkOpts.empty()) {
+ cerr << ProgramName << ": Unknown command line argument '"
+ << argv[i] << "'. Try: '" << argv[0] << " --help'\n";
+ ErrorParsing = true;
+ } else {
+ for (std::vector<Option*>::iterator I = SinkOpts.begin(),
+ E = SinkOpts.end(); I != E ; ++I)
+ (*I)->addOccurrence(i, "", argv[i]);
+ }
+ continue;
+ }
+
+ // Check to see if this option accepts a comma separated list of values. If
+ // it does, we have to split up the value into multiple values...
+ if (Value && Handler->getMiscFlags() & CommaSeparated) {
+ std::string Val(Value);
+ std::string::size_type Pos = Val.find(',');
+
+ while (Pos != std::string::npos) {
+ // Process the portion before the comma...
+ ErrorParsing |= ProvideOption(Handler, ArgName,
+ std::string(Val.begin(),
+ Val.begin()+Pos).c_str(),
+ argc, argv, i);
+ // Erase the portion before the comma, AND the comma...
+ Val.erase(Val.begin(), Val.begin()+Pos+1);
+ Value += Pos+1; // Increment the original value pointer as well...
+
+ // Check for another comma...
+ Pos = Val.find(',');
+ }
+ }
+
+ // If this is a named positional argument, just remember that it is the
+ // active one...
+ if (Handler->getFormattingFlag() == cl::Positional)
+ ActivePositionalArg = Handler;
+ else
+ ErrorParsing |= ProvideOption(Handler, ArgName, Value, argc, argv, i);
+ }
+
+ // Check and handle positional arguments now...
+ if (NumPositionalRequired > PositionalVals.size()) {
+ cerr << ProgramName
+ << ": Not enough positional command line arguments specified!\n"
+ << "Must specify at least " << NumPositionalRequired
+ << " positional arguments: See: " << argv[0] << " --help\n";
+
+ ErrorParsing = true;
+ } else if (!HasUnlimitedPositionals
+ && PositionalVals.size() > PositionalOpts.size()) {
+ cerr << ProgramName
+ << ": Too many positional arguments specified!\n"
+ << "Can specify at most " << PositionalOpts.size()
+ << " positional arguments: See: " << argv[0] << " --help\n";
+ ErrorParsing = true;
+
+ } else if (ConsumeAfterOpt == 0) {
+ // Positional args have already been handled if ConsumeAfter is specified...
+ unsigned ValNo = 0, NumVals = static_cast<unsigned>(PositionalVals.size());
+ for (size_t i = 0, e = PositionalOpts.size(); i != e; ++i) {
+ if (RequiresValue(PositionalOpts[i])) {
+ ProvidePositionalOption(PositionalOpts[i], PositionalVals[ValNo].first,
+ PositionalVals[ValNo].second);
+ ValNo++;
+ --NumPositionalRequired; // We fulfilled our duty...
+ }
+
+ // If we _can_ give this option more arguments, do so now, as long as we
+ // do not give it values that others need. 'Done' controls whether the
+ // option even _WANTS_ any more.
+ //
+ bool Done = PositionalOpts[i]->getNumOccurrencesFlag() == cl::Required;
+ while (NumVals-ValNo > NumPositionalRequired && !Done) {
+ switch (PositionalOpts[i]->getNumOccurrencesFlag()) {
+ case cl::Optional:
+ Done = true; // Optional arguments want _at most_ one value
+ // FALL THROUGH
+ case cl::ZeroOrMore: // Zero or more will take all they can get...
+ case cl::OneOrMore: // One or more will take all they can get...
+ ProvidePositionalOption(PositionalOpts[i],
+ PositionalVals[ValNo].first,
+ PositionalVals[ValNo].second);
+ ValNo++;
+ break;
+ default:
+ assert(0 && "Internal error, unexpected NumOccurrences flag in "
+ "positional argument processing!");
+ }
+ }
+ }
+ } else {
+ assert(ConsumeAfterOpt && NumPositionalRequired <= PositionalVals.size());
+ unsigned ValNo = 0;
+ for (size_t j = 1, e = PositionalOpts.size(); j != e; ++j)
+ if (RequiresValue(PositionalOpts[j])) {
+ ErrorParsing |= ProvidePositionalOption(PositionalOpts[j],
+ PositionalVals[ValNo].first,
+ PositionalVals[ValNo].second);
+ ValNo++;
+ }
+
+ // Handle the case where there is just one positional option, and it's
+ // optional. In this case, we want to give JUST THE FIRST option to the
+ // positional option and keep the rest for the consume after. The above
+ // loop would have assigned no values to positional options in this case.
+ //
+ if (PositionalOpts.size() == 2 && ValNo == 0 && !PositionalVals.empty()) {
+ ErrorParsing |= ProvidePositionalOption(PositionalOpts[1],
+ PositionalVals[ValNo].first,
+ PositionalVals[ValNo].second);
+ ValNo++;
+ }
+
+ // Handle over all of the rest of the arguments to the
+ // cl::ConsumeAfter command line option...
+ for (; ValNo != PositionalVals.size(); ++ValNo)
+ ErrorParsing |= ProvidePositionalOption(ConsumeAfterOpt,
+ PositionalVals[ValNo].first,
+ PositionalVals[ValNo].second);
+ }
+
+ // Loop over args and make sure all required args are specified!
+ for (std::map<std::string, Option*>::iterator I = Opts.begin(),
+ E = Opts.end(); I != E; ++I) {
+ switch (I->second->getNumOccurrencesFlag()) {
+ case Required:
+ case OneOrMore:
+ if (I->second->getNumOccurrences() == 0) {
+ I->second->error(" must be specified at least once!");
+ ErrorParsing = true;
+ }
+ // Fall through
+ default:
+ break;
+ }
+ }
+
+ // Free all of the memory allocated to the map. Command line options may only
+ // be processed once!
+ Opts.clear();
+ PositionalOpts.clear();
+ MoreHelp->clear();
+
+ // Free the memory allocated by ExpandResponseFiles.
+ if (ReadResponseFiles) {
+ // Free all the strdup()ed strings.
+ for (std::vector<char*>::iterator i = newArgv.begin(), e = newArgv.end();
+ i != e; ++i)
+ free (*i);
+ }
+
+ // If we had an error processing our arguments, don't let the program execute
+ if (ErrorParsing) exit(1);
+}
+
+//===----------------------------------------------------------------------===//
+// Option Base class implementation
+//
+
+bool Option::error(std::string Message, const char *ArgName) {
+ if (ArgName == 0) ArgName = ArgStr;
+ if (ArgName[0] == 0)
+ cerr << HelpStr; // Be nice for positional arguments
+ else
+ cerr << ProgramName << ": for the -" << ArgName;
+
+ cerr << " option: " << Message << "\n";
+ return true;
+}
+
+bool Option::addOccurrence(unsigned pos, const char *ArgName,
+ const std::string &Value,
+ bool MultiArg) {
+ if (!MultiArg)
+ NumOccurrences++; // Increment the number of times we have been seen
+
+ switch (getNumOccurrencesFlag()) {
+ case Optional:
+ if (NumOccurrences > 1)
+ return error(": may only occur zero or one times!", ArgName);
+ break;
+ case Required:
+ if (NumOccurrences > 1)
+ return error(": must occur exactly one time!", ArgName);
+ // Fall through
+ case OneOrMore:
+ case ZeroOrMore:
+ case ConsumeAfter: break;
+ default: return error(": bad num occurrences flag value!");
+ }
+
+ return handleOccurrence(pos, ArgName, Value);
+}
+
+
+// getValueStr - Get the value description string, using "DefaultMsg" if nothing
+// has been specified yet.
+//
+static const char *getValueStr(const Option &O, const char *DefaultMsg) {
+ if (O.ValueStr[0] == 0) return DefaultMsg;
+ return O.ValueStr;
+}
+
+//===----------------------------------------------------------------------===//
+// cl::alias class implementation
+//
+
+// Return the width of the option tag for printing...
+size_t alias::getOptionWidth() const {
+ return std::strlen(ArgStr)+6;
+}
+
+// Print out the option for the alias.
+void alias::printOptionInfo(size_t GlobalWidth) const {
+ size_t L = std::strlen(ArgStr);
+ cout << " -" << ArgStr << std::string(GlobalWidth-L-6, ' ') << " - "
+ << HelpStr << "\n";
+}
+
+
+
+//===----------------------------------------------------------------------===//
+// Parser Implementation code...
+//
+
+// basic_parser implementation
+//
+
+// Return the width of the option tag for printing...
+size_t basic_parser_impl::getOptionWidth(const Option &O) const {
+ size_t Len = std::strlen(O.ArgStr);
+ if (const char *ValName = getValueName())
+ Len += std::strlen(getValueStr(O, ValName))+3;
+
+ return Len + 6;
+}
+
+// printOptionInfo - Print out information about this option. The
+// to-be-maintained width is specified.
+//
+void basic_parser_impl::printOptionInfo(const Option &O,
+ size_t GlobalWidth) const {
+ cout << " -" << O.ArgStr;
+
+ if (const char *ValName = getValueName())
+ cout << "=<" << getValueStr(O, ValName) << ">";
+
+ cout << std::string(GlobalWidth-getOptionWidth(O), ' ') << " - "
+ << O.HelpStr << "\n";
+}
+
+
+
+
+// parser<bool> implementation
+//
+bool parser<bool>::parse(Option &O, const char *ArgName,
+ const std::string &Arg, bool &Value) {
+ if (Arg == "" || Arg == "true" || Arg == "TRUE" || Arg == "True" ||
+ Arg == "1") {
+ Value = true;
+ } else if (Arg == "false" || Arg == "FALSE" || Arg == "False" || Arg == "0") {
+ Value = false;
+ } else {
+ return O.error(": '" + Arg +
+ "' is invalid value for boolean argument! Try 0 or 1");
+ }
+ return false;
+}
+
+// parser<boolOrDefault> implementation
+//
+bool parser<boolOrDefault>::parse(Option &O, const char *ArgName,
+ const std::string &Arg, boolOrDefault &Value) {
+ if (Arg == "" || Arg == "true" || Arg == "TRUE" || Arg == "True" ||
+ Arg == "1") {
+ Value = BOU_TRUE;
+ } else if (Arg == "false" || Arg == "FALSE"
+ || Arg == "False" || Arg == "0") {
+ Value = BOU_FALSE;
+ } else {
+ return O.error(": '" + Arg +
+ "' is invalid value for boolean argument! Try 0 or 1");
+ }
+ return false;
+}
+
+// parser<int> implementation
+//
+bool parser<int>::parse(Option &O, const char *ArgName,
+ const std::string &Arg, int &Value) {
+ char *End;
+ Value = (int)strtol(Arg.c_str(), &End, 0);
+ if (*End != 0)
+ return O.error(": '" + Arg + "' value invalid for integer argument!");
+ return false;
+}
+
+// parser<unsigned> implementation
+//
+bool parser<unsigned>::parse(Option &O, const char *ArgName,
+ const std::string &Arg, unsigned &Value) {
+ char *End;
+ errno = 0;
+ unsigned long V = strtoul(Arg.c_str(), &End, 0);
+ Value = (unsigned)V;
+ if (((V == ULONG_MAX) && (errno == ERANGE))
+ || (*End != 0)
+ || (Value != V))
+ return O.error(": '" + Arg + "' value invalid for uint argument!");
+ return false;
+}
+
+// parser<double>/parser<float> implementation
+//
+static bool parseDouble(Option &O, const std::string &Arg, double &Value) {
+ const char *ArgStart = Arg.c_str();
+ char *End;
+ Value = strtod(ArgStart, &End);
+ if (*End != 0)
+ return O.error(": '" +Arg+ "' value invalid for floating point argument!");
+ return false;
+}
+
+bool parser<double>::parse(Option &O, const char *AN,
+ const std::string &Arg, double &Val) {
+ return parseDouble(O, Arg, Val);
+}
+
+bool parser<float>::parse(Option &O, const char *AN,
+ const std::string &Arg, float &Val) {
+ double dVal;
+ if (parseDouble(O, Arg, dVal))
+ return true;
+ Val = (float)dVal;
+ return false;
+}
+
+
+
+// generic_parser_base implementation
+//
+
+// findOption - Return the option number corresponding to the specified
+// argument string. If the option is not found, getNumOptions() is returned.
+//
+unsigned generic_parser_base::findOption(const char *Name) {
+ unsigned i = 0, e = getNumOptions();
+ std::string N(Name);
+
+ while (i != e)
+ if (getOption(i) == N)
+ return i;
+ else
+ ++i;
+ return e;
+}
+
+
+// Return the width of the option tag for printing...
+size_t generic_parser_base::getOptionWidth(const Option &O) const {
+ if (O.hasArgStr()) {
+ size_t Size = std::strlen(O.ArgStr)+6;
+ for (unsigned i = 0, e = getNumOptions(); i != e; ++i)
+ Size = std::max(Size, std::strlen(getOption(i))+8);
+ return Size;
+ } else {
+ size_t BaseSize = 0;
+ for (unsigned i = 0, e = getNumOptions(); i != e; ++i)
+ BaseSize = std::max(BaseSize, std::strlen(getOption(i))+8);
+ return BaseSize;
+ }
+}
+
+// printOptionInfo - Print out information about this option. The
+// to-be-maintained width is specified.
+//
+void generic_parser_base::printOptionInfo(const Option &O,
+ size_t GlobalWidth) const {
+ if (O.hasArgStr()) {
+ size_t L = std::strlen(O.ArgStr);
+ cout << " -" << O.ArgStr << std::string(GlobalWidth-L-6, ' ')
+ << " - " << O.HelpStr << "\n";
+
+ for (unsigned i = 0, e = getNumOptions(); i != e; ++i) {
+ size_t NumSpaces = GlobalWidth-strlen(getOption(i))-8;
+ cout << " =" << getOption(i) << std::string(NumSpaces, ' ')
+ << " - " << getDescription(i) << "\n";
+ }
+ } else {
+ if (O.HelpStr[0])
+ cout << " " << O.HelpStr << "\n";
+ for (unsigned i = 0, e = getNumOptions(); i != e; ++i) {
+ size_t L = std::strlen(getOption(i));
+ cout << " -" << getOption(i) << std::string(GlobalWidth-L-8, ' ')
+ << " - " << getDescription(i) << "\n";
+ }
+ }
+}
+
+
+//===----------------------------------------------------------------------===//
+// --help and --help-hidden option implementation
+//
+
+namespace {
+
+class HelpPrinter {
+ size_t MaxArgLen;
+ const Option *EmptyArg;
+ const bool ShowHidden;
+
+ // isHidden/isReallyHidden - Predicates to be used to filter down arg lists.
+ inline static bool isHidden(std::pair<std::string, Option *> &OptPair) {
+ return OptPair.second->getOptionHiddenFlag() >= Hidden;
+ }
+ inline static bool isReallyHidden(std::pair<std::string, Option *> &OptPair) {
+ return OptPair.second->getOptionHiddenFlag() == ReallyHidden;
+ }
+
+public:
+ explicit HelpPrinter(bool showHidden) : ShowHidden(showHidden) {
+ EmptyArg = 0;
+ }
+
+ void operator=(bool Value) {
+ if (Value == false) return;
+
+ // Get all the options.
+ std::vector<Option*> PositionalOpts;
+ std::vector<Option*> SinkOpts;
+ std::map<std::string, Option*> OptMap;
+ GetOptionInfo(PositionalOpts, SinkOpts, OptMap);
+
+ // Copy Options into a vector so we can sort them as we like...
+ std::vector<std::pair<std::string, Option*> > Opts;
+ copy(OptMap.begin(), OptMap.end(), std::back_inserter(Opts));
+
+ // Eliminate Hidden or ReallyHidden arguments, depending on ShowHidden
+ Opts.erase(std::remove_if(Opts.begin(), Opts.end(),
+ std::ptr_fun(ShowHidden ? isReallyHidden : isHidden)),
+ Opts.end());
+
+ // Eliminate duplicate entries in table (from enum flags options, f.e.)
+ { // Give OptionSet a scope
+ std::set<Option*> OptionSet;
+ for (unsigned i = 0; i != Opts.size(); ++i)
+ if (OptionSet.count(Opts[i].second) == 0)
+ OptionSet.insert(Opts[i].second); // Add new entry to set
+ else
+ Opts.erase(Opts.begin()+i--); // Erase duplicate
+ }
+
+ if (ProgramOverview)
+ cout << "OVERVIEW: " << ProgramOverview << "\n";
+
+ cout << "USAGE: " << ProgramName << " [options]";
+
+ // Print out the positional options.
+ Option *CAOpt = 0; // The cl::ConsumeAfter option, if it exists...
+ if (!PositionalOpts.empty() &&
+ PositionalOpts[0]->getNumOccurrencesFlag() == ConsumeAfter)
+ CAOpt = PositionalOpts[0];
+
+ for (size_t i = CAOpt != 0, e = PositionalOpts.size(); i != e; ++i) {
+ if (PositionalOpts[i]->ArgStr[0])
+ cout << " --" << PositionalOpts[i]->ArgStr;
+ cout << " " << PositionalOpts[i]->HelpStr;
+ }
+
+ // Print the consume after option info if it exists...
+ if (CAOpt) cout << " " << CAOpt->HelpStr;
+
+ cout << "\n\n";
+
+ // Compute the maximum argument length...
+ MaxArgLen = 0;
+ for (size_t i = 0, e = Opts.size(); i != e; ++i)
+ MaxArgLen = std::max(MaxArgLen, Opts[i].second->getOptionWidth());
+
+ cout << "OPTIONS:\n";
+ for (size_t i = 0, e = Opts.size(); i != e; ++i)
+ Opts[i].second->printOptionInfo(MaxArgLen);
+
+ // Print any extra help the user has declared.
+ for (std::vector<const char *>::iterator I = MoreHelp->begin(),
+ E = MoreHelp->end(); I != E; ++I)
+ cout << *I;
+ MoreHelp->clear();
+
+ // Halt the program since help information was printed
+ exit(1);
+ }
+};
+} // End anonymous namespace
+
+// Define the two HelpPrinter instances that are used to print out help, or
+// help-hidden...
+//
+static HelpPrinter NormalPrinter(false);
+static HelpPrinter HiddenPrinter(true);
+
+static cl::opt<HelpPrinter, true, parser<bool> >
+HOp("help", cl::desc("Display available options (--help-hidden for more)"),
+ cl::location(NormalPrinter), cl::ValueDisallowed);
+
+static cl::opt<HelpPrinter, true, parser<bool> >
+HHOp("help-hidden", cl::desc("Display all available options"),
+ cl::location(HiddenPrinter), cl::Hidden, cl::ValueDisallowed);
+
+static void (*OverrideVersionPrinter)() = 0;
+
+namespace {
+class VersionPrinter {
+public:
+ void print() {
+ cout << "Low Level Virtual Machine (http://llvm.org/):\n";
+ cout << " " << PACKAGE_NAME << " version " << PACKAGE_VERSION;
+#ifdef LLVM_VERSION_INFO
+ cout << LLVM_VERSION_INFO;
+#endif
+ cout << "\n ";
+#ifndef __OPTIMIZE__
+ cout << "DEBUG build";
+#else
+ cout << "Optimized build";
+#endif
+#ifndef NDEBUG
+ cout << " with assertions";
+#endif
+ cout << ".\n";
+ cout << " Built " << __DATE__ << "(" << __TIME__ << ").\n";
+ }
+ void operator=(bool OptionWasSpecified) {
+ if (OptionWasSpecified) {
+ if (OverrideVersionPrinter == 0) {
+ print();
+ exit(1);
+ } else {
+ (*OverrideVersionPrinter)();
+ exit(1);
+ }
+ }
+ }
+};
+} // End anonymous namespace
+
+
+// Define the --version option that prints out the LLVM version for the tool
+static VersionPrinter VersionPrinterInstance;
+
+static cl::opt<VersionPrinter, true, parser<bool> >
+VersOp("version", cl::desc("Display the version of this program"),
+ cl::location(VersionPrinterInstance), cl::ValueDisallowed);
+
+// Utility function for printing the help message.
+void cl::PrintHelpMessage() {
+ // This looks weird, but it actually prints the help message. The
+ // NormalPrinter variable is a HelpPrinter and the help gets printed when
+ // its operator= is invoked. That's because the "normal" usages of the
+ // help printer is to be assigned true/false depending on whether the
+ // --help option was given or not. Since we're circumventing that we have
+ // to make it look like --help was given, so we assign true.
+ NormalPrinter = true;
+}
+
+/// Utility function for printing version number.
+void cl::PrintVersionMessage() {
+ VersionPrinterInstance.print();
+}
+
+void cl::SetVersionPrinter(void (*func)()) {
+ OverrideVersionPrinter = func;
+}
diff --git a/lib/Support/ConstantRange.cpp b/lib/Support/ConstantRange.cpp
new file mode 100644
index 0000000..cb8c4b0
--- /dev/null
+++ b/lib/Support/ConstantRange.cpp
@@ -0,0 +1,472 @@
+//===-- ConstantRange.cpp - ConstantRange implementation ------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// Represent a range of possible values that may occur when the program is run
+// for an integral value. This keeps track of a lower and upper bound for the
+// constant, which MAY wrap around the end of the numeric range. To do this, it
+// keeps track of a [lower, upper) bound, which specifies an interval just like
+// STL iterators. When used with boolean values, the following are important
+// ranges (other integral ranges use min/max values for special range values):
+//
+// [F, F) = {} = Empty set
+// [T, F) = {T}
+// [F, T) = {F}
+// [T, T) = {F, T} = Full set
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Support/ConstantRange.h"
+#include "llvm/Support/raw_ostream.h"
+using namespace llvm;
+
+/// Initialize a full (the default) or empty set for the specified type.
+///
+ConstantRange::ConstantRange(uint32_t BitWidth, bool Full) :
+ Lower(BitWidth, 0), Upper(BitWidth, 0) {
+ if (Full)
+ Lower = Upper = APInt::getMaxValue(BitWidth);
+ else
+ Lower = Upper = APInt::getMinValue(BitWidth);
+}
+
+/// Initialize a range to hold the single specified value.
+///
+ConstantRange::ConstantRange(const APInt & V) : Lower(V), Upper(V + 1) { }
+
+ConstantRange::ConstantRange(const APInt &L, const APInt &U) :
+ Lower(L), Upper(U) {
+ assert(L.getBitWidth() == U.getBitWidth() &&
+ "ConstantRange with unequal bit widths");
+ assert((L != U || (L.isMaxValue() || L.isMinValue())) &&
+ "Lower == Upper, but they aren't min or max value!");
+}
+
+/// isFullSet - Return true if this set contains all of the elements possible
+/// for this data-type
+bool ConstantRange::isFullSet() const {
+ return Lower == Upper && Lower.isMaxValue();
+}
+
+/// isEmptySet - Return true if this set contains no members.
+///
+bool ConstantRange::isEmptySet() const {
+ return Lower == Upper && Lower.isMinValue();
+}
+
+/// isWrappedSet - Return true if this set wraps around the top of the range,
+/// for example: [100, 8)
+///
+bool ConstantRange::isWrappedSet() const {
+ return Lower.ugt(Upper);
+}
+
+/// getSetSize - Return the number of elements in this set.
