diff options
Diffstat (limited to 'lib/Support/APFloat.cpp')
-rw-r--r-- | lib/Support/APFloat.cpp | 348 |
1 files changed, 348 insertions, 0 deletions
diff --git a/lib/Support/APFloat.cpp b/lib/Support/APFloat.cpp index b9b323c..1e6d22f 100644 --- a/lib/Support/APFloat.cpp +++ b/lib/Support/APFloat.cpp @@ -3139,6 +3139,60 @@ APFloat::initFromAPInt(const APInt& api, bool isIEEE) llvm_unreachable(0); } +APFloat APFloat::getLargest(const fltSemantics &Sem, bool Negative) { + APFloat Val(Sem, fcNormal, Negative); + + // We want (in interchange format): + // sign = {Negative} + // exponent = 1..10 + // significand = 1..1 + + Val.exponent = Sem.maxExponent; // unbiased + + // 1-initialize all bits.... + Val.zeroSignificand(); + integerPart *significand = Val.significandParts(); + unsigned N = partCountForBits(Sem.precision); + for (unsigned i = 0; i != N; ++i) + significand[i] = ~((integerPart) 0); + + // ...and then clear the top bits for internal consistency. + significand[N-1] + &= (((integerPart) 1) << ((Sem.precision % integerPartWidth) - 1)) - 1; + + return Val; +} + +APFloat APFloat::getSmallest(const fltSemantics &Sem, bool Negative) { + APFloat Val(Sem, fcNormal, Negative); + + // We want (in interchange format): + // sign = {Negative} + // exponent = 0..0 + // significand = 0..01 + + Val.exponent = Sem.minExponent; // unbiased + Val.zeroSignificand(); + Val.significandParts()[0] = 1; + return Val; +} + +APFloat APFloat::getSmallestNormalized(const fltSemantics &Sem, bool Negative) { + APFloat Val(Sem, fcNormal, Negative); + + // We want (in interchange format): + // sign = {Negative} + // exponent = 0..0 + // significand = 10..0 + + Val.exponent = Sem.minExponent; + Val.zeroSignificand(); + Val.significandParts()[partCountForBits(Sem.precision)-1] + |= (((integerPart) 1) << ((Sem.precision % integerPartWidth) - 1)); + + return Val; +} + APFloat::APFloat(const APInt& api, bool isIEEE) { initFromAPInt(api, isIEEE); @@ -3155,3 +3209,297 @@ APFloat::APFloat(double d) APInt api = APInt(64, 0); initFromAPInt(api.doubleToBits(d)); } + +namespace { + static void append(SmallVectorImpl<char> &Buffer, + unsigned N, const char *Str) { + unsigned Start = Buffer.size(); + Buffer.set_size(Start + N); + memcpy(&Buffer[Start], Str, N); + } + + template <unsigned N> + void append(SmallVectorImpl<char> &Buffer, const char (&Str)[N]) { + append(Buffer, N, Str); + } + + /// Removes data from the given significand until it is no more + /// precise than is required for the desired precision. + void AdjustToPrecision(APInt &significand, + int &exp, unsigned FormatPrecision) { + unsigned bits = significand.getActiveBits(); + + // 196/59 is a very slight overestimate of lg_2(10). + unsigned bitsRequired = (FormatPrecision * 196 + 58) / 59; + + if (bits <= bitsRequired) return; + + unsigned tensRemovable = (bits - bitsRequired) * 59 / 196; + if (!tensRemovable) return; + + exp += tensRemovable; + + APInt divisor(significand.getBitWidth(), 1); + APInt powten(significand.getBitWidth(), 10); + while (true) { + if (tensRemovable & 1) + divisor *= powten; + tensRemovable >>= 1; + if (!tensRemovable) break; + powten *= powten; + } + + significand = significand.udiv(divisor); + + // Truncate the significand down to its active bit count, but + // don't try to drop below 32. + unsigned newPrecision = std::max(32U, significand.getActiveBits()); + significand.trunc(newPrecision); + } + + + void AdjustToPrecision(SmallVectorImpl<char> &buffer, + int &exp, unsigned FormatPrecision) { + unsigned N = buffer.size(); + if (N <= FormatPrecision) return; + + // The most significant figures are the last ones in the buffer. + unsigned FirstSignificant = N - FormatPrecision; + + // Round. + // FIXME: this probably shouldn't use 'round half up'. + + // Rounding down is just a truncation, except we also want to drop + // trailing zeros from the new result. + if (buffer[FirstSignificant - 1] < '5') { + while (buffer[FirstSignificant] == '0') + FirstSignificant++; + + exp += FirstSignificant; + buffer.erase(&buffer[0], &buffer[FirstSignificant]); + return; + } + + // Rounding up requires a decimal add-with-carry. If we continue + // the carry, the newly-introduced zeros will just be truncated. + for (unsigned I = FirstSignificant; I != N; ++I) { + if (buffer[I] == '9') { + FirstSignificant++; + } else { + buffer[I]++; + break; + } + } + + // If we carried through, we have exactly one digit of precision. + if (FirstSignificant == N) { + exp += FirstSignificant; + buffer.clear(); + buffer.push_back('1'); + return; + } + + exp += FirstSignificant; + buffer.erase(&buffer[0], &buffer[FirstSignificant]); + } +} + +void APFloat::toString(SmallVectorImpl<char> &Str, + unsigned FormatPrecision, + unsigned FormatMaxPadding) { + switch (category) { + case fcInfinity: + if (isNegative()) + return append(Str, "-Inf"); + else + return append(Str, "+Inf"); + + case