+///
+APInt ConstantRange::getSetSize() const {
+ if (isEmptySet())
+ return APInt(getBitWidth(), 0);
+ if (getBitWidth() == 1) {
+ if (Lower != Upper) // One of T or F in the set...
+ return APInt(2, 1);
+ return APInt(2, 2); // Must be full set...
+ }
+
+ // Simply subtract the bounds...
+ return Upper - Lower;
+}
+
+/// getUnsignedMax - Return the largest unsigned value contained in the
+/// ConstantRange.
+///
+APInt ConstantRange::getUnsignedMax() const {
+ if (isFullSet() || isWrappedSet())
+ return APInt::getMaxValue(getBitWidth());
+ else
+ return getUpper() - 1;
+}
+
+/// getUnsignedMin - Return the smallest unsigned value contained in the
+/// ConstantRange.
+///
+APInt ConstantRange::getUnsignedMin() const {
+ if (isFullSet() || (isWrappedSet() && getUpper() != 0))
+ return APInt::getMinValue(getBitWidth());
+ else
+ return getLower();
+}
+
+/// getSignedMax - Return the largest signed value contained in the
+/// ConstantRange.
+///
+APInt ConstantRange::getSignedMax() const {
+ APInt SignedMax(APInt::getSignedMaxValue(getBitWidth()));
+ if (!isWrappedSet()) {
+ if (getLower().sle(getUpper() - 1))
+ return getUpper() - 1;
+ else
+ return SignedMax;
+ } else {
+ if ((getUpper() - 1).slt(getLower())) {
+ if (getLower() != SignedMax)
+ return SignedMax;
+ else
+ return getUpper() - 1;
+ } else {
+ return getUpper() - 1;
+ }
+ }
+}
+
+/// getSignedMin - Return the smallest signed value contained in the
+/// ConstantRange.
+///
+APInt ConstantRange::getSignedMin() const {
+ APInt SignedMin(APInt::getSignedMinValue(getBitWidth()));
+ if (!isWrappedSet()) {
+ if (getLower().sle(getUpper() - 1))
+ return getLower();
+ else
+ return SignedMin;
+ } else {
+ if ((getUpper() - 1).slt(getLower())) {
+ if (getUpper() != SignedMin)
+ return SignedMin;
+ else
+ return getLower();
+ } else {
+ return getLower();
+ }
+ }
+}
+
+/// contains - Return true if the specified value is in the set.
+///
+bool ConstantRange::contains(const APInt &V) const {
+ if (Lower == Upper)
+ return isFullSet();
+
+ if (!isWrappedSet())
+ return Lower.ule(V) && V.ult(Upper);
+ else
+ return Lower.ule(V) || V.ult(Upper);
+}
+
+/// subtract - Subtract the specified constant from the endpoints of this
+/// constant range.
+ConstantRange ConstantRange::subtract(const APInt &Val) const {
+ assert(Val.getBitWidth() == getBitWidth() && "Wrong bit width");
+ // If the set is empty or full, don't modify the endpoints.
+ if (Lower == Upper)
+ return *this;
+ return ConstantRange(Lower - Val, Upper - Val);
+}
+
+
+// intersect1Wrapped - This helper function is used to intersect two ranges when
+// it is known that LHS is wrapped and RHS isn't.
+//
+ConstantRange
+ConstantRange::intersect1Wrapped(const ConstantRange &LHS,
+ const ConstantRange &RHS) {
+ assert(LHS.isWrappedSet() && !RHS.isWrappedSet());
+
+ // Check to see if we overlap on the Left side of RHS...
+ //
+ if (RHS.Lower.ult(LHS.Upper)) {
+ // We do overlap on the left side of RHS, see if we overlap on the right of
+ // RHS...
+ if (RHS.Upper.ugt(LHS.Lower)) {
+ // Ok, the result overlaps on both the left and right sides. See if the
+ // resultant interval will be smaller if we wrap or not...
+ //
+ if (LHS.getSetSize().ult(RHS.getSetSize()))
+ return LHS;
+ else
+ return RHS;
+
+ } else {
+ // No overlap on the right, just on the left.
+ return ConstantRange(RHS.Lower, LHS.Upper);
+ }
+ } else {
+ // We don't overlap on the left side of RHS, see if we overlap on the right
+ // of RHS...
+ if (RHS.Upper.ugt(LHS.Lower)) {
+ // Simple overlap...
+ return ConstantRange(LHS.Lower, RHS.Upper);
+ } else {
+ // No overlap...
+ return ConstantRange(LHS.getBitWidth(), false);
+ }
+ }
+}
+
+/// intersectWith - Return the range that results from the intersection of this
+/// range with another range.
+///
+ConstantRange ConstantRange::intersectWith(const ConstantRange &CR) const {
+ assert(getBitWidth() == CR.getBitWidth() &&
+ "ConstantRange types don't agree!");
+ // Handle common special cases
+ if (isEmptySet() || CR.isFullSet())
+ return *this;
+ if (isFullSet() || CR.isEmptySet())
+ return CR;
+
+ if (!isWrappedSet()) {
+ if (!CR.isWrappedSet()) {
+ using namespace APIntOps;
+ APInt L = umax(Lower, CR.Lower);
+ APInt U = umin(Upper, CR.Upper);
+
+ if (L.ult(U)) // If range isn't empty...
+ return ConstantRange(L, U);
+ else
+ return ConstantRange(getBitWidth(), false);// Otherwise, empty set
+ } else
+ return intersect1Wrapped(CR, *this);
+ } else { // We know "this" is wrapped...
+ if (!CR.isWrappedSet())
+ return intersect1Wrapped(*this, CR);
+ else {
+ // Both ranges are wrapped...
+ using namespace APIntOps;
+ APInt L = umax(Lower, CR.Lower);
+ APInt U = umin(Upper, CR.Upper);
+ return ConstantRange(L, U);
+ }
+ }
+ return *this;
+}
+
+/// maximalIntersectWith - Return the range that results from the intersection
+/// of this range with another range. The resultant range is guaranteed to
+/// include all elements contained in both input ranges, and to have the
+/// smallest possible set size that does so. Because there may be two
+/// intersections with the same set size, A.maximalIntersectWith(B) might not
+/// be equal to B.maximalIntersect(A).
+ConstantRange ConstantRange::maximalIntersectWith(const ConstantRange &CR) const {
+ assert(getBitWidth() == CR.getBitWidth() &&
+ "ConstantRange types don't agree!");
+
+ // Handle common cases.
+ if ( isEmptySet() || CR.isFullSet()) return *this;
+ if (CR.isEmptySet() || isFullSet()) return CR;
+
+ if (!isWrappedSet() && CR.isWrappedSet())
+ return CR.maximalIntersectWith(*this);
+
+ if (!isWrappedSet() && !CR.isWrappedSet()) {
+ if (Lower.ult(CR.Lower)) {
+ if (Upper.ule(CR.Lower))
+ return ConstantRange(getBitWidth(), false);
+
+ if (Upper.ult(CR.Upper))
+ return ConstantRange(CR.Lower, Upper);
+
+ return CR;
+ } else {
+ if (Upper.ult(CR.Upper))
+ return *this;
+
+ if (Lower.ult(CR.Upper))
+ return ConstantRange(Lower, CR.Upper);
+
+ return ConstantRange(getBitWidth(), false);
+ }
+ }
+
+ if (isWrappedSet() && !CR.isWrappedSet()) {
+ if (CR.Lower.ult(Upper)) {
+ if (CR.Upper.ult(Upper))
+ return CR;
+
+ if (CR.Upper.ult(Lower))
+ return ConstantRange(CR.Lower, Upper);
+
+ if (getSetSize().ult(CR.getSetSize()))
+ return *this;
+ else
+ return CR;
+ } else if (CR.Lower.ult(Lower)) {
+ if (CR.Upper.ule(Lower))
+ return ConstantRange(getBitWidth(), false);
+
+ return ConstantRange(Lower, CR.Upper);
+ }
+ return CR;
+ }
+
+ if (CR.Upper.ult(Upper)) {
+ if (CR.Lower.ult(Upper)) {
+ if (getSetSize().ult(CR.getSetSize()))
+ return *this;
+ else
+ return CR;
+ }
+
+ if (CR.Lower.ult(Lower))
+ return ConstantRange(Lower, CR.Upper);
+
+ return CR;
+ } else if (CR.Upper.ult(Lower)) {
+ if (CR.Lower.ult(Lower))
+ return *this;
+
+ return ConstantRange(CR.Lower, Upper);
+ }
+ if (getSetSize().ult(CR.getSetSize()))
+ return *this;
+ else
+ return CR;
+}
+
+
+/// unionWith - Return the range that results from the union of this range with
+/// another range. The resultant range is guaranteed to include the elements of
+/// both sets, but may contain more. For example, [3, 9) union [12,15) is
+/// [3, 15), which includes 9, 10, and 11, which were not included in either
+/// set before.
+///
+ConstantRange ConstantRange::unionWith(const ConstantRange &CR) const {
+ assert(getBitWidth() == CR.getBitWidth() &&
+ "ConstantRange types don't agree!");
+
+ if ( isFullSet() || CR.isEmptySet()) return *this;
+ if (CR.isFullSet() || isEmptySet()) return CR;
+
+ if (!isWrappedSet() && CR.isWrappedSet()) return CR.unionWith(*this);
+
+ APInt L = Lower, U = Upper;
+
+ if (!isWrappedSet() && !CR.isWrappedSet()) {
+ if (CR.Lower.ult(L))
+ L = CR.Lower;
+
+ if (CR.Upper.ugt(U))
+ U = CR.Upper;
+ }
+
+ if (isWrappedSet() && !CR.isWrappedSet()) {
+ if ((CR.Lower.ult(Upper) && CR.Upper.ult(Upper)) ||
+ (CR.Lower.ugt(Lower) && CR.Upper.ugt(Lower))) {
+ return *this;
+ }
+
+ if (CR.Lower.ule(Upper) && Lower.ule(CR.Upper)) {
+ return ConstantRange(getBitWidth());
+ }
+
+ if (CR.Lower.ule(Upper) && CR.Upper.ule(Lower)) {
+ APInt d1 = CR.Upper - Upper, d2 = Lower - CR.Upper;
+ if (d1.ult(d2)) {
+ U = CR.Upper;
+ } else {
+ L = CR.Upper;
+ }
+ }
+
+ if (Upper.ult(CR.Lower) && CR.Upper.ult(Lower)) {
+ APInt d1 = CR.Lower - Upper, d2 = Lower - CR.Upper;
+ if (d1.ult(d2)) {
+ U = CR.Lower + 1;
+ } else {
+ L = CR.Upper - 1;
+ }
+ }
+
+ if (Upper.ult(CR.Lower) && Lower.ult(CR.Upper)) {
+ APInt d1 = CR.Lower - Upper, d2 = Lower - CR.Lower;
+
+ if (d1.ult(d2)) {
+ U = CR.Lower + 1;
+ } else {
+ L = CR.Lower;
+ }
+ }
+ }
+
+ if (isWrappedSet() && CR.isWrappedSet()) {
+ if (Lower.ult(CR.Upper) || CR.Lower.ult(Upper))
+ return ConstantRange(getBitWidth());
+
+ if (CR.Upper.ugt(U)) {
+ U = CR.Upper;
+ }
+
+ if (CR.Lower.ult(L)) {
+ L = CR.Lower;
+ }
+
+ if (L == U) return ConstantRange(getBitWidth());
+ }
+
+ return ConstantRange(L, U);
+}
+
+/// zeroExtend - Return a new range in the specified integer type, which must
+/// be strictly larger than the current type. The returned range will
+/// correspond to the possible range of values as if the source range had been
+/// zero extended.
+ConstantRange ConstantRange::zeroExtend(uint32_t DstTySize) const {
+ unsigned SrcTySize = getBitWidth();
+ assert(SrcTySize < DstTySize && "Not a value extension");
+ if (isFullSet())
+ // Change a source full set into [0, 1 << 8*numbytes)
+ return ConstantRange(APInt(DstTySize,0), APInt(DstTySize,1).shl(SrcTySize));
+
+ APInt L = Lower; L.zext(DstTySize);
+ APInt U = Upper; U.zext(DstTySize);
+ return ConstantRange(L, U);
+}
+
+/// signExtend - Return a new range in the specified integer type, which must
+/// be strictly larger than the current type. The returned range will
+/// correspond to the possible range of values as if the source range had been
+/// sign extended.
+ConstantRange ConstantRange::signExtend(uint32_t DstTySize) const {
+ unsigned SrcTySize = getBitWidth();
+ assert(SrcTySize < DstTySize && "Not a value extension");
+ if (isFullSet()) {
+ return ConstantRange(APInt::getHighBitsSet(DstTySize,DstTySize-SrcTySize+1),
+ APInt::getLowBitsSet(DstTySize, SrcTySize-1));
+ }
+
+ APInt L = Lower; L.sext(DstTySize);
+ APInt U = Upper; U.sext(DstTySize);
+ return ConstantRange(L, U);
+}
+
+/// truncate - Return a new range in the specified integer type, which must be
+/// strictly smaller than the current type. The returned range will
+/// correspond to the possible range of values as if the source range had been
+/// truncated to the specified type.
+ConstantRange ConstantRange::truncate(uint32_t DstTySize) const {
+ unsigned SrcTySize = getBitWidth();
+ assert(SrcTySize > DstTySize && "Not a value truncation");
+ APInt Size(APInt::getLowBitsSet(SrcTySize, DstTySize));
+ if (isFullSet() || getSetSize().ugt(Size))
+ return ConstantRange(DstTySize);
+
+ APInt L = Lower; L.trunc(DstTySize);
+ APInt U = Upper; U.trunc(DstTySize);
+ return ConstantRange(L, U);
+}
+
+/// print - Print out the bounds to a stream...
+///
+void ConstantRange::print(raw_ostream &OS) const {
+ OS << "[" << Lower << "," << Upper << ")";
+}
+
+/// dump - Allow printing from a debugger easily...
+///
+void ConstantRange::dump() const {
+ print(errs());
+}
diff --git a/lib/Support/Debug.cpp b/lib/Support/Debug.cpp
new file mode 100644
index 0000000..a09cddf
--- /dev/null
+++ b/lib/Support/Debug.cpp
@@ -0,0 +1,77 @@
+//===-- Debug.cpp - An easy way to add debug output to your code ----------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements a handle way of adding debugging information to your
+// code, without it being enabled all of the time, and without having to add
+// command line options to enable it.
+//
+// In particular, just wrap your code with the DEBUG() macro, and it will be
+// enabled automatically if you specify '-debug' on the command-line.
+// Alternatively, you can also use the SET_DEBUG_TYPE("foo") macro to specify
+// that your debug code belongs to class "foo". Then, on the command line, you
+// can specify '-debug-only=foo' to enable JUST the debug information for the
+// foo class.
+//
+// When compiling in release mode, the -debug-* options and all code in DEBUG()
+// statements disappears, so it does not effect the runtime of the code.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+using namespace llvm;
+
+bool llvm::DebugFlag; // DebugFlag - Exported boolean set by the -debug option
+
+namespace {
+#ifndef NDEBUG
+ // -debug - Command line option to enable the DEBUG statements in the passes.
+ // This flag may only be enabled in debug builds.
+ static cl::opt<bool, true>
+ Debug("debug", cl::desc("Enable debug output"), cl::Hidden,
+ cl::location(DebugFlag));
+
+ static std::string CurrentDebugType;
+ static struct DebugOnlyOpt {
+ void operator=(const std::string &Val) const {
+ DebugFlag |= !Val.empty();
+ CurrentDebugType = Val;
+ }
+ } DebugOnlyOptLoc;
+
+ static cl::opt<DebugOnlyOpt, true, cl::parser<std::string> >
+ DebugOnly("debug-only", cl::desc("Enable a specific type of debug output"),
+ cl::Hidden, cl::value_desc("debug string"),
+ cl::location(DebugOnlyOptLoc), cl::ValueRequired);
+#endif
+}
+
+// isCurrentDebugType - Return true if the specified string is the debug type
+// specified on the command line, or if none was specified on the command line
+// with the -debug-only=X option.
+//
+bool llvm::isCurrentDebugType(const char *DebugType) {
+#ifndef NDEBUG
+ return CurrentDebugType.empty() || DebugType == CurrentDebugType;
+#else
+ return false;
+#endif
+}
+
+// getErrorOutputStream - Returns the error output stream (std::cerr). This
+// places the std::c* I/O streams into one .cpp file and relieves the whole
+// program from having to have hundreds of static c'tor/d'tors for them.
+//
+OStream &llvm::getErrorOutputStream(const char *DebugType) {
+ static OStream cnoout(0);
+ if (DebugFlag && isCurrentDebugType(DebugType))
+ return cerr;
+ else
+ return cnoout;
+}
diff --git a/lib/Support/Dwarf.cpp b/lib/Support/Dwarf.cpp
new file mode 100644
index 0000000..fa99035
--- /dev/null
+++ b/lib/Support/Dwarf.cpp
@@ -0,0 +1,589 @@
+//===-- llvm/Support/Dwarf.cpp - Dwarf Framework ----------------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains support for generic dwarf information.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Support/Dwarf.h"
+
+#include <cassert>
+
+namespace llvm {
+
+namespace dwarf {
+
+/// TagString - Return the string for the specified tag.
+///
+const char *TagString(unsigned Tag) {
+ switch (Tag) {
+ case DW_TAG_array_type: return "DW_TAG_array_type";
+ case DW_TAG_class_type: return "DW_TAG_class_type";
+ case DW_TAG_entry_point: return "DW_TAG_entry_point";
+ case DW_TAG_enumeration_type: return "DW_TAG_enumeration_type";
+ case DW_TAG_formal_parameter: return "DW_TAG_formal_parameter";
+ case DW_TAG_imported_declaration: return "DW_TAG_imported_declaration";
+ case DW_TAG_label: return "DW_TAG_label";
+ case DW_TAG_lexical_block: return "DW_TAG_lexical_block";
+ case DW_TAG_member: return "DW_TAG_member";
+ case DW_TAG_pointer_type: return "DW_TAG_pointer_type";
+ case DW_TAG_reference_type: return "DW_TAG_reference_type";
+ case DW_TAG_compile_unit: return "DW_TAG_compile_unit";
+ case DW_TAG_string_type: return "DW_TAG_string_type";
+ case DW_TAG_structure_type: return "DW_TAG_structure_type";
+ case DW_TAG_subroutine_type: return "DW_TAG_subroutine_type";
+ case DW_TAG_typedef: return "DW_TAG_typedef";
+ case DW_TAG_union_type: return "DW_TAG_union_type";
+ case DW_TAG_unspecified_parameters: return "DW_TAG_unspecified_parameters";
+ case DW_TAG_variant: return "DW_TAG_variant";
+ case DW_TAG_common_block: return "DW_TAG_common_block";
+ case DW_TAG_common_inclusion: return "DW_TAG_common_inclusion";
+ case DW_TAG_inheritance: return "DW_TAG_inheritance";
+ case DW_TAG_inlined_subroutine: return "DW_TAG_inlined_subroutine";
+ case DW_TAG_module: return "DW_TAG_module";
+ case DW_TAG_ptr_to_member_type: return "DW_TAG_ptr_to_member_type";
+ case DW_TAG_set_type: return "DW_TAG_set_type";
+ case DW_TAG_subrange_type: return "DW_TAG_subrange_type";
+ case DW_TAG_with_stmt: return "DW_TAG_with_stmt";
+ case DW_TAG_access_declaration: return "DW_TAG_access_declaration";
+ case DW_TAG_base_type: return "DW_TAG_base_type";
+ case DW_TAG_catch_block: return "DW_TAG_catch_block";
+ case DW_TAG_const_type: return "DW_TAG_const_type";
+ case DW_TAG_constant: return "DW_TAG_constant";
+ case DW_TAG_enumerator: return "DW_TAG_enumerator";
+ case DW_TAG_file_type: return "DW_TAG_file_type";
+ case DW_TAG_friend: return "DW_TAG_friend";
+ case DW_TAG_namelist: return "DW_TAG_namelist";
+ case DW_TAG_namelist_item: return "DW_TAG_namelist_item";
+ case DW_TAG_packed_type: return "DW_TAG_packed_type";
+ case DW_TAG_subprogram: return "DW_TAG_subprogram";
+ case DW_TAG_template_type_parameter: return "DW_TAG_template_type_parameter";
+ case DW_TAG_template_value_parameter: return "DW_TAG_template_value_parameter";
+ case DW_TAG_thrown_type: return "DW_TAG_thrown_type";
+ case DW_TAG_try_block: return "DW_TAG_try_block";
+ case DW_TAG_variant_part: return "DW_TAG_variant_part";
+ case DW_TAG_variable: return "DW_TAG_variable";
+ case DW_TAG_volatile_type: return "DW_TAG_volatile_type";
+ case DW_TAG_dwarf_procedure: return "DW_TAG_dwarf_procedure";
+ case DW_TAG_restrict_type: return "DW_TAG_restrict_type";
+ case DW_TAG_interface_type: return "DW_TAG_interface_type";
+ case DW_TAG_namespace: return "DW_TAG_namespace";
+ case DW_TAG_imported_module: return "DW_TAG_imported_module";
+ case DW_TAG_unspecified_type: return "DW_TAG_unspecified_type";
+ case DW_TAG_partial_unit: return "DW_TAG_partial_unit";
+ case DW_TAG_imported_unit: return "DW_TAG_imported_unit";
+ case DW_TAG_condition: return "DW_TAG_condition";
+ case DW_TAG_shared_type: return "DW_TAG_shared_type";
+ case DW_TAG_lo_user: return "DW_TAG_lo_user";
+ case DW_TAG_hi_user: return "DW_TAG_hi_user";
+ }
+ assert(0 && "Unknown Dwarf Tag");
+ return "";
+}
+
+/// ChildrenString - Return the string for the specified children flag.
+///
+const char *ChildrenString(unsigned Children) {
+ switch (Children) {
+ case DW_CHILDREN_no: return "CHILDREN_no";
+ case DW_CHILDREN_yes: return "CHILDREN_yes";
+ }
+ assert(0 && "Unknown Dwarf ChildrenFlag");
+ return "";
+}
+
+/// AttributeString - Return the string for the specified attribute.
+///
+const char *AttributeString(unsigned Attribute) {
+ switch (Attribute) {
+ case DW_AT_sibling: return "DW_AT_sibling";
+ case DW_AT_location: return "DW_AT_location";
+ case DW_AT_name: return "DW_AT_name";
+ case DW_AT_ordering: return "DW_AT_ordering";
+ case DW_AT_byte_size: return "DW_AT_byte_size";
+ case DW_AT_bit_offset: return "DW_AT_bit_offset";
+ case DW_AT_bit_size: return "DW_AT_bit_size";
+ case DW_AT_stmt_list: return "DW_AT_stmt_list";
+ case DW_AT_low_pc: return "DW_AT_low_pc";
+ case DW_AT_high_pc: return "DW_AT_high_pc";
+ case DW_AT_language: return "DW_AT_language";
+ case DW_AT_discr: return "DW_AT_discr";
+ case DW_AT_discr_value: return "DW_AT_discr_value";
+ case DW_AT_visibility: return "DW_AT_visibility";
+ case DW_AT_import: return "DW_AT_import";
+ case DW_AT_string_length: return "DW_AT_string_length";
+ case DW_AT_common_reference: return "DW_AT_common_reference";
+ case DW_AT_comp_dir: return "DW_AT_comp_dir";
+ case DW_AT_const_value: return "DW_AT_const_value";
+ case DW_AT_containing_type: return "DW_AT_containing_type";
+ case DW_AT_default_value: return "DW_AT_default_value";
+ case DW_AT_inline: return "DW_AT_inline";
+ case DW_AT_is_optional: return "DW_AT_is_optional";
+ case DW_AT_lower_bound: return "DW_AT_lower_bound";
+ case DW_AT_producer: return "DW_AT_producer";
+ case DW_AT_prototyped: return "DW_AT_prototyped";
+ case DW_AT_return_addr: return "DW_AT_return_addr";
+ case DW_AT_start_scope: return "DW_AT_start_scope";
+ case DW_AT_bit_stride: return "DW_AT_bit_stride";
+ case DW_AT_upper_bound: return "DW_AT_upper_bound";
+ case DW_AT_abstract_origin: return "DW_AT_abstract_origin";
+ case DW_AT_accessibility: return "DW_AT_accessibility";
+ case DW_AT_address_class: return "DW_AT_address_class";
+ case DW_AT_artificial: return "DW_AT_artificial";
+ case DW_AT_base_types: return "DW_AT_base_types";
+ case DW_AT_calling_convention: return "DW_AT_calling_convention";
+ case DW_AT_count: return "DW_AT_count";
+ case DW_AT_data_member_location: return "DW_AT_data_member_location";
+ case DW_AT_decl_column: return "DW_AT_decl_column";
+ case DW_AT_decl_file: return "DW_AT_decl_file";
+ case DW_AT_decl_line: return "DW_AT_decl_line";
+ case DW_AT_declaration: return "DW_AT_declaration";
+ case DW_AT_discr_list: return "DW_AT_discr_list";
+ case DW_AT_encoding: return "DW_AT_encoding";
+ case DW_AT_external: return "DW_AT_external";
+ case DW_AT_frame_base: return "DW_AT_frame_base";
+ case DW_AT_friend: return "DW_AT_friend";
+ case DW_AT_identifier_case: return "DW_AT_identifier_case";
+ case DW_AT_macro_info: return "DW_AT_macro_info";
+ case DW_AT_namelist_item: return "DW_AT_namelist_item";
+ case DW_AT_priority: return "DW_AT_priority";
+ case DW_AT_segment: return "DW_AT_segment";
+ case DW_AT_specification: return "DW_AT_specification";
+ case DW_AT_static_link: return "DW_AT_static_link";
+ case DW_AT_type: return "DW_AT_type";
+ case DW_AT_use_location: return "DW_AT_use_location";
+ case DW_AT_variable_parameter: return "DW_AT_variable_parameter";
+ case DW_AT_virtuality: return "DW_AT_virtuality";
+ case DW_AT_vtable_elem_location: return "DW_AT_vtable_elem_location";
+ case DW_AT_allocated: return "DW_AT_allocated";
+ case DW_AT_associated: return "DW_AT_associated";
+ case DW_AT_data_location: return "DW_AT_data_location";
+ case DW_AT_byte_stride: return "DW_AT_byte_stride";
+ case DW_AT_entry_pc: return "DW_AT_entry_pc";
+ case DW_AT_use_UTF8: return "DW_AT_use_UTF8";
+ case DW_AT_extension: return "DW_AT_extension";
+ case DW_AT_ranges: return "DW_AT_ranges";
+ case DW_AT_trampoline: return "DW_AT_trampoline";
+ case DW_AT_call_column: return "DW_AT_call_column";
+ case DW_AT_call_file: return "DW_AT_call_file";
+ case DW_AT_call_line: return "DW_AT_call_line";
+ case DW_AT_description: return "DW_AT_description";
+ case DW_AT_binary_scale: return "DW_AT_binary_scale";
+ case DW_AT_decimal_scale: return "DW_AT_decimal_scale";
+ case DW_AT_small: return "DW_AT_small";
+ case DW_AT_decimal_sign: return "DW_AT_decimal_sign";
+ case DW_AT_digit_count: return "DW_AT_digit_count";
+ case DW_AT_picture_string: return "DW_AT_picture_string";
+ case DW_AT_mutable: return "DW_AT_mutable";
+ case DW_AT_threads_scaled: return "DW_AT_threads_scaled";
+ case DW_AT_explicit: return "DW_AT_explicit";
+ case DW_AT_object_pointer: return "DW_AT_object_pointer";
+ case DW_AT_endianity: return "DW_AT_endianity";
+ case DW_AT_elemental: return "DW_AT_elemental";
+ case DW_AT_pure: return "DW_AT_pure";
+ case DW_AT_recursive: return "DW_AT_recursive";
+ case DW_AT_MIPS_linkage_name: return "DW_AT_MIPS_linkage_name";
+ case DW_AT_sf_names: return "DW_AT_sf_names";
+ case DW_AT_src_info: return "DW_AT_src_info";
+ case DW_AT_mac_info: return "DW_AT_mac_info";
+ case DW_AT_src_coords: return "DW_AT_src_coords";
+ case DW_AT_body_begin: return "DW_AT_body_begin";
+ case DW_AT_body_end: return "DW_AT_body_end";
+ case DW_AT_GNU_vector: return "DW_AT_GNU_vector";
+ case DW_AT_lo_user: return "DW_AT_lo_user";
+ case DW_AT_hi_user: return "DW_AT_hi_user";
+ case DW_AT_APPLE_optimized: return "DW_AT_APPLE_optimized";
+ case DW_AT_APPLE_flags: return "DW_AT_APPLE_flags";
+ case DW_AT_APPLE_isa: return "DW_AT_APPLE_isa";
+ case DW_AT_APPLE_block: return "DW_AT_APPLE_block";
+ case DW_AT_APPLE_major_runtime_vers: return "DW_AT_APPLE_major_runtime_vers";
+ case DW_AT_APPLE_runtime_class: return "DW_AT_APPLE_runtime_class";
+ }
+ assert(0 && "Unknown Dwarf Attribute");
+ return "";
+}
+
+/// FormEncodingString - Return the string for the specified form encoding.
+///
+const char *FormEncodingString(unsigned Encoding) {
+ switch (Encoding) {
+ case DW_FORM_addr: return "FORM_addr";
+ case DW_FORM_block2: return "FORM_block2";
+ case DW_FORM_block4: return "FORM_block4";
+ case DW_FORM_data2: return "FORM_data2";
+ case DW_FORM_data4: return "FORM_data4";
+ case DW_FORM_data8: return "FORM_data8";
+ case DW_FORM_string: return "FORM_string";
+ case DW_FORM_block: return "FORM_block";
+ case DW_FORM_block1: return "FORM_block1";
+ case DW_FORM_data1: return "FORM_data1";
+ case DW_FORM_flag: return "FORM_flag";
+ case DW_FORM_sdata: return "FORM_sdata";
+ case DW_FORM_strp: return "FORM_strp";
+ case DW_FORM_udata: return "FORM_udata";
+ case DW_FORM_ref_addr: return "FORM_ref_addr";
+ case DW_FORM_ref1: return "FORM_ref1";
+ case DW_FORM_ref2: return "FORM_ref2";
+ case DW_FORM_ref4: return "FORM_ref4";
+ case DW_FORM_ref8: return "FORM_ref8";
+ case DW_FORM_ref_udata: return "FORM_ref_udata";
+ case DW_FORM_indirect: return "FORM_indirect";
+ }
+ assert(0 && "Unknown Dwarf Form Encoding");
+ return "";
+}
+
+/// OperationEncodingString - Return the string for the specified operation
+/// encoding.
+const char *OperationEncodingString(unsigned Encoding) {
+ switch (Encoding) {
+ case DW_OP_addr: return "OP_addr";
+ case DW_OP_deref: return "OP_deref";
+ case DW_OP_const1u: return "OP_const1u";
+ case DW_OP_const1s: return "OP_const1s";
+ case DW_OP_const2u: return "OP_const2u";
+ case DW_OP_const2s: return "OP_const2s";
+ case DW_OP_const4u: return "OP_const4u";
+ case DW_OP_const4s: return "OP_const4s";
+ case DW_OP_const8u: return "OP_const8u";
+ case DW_OP_const8s: return "OP_const8s";
+ case DW_OP_constu: return "OP_constu";
+ case DW_OP_consts: return "OP_consts";
+ case DW_OP_dup: return "OP_dup";
+ case DW_OP_drop: return "OP_drop";
+ case DW_OP_over: return "OP_over";
+ case DW_OP_pick: return "OP_pick";
+ case DW_OP_swap: return "OP_swap";
+ case DW_OP_rot: return "OP_rot";
+ case DW_OP_xderef: return "OP_xderef";
+ case DW_OP_abs: return "OP_abs";
+ case DW_OP_and: return "OP_and";
+ case DW_OP_div: return "OP_div";
+ case DW_OP_minus: return "OP_minus";
+ case DW_OP_mod: return "OP_mod";
+ case DW_OP_mul: return "OP_mul";
+ case DW_OP_neg: return "OP_neg";
+ case DW_OP_not: return "OP_not";
+ case DW_OP_or: return "OP_or";
+ case DW_OP_plus: return "OP_plus";
+ case DW_OP_plus_uconst: return "OP_plus_uconst";
+ case DW_OP_shl: return "OP_shl";
+ case DW_OP_shr: return "OP_shr";
+ case DW_OP_shra: return "OP_shra";
+ case DW_OP_xor: return "OP_xor";
+ case DW_OP_skip: return "OP_skip";
+ case DW_OP_bra: return "OP_bra";
+ case DW_OP_eq: return "OP_eq";
+ case DW_OP_ge: return "OP_ge";
+ case DW_OP_gt: return "OP_gt";
+ case DW_OP_le: return "OP_le";
+ case DW_OP_lt: return "OP_lt";
+ case DW_OP_ne: return "OP_ne";
+ case DW_OP_lit0: return "OP_lit0";
+ case DW_OP_lit1: return "OP_lit1";
+ case DW_OP_lit31: return "OP_lit31";
+ case DW_OP_reg0: return "OP_reg0";
+ case DW_OP_reg1: return "OP_reg1";
+ case DW_OP_reg31: return "OP_reg31";
+ case DW_OP_breg0: return "OP_breg0";
+ case DW_OP_breg1: return "OP_breg1";
+ case DW_OP_breg31: return "OP_breg31";
+ case DW_OP_regx: return "OP_regx";
+ case DW_OP_fbreg: return "OP_fbreg";
+ case DW_OP_bregx: return "OP_bregx";
+ case DW_OP_piece: return "OP_piece";
+ case DW_OP_deref_size: return "OP_deref_size";
+ case DW_OP_xderef_size: return "OP_xderef_size";
+ case DW_OP_nop: return "OP_nop";
+ case DW_OP_push_object_address: return "OP_push_object_address";
+ case DW_OP_call2: return "OP_call2";
+ case DW_OP_call4: return "OP_call4";
+ case DW_OP_call_ref: return "OP_call_ref";
+ case DW_OP_form_tls_address: return "OP_form_tls_address";
+ case DW_OP_call_frame_cfa: return "OP_call_frame_cfa";
+ case DW_OP_lo_user: return "OP_lo_user";
+ case DW_OP_hi_user: return "OP_hi_user";
+ }
+ assert(0 && "Unknown Dwarf Operation Encoding");
+ return "";
+}
+
+/// AttributeEncodingString - Return the string for the specified attribute
+/// encoding.
+const char *AttributeEncodingString(unsigned Encoding) {
+ switch (Encoding) {
+ case DW_ATE_address: return "ATE_address";
+ case DW_ATE_boolean: return "ATE_boolean";
+ case DW_ATE_complex_float: return "ATE_complex_float";
+ case DW_ATE_float: return "ATE_float";
+ case DW_ATE_signed: return "ATE_signed";
+ case DW_ATE_signed_char: return "ATE_signed_char";
+ case DW_ATE_unsigned: return "ATE_unsigned";
+ case DW_ATE_unsigned_char: return "ATE_unsigned_char";
+ case DW_ATE_imaginary_float: return "ATE_imaginary_float";
+ case DW_ATE_packed_decimal: return "ATE_packed_decimal";
+ case DW_ATE_numeric_string: return "ATE_numeric_string";
+ case DW_ATE_edited: return "ATE_edited";
+ case DW_ATE_signed_fixed: return "ATE_signed_fixed";
+ case DW_ATE_unsigned_fixed: return "ATE_unsigned_fixed";
+ case DW_ATE_decimal_float: return "ATE_decimal_float";
+ case DW_ATE_lo_user: return "ATE_lo_user";
+ case DW_ATE_hi_user: return "ATE_hi_user";
+ }
+ assert(0 && "Unknown Dwarf Attribute Encoding");
+ return "";
+}
+
+/// DecimalSignString - Return the string for the specified decimal sign
+/// attribute.
+const char *DecimalSignString(unsigned Sign) {
+ switch (Sign) {
+ case DW_DS_unsigned: return "DS_unsigned";
+ case DW_DS_leading_overpunch: return "DS_leading_overpunch";
+ case DW_DS_trailing_overpunch: return "DS_trailing_overpunch";
+ case DW_DS_leading_separate: return "DS_leading_separate";
+ case DW_DS_trailing_separate: return "DS_trailing_separate";
+ }
+ assert(0 && "Unknown Dwarf Decimal Sign Attribute");
+ return "";
+}
+
+/// EndianityString - Return the string for the specified endianity.
+///
+const char *EndianityString(unsigned Endian) {
+ switch (Endian) {
+ case DW_END_default: return "END_default";
+ case DW_END_big: return "END_big";
+ case DW_END_little: return "END_little";
+ case DW_END_lo_user: return "END_lo_user";
+ case DW_END_hi_user: return "END_hi_user";
+ }
+ assert(0 && "Unknown Dwarf Endianity");
+ return "";
+}
+
+/// AccessibilityString - Return the string for the specified accessibility.
+///
+const char *AccessibilityString(unsigned Access) {
+ switch (Access) {
+ // Accessibility codes
+ case DW_ACCESS_public: return "ACCESS_public";
+ case DW_ACCESS_protected: return "ACCESS_protected";
+ case DW_ACCESS_private: return "ACCESS_private";
+ }
+ assert(0 && "Unknown Dwarf Accessibility");
+ return "";
+}
+
+/// VisibilityString - Return the string for the specified visibility.
+///
+const char *VisibilityString(unsigned Visibility) {
+ switch (Visibility) {
+ case DW_VIS_local: return "VIS_local";
+ case DW_VIS_exported: return "VIS_exported";
+ case DW_VIS_qualified: return "VIS_qualified";
+ }
+ assert(0 && "Unknown Dwarf Visibility");
+ return "";
+}
+
+/// VirtualityString - Return the string for the specified virtuality.
+///
+const char *VirtualityString(unsigned Virtuality) {
+ switch (Virtuality) {
+ case DW_VIRTUALITY_none: return "VIRTUALITY_none";
+ case DW_VIRTUALITY_virtual: return "VIRTUALITY_virtual";
+ case DW_VIRTUALITY_pure_virtual: return "VIRTUALITY_pure_virtual";
+ }
+ assert(0 && "Unknown Dwarf Virtuality");
+ return "";
+}
+
+/// LanguageString - Return the string for the specified language.
+///
+const char *LanguageString(unsigned Language) {
+ switch (Language) {
+ case DW_LANG_C89: return "LANG_C89";
+ case DW_LANG_C: return "LANG_C";
+ case DW_LANG_Ada83: return "LANG_Ada83";
+ case DW_LANG_C_plus_plus: return "LANG_C_plus_plus";
+ case DW_LANG_Cobol74: return "LANG_Cobol74";
+ case DW_LANG_Cobol85: return "LANG_Cobol85";
+ case DW_LANG_Fortran77: return "LANG_Fortran77";
+ case DW_LANG_Fortran90: return "LANG_Fortran90";
+ case DW_LANG_Pascal83: return "LANG_Pascal83";
+ case DW_LANG_Modula2: return "LANG_Modula2";
+ case DW_LANG_Java: return "LANG_Java";
+ case DW_LANG_C99: return "LANG_C99";
+ case DW_LANG_Ada95: return "LANG_Ada95";
+ case DW_LANG_Fortran95: return "LANG_Fortran95";
+ case DW_LANG_PLI: return "LANG_PLI";
+ case DW_LANG_ObjC: return "LANG_ObjC";
+ case DW_LANG_ObjC_plus_plus: return "LANG_ObjC_plus_plus";
+ case DW_LANG_UPC: return "LANG_UPC";
+ case DW_LANG_D: return "LANG_D";
+ case DW_LANG_lo_user: return "LANG_lo_user";
+ case DW_LANG_hi_user: return "LANG_hi_user";
+ }
+ assert(0 && "Unknown Dwarf Language");
+ return "";
+}
+
+/// CaseString - Return the string for the specified identifier case.
+///
+const char *CaseString(unsigned Case) {
+ switch (Case) {
+ case DW_ID_case_sensitive: return "ID_case_sensitive";
+ case DW_ID_up_case: return "ID_up_case";
+ case DW_ID_down_case: return "ID_down_case";
+ case DW_ID_case_insensitive: return "ID_case_insensitive";
+ }
+ assert(0 && "Unknown Dwarf Identifier Case");
+ return "";
+}
+
+/// ConventionString - Return the string for the specified calling convention.
+///
+const char *ConventionString(unsigned Convention) {
+ switch (Convention) {
+ case DW_CC_normal: return "CC_normal";
+ case DW_CC_program: return "CC_program";
+ case DW_CC_nocall: return "CC_nocall";
+ case DW_CC_lo_user: return "CC_lo_user";
+ case DW_CC_hi_user: return "CC_hi_user";
+ }
+ assert(0 && "Unknown Dwarf Calling Convention");
+ return "";
+}
+
+/// InlineCodeString - Return the string for the specified inline code.
+///
+const char *InlineCodeString(unsigned Code) {
+ switch (Code) {
+ case DW_INL_not_inlined: return "INL_not_inlined";
+ case DW_INL_inlined: return "INL_inlined";
+ case DW_INL_declared_not_inlined: return "INL_declared_not_inlined";
+ case DW_INL_declared_inlined: return "INL_declared_inlined";
+ }
+ assert(0 && "Unknown Dwarf Inline Code");
+ return "";
+}
+
+/// ArrayOrderString - Return the string for the specified array order.
+///
+const char *ArrayOrderString(unsigned Order) {
+ switch (Order) {
+ case DW_ORD_row_major: return "ORD_row_major";
+ case DW_ORD_col_major: return "ORD_col_major";
+ }
+ assert(0 && "Unknown Dwarf Array Order");
+ return "";
+}
+
+/// DiscriminantString - Return the string for the specified discriminant
+/// descriptor.
+const char *DiscriminantString(unsigned Discriminant) {
+ switch (Discriminant) {
+ case DW_DSC_label: return "DSC_label";
+ case DW_DSC_range: return "DSC_range";
+ }
+ assert(0 && "Unknown Dwarf Discriminant Descriptor");
+ return "";
+}
+
+/// LNStandardString - Return the string for the specified line number standard.
+///
+const char *LNStandardString(unsigned Standard) {
+ switch (Standard) {
+ case DW_LNS_copy: return "LNS_copy";
+ case DW_LNS_advance_pc: return "LNS_advance_pc";
+ case DW_LNS_advance_line: return "LNS_advance_line";
+ case DW_LNS_set_file: return "LNS_set_file";
+ case DW_LNS_set_column: return "LNS_set_column";
+ case DW_LNS_negate_stmt: return "LNS_negate_stmt";
+ case DW_LNS_set_basic_block: return "LNS_set_basic_block";
+ case DW_LNS_const_add_pc: return "LNS_const_add_pc";
+ case DW_LNS_fixed_advance_pc: return "LNS_fixed_advance_pc";
+ case DW_LNS_set_prologue_end: return "LNS_set_prologue_end";
+ case DW_LNS_set_epilogue_begin: return "LNS_set_epilogue_begin";
+ case DW_LNS_set_isa: return "LNS_set_isa";
+ }
+ assert(0 && "Unknown Dwarf Line Number Standard");
+ return "";
+}
+
+/// LNExtendedString - Return the string for the specified line number extended
+/// opcode encodings.
+const char *LNExtendedString(unsigned Encoding) {
+ switch (Encoding) {
+ // Line Number Extended Opcode Encodings
+ case DW_LNE_end_sequence: return "LNE_end_sequence";
+ case DW_LNE_set_address: return "LNE_set_address";
+ case DW_LNE_define_file: return "LNE_define_file";
+ case DW_LNE_lo_user: return "LNE_lo_user";
+ case DW_LNE_hi_user: return "LNE_hi_user";
+ }
+ assert(0 && "Unknown Dwarf Line Number Extended Opcode Encoding");
+ return "";
+}
+
+/// MacinfoString - Return the string for the specified macinfo type encodings.
+///
+const char *MacinfoString(unsigned Encoding) {
+ switch (Encoding) {
+ // Macinfo Type Encodings
+ case DW_MACINFO_define: return "MACINFO_define";
+ case DW_MACINFO_undef: return "MACINFO_undef";
+ case DW_MACINFO_start_file: return "MACINFO_start_file";
+ case DW_MACINFO_end_file: return "MACINFO_end_file";
+ case DW_MACINFO_vendor_ext: return "MACINFO_vendor_ext";
+ }
+ assert(0 && "Unknown Dwarf Macinfo Type Encodings");
+ return "";
+}
+
+/// CallFrameString - Return the string for the specified call frame instruction
+/// encodings.
+const char *CallFrameString(unsigned Encoding) {
+ switch (Encoding) {
+ case DW_CFA_advance_loc: return "CFA_advance_loc";
+ case DW_CFA_offset: return "CFA_offset";
+ case DW_CFA_restore: return "CFA_restore";
+ case DW_CFA_set_loc: return "CFA_set_loc";
+ case DW_CFA_advance_loc1: return "CFA_advance_loc1";
+ case DW_CFA_advance_loc2: return "CFA_advance_loc2";
+ case DW_CFA_advance_loc4: return "CFA_advance_loc4";
+ case DW_CFA_offset_extended: return "CFA_offset_extended";
+ case DW_CFA_restore_extended: return "CFA_restore_extended";
+ case DW_CFA_undefined: return "CFA_undefined";
+ case DW_CFA_same_value: return "CFA_same_value";
+ case DW_CFA_register: return "CFA_register";
+ case DW_CFA_remember_state: return "CFA_remember_state";
+ case DW_CFA_restore_state: return "CFA_restore_state";
+ case DW_CFA_def_cfa: return "CFA_def_cfa";
+ case DW_CFA_def_cfa_register: return "CFA_def_cfa_register";
+ case DW_CFA_def_cfa_offset: return "CFA_def_cfa_offset";
+ case DW_CFA_def_cfa_expression: return "CFA_def_cfa_expression";
+ case DW_CFA_expression: return "CFA_expression";
+ case DW_CFA_offset_extended_sf: return "CFA_offset_extended_sf";
+ case DW_CFA_def_cfa_sf: return "CFA_def_cfa_sf";
+ case DW_CFA_def_cfa_offset_sf: return "CFA_def_cfa_offset_sf";
+ case DW_CFA_val_offset: return "CFA_val_offset";
+ case DW_CFA_val_offset_sf: return "CFA_val_offset_sf";
+ case DW_CFA_val_expression: return "CFA_val_expression";
+ case DW_CFA_lo_user: return "CFA_lo_user";
+ case DW_CFA_hi_user: return "CFA_hi_user";
+ }
+ assert(0 && "Unknown Dwarf Call Frame Instruction Encodings");
+ return "";
+}
+
+} // End of namespace dwarf.