fcNaN: return append(Str, "NaN"); + + case fcZero: + if (isNegative()) + Str.push_back('-'); + + if (!FormatMaxPadding) + append(Str, "0.0E+0"); + else + Str.push_back('0'); + return; + + case fcNormal: + break; + } + + if (isNegative()) + Str.push_back('-'); + + // Decompose the number into an APInt and an exponent. + int exp = exponent - ((int) semantics->precision - 1); + APInt significand(semantics->precision, + partCountForBits(semantics->precision), + significandParts()); + + // Set FormatPrecision if zero. We want to do this before we + // truncate trailing zeros, as those are part of the precision. + if (!FormatPrecision) { + // It's an interesting question whether to use the nominal + // precision or the active precision here for denormals. + + // FormatPrecision = ceil(significandBits / lg_2(10)) + FormatPrecision = (semantics->precision * 59 + 195) / 196; + } + + // Ignore trailing binary zeros. + int trailingZeros = significand.countTrailingZeros(); + exp += trailingZeros; + significand = significand.lshr(trailingZeros); + + // Change the exponent from 2^e to 10^e. + if (exp == 0) { + // Nothing to do. + } else if (exp > 0) { + // Just shift left. + significand.zext(semantics->precision + exp); + significand <<= exp; + exp = 0; + } else { /* exp < 0 */ + int texp = -exp; + + // We transform this using the identity: + // (N)(2^-e) == (N)(5^e)(10^-e) + // This means we have to multiply N (the significand) by 5^e. + // To avoid overflow, we have to operate on numbers large + // enough to store N * 5^e: + // log2(N * 5^e) == log2(N) + e * log2(5) + // <= semantics->precision + e * 137 / 59 + // (log_2(5) ~ 2.321928 < 2.322034 ~ 137/59) + + unsigned precision = semantics->precision + 137 * texp / 59; + + // Multiply significand by 5^e. + // N * 5^0101 == N * 5^(1*1) * 5^(0*2) * 5^(1*4) * 5^(0*8) + significand.zext(precision); + APInt five_to_the_i(precision, 5); + while (true) { + if (texp & 1) significand *= five_to_the_i; + + texp >>= 1; + if (!texp) break; + five_to_the_i *= five_to_the_i; + } + } + + AdjustToPrecision(significand, exp, FormatPrecision); + + llvm::SmallVector<char, 256> buffer; + + // Fill the buffer. + unsigned precision = significand.getBitWidth(); + APInt ten(precision, 10); + APInt digit(precision, 0); + + bool inTrail = true; + while (significand != 0) { + // digit <- significand % 10 + // significand <- significand / 10 + APInt::udivrem(significand, ten, significand, digit); + + unsigned d = digit.getZExtValue(); + + // Drop trailing zeros. + if (inTrail && !d) exp++; + else { + buffer.push_back((char) ('0' + d)); + inTrail = false; + } + } + + assert(!buffer.empty() && "no characters in buffer!"); + + // Drop down to FormatPrecision. + // TODO: don't do more precise calculations above than are required. + AdjustToPrecision(buffer, exp, FormatPrecision); + + unsigned NDigits = buffer.size(); + + // Check whether we should use scientific notation. + bool FormatScientific; + if (!FormatMaxPadding) + FormatScientific = true; + else { + if (exp >= 0) { + // 765e3 --> 765000 + // ^^^ + // But we shouldn't make the number look more precise than it is. + FormatScientific = ((unsigned) exp > FormatMaxPadding || + NDigits + (unsigned) exp > FormatPrecision); + } else { + // Power of the most significant digit. + int MSD = exp + (int) (NDigits - 1); + if (MSD >= 0) { + // 765e-2 == 7.65 + FormatScientific = false; + } else { + // 765e-5 == 0.00765 + // ^ ^^ + FormatScientific = ((unsigned) -MSD) > FormatMaxPadding; + } + } + } + + // Scientific formatting is pretty straightforward. + if (FormatScientific) { + exp += (NDigits - 1); + + Str.push_back(buffer[NDigits-1]); + Str.push_back('.'); + if (NDigits == 1) + Str.push_back('0'); + else + for (unsigned I = 1; I != NDigits; ++I) + Str.push_back(buffer[NDigits-1-I]); + Str.push_back('E'); + + Str.push_back(exp >= 0 ? '+' : '-'); + if (exp < 0) exp = -exp; + SmallVector<char, 6> expbuf; + do { + expbuf.push_back((char) ('0' + (exp % 10))); + exp /= 10; + } while (exp); + for (unsigned I = 0, E = expbuf.size(); I != E; ++I) + Str.push_back(expbuf[E-1-I]); + return; + } + + // Non-scientific, positive exponents. + if (exp >= 0) { + for (unsigned I = 0; I != NDigits; ++I) + Str.push_back(buffer[NDigits-1-I]); + for (unsigned I = 0; I != (unsigned) exp; ++I) + Str.push_back('0'); + return; + } + + // Non-scientific, negative exponents. + + // The number of digits to the left of the decimal point. + int NWholeDigits = exp + (int) NDigits; + + unsigned I = 0; + if (NWholeDigits > 0) { + for (; I != (unsigned) NWholeDigits; ++I) + Str.push_back(buffer[NDigits-I-1]); + Str.push_back('.'); + } else { + unsigned NZeros = 1 + (unsigned) -NWholeDigits; + + Str.push_back('0'); + Str.push_back('.'); + for (unsigned Z = 1; Z != NZeros; ++Z) + Str.push_back('0'); + } + + for (; I != NDigits; ++I) + Str.push_back(buffer[NDigits-I-1]); +} |