+
+} // End of namespace llvm.
diff --git a/lib/Support/FileUtilities.cpp b/lib/Support/FileUtilities.cpp
new file mode 100644
index 0000000..21080b6
--- /dev/null
+++ b/lib/Support/FileUtilities.cpp
@@ -0,0 +1,263 @@
+//===- Support/FileUtilities.cpp - File System Utilities ------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements a family of utility functions which are useful for doing
+// various things with files.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Support/FileUtilities.h"
+#include "llvm/System/Path.h"
+#include "llvm/Support/MemoryBuffer.h"
+#include "llvm/ADT/OwningPtr.h"
+#include "llvm/ADT/SmallString.h"
+#include "llvm/ADT/StringExtras.h"
+#include <cstdlib>
+#include <cstring>
+#include <cctype>
+using namespace llvm;
+
+static bool isSignedChar(char C) {
+ return (C == '+' || C == '-');
+}
+
+static bool isExponentChar(char C) {
+ switch (C) {
+ case 'D': // Strange exponential notation.
+ case 'd': // Strange exponential notation.
+ case 'e':
+ case 'E': return true;
+ default: return false;
+ }
+}
+
+static bool isNumberChar(char C) {
+ switch (C) {
+ case '0': case '1': case '2': case '3': case '4':
+ case '5': case '6': case '7': case '8': case '9':
+ case '.': return true;
+ default: return isSignedChar(C) || isExponentChar(C);
+ }
+}
+
+static const char *BackupNumber(const char *Pos, const char *FirstChar) {
+ // If we didn't stop in the middle of a number, don't backup.
+ if (!isNumberChar(*Pos)) return Pos;
+
+ // Otherwise, return to the start of the number.
+ while (Pos > FirstChar && isNumberChar(Pos[-1])) {
+ --Pos;
+ if (Pos > FirstChar && isSignedChar(Pos[0]) && !isExponentChar(Pos[-1]))
+ break;
+ }
+ return Pos;
+}
+
+/// EndOfNumber - Return the first character that is not part of the specified
+/// number. This assumes that the buffer is null terminated, so it won't fall
+/// off the end.
+static const char *EndOfNumber(const char *Pos) {
+ while (isNumberChar(*Pos))
+ ++Pos;
+ return Pos;
+}
+
+/// CompareNumbers - compare two numbers, returning true if they are different.
+static bool CompareNumbers(const char *&F1P, const char *&F2P,
+ const char *F1End, const char *F2End,
+ double AbsTolerance, double RelTolerance,
+ std::string *ErrorMsg) {
+ const char *F1NumEnd, *F2NumEnd;
+ double V1 = 0.0, V2 = 0.0;
+
+ // If one of the positions is at a space and the other isn't, chomp up 'til
+ // the end of the space.
+ while (isspace(*F1P) && F1P != F1End)
+ ++F1P;
+ while (isspace(*F2P) && F2P != F2End)
+ ++F2P;
+
+ // If we stop on numbers, compare their difference.
+ if (!isNumberChar(*F1P) || !isNumberChar(*F2P)) {
+ // The diff failed.
+ F1NumEnd = F1P;
+ F2NumEnd = F2P;
+ } else {
+ // Note that some ugliness is built into this to permit support for numbers
+ // that use "D" or "d" as their exponential marker, e.g. "1.234D45". This
+ // occurs in 200.sixtrack in spec2k.
+ V1 = strtod(F1P, const_cast<char**>(&F1NumEnd));
+ V2 = strtod(F2P, const_cast<char**>(&F2NumEnd));
+
+ if (*F1NumEnd == 'D' || *F1NumEnd == 'd') {
+ // Copy string into tmp buffer to replace the 'D' with an 'e'.
+ SmallString<200> StrTmp(F1P, EndOfNumber(F1NumEnd)+1);
+ // Strange exponential notation!
+ StrTmp[static_cast<unsigned>(F1NumEnd-F1P)] = 'e';
+
+ V1 = strtod(&StrTmp[0], const_cast<char**>(&F1NumEnd));
+ F1NumEnd = F1P + (F1NumEnd-&StrTmp[0]);
+ }
+
+ if (*F2NumEnd == 'D' || *F2NumEnd == 'd') {
+ // Copy string into tmp buffer to replace the 'D' with an 'e'.
+ SmallString<200> StrTmp(F2P, EndOfNumber(F2NumEnd)+1);
+ // Strange exponential notation!
+ StrTmp[static_cast<unsigned>(F2NumEnd-F2P)] = 'e';
+
+ V2 = strtod(&StrTmp[0], const_cast<char**>(&F2NumEnd));
+ F2NumEnd = F2P + (F2NumEnd-&StrTmp[0]);
+ }
+ }
+
+ if (F1NumEnd == F1P || F2NumEnd == F2P) {
+ if (ErrorMsg) {
+ *ErrorMsg = "FP Comparison failed, not a numeric difference between '";
+ *ErrorMsg += F1P[0];
+ *ErrorMsg += "' and '";
+ *ErrorMsg += F2P[0];
+ *ErrorMsg += "'";
+ }
+ return true;
+ }
+
+ // Check to see if these are inside the absolute tolerance
+ if (AbsTolerance < std::abs(V1-V2)) {
+ // Nope, check the relative tolerance...
+ double Diff;
+ if (V2)
+ Diff = std::abs(V1/V2 - 1.0);
+ else if (V1)
+ Diff = std::abs(V2/V1 - 1.0);
+ else
+ Diff = 0; // Both zero.
+ if (Diff > RelTolerance) {
+ if (ErrorMsg) {
+ *ErrorMsg = "Compared: " + ftostr(V1) + " and " + ftostr(V2) + "\n";
+ *ErrorMsg += "abs. diff = " + ftostr(std::abs(V1-V2)) +
+ " rel.diff = " + ftostr(Diff) + "\n";
+ *ErrorMsg += "Out of tolerance: rel/abs: " + ftostr(RelTolerance) +
+ "/" + ftostr(AbsTolerance);
+ }
+ return true;
+ }
+ }
+
+ // Otherwise, advance our read pointers to the end of the numbers.
+ F1P = F1NumEnd; F2P = F2NumEnd;
+ return false;
+}
+
+/// DiffFilesWithTolerance - Compare the two files specified, returning 0 if the
+/// files match, 1 if they are different, and 2 if there is a file error. This
+/// function differs from DiffFiles in that you can specify an absolete and
+/// relative FP error that is allowed to exist. If you specify a string to fill
+/// in for the error option, it will set the string to an error message if an
+/// error occurs, allowing the caller to distinguish between a failed diff and a
+/// file system error.
+///
+int llvm::DiffFilesWithTolerance(const sys::PathWithStatus &FileA,
+ const sys::PathWithStatus &FileB,
+ double AbsTol, double RelTol,
+ std::string *Error) {
+ const sys::FileStatus *FileAStat = FileA.getFileStatus(false, Error);
+ if (!FileAStat)
+ return 2;
+ const sys::FileStatus *FileBStat = FileB.getFileStatus(false, Error);
+ if (!FileBStat)
+ return 2;
+
+ // Check for zero length files because some systems croak when you try to
+ // mmap an empty file.
+ size_t A_size = FileAStat->getSize();
+ size_t B_size = FileBStat->getSize();
+
+ // If they are both zero sized then they're the same
+ if (A_size == 0 && B_size == 0)
+ return 0;
+
+ // If only one of them is zero sized then they can't be the same
+ if ((A_size == 0 || B_size == 0)) {
+ if (Error)
+ *Error = "Files differ: one is zero-sized, the other isn't";
+ return 1;
+ }
+
+ // Now its safe to mmap the files into memory becasue both files
+ // have a non-zero size.
+ OwningPtr<MemoryBuffer> F1(MemoryBuffer::getFile(FileA.c_str(), Error));
+ OwningPtr<MemoryBuffer> F2(MemoryBuffer::getFile(FileB.c_str(), Error));
+ if (F1 == 0 || F2 == 0)
+ return 2;
+
+ // Okay, now that we opened the files, scan them for the first difference.
+ const char *File1Start = F1->getBufferStart();
+ const char *File2Start = F2->getBufferStart();
+ const char *File1End = F1->getBufferEnd();
+ const char *File2End = F2->getBufferEnd();
+ const char *F1P = File1Start;
+ const char *F2P = File2Start;
+
+ if (A_size == B_size) {
+ // Are the buffers identical? Common case: Handle this efficiently.
+ if (std::memcmp(File1Start, File2Start, A_size) == 0)
+ return 0;
+
+ if (AbsTol == 0 && RelTol == 0) {
+ if (Error)
+ *Error = "Files differ without tolerance allowance";
+ return 1; // Files different!
+ }
+ }
+
+ bool CompareFailed = false;
+ while (1) {
+ // Scan for the end of file or next difference.
+ while (F1P < File1End && F2P < File2End && *F1P == *F2P)
+ ++F1P, ++F2P;
+
+ if (F1P >= File1End || F2P >= File2End) break;
+
+ // Okay, we must have found a difference. Backup to the start of the
+ // current number each stream is at so that we can compare from the
+ // beginning.
+ F1P = BackupNumber(F1P, File1Start);
+ F2P = BackupNumber(F2P, File2Start);
+
+ // Now that we are at the start of the numbers, compare them, exiting if
+ // they don't match.
+ if (CompareNumbers(F1P, F2P, File1End, File2End, AbsTol, RelTol, Error)) {
+ CompareFailed = true;
+ break;
+ }
+ }
+
+ // Okay, we reached the end of file. If both files are at the end, we
+ // succeeded.
+ bool F1AtEnd = F1P >= File1End;
+ bool F2AtEnd = F2P >= File2End;
+ if (!CompareFailed && (!F1AtEnd || !F2AtEnd)) {
+ // Else, we might have run off the end due to a number: backup and retry.
+ if (F1AtEnd && isNumberChar(F1P[-1])) --F1P;
+ if (F2AtEnd && isNumberChar(F2P[-1])) --F2P;
+ F1P = BackupNumber(F1P, File1Start);
+ F2P = BackupNumber(F2P, File2Start);
+
+ // Now that we are at the start of the numbers, compare them, exiting if
+ // they don't match.
+ if (CompareNumbers(F1P, F2P, File1End, File2End, AbsTol, RelTol, Error))
+ CompareFailed = true;
+
+ // If we found the end, we succeeded.
+ if (F1P < File1End || F2P < File2End)
+ CompareFailed = true;
+ }
+
+ return CompareFailed;
+}
diff --git a/lib/Support/FoldingSet.cpp b/lib/Support/FoldingSet.cpp
new file mode 100644
index 0000000..41c730e
--- /dev/null
+++ b/lib/Support/FoldingSet.cpp
@@ -0,0 +1,378 @@
+//===-- Support/FoldingSet.cpp - Uniquing Hash Set --------------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements a hash set that can be used to remove duplication of
+// nodes in a graph. This code was originally created by Chris Lattner for use
+// with SelectionDAGCSEMap, but was isolated to provide use across the llvm code
+// set.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/ADT/FoldingSet.h"
+#include "llvm/Support/MathExtras.h"
+#include <cassert>
+#include <cstring>
+using namespace llvm;
+
+//===----------------------------------------------------------------------===//
+// FoldingSetNodeID Implementation
+
+/// Add* - Add various data types to Bit data.
+///
+void FoldingSetNodeID::AddPointer(const void *Ptr) {
+ // Note: this adds pointers to the hash using sizes and endianness that
+ // depend on the host. It doesn't matter however, because hashing on
+ // pointer values in inherently unstable. Nothing should depend on the
+ // ordering of nodes in the folding set.
+ intptr_t PtrI = (intptr_t)Ptr;
+ Bits.push_back(unsigned(PtrI));
+ if (sizeof(intptr_t) > sizeof(unsigned))
+ Bits.push_back(unsigned(uint64_t(PtrI) >> 32));
+}
+void FoldingSetNodeID::AddInteger(signed I) {
+ Bits.push_back(I);
+}
+void FoldingSetNodeID::AddInteger(unsigned I) {
+ Bits.push_back(I);
+}
+void FoldingSetNodeID::AddInteger(long I) {
+ AddInteger((unsigned long)I);
+}
+void FoldingSetNodeID::AddInteger(unsigned long I) {
+ if (sizeof(long) == sizeof(int))
+ AddInteger(unsigned(I));
+ else if (sizeof(long) == sizeof(long long)) {
+ AddInteger((unsigned long long)I);
+ } else {
+ assert(0 && "unexpected sizeof(long)");
+ }
+}
+void FoldingSetNodeID::AddInteger(long long I) {
+ AddInteger((unsigned long long)I);
+}
+void FoldingSetNodeID::AddInteger(unsigned long long I) {
+ AddInteger(unsigned(I));
+ if ((uint64_t)(int)I != I)
+ Bits.push_back(unsigned(I >> 32));
+}
+
+void FoldingSetNodeID::AddString(const char *String, const char *End) {
+ unsigned Size = static_cast<unsigned>(End - String);
+ Bits.push_back(Size);
+ if (!Size) return;
+
+ unsigned Units = Size / 4;
+ unsigned Pos = 0;
+ const unsigned *Base = (const unsigned *)String;
+
+ // If the string is aligned do a bulk transfer.
+ if (!((intptr_t)Base & 3)) {
+ Bits.append(Base, Base + Units);
+ Pos = (Units + 1) * 4;
+ } else {
+ // Otherwise do it the hard way.
+ for (Pos += 4; Pos <= Size; Pos += 4) {
+ unsigned V = ((unsigned char)String[Pos - 4] << 24) |
+ ((unsigned char)String[Pos - 3] << 16) |
+ ((unsigned char)String[Pos - 2] << 8) |
+ (unsigned char)String[Pos - 1];
+ Bits.push_back(V);
+ }
+ }
+
+ // With the leftover bits.
+ unsigned V = 0;
+ // Pos will have overshot size by 4 - #bytes left over.
+ switch (Pos - Size) {
+ case 1: V = (V << 8) | (unsigned char)String[Size - 3]; // Fall thru.
+ case 2: V = (V << 8) | (unsigned char)String[Size - 2]; // Fall thru.
+ case 3: V = (V << 8) | (unsigned char)String[Size - 1]; break;
+ default: return; // Nothing left.
+ }
+
+ Bits.push_back(V);
+}
+
+void FoldingSetNodeID::AddString(const char *String) {
+ AddString(String, String + strlen(String));
+}
+
+void FoldingSetNodeID::AddString(const std::string &String) {
+ AddString(&*String.begin(), &*String.end());
+}
+
+/// ComputeHash - Compute a strong hash value for this FoldingSetNodeID, used to
+/// lookup the node in the FoldingSetImpl.
+unsigned FoldingSetNodeID::ComputeHash() const {
+ // This is adapted from SuperFastHash by Paul Hsieh.
+ unsigned Hash = static_cast<unsigned>(Bits.size());
+ for (const unsigned *BP = &Bits[0], *E = BP+Bits.size(); BP != E; ++BP) {
+ unsigned Data = *BP;
+ Hash += Data & 0xFFFF;
+ unsigned Tmp = ((Data >> 16) << 11) ^ Hash;
+ Hash = (Hash << 16) ^ Tmp;
+ Hash += Hash >> 11;
+ }
+
+ // Force "avalanching" of final 127 bits.
+ Hash ^= Hash << 3;
+ Hash += Hash >> 5;
+ Hash ^= Hash << 4;
+ Hash += Hash >> 17;
+ Hash ^= Hash << 25;
+ Hash += Hash >> 6;
+ return Hash;
+}
+
+/// operator== - Used to compare two nodes to each other.
+///
+bool FoldingSetNodeID::operator==(const FoldingSetNodeID &RHS)const{
+ if (Bits.size() != RHS.Bits.size()) return false;
+ return memcmp(&Bits[0], &RHS.Bits[0], Bits.size()*sizeof(Bits[0])) == 0;
+}
+
+
+//===----------------------------------------------------------------------===//
+/// Helper functions for FoldingSetImpl.
+
+/// GetNextPtr - In order to save space, each bucket is a
+/// singly-linked-list. In order to make deletion more efficient, we make
+/// the list circular, so we can delete a node without computing its hash.
+/// The problem with this is that the start of the hash buckets are not
+/// Nodes. If NextInBucketPtr is a bucket pointer, this method returns null:
+/// use GetBucketPtr when this happens.
+static FoldingSetImpl::Node *GetNextPtr(void *NextInBucketPtr) {
+ // The low bit is set if this is the pointer back to the bucket.
+ if (reinterpret_cast<intptr_t>(NextInBucketPtr) & 1)
+ return 0;
+
+ return static_cast<FoldingSetImpl::Node*>(NextInBucketPtr);
+}
+
+
+/// testing.
+static void **GetBucketPtr(void *NextInBucketPtr) {
+ intptr_t Ptr = reinterpret_cast<intptr_t>(NextInBucketPtr);
+ assert((Ptr & 1) && "Not a bucket pointer");
+ return reinterpret_cast<void**>(Ptr & ~intptr_t(1));
+}
+
+/// GetBucketFor - Hash the specified node ID and return the hash bucket for
+/// the specified ID.
+static void **GetBucketFor(const FoldingSetNodeID &ID,
+ void **Buckets, unsigned NumBuckets) {
+ // NumBuckets is always a power of 2.
+ unsigned BucketNum = ID.ComputeHash() & (NumBuckets-1);
+ return Buckets + BucketNum;
+}
+
+//===----------------------------------------------------------------------===//
+// FoldingSetImpl Implementation
+
+FoldingSetImpl::FoldingSetImpl(unsigned Log2InitSize) {
+ assert(5 < Log2InitSize && Log2InitSize < 32 &&
+ "Initial hash table size out of range");
+ NumBuckets = 1 << Log2InitSize;
+ Buckets = new void*[NumBuckets+1];
+ clear();
+}
+FoldingSetImpl::~FoldingSetImpl() {
+ delete [] Buckets;
+}
+void FoldingSetImpl::clear() {
+ // Set all but the last bucket to null pointers.
+ memset(Buckets, 0, NumBuckets*sizeof(void*));
+
+ // Set the very last bucket to be a non-null "pointer".
+ Buckets[NumBuckets] = reinterpret_cast<void*>(-1);
+
+ // Reset the node count to zero.
+ NumNodes = 0;
+}
+
+/// GrowHashTable - Double the size of the hash table and rehash everything.
+///
+void FoldingSetImpl::GrowHashTable() {
+ void **OldBuckets = Buckets;
+ unsigned OldNumBuckets = NumBuckets;
+ NumBuckets <<= 1;
+
+ // Clear out new buckets.
+ Buckets = new void*[NumBuckets+1];
+ clear();
+
+ // Walk the old buckets, rehashing nodes into their new place.
+ FoldingSetNodeID ID;
+ for (unsigned i = 0; i != OldNumBuckets; ++i) {
+ void *Probe = OldBuckets[i];
+ if (!Probe) continue;
+ while (Node *NodeInBucket = GetNextPtr(Probe)) {
+ // Figure out the next link, remove NodeInBucket from the old link.
+ Probe = NodeInBucket->getNextInBucket();
+ NodeInBucket->SetNextInBucket(0);
+
+ // Insert the node into the new bucket, after recomputing the hash.
+ GetNodeProfile(ID, NodeInBucket);
+ InsertNode(NodeInBucket, GetBucketFor(ID, Buckets, NumBuckets));
+ ID.clear();
+ }
+ }
+
+ delete[] OldBuckets;
+}
+
+/// FindNodeOrInsertPos - Look up the node specified by ID. If it exists,
+/// return it. If not, return the insertion token that will make insertion
+/// faster.
+FoldingSetImpl::Node
+*FoldingSetImpl::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
+ void *&InsertPos) {
+
+ void **Bucket = GetBucketFor(ID, Buckets, NumBuckets);
+ void *Probe = *Bucket;
+
+ InsertPos = 0;
+
+ FoldingSetNodeID OtherID;
+ while (Node *NodeInBucket = GetNextPtr(Probe)) {
+ GetNodeProfile(OtherID, NodeInBucket);
+ if (OtherID == ID)
+ return NodeInBucket;
+
+ Probe = NodeInBucket->getNextInBucket();
+ OtherID.clear();
+ }
+
+ // Didn't find the node, return null with the bucket as the InsertPos.
+ InsertPos = Bucket;
+ return 0;
+}
+
+/// InsertNode - Insert the specified node into the folding set, knowing that it
+/// is not already in the map. InsertPos must be obtained from
+/// FindNodeOrInsertPos.
+void FoldingSetImpl::InsertNode(Node *N, void *InsertPos) {
+ assert(N->getNextInBucket() == 0);
+ // Do we need to grow the hashtable?
+ if (NumNodes+1 > NumBuckets*2) {
+ GrowHashTable();
+ FoldingSetNodeID ID;
+ GetNodeProfile(ID, N);
+ InsertPos = GetBucketFor(ID, Buckets, NumBuckets);
+ }
+
+ ++NumNodes;
+
+ /// The insert position is actually a bucket pointer.
+ void **Bucket = static_cast<void**>(InsertPos);
+
+ void *Next = *Bucket;
+
+ // If this is the first insertion into this bucket, its next pointer will be
+ // null. Pretend as if it pointed to itself, setting the low bit to indicate
+ // that it is a pointer to the bucket.
+ if (Next == 0)
+ Next = reinterpret_cast<void*>(reinterpret_cast<intptr_t>(Bucket)|1);
+
+ // Set the node's next pointer, and make the bucket point to the node.
+ N->SetNextInBucket(Next);
+ *Bucket = N;
+}
+
+/// RemoveNode - Remove a node from the folding set, returning true if one was
+/// removed or false if the node was not in the folding set.
+bool FoldingSetImpl::RemoveNode(Node *N) {
+ // Because each bucket is a circular list, we don't need to compute N's hash
+ // to remove it.
+ void *Ptr = N->getNextInBucket();
+ if (Ptr == 0) return false; // Not in folding set.
+
+ --NumNodes;
+ N->SetNextInBucket(0);
+
+ // Remember what N originally pointed to, either a bucket or another node.
+ void *NodeNextPtr = Ptr;
+
+ // Chase around the list until we find the node (or bucket) which points to N.
+ while (true) {
+ if (Node *NodeInBucket = GetNextPtr(Ptr)) {
+ // Advance pointer.
+ Ptr = NodeInBucket->getNextInBucket();
+
+ // We found a node that points to N, change it to point to N's next node,
+ // removing N from the list.
+ if (Ptr == N) {
+ NodeInBucket->SetNextInBucket(NodeNextPtr);
+ return true;
+ }
+ } else {
+ void **Bucket = GetBucketPtr(Ptr);
+ Ptr = *Bucket;
+
+ // If we found that the bucket points to N, update the bucket to point to
+ // whatever is next.
+ if (Ptr == N) {
+ *Bucket = NodeNextPtr;
+ return true;
+ }
+ }
+ }
+}
+
+/// GetOrInsertNode - If there is an existing simple Node exactly
+/// equal to the specified node, return it. Otherwise, insert 'N' and it
+/// instead.
+FoldingSetImpl::Node *FoldingSetImpl::GetOrInsertNode(FoldingSetImpl::Node *N) {
+ FoldingSetNodeID ID;
+ GetNodeProfile(ID, N);
+ void *IP;
+ if (Node *E = FindNodeOrInsertPos(ID, IP))
+ return E;
+ InsertNode(N, IP);
+ return N;
+}
+
+//===----------------------------------------------------------------------===//
+// FoldingSetIteratorImpl Implementation
+
+FoldingSetIteratorImpl::FoldingSetIteratorImpl(void **Bucket) {
+ // Skip to the first non-null non-self-cycle bucket.
+ while (*Bucket != reinterpret_cast<void*>(-1) &&
+ (*Bucket == 0 || GetNextPtr(*Bucket) == 0))
+ ++Bucket;
+
+ NodePtr = static_cast<FoldingSetNode*>(*Bucket);
+}
+
+void FoldingSetIteratorImpl::advance() {
+ // If there is another link within this bucket, go to it.
+ void *Probe = NodePtr->getNextInBucket();
+
+ if (FoldingSetNode *NextNodeInBucket = GetNextPtr(Probe))
+ NodePtr = NextNodeInBucket;
+ else {
+ // Otherwise, this is the last link in this bucket.
+ void **Bucket = GetBucketPtr(Probe);
+
+ // Skip to the next non-null non-self-cycle bucket.
+ do {
+ ++Bucket;
+ } while (*Bucket != reinterpret_cast<void*>(-1) &&
+ (*Bucket == 0 || GetNextPtr(*Bucket) == 0));
+
+ NodePtr = static_cast<FoldingSetNode*>(*Bucket);
+ }
+}
+
+//===----------------------------------------------------------------------===//
+// FoldingSetBucketIteratorImpl Implementation
+
+FoldingSetBucketIteratorImpl::FoldingSetBucketIteratorImpl(void **Bucket) {
+ Ptr = (*Bucket == 0 || GetNextPtr(*Bucket) == 0) ? (void*) Bucket : *Bucket;
+}
diff --git a/lib/Support/GraphWriter.cpp b/lib/Support/GraphWriter.cpp
new file mode 100644
index 0000000..c359dfb
--- /dev/null
+++ b/lib/Support/GraphWriter.cpp
@@ -0,0 +1,89 @@
+//===-- GraphWriter.cpp - Implements GraphWriter support routines ---------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements misc. GraphWriter support routines.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Support/GraphWriter.h"
+#include "llvm/Support/Streams.h"
+#include "llvm/System/Path.h"
+#include "llvm/System/Program.h"
+#include "llvm/Config/config.h"
+using namespace llvm;
+
+void llvm::DisplayGraph(const sys::Path &Filename) {
+ std::string ErrMsg;
+#if HAVE_GRAPHVIZ
+ sys::Path Graphviz(LLVM_PATH_GRAPHVIZ);
+
+ std::vector<const char*> args;
+ args.push_back(Graphviz.c_str());
+ args.push_back(Filename.c_str());
+ args.push_back(0);
+
+ cerr << "Running 'Graphviz' program... " << std::flush;
+ if (sys::Program::ExecuteAndWait(Graphviz, &args[0],0,0,0,0,&ErrMsg)) {
+ cerr << "Error viewing graph: " << ErrMsg << "\n";
+ }
+#elif (HAVE_GV && HAVE_DOT)
+ sys::Path PSFilename = Filename;
+ PSFilename.appendSuffix("ps");
+
+ sys::Path dot(LLVM_PATH_DOT);
+
+ std::vector<const char*> args;
+ args.push_back(dot.c_str());
+ args.push_back("-Tps");
+ args.push_back("-Nfontname=Courier");
+ args.push_back("-Gsize=7.5,10");
+ args.push_back(Filename.c_str());
+ args.push_back("-o");
+ args.push_back(PSFilename.c_str());
+ args.push_back(0);
+
+ cerr << "Running 'dot' program... " << std::flush;
+ if (sys::Program::ExecuteAndWait(dot, &args[0],0,0,0,0,&ErrMsg)) {
+ cerr << "Error viewing graph: '" << ErrMsg << "\n";
+ } else {
+ cerr << " done. \n";
+
+ sys::Path gv(LLVM_PATH_GV);
+ args.clear();
+ args.push_back(gv.c_str());
+ args.push_back(PSFilename.c_str());
+ args.push_back("-spartan");
+ args.push_back(0);
+
+ ErrMsg.clear();
+ if (sys::Program::ExecuteAndWait(gv, &args[0],0,0,0,0,&ErrMsg)) {
+ cerr << "Error viewing graph: " << ErrMsg << "\n";
+ }
+ }
+ PSFilename.eraseFromDisk();
+#elif HAVE_DOTTY
+ sys::Path dotty(LLVM_PATH_DOTTY);
+
+ std::vector<const char*> args;
+ args.push_back(dotty.c_str());
+ args.push_back(Filename.c_str());
+ args.push_back(0);
+
+ cerr << "Running 'dotty' program... " << std::flush;
+ if (sys::Program::ExecuteAndWait(dotty, &args[0],0,0,0,0,&ErrMsg)) {
+ cerr << "Error viewing graph: " << ErrMsg << "\n";
+ } else {
+#ifdef __MINGW32__ // Dotty spawns another app and doesn't wait until it returns
+ return;
+#endif
+ }
+#endif
+
+ Filename.eraseFromDisk();
+}
diff --git a/lib/Support/IsInf.cpp b/lib/Support/IsInf.cpp
new file mode 100644
index 0000000..d6da0c9
--- /dev/null
+++ b/lib/Support/IsInf.cpp
@@ -0,0 +1,49 @@
+//===-- IsInf.cpp - Platform-independent wrapper around C99 isinf() -------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// Platform-independent wrapper around C99 isinf()
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Config/config.h"
+
+#if HAVE_ISINF_IN_MATH_H
+# include <math.h>
+#elif HAVE_ISINF_IN_CMATH
+# include <cmath>
+#elif HAVE_STD_ISINF_IN_CMATH
+# include <cmath>
+using std::isinf;
+#elif HAVE_FINITE_IN_IEEEFP_H
+// A handy workaround I found at http://www.unixguide.net/sun/faq ...
+// apparently this has been a problem with Solaris for years.
+# include <ieeefp.h>
+static int isinf(double x) { return !finite(x) && x==x; }
+#elif defined(_MSC_VER)
+#include <float.h>
+#define isinf(X) (!_finite(X))
+#elif defined(_AIX) && defined(__GNUC__)
+// GCC's fixincludes seems to be removing the isinf() declaration from the
+// system header /usr/include/math.h
+# include <math.h>
+static int isinf(double x) { return !finite(x) && x==x; }
+#elif defined(__hpux)
+// HP-UX is "special"
+#include <math.h>
+static int isinf(double x) { return ((x) == INFINITY) || ((x) == -INFINITY); }
+#else
+# error "Don't know how to get isinf()"
+#endif
+
+namespace llvm {
+
+int IsInf(float f) { return isinf(f); }
+int IsInf(double d) { return isinf(d); }
+
+} // end namespace llvm;
diff --git a/lib/Support/IsNAN.cpp b/lib/Support/IsNAN.cpp
new file mode 100644
index 0000000..bdfdfbf
--- /dev/null
+++ b/lib/Support/IsNAN.cpp
@@ -0,0 +1,33 @@
+//===-- IsNAN.cpp ---------------------------------------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// Platform-independent wrapper around C99 isnan().
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Config/config.h"
+
+#if HAVE_ISNAN_IN_MATH_H
+# include <math.h>
+#elif HAVE_ISNAN_IN_CMATH
+# include <cmath>
+#elif HAVE_STD_ISNAN_IN_CMATH
+# include <cmath>
+using std::isnan;
+#elif defined(_MSC_VER)
+#include <float.h>
+#define isnan _isnan
+#else
+# error "Don't know how to get isnan()"
+#endif
+
+namespace llvm {
+ int IsNAN(float f) { return isnan(f); }
+ int IsNAN(double d) { return isnan(d); }
+} // end namespace llvm;
diff --git a/lib/Support/Makefile b/lib/Support/Makefile
new file mode 100644
index 0000000..48c21f4
--- /dev/null
+++ b/lib/Support/Makefile
@@ -0,0 +1,17 @@
+##===- lib/Support/Makefile --------------------------------*- Makefile -*-===##
+#
+# The LLVM Compiler Infrastructure
+#
+# This file is distributed under the University of Illinois Open Source
+# License. See LICENSE.TXT for details.
+#
+##===----------------------------------------------------------------------===##
+
+LEVEL = ../..
+LIBRARYNAME = LLVMSupport
+BUILD_ARCHIVE = 1
+
+## FIXME: This only requires RTTI because tblgen uses it. Fix that.
+REQUIRES_RTTI = 1
+
+include $(LEVEL)/Makefile.common
diff --git a/lib/Support/ManagedStatic.cpp b/lib/Support/ManagedStatic.cpp
new file mode 100644
index 0000000..6de6575
--- /dev/null
+++ b/lib/Support/ManagedStatic.cpp
@@ -0,0 +1,91 @@
+//===-- ManagedStatic.cpp - Static Global wrapper -------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the ManagedStatic class and llvm_shutdown().
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Support/ManagedStatic.h"
+#include "llvm/Config/config.h"
+#include "llvm/System/Atomic.h"
+#include "llvm/System/Mutex.h"
+#include <cassert>
+using namespace llvm;
+
+static const ManagedStaticBase *StaticList = 0;
+
+static sys::Mutex* ManagedStaticMutex = 0;
+
+void ManagedStaticBase::RegisterManagedStatic(void *(*Creator)(),
+ void (*Deleter)(void*)) const {
+ if (ManagedStaticMutex) {
+ ManagedStaticMutex->acquire();
+
+ if (Ptr == 0) {
+ void* tmp = Creator ? Creator() : 0;
+
+ sys::MemoryFence();
+ Ptr = tmp;
+ DeleterFn = Deleter;
+
+ // Add to list of managed statics.
+ Next = StaticList;
+ StaticList = this;
+ }
+
+ ManagedStaticMutex->release();
+ } else {
+ assert(Ptr == 0 && DeleterFn == 0 && Next == 0 &&
+ "Partially initialized ManagedStatic!?");
+ Ptr = Creator ? Creator() : 0;
+ DeleterFn = Deleter;
+
+ // Add to list of managed statics.
+ Next = StaticList;
+ StaticList = this;
+ }
+}
+
+void ManagedStaticBase::destroy() const {
+ assert(DeleterFn && "ManagedStatic not initialized correctly!");
+ assert(StaticList == this &&
+ "Not destroyed in reverse order of construction?");
+ // Unlink from list.
+ StaticList = Next;
+ Next = 0;
+
+ // Destroy memory.
+ DeleterFn(Ptr);
+
+ // Cleanup.
+ Ptr = 0;
+ DeleterFn = 0;
+}
+
+bool llvm::llvm_start_multithreaded() {
+#if LLVM_MULTITHREADED
+ assert(ManagedStaticMutex == 0 && "Multithreaded LLVM already initialized!");
+ ManagedStaticMutex = new sys::Mutex(true);
+ return true;
+#else
+ return false;
+#endif
+}
+
+/// llvm_shutdown - Deallocate and destroy all ManagedStatic variables.
+void llvm::llvm_shutdown() {
+ while (StaticList)
+ StaticList->destroy();
+
+ if (ManagedStaticMutex) {
+ delete ManagedStaticMutex;
+ ManagedStaticMutex = 0;
+ }
+}
+
diff --git a/lib/Support/MemoryBuffer.cpp b/lib/Support/MemoryBuffer.cpp
new file mode 100644
index 0000000..e35c626
--- /dev/null
+++ b/lib/Support/MemoryBuffer.cpp
@@ -0,0 +1,279 @@
+//===--- MemoryBuffer.cpp - Memory Buffer implementation ------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the MemoryBuffer interface.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Support/MemoryBuffer.h"
+#include "llvm/ADT/OwningPtr.h"
+#include "llvm/ADT/SmallString.h"
+#include "llvm/System/Path.h"
+#include "llvm/System/Process.h"
+#include "llvm/System/Program.h"
+#include <cassert>
+#include <cstdio>
+#include <cstring>
+#include <cerrno>
+#include <sys/types.h>
+#include <sys/stat.h>
+#if !defined(_MSC_VER) && !defined(__MINGW32__)
+#include <unistd.h>
+#include <sys/uio.h>
+#else
+#include <io.h>
+#endif
+#include <fcntl.h>
+using namespace llvm;
+
+//===----------------------------------------------------------------------===//
+// MemoryBuffer implementation itself.
+//===----------------------------------------------------------------------===//
+
+MemoryBuffer::~MemoryBuffer() {
+ if (MustDeleteBuffer)
+ free((void*)BufferStart);
+}
+
+/// initCopyOf - Initialize this source buffer with a copy of the specified
+/// memory range. We make the copy so that we can null terminate it
+/// successfully.
+void MemoryBuffer::initCopyOf(const char *BufStart, const char *BufEnd) {
+ size_t Size = BufEnd-BufStart;
+ BufferStart = (char *)malloc((Size+1) * sizeof(char));
+ BufferEnd = BufferStart+Size;
+ memcpy(const_cast<char*>(BufferStart), BufStart, Size);
+ *const_cast<char*>(BufferEnd) = 0; // Null terminate buffer.
+ MustDeleteBuffer = true;
+}
+
+/// init - Initialize this MemoryBuffer as a reference to externally allocated
+/// memory, memory that we know is already null terminated.
+void MemoryBuffer::init(const char *BufStart, const char *BufEnd) {
+ assert(BufEnd[0] == 0 && "Buffer is not null terminated!");
+ BufferStart = BufStart;
+ BufferEnd = BufEnd;
+ MustDeleteBuffer = false;
+}
+
+//===----------------------------------------------------------------------===//
+// MemoryBufferMem implementation.
+//===----------------------------------------------------------------------===//
+
+namespace {
+class MemoryBufferMem : public MemoryBuffer {
+ std::string FileID;
+public:
+ MemoryBufferMem(const char *Start, const char *End, const char *FID,
+ bool Copy = false)
+ : FileID(FID) {
+ if (!Copy)
+ init(Start, End);
+ else
+ initCopyOf(Start, End);
+ }
+
+ virtual const char *getBufferIdentifier() const {
+ return FileID.c_str();
+ }
+};
+}
+
+/// getMemBuffer - Open the specified memory range as a MemoryBuffer. Note
+/// that EndPtr[0] must be a null byte and be accessible!
+MemoryBuffer *MemoryBuffer::getMemBuffer(const char *StartPtr,
+ const char *EndPtr,
+ const char *BufferName) {
+ return new MemoryBufferMem(StartPtr, EndPtr, BufferName);
+}
+
+/// getMemBufferCopy - Open the specified memory range as a MemoryBuffer,
+/// copying the contents and taking ownership of it. This has no requirements
+/// on EndPtr[0].
+MemoryBuffer *MemoryBuffer::getMemBufferCopy(const char *StartPtr,
+ const char *EndPtr,
+ const char *BufferName) {
+ return new MemoryBufferMem(StartPtr, EndPtr, BufferName, true);
+}
+
+/// getNewUninitMemBuffer - Allocate a new MemoryBuffer of the specified size
+/// that is completely initialized to zeros. Note that the caller should
+/// initialize the memory allocated by this method. The memory is owned by
+/// the MemoryBuffer object.
+MemoryBuffer *MemoryBuffer::getNewUninitMemBuffer(size_t Size,
+ const char *BufferName) {
+ char *Buf = (char *)malloc((Size+1) * sizeof(char));
+ if (!Buf) return 0;
+ Buf[Size] = 0;
+ MemoryBufferMem *SB = new MemoryBufferMem(Buf, Buf+Size, BufferName);
+ // The memory for this buffer is owned by the MemoryBuffer.
+ SB->MustDeleteBuffer = true;
+ return SB;
+}
+
+/// getNewMemBuffer - Allocate a new MemoryBuffer of the specified size that
+/// is completely initialized to zeros. Note that the caller should
+/// initialize the memory allocated by this method. The memory is owned by
+/// the MemoryBuffer object.
+MemoryBuffer *MemoryBuffer::getNewMemBuffer(size_t Size,
+ const char *BufferName) {
+ MemoryBuffer *SB = getNewUninitMemBuffer(Size, BufferName);
+ if (!SB) return 0;
+ memset(const_cast<char*>(SB->getBufferStart()), 0, Size+1);
+ return SB;
+}
+
+
+/// getFileOrSTDIN - Open the specified file as a MemoryBuffer, or open stdin
+/// if the Filename is "-". If an error occurs, this returns null and fills
+/// in *ErrStr with a reason. If stdin is empty, this API (unlike getSTDIN)
+/// returns an empty buffer.
+MemoryBuffer *MemoryBuffer::getFileOrSTDIN(const char *Filename,
+ std::string *ErrStr,
+ int64_t FileSize) {
+ if (Filename[0] != '-' || Filename[1] != 0)
+ return getFile(Filename, ErrStr, FileSize);
+ MemoryBuffer *M = getSTDIN();
+ if (M) return M;
+
+ // If stdin was empty, M is null. Cons up an empty memory buffer now.
+ const char *EmptyStr = "";
+ return MemoryBuffer::getMemBuffer(EmptyStr, EmptyStr, "<stdin>");
+}
+
+//===----------------------------------------------------------------------===//
+// MemoryBuffer::getFile implementation.
+//===----------------------------------------------------------------------===//
+
+namespace {
+/// MemoryBufferMMapFile - This represents a file that was mapped in with the
+/// sys::Path::MapInFilePages method. When destroyed, it calls the
+/// sys::Path::UnMapFilePages method.
+class MemoryBufferMMapFile : public MemoryBuffer {
+ std::string Filename;
+public:
+ MemoryBufferMMapFile(const char *filename, const char *Pages, uint64_t Size)
+ : Filename(filename) {
+ init(Pages, Pages+Size);
+ }
+
+ virtual const char *getBufferIdentifier() const {
+ return Filename.c_str();
+ }
+
+ ~MemoryBufferMMapFile() {
+ sys::Path::UnMapFilePages(getBufferStart(), getBufferSize());
+ }
+};
+}
+
+MemoryBuffer *MemoryBuffer::getFile(const char *Filename, std::string *ErrStr,
+ int64_t FileSize) {
+ int OpenFlags = 0;
+#ifdef O_BINARY
+ OpenFlags |= O_BINARY; // Open input file in binary mode on win32.
+#endif
+ int FD = ::open(Filename, O_RDONLY|OpenFlags);
+ if (FD == -1) {
+ if (ErrStr) *ErrStr = "could not open file";
+ return 0;
+ }
+
+ // If we don't know the file size, use fstat to find out. fstat on an open
+ // file descriptor is cheaper than stat on a random path.
+ if (FileSize == -1) {
+ struct stat FileInfo;
+ // TODO: This should use fstat64 when available.
+ if (fstat(FD, &FileInfo) == -1) {
+ if (ErrStr) *ErrStr = "could not get file length";
+ ::close(FD);
+ return 0;
+ }
+ FileSize = FileInfo.st_size;
+ }
+
+
+ // If the file is large, try to use mmap to read it in. We don't use mmap
+ // for small files, because this can severely fragment our address space. Also
+ // don't try to map files that are exactly a multiple of the system page size,
+ // as the file would not have the required null terminator.
+ if (FileSize >= 4096*4 &&
+ (FileSize & (sys::Process::GetPageSize()-1)) != 0) {
+ if (const char *Pages = sys::Path::MapInFilePages(FD, FileSize)) {
+ // Close the file descriptor, now that the whole file is in memory.
+ ::close(FD);
+ return new MemoryBufferMMapFile(Filename, Pages, FileSize);
+ }
+ }
+
+ MemoryBuffer *Buf = MemoryBuffer::getNewUninitMemBuffer(FileSize, Filename);
+ if (!Buf) {
+ // Failed to create a buffer.
+ if (ErrStr) *ErrStr = "could not allocate buffer";
+ ::close(FD);
+ return 0;
+ }
+
+ OwningPtr<MemoryBuffer> SB(Buf);
+ char *BufPtr = const_cast<char*>(SB->getBufferStart());
+
+ size_t BytesLeft = FileSize;
+ while (BytesLeft) {
+ ssize_t NumRead = ::read(FD, BufPtr, BytesLeft);
+ if (NumRead != -1) {
+ BytesLeft -= NumRead;
+ BufPtr += NumRead;
+ } else if (errno == EINTR) {
+ // try again
+ } else {
+ // error reading.
+ close(FD);
+ if (ErrStr) *ErrStr = "error reading file data";
+ return 0;
+ }
+ }
+ close(FD);
+
+ return SB.take();
+}
+
+//===----------------------------------------------------------------------===//
+// MemoryBuffer::getSTDIN implementation.
+//===----------------------------------------------------------------------===//
+
+namespace {
+class STDINBufferFile : public MemoryBuffer {
+public:
+ virtual const char *getBufferIdentifier() const {
+ return "<stdin>";
+ }
+};
+}
+
+MemoryBuffer *MemoryBuffer::getSTDIN() {
+ char Buffer[4096*4];
+
+ std::vector<char> FileData;
+
+ // Read in all of the data from stdin, we cannot mmap stdin.
+ sys::Program::ChangeStdinToBinary();
+ size_t ReadBytes;
+ do {
+ ReadBytes = fread(Buffer, sizeof(char), sizeof(Buffer), stdin);
+ FileData.insert(FileData.end(), Buffer, Buffer+ReadBytes);
+ } while (ReadBytes == sizeof(Buffer));
+
+ FileData.push_back(0); // &FileData[Size] is invalid. So is &*FileData.end().
+ size_t Size = FileData.size();
+ if (Size <= 1)
+ return 0;
+ MemoryBuffer *B = new STDINBufferFile();
+ B->initCopyOf(&FileData[0], &FileData[Size-1]);
+ return B;
+}
diff --git a/lib/Support/PluginLoader.cpp b/lib/Support/PluginLoader.cpp
new file mode 100644
index 0000000..5acf1d1
--- /dev/null
+++ b/lib/Support/PluginLoader.cpp
@@ -0,0 +1,43 @@
+//===-- PluginLoader.cpp - Implement -load command line option ------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the -load <plugin> command line option handler.
+//
+//===----------------------------------------------------------------------===//
+
+#define DONT_GET_PLUGIN_LOADER_OPTION
+#include "llvm/Support/ManagedStatic.h"
+#include "llvm/Support/PluginLoader.h"
+#include "llvm/Support/Streams.h"
+#include "llvm/System/DynamicLibrary.h"
+#include <ostream>
+#include <vector>
+using namespace llvm;
+
+static ManagedStatic<std::vector<std::string> > Plugins;
+
+void PluginLoader::operator=(const std::string &Filename) {
+ std::string Error;
+ if (sys::DynamicLibrary::LoadLibraryPermanently(Filename.c_str(), &Error)) {
+ cerr << "Error opening '" << Filename << "': " << Error
+ << "\n -load request ignored.\n";
+ } else {
+ Plugins->push_back(Filename);
+ }
+}
+
+unsigned PluginLoader::getNumPlugins() {
+ return Plugins.isConstructed() ? Plugins->size() : 0;
+}
+
+std::string &PluginLoader::getPlugin(unsigned num) {
+ assert(Plugins.isConstructed() && num < Plugins->size() &&
+ "Asking for an out of bounds plugin");
+ return (*Plugins)[num];
+}
diff --git a/lib/Support/PrettyStackTrace.cpp b/lib/Support/PrettyStackTrace.cpp
new file mode 100644
index 0000000..c111c5e
--- /dev/null
+++ b/lib/Support/PrettyStackTrace.cpp
@@ -0,0 +1,108 @@
+//===- PrettyStackTrace.cpp - Pretty Crash Handling -----------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines some helpful functions for dealing with the possibility of
+// Unix signals occuring while your program is running.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Support/PrettyStackTrace.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/System/Signals.h"
+#include "llvm/ADT/SmallString.h"
+using namespace llvm;
+
+// FIXME: This should be thread local when llvm supports threads.
+static const PrettyStackTraceEntry *PrettyStackTraceHead = 0;
+
+static unsigned PrintStack(const PrettyStackTraceEntry *Entry, raw_ostream &OS){
+ unsigned NextID = 0;
+ if (Entry->getNextEntry())
+ NextID = PrintStack(Entry->getNextEntry(), OS);
+ OS << NextID << ".\t";
+ Entry->print(OS);
+
+ return NextID+1;
+}
+
+/// PrintCurStackTrace - Print the current stack trace to the specified stream.
+static void PrintCurStackTrace(raw_ostream &OS) {
+ // Don't print an empty trace.
+ if (PrettyStackTraceHead == 0) return;
+
+ // If there are pretty stack frames registered, walk and emit them.
+ OS << "Stack dump:\n";
+
+ PrintStack(PrettyStackTraceHead, OS);
+ OS.flush();
+}
+
+// Integrate with crash reporter.
+#ifdef __APPLE__
+extern "C" const char *__crashreporter_info__;
+const char *__crashreporter_info__ = 0;
+#endif
+
+
+/// CrashHandler - This callback is run if a fatal signal is delivered to the
+/// process, it prints the pretty stack trace.
+static void CrashHandler(void *Cookie) {
+#ifndef __APPLE__
+ // On non-apple systems, just emit the crash stack trace to stderr.
+ PrintCurStackTrace(errs());
+#else
+ // Otherwise, emit to a smallvector of chars, send *that* to stderr, but also
+ // put it into __crashreporter_info__.
+ SmallString<2048> TmpStr;
+ {
+ raw_svector_ostream Stream(TmpStr);
+ PrintCurStackTrace(Stream);
+ }
+
+ if (!TmpStr.empty()) {
+ __crashreporter_info__ = strdup(TmpStr.c_str());
+ errs() << __crashreporter_info__;
+ }
+
+#endif
+}
+
+static bool RegisterCrashPrinter() {
+ sys::AddSignalHandler(CrashHandler, 0);
+ return false;
+}
+
+PrettyStackTraceEntry::PrettyStackTraceEntry() {
+ // The first time this is called, we register the crash printer.
+ static bool HandlerRegistered = RegisterCrashPrinter();
+ HandlerRegistered = HandlerRegistered;
+
+ // Link ourselves.
+ NextEntry = PrettyStackTraceHead;
+ PrettyStackTraceHead = this;
+}
+
+PrettyStackTraceEntry::~PrettyStackTraceEntry() {
+ assert(PrettyStackTraceHead == this &&
+ "Pretty stack trace entry destruction is out of order");
+ PrettyStackTraceHead = getNextEntry();
+}
+
+void PrettyStackTraceString::print(raw_ostream &OS) const {
+ OS << Str << "\n";
+}
+
+void PrettyStackTraceProgram::print(raw_ostream &OS) const {
+ OS << "Program arguments: ";
+ // Print the argument list.
+ for (unsigned i = 0, e = ArgC; i != e; ++i)
+ OS << ArgV[i] << ' ';
+ OS << '\n';
+}
+
diff --git a/lib/Support/SlowOperationInformer.cpp b/lib/Support/SlowOperationInformer.cpp
new file mode 100644
index 0000000..d5ffff9
--- /dev/null
+++ b/lib/Support/SlowOperationInformer.cpp
@@ -0,0 +1,66 @@
+//===-- SlowOperationInformer.cpp - Keep the user informed ----------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the SlowOperationInformer class for the LLVM debugger.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Support/SlowOperationInformer.h"
+#include "llvm/Support/Streams.h"
+#include "llvm/System/Alarm.h"
+#include <sstream>
+#include <cassert>
+using namespace llvm;
+
+SlowOperationInformer::SlowOperationInformer(const std::string &Name)
+ : OperationName(Name), LastPrintAmount(0) {
+ sys::SetupAlarm(1);
+}
+
+SlowOperationInformer::~SlowOperationInformer() {
+ sys::TerminateAlarm();
+ if (LastPrintAmount) {
+ // If we have printed something, make _sure_ we print the 100% amount, and
+ // also print a newline.
+ cout << std::string(LastPrintAmount, '\b') << "Progress "
+ << OperationName << ": 100% \n";
+ }
+}
+
+/// progress - Clients should periodically call this method when they are in
+/// an exception-safe state. The Amount variable should indicate how far
+/// along the operation is, given in 1/10ths of a percent (in other words,
+/// Amount should range from 0 to 1000).
+bool SlowOperationInformer::progress(unsigned Amount) {
+ int status = sys::AlarmStatus();
+ if (status == -1) {
+ cout << "\n";
+ LastPrintAmount = 0;
+ return true;
+ }
+
+ // If we haven't spent enough time in this operation to warrant displaying the
+ // progress bar, don't do so yet.
+ if (status == 0)
+ return false;
+
+ // Delete whatever we printed last time.
+ std::string ToPrint = std::string(LastPrintAmount, '\b');
+
+ std::ostringstream OS;
+ OS << "Progress " << OperationName << ": " << Amount/10;
+ if (unsigned Rem = Amount % 10)
+ OS << "." << Rem << "%";
+ else
+ OS << "% ";
+
+ LastPrintAmount = OS.str().size();
+ cout << ToPrint+OS.str() << std::flush;
+ return false;
+}
diff --git a/lib/Support/SmallPtrSet.cpp b/lib/Support/SmallPtrSet.cpp
new file mode 100644
index 0000000..68938fa
--- /dev/null
+++ b/lib/Support/SmallPtrSet.cpp
@@ -0,0 +1,223 @@
+//===- llvm/ADT/SmallPtrSet.cpp - 'Normally small' pointer set ------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the SmallPtrSet class. See SmallPtrSet.h for an
+// overview of the algorithm.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/Support/MathExtras.h"
+#include <cstdlib>
+
+using namespace llvm;
+
+void SmallPtrSetImpl::shrink_and_clear() {
+ assert(!isSmall() && "Can't shrink a small set!");
+ free(CurArray);
+
+ // Reduce the number of buckets.
+ CurArraySize = NumElements > 16 ? 1 << (Log2_32_Ceil(NumElements) + 1) : 32;
+ NumElements = NumTombstones = 0;
+
+ // Install the new array. Clear all the buckets to empty.
+ CurArray = (const void**)malloc(sizeof(void*) * (CurArraySize+1));
+ assert(CurArray && "Failed to allocate memory?");
+ memset(CurArray, -1, CurArraySize*sizeof(void*));
+
+ // The end pointer, always valid, is set to a valid element to help the
+ // iterator.
+ CurArray[CurArraySize] = 0;
+}
+
+bool SmallPtrSetImpl::insert_imp(const void * Ptr) {
+ if (isSmall()) {
+ // Check to see if it is already in the set.
+ for (const void **APtr = SmallArray, **E = SmallArray+NumElements;
+ APtr != E; ++APtr)
+ if (*APtr == Ptr)
+ return false;
+
+ // Nope, there isn't. If we stay small, just 'pushback' now.
+ if (NumElements < CurArraySize-1) {
+ SmallArray[NumElements++] = Ptr;
+ return true;
+ }
+ // Otherwise, hit the big set case, which will call grow.
+ }
+
+ // If more than 3/4 of the array is full, grow.
+ if (NumElements*4 >= CurArraySize*3 ||
+ CurArraySize-(NumElements+NumTombstones) < CurArraySize/8)
+ Grow();
+
+ // Okay, we know we have space. Find a hash bucket.
+ const void **Bucket = const_cast<const void**>(FindBucketFor(Ptr));
+ if (*Bucket == Ptr) return false; // Already inserted, good.
+
+ // Otherwise, insert it!
+ if (*Bucket == getTombstoneMarker())
+ --NumTombstones;
+ *Bucket = Ptr;
+ ++NumElements; // Track density.
+ return true;
+}
+
+bool SmallPtrSetImpl::erase_imp(const void * Ptr) {
+ if (isSmall()) {
+ // Check to see if it is in the set.
+ for (const void **APtr = SmallArray, **E = SmallArray+NumElements;
+ APtr != E; ++APtr)
+ if (*APtr == Ptr) {
+ // If it is in the set, replace this element.
+ *APtr = E[-1];
+ E[-1] = getEmptyMarker();
+ --NumElements;
+ return true;
+ }
+
+ return false;
+ }
+
+ // Okay, we know we have space. Find a hash bucket.
+ void **Bucket = const_cast<void**>(FindBucketFor(Ptr));
+ if (*Bucket != Ptr) return false; // Not in the set?
+
+ // Set this as a tombstone.
+ *Bucket = getTombstoneMarker();
+ --NumElements;
+ ++NumTombstones;
+ return true;
+}
+
+const void * const *SmallPtrSetImpl::FindBucketFor(const void *Ptr) const {
+ unsigned Bucket = Hash(Ptr);
+ unsigned ArraySize = CurArraySize;
+ unsigned ProbeAmt = 1;
+ const void *const *Array = CurArray;
+ const void *const *Tombstone = 0;
+ while (1) {
+ // Found Ptr's bucket?
+ if (Array[Bucket] == Ptr)
+ return Array+Bucket;
+
+ // If we found an empty bucket, the pointer doesn't exist in the set.
+ // Return a tombstone if we've seen one so far, or the empty bucket if
+ // not.
+ if (Array[Bucket] == getEmptyMarker())
+ return Tombstone ? Tombstone : Array+Bucket;
+
+ // If this is a tombstone, remember it. If Ptr ends up not in the set, we
+ // prefer to return it than something that would require more probing.
+ if (Array[Bucket] == getTombstoneMarker() && !Tombstone)
+ Tombstone = Array+Bucket; // Remember the first tombstone found.
+
+ // It's a hash collision or a tombstone. Reprobe.
+ Bucket = (Bucket + ProbeAmt++) & (ArraySize-1);
+ }
+}
+
+/// Grow - Allocate a larger backing store for the buckets and move it over.
+///
+void SmallPtrSetImpl::Grow() {
+ // Allocate at twice as many buckets, but at least 128.
+ unsigned OldSize = CurArraySize;
+ unsigned NewSize = OldSize < 64 ? 128 : OldSize*2;
+
+ const void **OldBuckets = CurArray;
+ bool WasSmall = isSmall();
+
+ // Install the new array. Clear all the buckets to empty.
+ CurArray = (const void**)malloc(sizeof(void*) * (NewSize+1));
+ assert(CurArray && "Failed to allocate memory?");
+ CurArraySize = NewSize;
+ memset(CurArray, -1, NewSize*sizeof(void*));
+
+ // The end pointer, always valid, is set to a valid element to help the
+ // iterator.
+ CurArray[NewSize] = 0;
+
+ // Copy over all the elements.
+ if (WasSmall) {
+ // Small sets store their elements in order.
+ for (const void **BucketPtr = OldBuckets, **E = OldBuckets+NumElements;
+ BucketPtr != E; ++BucketPtr) {
+ const void *Elt = *BucketPtr;
+ *const_cast<void**>(FindBucketFor(Elt)) = const_cast<void*>(Elt);
+ }
+ } else {
+ // Copy over all valid entries.
+ for (const void **BucketPtr = OldBuckets, **E = OldBuckets+OldSize;
+ BucketPtr != E; ++BucketPtr) {
+ // Copy over the element if it is valid.
+ const void *Elt = *BucketPtr;
+ if (Elt != getTombstoneMarker() && Elt != getEmptyMarker())
+ *const_cast<void**>(FindBucketFor(Elt)) = const_cast<void*>(Elt);
+ }
+
+ free(OldBuckets);
+ NumTombstones = 0;
+ }
+}
+
+SmallPtrSetImpl::SmallPtrSetImpl(const SmallPtrSetImpl& that) {
+ // If we're becoming small, prepare to insert into our stack space
+ if (that.isSmall()) {
+ CurArray = &SmallArray[0];
+ // Otherwise, allocate new heap space (unless we were the same size)
+ } else {
+ CurArray = (const void**)malloc(sizeof(void*) * (that.CurArraySize+1));
+ assert(CurArray && "Failed to allocate memory?");
+ }
+
+ // Copy over the new array size
+ CurArraySize = that.CurArraySize;
+
+ // Copy over the contents from the other set
+ memcpy(CurArray, that.CurArray, sizeof(void*)*(CurArraySize+1));
+
+ NumElements = that.NumElements;
+ NumTombstones = that.NumTombstones;
+}
+
+/// CopyFrom - implement operator= from a smallptrset that has the same pointer
+/// type, but may have a different small size.
+void SmallPtrSetImpl::CopyFrom(const SmallPtrSetImpl &RHS) {
+ if (isSmall() && RHS.isSmall())
+ assert(CurArraySize == RHS.CurArraySize &&
+ "Cannot assign sets with different small sizes");
+
+ // If we're becoming small, prepare to insert into our stack space
+ if (RHS.isSmall()) {
+ if (!isSmall())
+ free(CurArray);
+ CurArray = &SmallArray[0];
+ // Otherwise, allocate new heap space (unless we were the same size)
+ } else if (CurArraySize != RHS.CurArraySize) {
+ if (isSmall())
+ CurArray = (const void**)malloc(sizeof(void*) * (RHS.CurArraySize+1));
+ else
+ CurArray = (const void**)realloc(CurArray, sizeof(void*)*(RHS.CurArraySize+1));
+ assert(CurArray && "Failed to allocate memory?");
+ }
+
+ // Copy over the new array size
+ CurArraySize = RHS.CurArraySize;
+
+ // Copy over the contents from the other set
+ memcpy(CurArray, RHS.CurArray, sizeof(void*)*(CurArraySize+1));
+
+ NumElements = RHS.NumElements;
+ NumTombstones = RHS.NumTombstones;
+}
+
+SmallPtrSetImpl::~SmallPtrSetImpl() {
+ if (!isSmall())
+ free(CurArray);
+}
diff --git a/lib/Support/Statistic.cpp b/lib/Support/Statistic.cpp
new file mode 100644
index 0000000..13acc1b
--- /dev/null
+++ b/lib/Support/Statistic.cpp
@@ -0,0 +1,126 @@
+//===-- Statistic.cpp - Easy way to expose stats information --------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the 'Statistic' class, which is designed to be an easy
+// way to expose various success metrics from passes. These statistics are
+// printed at the end of a run, when the -stats command line option is enabled
+// on the command line.
+//
+// This is useful for reporting information like the number of instructions
+// simplified, optimized or removed by various transformations, like this:
+//
+// static Statistic NumInstEliminated("GCSE", "Number of instructions killed");
+//
+// Later, in the code: ++NumInstEliminated;
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/ADT/Statistic.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/ManagedStatic.h"
+#include "llvm/Support/Streams.h"
+#include "llvm/ADT/StringExtras.h"
+#include <algorithm>
+#include <ostream>
+#include <cstring>
+using namespace llvm;
+
+// GetLibSupportInfoOutputFile - Return a file stream to print our output on.
+namespace llvm { extern std::ostream *GetLibSupportInfoOutputFile(); }
+
+/// -stats - Command line option to cause transformations to emit stats about
+/// what they did.
+///
+static cl::opt<bool>
+Enabled("stats", cl::desc("Enable statistics output from program"));
+
+
+namespace {
+/// StatisticInfo - This class is used in a ManagedStatic so that it is created
+/// on demand (when the first statistic is bumped) and destroyed only when
+/// llvm_shutdown is called. We print statistics from the destructor.
+class StatisticInfo {
+ std::vector<const Statistic*> Stats;
+public:
+ ~StatisticInfo();
+
+ void addStatistic(const Statistic *S) {
+ Stats.push_back(S);
+ }
+};
+}
+
+static ManagedStatic<StatisticInfo> StatInfo;
+
+
+/// RegisterStatistic - The first time a statistic is bumped, this method is
+/// called.
+void Statistic::RegisterStatistic() {
+ // If stats are enabled, inform StatInfo that this statistic should be
+ // printed.
+ if (Enabled)
+ StatInfo->addStatistic(this);
+ // Remember we have been registered.
+ Initialized = true;
+}
+
+namespace {
+
+struct NameCompare {
+ bool operator()(const Statistic *LHS, const Statistic *RHS) const {
+ int Cmp = std::strcmp(LHS->getName(), RHS->getName());
+ if (Cmp != 0) return Cmp < 0;
+
+ // Secondary key is the description.
+ return std::strcmp(LHS->getDesc(), RHS->getDesc()) < 0;
+ }
+};
+
+}
+
+// Print information when destroyed, iff command line option is specified.
+StatisticInfo::~StatisticInfo() {
+ // Statistics not enabled?
+ if (Stats.empty()) return;
+
+ // Get the stream to write to.
+ std::ostream &OutStream = *GetLibSupportInfoOutputFile();
+
+ // Figure out how long the biggest Value and Name fields are.
+ unsigned MaxNameLen = 0, MaxValLen = 0;
+ for (size_t i = 0, e = Stats.size(); i != e; ++i) {
+ MaxValLen = std::max(MaxValLen,
+ (unsigned)utostr(Stats[i]->getValue()).size());
+ MaxNameLen = std::max(MaxNameLen,
+ (unsigned)std::strlen(Stats[i]->getName()));
+ }
+
+ // Sort the fields by name.
+ std::stable_sort(Stats.begin(), Stats.end(), NameCompare());
+
+ // Print out the statistics header...
+ OutStream << "===" << std::string(73, '-') << "===\n"
+ << " ... Statistics Collected ...\n"
+ << "===" << std::string(73, '-') << "===\n\n";
+
+ // Print all of the statistics.
+ for (size_t i = 0, e = Stats.size(); i != e; ++i) {
+ std::string CountStr = utostr(Stats[i]->getValue());
+ OutStream << std::string(MaxValLen-CountStr.size(), ' ')
+ << CountStr << " " << Stats[i]->getName()
+ << std::string(MaxNameLen-std::strlen(Stats[i]->getName()), ' ')
+ << " - " << Stats[i]->getDesc() << "\n";
+
+ }
+
+ OutStream << std::endl; // Flush the output stream...
+
+ if (&OutStream != cerr.stream() && &OutStream != cout.stream())
+ delete &OutStream; // Close the file.
+}
diff --git a/lib/Support/Streams.cpp b/lib/Support/Streams.cpp
new file mode 100644
index 0000000..cf6cfeb
--- /dev/null
+++ b/lib/Support/Streams.cpp
@@ -0,0 +1,30 @@
+//===-- Streams.cpp - Wrappers for iostreams ------------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements a wrapper for the std::cout and std::cerr I/O streams.
+// It prevents the need to include <iostream> to each file just to get I/O.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Support/Streams.h"
+#include <iostream>
+using namespace llvm;
+
+OStream llvm::cout(std::cout);
+OStream llvm::cerr(std::cerr);
+IStream llvm::cin(std::cin);
+
+namespace llvm {
+
+/// FlushStream - Function called by BaseStream to flush an ostream.
+void FlushStream(std::ostream &S) {
+ S << std::flush;
+}
+
+} // end anonymous namespace
diff --git a/lib/Support/StringExtras.cpp b/lib/Support/StringExtras.cpp
new file mode 100644
index 0000000..1618086
--- /dev/null
+++ b/lib/Support/StringExtras.cpp
@@ -0,0 +1,114 @@
+//===-- StringExtras.cpp - Implement the StringExtras header --------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the StringExtras.h header
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/ADT/StringExtras.h"
+#include <cstring>
+using namespace llvm;
+
+/// getToken - This function extracts one token from source, ignoring any
+/// leading characters that appear in the Delimiters string, and ending the
+/// token at any of the characters that appear in the Delimiters string. If
+/// there are no tokens in the source string, an empty string is returned.
+/// The Source source string is updated in place to remove the returned string
+/// and any delimiter prefix from it.
+std::string llvm::getToken(std::string &Source, const char *Delimiters) {
+ size_t NumDelimiters = std::strlen(Delimiters);
+
+ // Figure out where the token starts.
+ std::string::size_type Start =
+ Source.find_first_not_of(Delimiters, 0, NumDelimiters);
+ if (Start == std::string::npos) Start = Source.size();
+
+ // Find the next occurance of the delimiter.
+ std::string::size_type End =
+ Source.find_first_of(Delimiters, Start, NumDelimiters);
+ if (End == std::string::npos) End = Source.size();
+
+ // Create the return token.
+ std::string Result = std::string(Source.begin()+Start, Source.begin()+End);
+
+ // Erase the token that we read in.
+ Source.erase(Source.begin(), Source.begin()+End);
+
+ return Result;
+}
+
+/// SplitString - Split up the specified string according to the specified
+/// delimiters, appending the result fragments to the output list.
+void llvm::SplitString(const std::string &Source,
+ std::vector<std::string> &OutFragments,
+ const char *Delimiters) {
+ std::string S = Source;
+
+ std::string S2 = getToken(S, Delimiters);
+ while (!S2.empty()) {
+ OutFragments.push_back(S2);
+ S2 = getToken(S, Delimiters);
+ }
+}
+
+
+
+/// UnescapeString - Modify the argument string, turning two character sequences
+/// @verbatim
+/// like '\\' 'n' into '\n'. This handles: \e \a \b \f \n \r \t \v \' \ and
+/// \num (where num is a 1-3 byte octal value).
+/// @endverbatim
+void llvm::UnescapeString(std::string &Str) {
+ for (unsigned i = 0; i != Str.size(); ++i) {
+ if (Str[i] == '\\' && i != Str.size()-1) {
+ switch (Str[i+1]) {
+ default: continue; // Don't execute the code after the switch.
+ case 'a': Str[i] = '\a'; break;
+ case 'b': Str[i] = '\b'; break;
+ case 'e': Str[i] = 27; break;
+ case 'f': Str[i] = '\f'; break;
+ case 'n': Str[i] = '\n'; break;
+ case 'r': Str[i] = '\r'; break;
+ case 't': Str[i] = '\t'; break;
+ case 'v': Str[i] = '\v'; break;
+ case '"': Str[i] = '\"'; break;
+ case '\'': Str[i] = '\''; break;
+ case '\\': Str[i] = '\\'; break;
+ }
+ // Nuke the second character.
+ Str.erase(Str.begin()+i+1);
+ }
+ }
+}
+
+/// EscapeString - Modify the argument string, turning '\\' and anything that
+/// doesn't satisfy std::isprint into an escape sequence.
+void llvm::EscapeString(std::string &Str) {
+ for (unsigned i = 0; i != Str.size(); ++i) {
+ if (Str[i] == '\\') {
+ ++i;
+ Str.insert(Str.begin()+i, '\\');
+ } else if (Str[i] == '\t') {
+ Str[i++] = '\\';
+ Str.insert(Str.begin()+i, 't');
+ } else if (Str[i] == '"') {
+ Str.insert(Str.begin()+i++, '\\');
+ } else if (Str[i] == '\n') {
+ Str[i++] = '\\';
+ Str.insert(Str.begin()+i, 'n');
+ } else if (!std::isprint(Str[i])) {
+ // Always expand to a 3-digit octal escape.
+ unsigned Char = Str[i];
+ Str[i++] = '\\';
+ Str.insert(Str.begin()+i++, '0'+((Char/64) & 7));
+ Str.insert(Str.begin()+i++, '0'+((Char/8) & 7));
+ Str.insert(Str.begin()+i , '0'+( Char & 7));
+ }
+ }
+}
diff --git a/lib/Support/StringMap.cpp b/lib/Support/StringMap.cpp
new file mode 100644
index 0000000..0c61732
--- /dev/null
+++ b/lib/Support/StringMap.cpp
@@ -0,0 +1,234 @@
+//===--- StringMap.cpp - String Hash table map implementation -------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the StringMap class.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/ADT/StringMap.h"
+#include <cassert>
+using namespace llvm;
+
+StringMapImpl::StringMapImpl(unsigned InitSize, unsigned itemSize) {
+ ItemSize = itemSize;
+
+ // If a size is specified, initialize the table with that many buckets.
+ if (InitSize) {
+ init(InitSize);
+ return;
+ }
+
+ // Otherwise, initialize it with zero buckets to avoid the allocation.
+ TheTable = 0;
+ NumBuckets = 0;
+ NumItems = 0;
+ NumTombstones = 0;
+}
+
+void StringMapImpl::init(unsigned InitSize) {
+ assert((InitSize & (InitSize-1)) == 0 &&
+ "Init Size must be a power of 2 or zero!");
+ NumBuckets = InitSize ? InitSize : 16;
+ NumItems = 0;
+ NumTombstones = 0;
+
+ TheTable = (ItemBucket*)calloc(NumBuckets+1, sizeof(ItemBucket));
+
+ // Allocate one extra bucket, set it to look filled so the iterators stop at
+ // end.
+ TheTable[NumBuckets].Item = (StringMapEntryBase*)2;
+}
+
+
+/// HashString - Compute a hash code for the specified string.
+///
+static unsigned HashString(const char *Start, const char *End) {
+ // Bernstein hash function.
+ unsigned int Result = 0;
+ // TODO: investigate whether a modified bernstein hash function performs
+ // better: http://eternallyconfuzzled.com/tuts/algorithms/jsw_tut_hashing.aspx
+ // X*33+c -> X*33^c
+ while (Start != End)
+ Result = Result * 33 + *Start++;
+ Result = Result + (Result >> 5);
+ return Result;
+}
+
+/// LookupBucketFor - Look up the bucket that the specified string should end
+/// up in. If it already exists as a key in the map, the Item pointer for the
+/// specified bucket will be non-null. Otherwise, it will be null. In either
+/// case, the FullHashValue field of the bucket will be set to the hash value
+/// of the string.
+unsigned StringMapImpl::LookupBucketFor(const char *NameStart,
+ const char *NameEnd) {
+ unsigned HTSize = NumBuckets;
+ if (HTSize == 0) { // Hash table unallocated so far?
+ init(16);
+ HTSize = NumBuckets;
+ }
+ unsigned FullHashValue = HashString(NameStart, NameEnd);
+ unsigned BucketNo = FullHashValue & (HTSize-1);
+
+ unsigned ProbeAmt = 1;
+ int FirstTombstone = -1;
+ while (1) {
+ ItemBucket &Bucket = TheTable[BucketNo];
+ StringMapEntryBase *BucketItem = Bucket.Item;
+ // If we found an empty bucket, this key isn't in the table yet, return it.
+ if (BucketItem == 0) {
+ // If we found a tombstone, we want to reuse the tombstone instead of an
+ // empty bucket. This reduces probing.
+ if (FirstTombstone != -1) {
+ TheTable[FirstTombstone].FullHashValue = FullHashValue;
+ return FirstTombstone;
+ }
+
+ Bucket.FullHashValue = FullHashValue;
+ return BucketNo;
+ }
+
+ if (BucketItem == getTombstoneVal()) {
+ // Skip over tombstones. However, remember the first one we see.
+ if (FirstTombstone == -1) FirstTombstone = BucketNo;
+ } else if (Bucket.FullHashValue == FullHashValue) {
+ // If the full hash value matches, check deeply for a match. The common
+ // case here is that we are only looking at the buckets (for item info
+ // being non-null and for the full hash value) not at the items. This
+ // is important for cache locality.
+
+ // Do the comparison like this because NameStart isn't necessarily
+ // null-terminated!
+ char *ItemStr = (char*)BucketItem+ItemSize;
+ unsigned ItemStrLen = BucketItem->getKeyLength();
+ if (unsigned(NameEnd-NameStart) == ItemStrLen &&
+ memcmp(ItemStr, NameStart, ItemStrLen) == 0) {
+ // We found a match!
+ return BucketNo;
+ }
+ }
+
+ // Okay, we didn't find the item. Probe to the next bucket.
+ BucketNo = (BucketNo+ProbeAmt) & (HTSize-1);
+
+ // Use quadratic probing, it has fewer clumping artifacts than linear
+ // probing and has good cache behavior in the common case.
+ ++ProbeAmt;
+ }
+}
+
+
+/// FindKey - Look up the bucket that contains the specified key. If it exists
+/// in the map, return the bucket number of the key. Otherwise return -1.
+/// This does not modify the map.
+int StringMapImpl::FindKey(const char *KeyStart, const char *KeyEnd) const {
+ unsigned HTSize = NumBuckets;
+ if (HTSize == 0) return -1; // Really empty table?
+ unsigned FullHashValue = HashString(KeyStart, KeyEnd);
+ unsigned BucketNo = FullHashValue & (HTSize-1);
+
+ unsigned ProbeAmt = 1;
+ while (1) {
+ ItemBucket &Bucket = TheTable[BucketNo];
+ StringMapEntryBase *BucketItem = Bucket.Item;
+ // If we found an empty bucket, this key isn't in the table yet, return.
+ if (BucketItem == 0)
+ return -1;
+
+ if (BucketItem == getTombstoneVal()) {
+ // Ignore tombstones.
+ } else if (Bucket.FullHashValue == FullHashValue) {
+ // If the full hash value matches, check deeply for a match. The common
+ // case here is that we are only looking at the buckets (for item info
+ // being non-null and for the full hash value) not at the items. This
+ // is important for cache locality.
+
+ // Do the comparison like this because NameStart isn't necessarily
+ // null-terminated!
+ char *ItemStr = (char*)BucketItem+ItemSize;
+ unsigned ItemStrLen = BucketItem->getKeyLength();
+ if (unsigned(KeyEnd-KeyStart) == ItemStrLen &&
+ memcmp(ItemStr, KeyStart, ItemStrLen) == 0) {
+ // We found a match!
+ return BucketNo;
+ }
+ }
+
+ // Okay, we didn't find the item. Probe to the next bucket.
+ BucketNo = (BucketNo+ProbeAmt) & (HTSize-1);
+
+ // Use quadratic probing, it has fewer clumping artifacts than linear
+ // probing and has good cache behavior in the common case.
+ ++ProbeAmt;
+ }
+}
+
+/// RemoveKey - Remove the specified StringMapEntry from the table, but do not
+/// delete it. This aborts if the value isn't in the table.
+void StringMapImpl::RemoveKey(StringMapEntryBase *V) {
+ const char *VStr = (char*)V + ItemSize;
+ StringMapEntryBase *V2 = RemoveKey(VStr, VStr+V->getKeyLength());
+ V2 = V2;
+ assert(V == V2 && "Didn't find key?");
+}
+
+/// RemoveKey - Remove the StringMapEntry for the specified key from the
+/// table, returning it. If the key is not in the table, this returns null.
+StringMapEntryBase *StringMapImpl::RemoveKey(const char *KeyStart,
+ const char *KeyEnd) {
+ int Bucket = FindKey(KeyStart, KeyEnd);
+ if (Bucket == -1) return 0;
+
+ StringMapEntryBase *Result = TheTable[Bucket].Item;
+ TheTable[Bucket].Item = getTombstoneVal();
+ --NumItems;
+ ++NumTombstones;
+ return Result;
+}
+
+
+
+/// RehashTable - Grow the table, redistributing values into the buckets with
+/// the appropriate mod-of-hashtable-size.
+void StringMapImpl::RehashTable() {
+ unsigned NewSize = NumBuckets*2;
+ // Allocate one extra bucket which will always be non-empty. This allows the
+ // iterators to stop at end.
+ ItemBucket *NewTableArray =(ItemBucket*)calloc(NewSize+1, sizeof(ItemBucket));
+ NewTableArray[NewSize].Item = (StringMapEntryBase*)2;
+
+ // Rehash all the items into their new buckets. Luckily :) we already have
+ // the hash values available, so we don't have to rehash any strings.
+ for (ItemBucket *IB = TheTable, *E = TheTable+NumBuckets; IB != E; ++IB) {
+ if (IB->Item && IB->Item != getTombstoneVal()) {
+ // Fast case, bucket available.
+ unsigned FullHash = IB->FullHashValue;
+ unsigned NewBucket = FullHash & (NewSize-1);
+ if (NewTableArray[NewBucket].Item == 0) {
+ NewTableArray[FullHash & (NewSize-1)].Item = IB->Item;
+ NewTableArray[FullHash & (NewSize-1)].FullHashValue = FullHash;
+ continue;
+ }
+
+ // Otherwise probe for a spot.
+ unsigned ProbeSize = 1;
+ do {
+ NewBucket = (NewBucket + ProbeSize++) & (NewSize-1);
+ } while (NewTableArray[NewBucket].Item);
+
+ // Finally found a slot. Fill it in.
+ NewTableArray[NewBucket].Item = IB->Item;
+ NewTableArray[NewBucket].FullHashValue = FullHash;
+ }
+ }
+
+ free(TheTable);
+
+ TheTable = NewTableArray;
+ NumBuckets = NewSize;
+}
diff --git a/lib/Support/StringPool.cpp b/lib/Support/StringPool.cpp
new file mode 100644
index 0000000..b9c1fd0
--- /dev/null
+++ b/lib/Support/StringPool.cpp
@@ -0,0 +1,35 @@
+//===-- StringPool.cpp - Interned string pool -----------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the StringPool class.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Support/StringPool.h"
+#include "llvm/Support/Streams.h"
+
+using namespace llvm;
+
+StringPool::StringPool() {}
+
+StringPool::~StringPool() {
+ assert(InternTable.empty() && "PooledStringPtr leaked!");
+}
+
+PooledStringPtr StringPool::intern(const char *Begin, const char *End) {
+ table_t::iterator I = InternTable.find(Begin, End);
+ if (I != InternTable.end())
+ return PooledStringPtr(&*I);
+
+ entry_t *S = entry_t::Create(Begin, End);
+ S->getValue().Pool = this;
+ InternTable.insert(S);
+
+ return PooledStringPtr(S);
+}
diff --git a/lib/Support/SystemUtils.cpp b/lib/Support/SystemUtils.cpp
new file mode 100644
index 0000000..80d6e4c
--- /dev/null
+++ b/lib/Support/SystemUtils.cpp
@@ -0,0 +1,58 @@
+//===- SystemUtils.cpp - Utilities for low-level system tasks -------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains functions used to do a variety of low-level, often
+// system-specific, tasks.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Support/Streams.h"
+#include "llvm/Support/SystemUtils.h"
+#include "llvm/System/Process.h"
+#include "llvm/System/Program.h"
+#include <ostream>
+using namespace llvm;
+
+bool llvm::CheckBitcodeOutputToConsole(std::ostream* stream_to_check,
+ bool print_warning) {
+ if (stream_to_check == cout.stream() &&
+ sys::Process::StandardOutIsDisplayed()) {
+ if (print_warning) {
+ cerr << "WARNING: You're attempting to print out a bitcode file.\n"
+ << "This is inadvisable as it may cause display problems. If\n"
+ << "you REALLY want to taste LLVM bitcode first-hand, you\n"
+ << "can force output with the `-f' option.\n\n";
+ }
+ return true;
+ }
+ return false;
+}
+
+/// FindExecutable - Find a named executable, giving the argv[0] of program
+/// being executed. This allows us to find another LLVM tool if it is built
+/// into the same directory, but that directory is neither the current
+/// directory, nor in the PATH. If the executable cannot be found, return an
+/// empty string.
+///
+#undef FindExecutable // needed on windows :(
+sys::Path llvm::FindExecutable(const std::string &ExeName,
+ const std::string &ProgramPath) {
+ // First check the directory that the calling program is in. We can do this
+ // if ProgramPath contains at least one / character, indicating that it is a
+ // relative path to bugpoint itself.
+ sys::Path Result ( ProgramPath );
+ Result.eraseComponent();
+ if (!Result.isEmpty()) {
+ Result.appendComponent(ExeName);
+ if (Result.canExecute())
+ return Result;
+ }
+
+ return sys::Program::FindProgramByName(ExeName);
+}
diff --git a/lib/Support/Timer.cpp b/lib/Support/Timer.cpp
new file mode 100644
index 0000000..3c8879b
--- /dev/null
+++ b/lib/Support/Timer.cpp
@@ -0,0 +1,387 @@
+//===-- Timer.cpp - Interval Timing Support -------------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// Interval Timing implementation.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Support/Timer.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/ManagedStatic.h"
+#include "llvm/Support/Streams.h"
+#include "llvm/System/Process.h"
+#include <algorithm>
+#include <fstream>
+#include <functional>
+#include <map>
+using namespace llvm;
+
+// GetLibSupportInfoOutputFile - Return a file stream to print our output on.
+namespace llvm { extern std::ostream *GetLibSupportInfoOutputFile(); }
+
+// getLibSupportInfoOutputFilename - This ugly hack is brought to you courtesy
+// of constructor/destructor ordering being unspecified by C++. Basically the
+// problem is that a Statistic object gets destroyed, which ends up calling
+// 'GetLibSupportInfoOutputFile()' (below), which calls this function.
+// LibSupportInfoOutputFilename used to be a global variable, but sometimes it
+// would get destroyed before the Statistic, causing havoc to ensue. We "fix"
+// this by creating the string the first time it is needed and never destroying
+// it.
+static ManagedStatic<std::string> LibSupportInfoOutputFilename;
+static std::string &getLibSupportInfoOutputFilename() {
+ return *LibSupportInfoOutputFilename;
+}
+
+namespace {
+ static cl::opt<bool>
+ TrackSpace("track-memory", cl::desc("Enable -time-passes memory "
+ "tracking (this may be slow)"),
+ cl::Hidden);
+
+ static cl::opt<std::string, true>
+ InfoOutputFilename("info-output-file", cl::value_desc("filename"),
+ cl::desc("File to append -stats and -timer output to"),
+ cl::Hidden, cl::location(getLibSupportInfoOutputFilename()));
+}
+
+static TimerGroup *DefaultTimerGroup = 0;
+static TimerGroup *getDefaultTimerGroup() {
+ if (DefaultTimerGroup) return DefaultTimerGroup;
+ return DefaultTimerGroup = new TimerGroup("Miscellaneous Ungrouped Timers");
+}
+
+Timer::Timer(const std::string &N)
+ : Elapsed(0), UserTime(0), SystemTime(0), MemUsed(0), PeakMem(0), Name(N),
+ Started(false), TG(getDefaultTimerGroup()) {
+ TG->addTimer();
+}
+
+Timer::Timer(const std::string &N, TimerGroup &tg)
+ : Elapsed(0), UserTime(0), SystemTime(0), MemUsed(0), PeakMem(0), Name(N),
+ Started(false), TG(&tg) {
+ TG->addTimer();
+}
+
+Timer::Timer(const Timer &T) {
+ TG = T.TG;
+ if (TG) TG->addTimer();
+ operator=(T);
+}
+
+
+// Copy ctor, initialize with no TG member.
+Timer::Timer(bool, const Timer &T) {
+ TG = T.TG; // Avoid assertion in operator=
+ operator=(T); // Copy contents
+ TG = 0;
+}
+
+
+Timer::~Timer() {
+ if (TG) {
+ if (Started) {
+ Started = false;
+ TG->addTimerToPrint(*this);
+ }
+ TG->removeTimer();
+ }
+}
+
+static inline size_t getMemUsage() {
+ if (TrackSpace)
+ return sys::Process::GetMallocUsage();
+ return 0;
+}
+
+struct TimeRecord {
+ double Elapsed, UserTime, SystemTime;
+ ssize_t MemUsed;
+};
+
+static TimeRecord getTimeRecord(bool Start) {
+ TimeRecord Result;
+
+ sys::TimeValue now(0,0);
+ sys::TimeValue user(0,0);
+ sys::TimeValue sys(0,0);
+
+ ssize_t MemUsed = 0;
+ if (Start) {
+ MemUsed = getMemUsage();
+ sys::Process::GetTimeUsage(now,user,sys);
+ } else {
+ sys::Process::GetTimeUsage(now,user,sys);
+ MemUsed = getMemUsage();
+ }
+
+ Result.Elapsed = now.seconds() + now.microseconds() / 1000000.0;
+ Result.UserTime = user.seconds() + user.microseconds() / 1000000.0;
+ Result.SystemTime = sys.seconds() + sys.microseconds() / 1000000.0;
+ Result.MemUsed = MemUsed;
+
+ return Result;
+}
+
+static ManagedStatic<std::vector<Timer*> > ActiveTimers;
+
+void Timer::startTimer() {
+ Started = true;
+ ActiveTimers->push_back(this);
+ TimeRecord TR = getTimeRecord(true);
+ Elapsed -= TR.Elapsed;
+ UserTime -= TR.UserTime;
+ SystemTime -= TR.SystemTime;
+ MemUsed -= TR.MemUsed;
+ PeakMemBase = TR.MemUsed;
+}
+
+void Timer::stopTimer() {
+ TimeRecord TR = getTimeRecord(false);
+ Elapsed += TR.Elapsed;
+ UserTime += TR.UserTime;
+ SystemTime += TR.SystemTime;
+ MemUsed += TR.MemUsed;
+
+ if (ActiveTimers->back() == this) {
+ ActiveTimers->pop_back();
+ } else {
+ std::vector<Timer*>::iterator I =
+ std::find(ActiveTimers->begin(), ActiveTimers->end(), this);
+ assert(I != ActiveTimers->end() && "stop but no startTimer?");
+ ActiveTimers->erase(I);
+ }
+}
+
+void Timer::sum(const Timer &T) {
+ Elapsed += T.Elapsed;
+ UserTime += T.UserTime;
+ SystemTime += T.SystemTime;
+ MemUsed += T.MemUsed;
+ PeakMem += T.PeakMem;
+}
+
+/// addPeakMemoryMeasurement - This method should be called whenever memory
+/// usage needs to be checked. It adds a peak memory measurement to the
+/// currently active timers, which will be printed when the timer group prints
+///
+void Timer::addPeakMemoryMeasurement() {
+ size_t MemUsed = getMemUsage();
+
+ for (std::vector<Timer*>::iterator I = ActiveTimers->begin(),
+ E = ActiveTimers->end(); I != E; ++I)
+ (*I)->PeakMem = std::max((*I)->PeakMem, MemUsed-(*I)->PeakMemBase);
+}
+
+//===----------------------------------------------------------------------===//
+// NamedRegionTimer Implementation
+//===----------------------------------------------------------------------===//
+
+namespace {
+
+typedef std::map<std::string, Timer> Name2Timer;
+typedef std::map<std::string, std::pair<TimerGroup, Name2Timer> > Name2Pair;
+
+}
+
+static ManagedStatic<Name2Timer> NamedTimers;
+
+static ManagedStatic<Name2Pair> NamedGroupedTimers;
+
+static Timer &getNamedRegionTimer(const std::string &Name) {
+ Name2Timer::iterator I = NamedTimers->find(Name);
+ if (I != NamedTimers->end())
+ return I->second;
+
+ return NamedTimers->insert(I, std::make_pair(Name, Timer(Name)))->second;
+}
+
+static Timer &getNamedRegionTimer(const std::string &Name,
+ const std::string &GroupName) {
+
+ Name2Pair::iterator I = NamedGroupedTimers->find(GroupName);
+ if (I == NamedGroupedTimers->end()) {
+ TimerGroup TG(GroupName);
+ std::pair<TimerGroup, Name2Timer> Pair(TG, Name2Timer());
+ I = NamedGroupedTimers->insert(I, std::make_pair(GroupName, Pair));
+ }
+
+ Name2Timer::iterator J = I->second.second.find(Name);
+ if (J == I->second.second.end())
+ J = I->second.second.insert(J,
+ std::make_pair(Name,
+ Timer(Name,
+ I->second.first)));
+
+ return J->second;
+}
+
+NamedRegionTimer::NamedRegionTimer(const std::string &Name)
+ : TimeRegion(getNamedRegionTimer(Name)) {}
+
+NamedRegionTimer::NamedRegionTimer(const std::string &Name,
+ const std::string &GroupName)
+ : TimeRegion(getNamedRegionTimer(Name, GroupName)) {}
+
+//===----------------------------------------------------------------------===//
+// TimerGroup Implementation
+//===----------------------------------------------------------------------===//
+
+// printAlignedFP - Simulate the printf "%A.Bf" format, where A is the
+// TotalWidth size, and B is the AfterDec size.
+//
+static void printAlignedFP(double Val, unsigned AfterDec, unsigned TotalWidth,
+ std::ostream &OS) {
+ assert(TotalWidth >= AfterDec+1 && "Bad FP Format!");
+ OS.width(TotalWidth-AfterDec-1);
+ char OldFill = OS.fill();
+ OS.fill(' ');
+ OS << (int)Val; // Integer part;
+ OS << ".";
+ OS.width(AfterDec);
+ OS.fill('0');
+ unsigned ResultFieldSize = 1;
+ while (AfterDec--) ResultFieldSize *= 10;
+ OS << (int)(Val*ResultFieldSize) % ResultFieldSize;
+ OS.fill(OldFill);
+}
+
+static void printVal(double Val, double Total, std::ostream &OS) {
+ if (Total < 1e-7) // Avoid dividing by zero...
+ OS << " ----- ";
+ else {
+ OS << " ";
+ printAlignedFP(Val, 4, 7, OS);
+ OS << " (";
+ printAlignedFP(Val*100/Total, 1, 5, OS);
+ OS << "%)";
+ }
+}
+
+void Timer::print(const Timer &Total, std::ostream &OS) {
+ if (Total.UserTime)
+ printVal(UserTime, Total.UserTime, OS);
+ if (Total.SystemTime)
+ printVal(SystemTime, Total.SystemTime, OS);
+ if (Total.getProcessTime())
+ printVal(getProcessTime(), Total.getProcessTime(), OS);
+ printVal(Elapsed, Total.Elapsed, OS);
+
+ OS << " ";
+
+ if (Total.MemUsed) {
+ OS.width(9);
+ OS << MemUsed << " ";
+ }
+ if (Total.PeakMem) {
+ if (PeakMem) {
+ OS.width(9);
+ OS << PeakMem << " ";
+ } else
+ OS << " ";
+ }
+ OS << Name << "\n";
+
+ Started = false; // Once printed, don't print again
+}
+
+// GetLibSupportInfoOutputFile - Return a file stream to print our output on...
+std::ostream *
+llvm::GetLibSupportInfoOutputFile() {
+ std::string &LibSupportInfoOutputFilename = getLibSupportInfoOutputFilename();
+ if (LibSupportInfoOutputFilename.empty())
+ return cerr.stream();
+ if (LibSupportInfoOutputFilename == "-")
+ return cout.stream();
+
+ std::ostream *Result = new std::ofstream(LibSupportInfoOutputFilename.c_str(),
+ std::ios::app);
+ if (!Result->good()) {
+ cerr << "Error opening info-output-file '"
+ << LibSupportInfoOutputFilename << " for appending!\n";
+ delete Result;
+ return cerr.stream();
+ }
+ return Result;
+}
+
+
+void TimerGroup::removeTimer() {
+ if (--NumTimers == 0 && !TimersToPrint.empty()) { // Print timing report...
+ // Sort the timers in descending order by amount of time taken...
+ std::sort(TimersToPrint.begin(), TimersToPrint.end(),
+ std::greater<Timer>());
+
+ // Figure out how many spaces to indent TimerGroup name...
+ unsigned Padding = (80-Name.length())/2;
+ if (Padding > 80) Padding = 0; // Don't allow "negative" numbers
+
+ std::ostream *OutStream = GetLibSupportInfoOutputFile();
+
+ ++NumTimers;
+ { // Scope to contain Total timer... don't allow total timer to drop us to
+ // zero timers...
+ Timer Total("TOTAL");
+
+ for (unsigned i = 0, e = TimersToPrint.size(); i != e; ++i)
+ Total.sum(TimersToPrint[i]);
+
+ // Print out timing header...
+ *OutStream << "===" << std::string(73, '-') << "===\n"
+ << std::string(Padding, ' ') << Name << "\n"
+ << "===" << std::string(73, '-')
+ << "===\n";
+
+ // If this is not an collection of ungrouped times, print the total time.
+ // Ungrouped timers don't really make sense to add up. We still print the
+ // TOTAL line to make the percentages make sense.
+ if (this != DefaultTimerGroup) {
+ *OutStream << " Total Execution Time: ";
+
+ printAlignedFP(Total.getProcessTime(), 4, 5, *OutStream);
+ *OutStream << " seconds (";
+ printAlignedFP(Total.getWallTime(), 4, 5, *OutStream);
+ *OutStream << " wall clock)\n";
+ }
+ *OutStream << "\n";
+
+ if (Total.UserTime)
+ *OutStream << " ---User Time---";
+ if (Total.SystemTime)
+ *OutStream << " --System Time--";
+ if (Total.getProcessTime())
+ *OutStream << " --User+System--";
+ *OutStream << " ---Wall Time---";
+ if (Total.getMemUsed())
+ *OutStream << " ---Mem---";
+ if (Total.getPeakMem())
+ *OutStream << " -PeakMem-";
+ *OutStream << " --- Name ---\n";
+
+ // Loop through all of the timing data, printing it out...
+ for (unsigned i = 0, e = TimersToPrint.size(); i != e; ++i)
+ TimersToPrint[i].print(Total, *OutStream);
+
+ Total.print(Total, *OutStream);
+ *OutStream << std::endl; // Flush output
+ }
+ --NumTimers;
+
+ TimersToPrint.clear();
+
+ if (OutStream != cerr.stream() && OutStream != cout.stream())
+ delete OutStream; // Close the file...
+ }
+
+ // Delete default timer group!
+ if (NumTimers == 0 && this == DefaultTimerGroup) {
+ delete DefaultTimerGroup;
+ DefaultTimerGroup = 0;
+ }
+}
+
diff --git a/lib/Support/Triple.cpp b/lib/Support/Triple.cpp
new file mode 100644
index 0000000..e8cf69d
--- /dev/null
+++ b/lib/Support/Triple.cpp
@@ -0,0 +1,187 @@
+//===--- Triple.cpp - Target triple helper class --------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/ADT/Triple.h"
+#include <cassert>
+#include <cstring>
+using namespace llvm;
+
+//
+
+const char *Triple::getArchTypeName(ArchType Kind) {
+ switch (Kind) {
+ case InvalidArch: return "<invalid>";
+ case UnknownArch: return "unknown";
+
+ case x86: return "i386";
+ case x86_64: return "x86_64";
+ case ppc: return "powerpc";
+ case ppc64: return "powerpc64";
+ }
+
+ return "<invalid>";
+}
+
+const char *Triple::getVendorTypeName(VendorType Kind) {
+ switch (Kind) {
+ case UnknownVendor: return "unknown";
+
+ case Apple: return "apple";
+ case PC: return "PC";
+ }
+
+ return "<invalid>";
+}
+
+const char *Triple::getOSTypeName(OSType Kind) {
+ switch (Kind) {
+ case UnknownOS: return "unknown";
+
+ case Darwin: return "darwin";
+ case DragonFly: return "dragonfly";
+ case FreeBSD: return "freebsd";
+ case Linux: return "linux";
+ }
+
+ return "<invalid>";
+}
+
+//
+
+void Triple::Parse() const {
+ assert(!isInitialized() && "Invalid parse call.");
+
+ std::string ArchName = getArchName();
+ if (ArchName.size() == 4 && ArchName[0] == 'i' &&
+ ArchName[2] == '8' && ArchName[3] == '6')
+ Arch = x86;
+ else if (ArchName == "amd64" || ArchName == "x86_64")
+ Arch = x86_64;
+ else if (ArchName == "powerpc")
+ Arch = ppc;
+ else if (ArchName == "powerpc64")
+ Arch = ppc64;
+ else
+ Arch = UnknownArch;
+
+ std::string VendorName = getVendorName();
+ if (VendorName == "apple")
+ Vendor = Apple;
+ else if (VendorName == "pc")
+ Vendor = PC;
+ else
+ Vendor = UnknownVendor;
+
+ std::string OSName = getOSName();
+ if (memcmp(&OSName[0], "darwin", 6) == 0)
+ OS = Darwin;
+ else if (memcmp(&OSName[0], "dragonfly", 9) == 0)
+ OS = DragonFly;
+ else if (memcmp(&OSName[0], "freebsd", 7) == 0)
+ OS = FreeBSD;
+ else if (memcmp(&OSName[0], "linux", 5) == 0)
+ OS = Linux;
+ else
+ OS = UnknownOS;
+
+ assert(isInitialized() && "Failed to initialize!");
+}
+
+static std::string extract(const std::string &A,
+ std::string::size_type begin,
+ std::string::size_type end) {
+ if (begin == std::string::npos)
+ return "";
+ if (end == std::string::npos)
+ return A.substr(begin);
+ return A.substr(begin, end - begin);
+}
+
+static std::string extract1(const std::string &A,
+ std::string::size_type begin,
+ std::string::size_type end) {
+ if (begin == std::string::npos || begin == end)
+ return "";
+ return extract(A, begin + 1, end);
+}
+
+std::string Triple::getArchName() const {
+ std::string Tmp = Data;
+ return extract(Tmp, 0, Tmp.find('-'));
+}
+
+std::string Triple::getVendorName() const {
+ std::string Tmp = Data;
+ Tmp = extract1(Tmp, Tmp.find('-'), std::string::npos);
+ return extract(Tmp, 0, Tmp.find('-'));
+}
+
+std::string Triple::getOSName() const {
+ std::string Tmp = Data;
+ Tmp = extract1(Tmp, Tmp.find('-'), std::string::npos);
+ Tmp = extract1(Tmp, Tmp.find('-'), std::string::npos);
+ return extract(Tmp, 0, Tmp.find('-'));
+}
+
+std::string Triple::getEnvironmentName() const {
+ std::string Tmp = Data;
+ Tmp = extract1(Tmp, Tmp.find('-'), std::string::npos);
+ Tmp = extract1(Tmp, Tmp.find('-'), std::string::npos);
+ Tmp = extract1(Tmp, Tmp.find('-'), std::string::npos);
+ return extract(Tmp, 0, std::string::npos);
+}
+
+std::string Triple::getOSAndEnvironmentName() const {
+ std::string Tmp = Data;
+ Tmp = extract1(Tmp, Tmp.find('-'), std::string::npos);
+ Tmp = extract1(Tmp, Tmp.find('-'), std::string::npos);
+ return extract(Tmp, 0, std::string::npos);
+}
+
+void Triple::setTriple(const std::string &Str) {
+ Data = Str;
+ Arch = InvalidArch;
+}
+
+void Triple::setArch(ArchType Kind) {
+ setArchName(getArchTypeName(Kind));
+}
+
+void Triple::setVendor(VendorType Kind) {
+ setVendorName(getVendorTypeName(Kind));
+}
+
+void Triple::setOS(OSType Kind) {
+ setOSName(getOSTypeName(Kind));
+}
+
+void Triple::setArchName(const std::string &Str) {
+ setTriple(Str + "-" + getVendorName() + "-" + getOSAndEnvironmentName());
+}
+
+void Triple::setVendorName(const std::string &Str) {
+ setTriple(getArchName() + "-" + Str + "-" + getOSAndEnvironmentName());
+}
+
+void Triple::setOSName(const std::string &Str) {
+ if (hasEnvironment())
+ setTriple(getArchName() + "-" + getVendorName() + "-" + Str +
+ "-" + getEnvironmentName());
+ else
+ setTriple(getArchName() + "-" + getVendorName() + "-" + Str);
+}
+
+void Triple::setEnvironmentName(const std::string &Str) {
+ setTriple(getArchName() + "-" + getVendorName() + "-" + getOSName() +
+ "-" + Str);
+}
+
+void Triple::setOSAndEnvironmentName(const std::string &Str) {
+ setTriple(getArchName() + "-" + getVendorName() + "-" + Str);
+}
diff --git a/lib/Support/raw_ostream.cpp b/lib/Support/raw_ostream.cpp
new file mode 100644
index 0000000..6ac37bc
--- /dev/null
+++ b/lib/Support/raw_ostream.cpp
@@ -0,0 +1,376 @@
+//===--- raw_ostream.cpp - Implement the raw_ostream classes --------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This implements support for bulk buffered stream output.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Support/Format.h"
+#include "llvm/System/Program.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/Config/config.h"
+#include "llvm/Support/Compiler.h"
+#include <ostream>
+
+#if defined(HAVE_UNISTD_H)
+# include <unistd.h>
+#endif
+#if defined(HAVE_FCNTL_H)
+# include <fcntl.h>
+#endif
+
+#if defined(_MSC_VER)
+#include <io.h>
+#include <fcntl.h>
+#ifndef STDIN_FILENO
+# define STDIN_FILENO 0
+#endif
+#ifndef STDOUT_FILENO
+# define STDOUT_FILENO 1
+#endif
+#ifndef STDERR_FILENO
+# define STDERR_FILENO 2
+#endif
+#endif
+
+using namespace llvm;
+
+
+// An out of line virtual method to provide a home for the class vtable.
+void raw_ostream::handle() {}
+
+raw_ostream &raw_ostream::operator<<(unsigned long N) {
+ // Zero is a special case.
+ if (N == 0)
+ return *this << '0';
+
+ char NumberBuffer[20];
+ char *EndPtr = NumberBuffer+sizeof(NumberBuffer);
+ char *CurPtr = EndPtr;
+
+ while (N) {
+ *--CurPtr = '0' + char(N % 10);
+ N /= 10;
+ }
+ return write(CurPtr, EndPtr-CurPtr);
+}
+
+raw_ostream &raw_ostream::operator<<(long N) {
+ if (N < 0) {
+ *this << '-';
+ N = -N;
+ }
+
+ return this->operator<<(static_cast<unsigned long>(N));
+}
+
+raw_ostream &raw_ostream::operator<<(unsigned long long N) {
+ // Zero is a special case.
+ if (N == 0)
+ return *this << '0';
+
+ char NumberBuffer[20];
+ char *EndPtr = NumberBuffer+sizeof(NumberBuffer);
+ char *CurPtr = EndPtr;
+
+ while (N) {
+ *--CurPtr = '0' + char(N % 10);
+ N /= 10;
+ }
+ return write(CurPtr, EndPtr-CurPtr);
+}
+
+raw_ostream &raw_ostream::operator<<(long long N) {
+ if (N < 0) {
+ *this << '-';
+ N = -N;
+ }
+
+ return this->operator<<(static_cast<unsigned long long>(N));
+}
+
+raw_ostream &raw_ostream::operator<<(const void *P) {
+ uintptr_t N = (uintptr_t) P;
+ *this << '0' << 'x';
+
+ // Zero is a special case.
+ if (N == 0)
+ return *this << '0';
+
+ char NumberBuffer[20];
+ char *EndPtr = NumberBuffer+sizeof(NumberBuffer);
+ char *CurPtr = EndPtr;
+
+ while (N) {
+ unsigned x = N % 16;
+ *--CurPtr = (x < 10 ? '0' + x : 'a' + x - 10);
+ N /= 16;
+ }
+
+ return write(CurPtr, EndPtr-CurPtr);
+}
+
+void raw_ostream::flush_nonempty() {
+ assert(OutBufCur > OutBufStart && "Invalid call to flush_nonempty.");
+ write_impl(OutBufStart, OutBufCur - OutBufStart);
+ OutBufCur = OutBufStart;
+}
+
+raw_ostream &raw_ostream::write(unsigned char C) {
+ // Group exceptional cases into a single branch.
+ if (OutBufCur >= OutBufEnd) {
+ if (Unbuffered) {
+ write_impl(reinterpret_cast<char*>(&C), 1);
+ return *this;
+ }
+
+ if (!OutBufStart)
+ SetBufferSize();
+ else
+ flush_nonempty();
+ }
+
+ *OutBufCur++ = C;
+ return *this;
+}
+
+raw_ostream &raw_ostream::write(const char *Ptr, unsigned Size) {
+ // Group exceptional cases into a single branch.
+ if (BUILTIN_EXPECT(OutBufCur+Size > OutBufEnd, false)) {
+ if (Unbuffered) {
+ write_impl(Ptr, Size);
+ return *this;
+ }
+
+ if (!OutBufStart)
+ SetBufferSize();
+ else
+ flush_nonempty();
+ }
+
+ // Handle short strings specially, memcpy isn't very good at very short
+ // strings.
+ switch (Size) {
+ case 4: OutBufCur[3] = Ptr[3]; // FALL THROUGH
+ case 3: OutBufCur[2] = Ptr[2]; // FALL THROUGH
+ case 2: OutBufCur[1] = Ptr[1]; // FALL THROUGH
+ case 1: OutBufCur[0] = Ptr[0]; // FALL THROUGH
+ case 0: break;
+ default:
+ // Normally the string to emit is shorter than the buffer.
+ if (Size <= unsigned(OutBufEnd-OutBufStart)) {
+ memcpy(OutBufCur, Ptr, Size);
+ break;
+ }
+
+ // Otherwise we are emitting a string larger than our buffer. We
+ // know we already flushed, so just write it out directly.
+ write_impl(Ptr, Size);
+ Size = 0;
+ break;
+ }
+ OutBufCur += Size;
+
+ return *this;
+}
+
+// Formatted output.
+raw_ostream &raw_ostream::operator<<(const format_object_base &Fmt) {
+ // If we have more than a few bytes left in our output buffer, try
+ // formatting directly onto its end.
+ //
+ // FIXME: This test is a bit silly, since if we don't have enough
+ // space in the buffer we will have to flush the formatted output
+ // anyway. We should just flush upfront in such cases, and use the
+ // whole buffer as our scratch pad. Note, however, that this case is
+ // also necessary for correctness on unbuffered streams.
+ unsigned NextBufferSize = 127;
+ if (OutBufEnd-OutBufCur > 3) {
+ unsigned BufferBytesLeft = OutBufEnd-OutBufCur;
+ unsigned BytesUsed = Fmt.print(OutBufCur, BufferBytesLeft);
+
+ // Common case is that we have plenty of space.
+ if (BytesUsed < BufferBytesLeft) {
+ OutBufCur += BytesUsed;
+ return *this;
+ }
+
+ // Otherwise, we overflowed and the return value tells us the size to try
+ // again with.
+ NextBufferSize = BytesUsed;
+ }
+
+ // If we got here, we didn't have enough space in the output buffer for the
+ // string. Try printing into a SmallVector that is resized to have enough
+ // space. Iterate until we win.
+ SmallVector<char, 128> V;
+
+ while (1) {
+ V.resize(NextBufferSize);
+
+ // Try formatting into the SmallVector.
+ unsigned BytesUsed = Fmt.print(&V[0], NextBufferSize);
+
+ // If BytesUsed fit into the vector, we win.
+ if (BytesUsed <= NextBufferSize)
+ return write(&V[0], BytesUsed);
+
+ // Otherwise, try again with a new size.
+ assert(BytesUsed > NextBufferSize && "Didn't grow buffer!?");
+ NextBufferSize = BytesUsed;
+ }
+}
+
+//===----------------------------------------------------------------------===//
+// Formatted Output
+//===----------------------------------------------------------------------===//
+
+// Out of line virtual method.
+void format_object_base::home() {
+}
+
+//===----------------------------------------------------------------------===//
+// raw_fd_ostream
+//===----------------------------------------------------------------------===//
+
+/// raw_fd_ostream - Open the specified file for writing. If an error
+/// occurs, information about the error is put into ErrorInfo, and the
+/// stream should be immediately destroyed; the string will be empty
+/// if no error occurred.
+raw_fd_ostream::raw_fd_ostream(const char *Filename, bool Binary,
+ std::string &ErrorInfo) : pos(0) {
+ ErrorInfo.clear();
+
+ // Handle "-" as stdout.
+ if (Filename[0] == '-' && Filename[1] == 0) {
+ FD = STDOUT_FILENO;
+ // If user requested binary then put stdout into binary mode if
+ // possible.
+ if (Binary)
+ sys::Program::ChangeStdoutToBinary();
+ ShouldClose = false;
+ return;
+ }
+
+ int Flags = O_WRONLY|O_CREAT|O_TRUNC;
+#ifdef O_BINARY
+ if (Binary)
+ Flags |= O_BINARY;
+#endif
+ FD = open(Filename, Flags, 0644);
+ if (FD < 0) {
+ ErrorInfo = "Error opening output file '" + std::string(Filename) + "'";
+ ShouldClose = false;
+ } else {
+ ShouldClose = true;
+ }
+}
+
+raw_fd_ostream::~raw_fd_ostream() {
+ if (FD >= 0) {
+ flush();
+ if (ShouldClose)
+ ::close(FD);
+ }
+}
+
+void raw_fd_ostream::write_impl(const char *Ptr, unsigned Size) {
+ assert (FD >= 0 && "File already closed.");
+ pos += Size;
+ ::write(FD, Ptr, Size);
+}
+
+void raw_fd_ostream::close() {
+ assert (ShouldClose);
+ ShouldClose = false;
+ flush();
+ ::close(FD);
+ FD = -1;
+}
+
+uint64_t raw_fd_ostream::seek(uint64_t off) {
+ flush();
+ pos = lseek(FD, off, SEEK_SET);
+ return pos;
+}
+
+//===----------------------------------------------------------------------===//
+// raw_stdout/err_ostream
+//===----------------------------------------------------------------------===//
+
+raw_stdout_ostream::raw_stdout_ostream():raw_fd_ostream(STDOUT_FILENO, false) {}
+raw_stderr_ostream::raw_stderr_ostream():raw_fd_ostream(STDERR_FILENO, false,
+ true) {}
+
+// An out of line virtual method to provide a home for the class vtable.
+void raw_stdout_ostream::handle() {}
+void raw_stderr_ostream::handle() {}
+
+/// outs() - This returns a reference to a raw_ostream for standard output.
+/// Use it like: outs() << "foo" << "bar";
+raw_ostream &llvm::outs() {
+ static raw_stdout_ostream S;
+ return S;
+}
+
+/// errs() - This returns a reference to a raw_ostream for standard error.
+/// Use it like: errs() << "foo" << "bar";
+raw_ostream &llvm::errs() {
+ static raw_stderr_ostream S;
+ return S;
+}
+
+//===----------------------------------------------------------------------===//
+// raw_os_ostream
+//===----------------------------------------------------------------------===//
+
+raw_os_ostream::~raw_os_ostream() {
+ flush();
+}
+
+void raw_os_ostream::write_impl(const char *Ptr, unsigned Size) {
+ OS.write(Ptr, Size);
+}
+
+uint64_t raw_os_ostream::current_pos() { return OS.tellp(); }
+
+uint64_t raw_os_ostream::tell() {
+ return (uint64_t)OS.tellp() + GetNumBytesInBuffer();
+}
+
+//===----------------------------------------------------------------------===//
+// raw_string_ostream
+//===----------------------------------------------------------------------===//
+
+raw_string_ostream::~raw_string_ostream() {
+ flush();
+}
+
+void raw_string_ostream::write_impl(const char *Ptr, unsigned Size) {
+ OS.append(Ptr, Size);
+}
+
+//===----------------------------------------------------------------------===//
+// raw_svector_ostream
+//===----------------------------------------------------------------------===//
+
+raw_svector_ostream::~raw_svector_ostream() {
+ flush();
+}
+
+void raw_svector_ostream::write_impl(const char *Ptr, unsigned Size) {
+ OS.append(Ptr, Ptr + Size);
+}
+
+uint64_t raw_svector_ostream::current_pos() { return OS.size(); }
+
+uint64_t raw_svector_ostream::tell() {
+ return OS.size() + GetNumBytesInBuffer();
+}
OpenPOWER on IntegriCloud