diff options
Diffstat (limited to 'lib/StaticAnalyzer/Core/ExprEngine.cpp')
-rw-r--r-- | lib/StaticAnalyzer/Core/ExprEngine.cpp | 3217 |
1 files changed, 3217 insertions, 0 deletions
diff --git a/lib/StaticAnalyzer/Core/ExprEngine.cpp b/lib/StaticAnalyzer/Core/ExprEngine.cpp new file mode 100644 index 0000000..657420d --- /dev/null +++ b/lib/StaticAnalyzer/Core/ExprEngine.cpp @@ -0,0 +1,3217 @@ +//=-- ExprEngine.cpp - Path-Sensitive Expression-Level Dataflow ---*- C++ -*-= +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file defines a meta-engine for path-sensitive dataflow analysis that +// is built on GREngine, but provides the boilerplate to execute transfer +// functions and build the ExplodedGraph at the expression level. +// +//===----------------------------------------------------------------------===// + +#include "clang/StaticAnalyzer/Core/CheckerManager.h" +#include "clang/StaticAnalyzer/Core/BugReporter/BugType.h" +#include "clang/StaticAnalyzer/Core/PathSensitive/AnalysisManager.h" +#include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h" +#include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngineBuilders.h" +#include "clang/AST/CharUnits.h" +#include "clang/AST/ParentMap.h" +#include "clang/AST/StmtObjC.h" +#include "clang/AST/DeclCXX.h" +#include "clang/Basic/Builtins.h" +#include "clang/Basic/SourceManager.h" +#include "clang/Basic/SourceManager.h" +#include "clang/Basic/PrettyStackTrace.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/ADT/ImmutableList.h" + +#ifndef NDEBUG +#include "llvm/Support/GraphWriter.h" +#endif + +using namespace clang; +using namespace ento; +using llvm::dyn_cast; +using llvm::dyn_cast_or_null; +using llvm::cast; +using llvm::APSInt; + +namespace { + // Trait class for recording returned expression in the state. + struct ReturnExpr { + static int TagInt; + typedef const Stmt *data_type; + }; + int ReturnExpr::TagInt; +} + +//===----------------------------------------------------------------------===// +// Utility functions. +//===----------------------------------------------------------------------===// + +static inline Selector GetNullarySelector(const char* name, ASTContext& Ctx) { + IdentifierInfo* II = &Ctx.Idents.get(name); + return Ctx.Selectors.getSelector(0, &II); +} + +//===----------------------------------------------------------------------===// +// Engine construction and deletion. +//===----------------------------------------------------------------------===// + +ExprEngine::ExprEngine(AnalysisManager &mgr, TransferFuncs *tf) + : AMgr(mgr), + Engine(*this), + G(Engine.getGraph()), + Builder(NULL), + StateMgr(getContext(), mgr.getStoreManagerCreator(), + mgr.getConstraintManagerCreator(), G.getAllocator(), + *this), + SymMgr(StateMgr.getSymbolManager()), + svalBuilder(StateMgr.getSValBuilder()), + EntryNode(NULL), currentStmt(NULL), + NSExceptionII(NULL), NSExceptionInstanceRaiseSelectors(NULL), + RaiseSel(GetNullarySelector("raise", getContext())), + BR(mgr, *this), TF(tf) { + + // FIXME: Eventually remove the TF object entirely. + TF->RegisterChecks(*this); + TF->RegisterPrinters(getStateManager().Printers); + + if (mgr.shouldEagerlyTrimExplodedGraph()) { + // Enable eager node reclaimation when constructing the ExplodedGraph. + G.enableNodeReclamation(); + } +} + +ExprEngine::~ExprEngine() { + BR.FlushReports(); + delete [] NSExceptionInstanceRaiseSelectors; +} + +//===----------------------------------------------------------------------===// +// Utility methods. +//===----------------------------------------------------------------------===// + +const GRState* ExprEngine::getInitialState(const LocationContext *InitLoc) { + const GRState *state = StateMgr.getInitialState(InitLoc); + + // Preconditions. + + // FIXME: It would be nice if we had a more general mechanism to add + // such preconditions. Some day. + do { + const Decl *D = InitLoc->getDecl(); + if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { + // Precondition: the first argument of 'main' is an integer guaranteed + // to be > 0. + const IdentifierInfo *II = FD->getIdentifier(); + if (!II || !(II->getName() == "main" && FD->getNumParams() > 0)) + break; + + const ParmVarDecl *PD = FD->getParamDecl(0); + QualType T = PD->getType(); + if (!T->isIntegerType()) + break; + + const MemRegion *R = state->getRegion(PD, InitLoc); + if (!R) + break; + + SVal V = state->getSVal(loc::MemRegionVal(R)); + SVal Constraint_untested = evalBinOp(state, BO_GT, V, + svalBuilder.makeZeroVal(T), + getContext().IntTy); + + DefinedOrUnknownSVal *Constraint = + dyn_cast<DefinedOrUnknownSVal>(&Constraint_untested); + + if (!Constraint) + break; + + if (const GRState *newState = state->assume(*Constraint, true)) + state = newState; + + break; + } + + if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) { + // Precondition: 'self' is always non-null upon entry to an Objective-C + // method. + const ImplicitParamDecl *SelfD = MD->getSelfDecl(); + const MemRegion *R = state->getRegion(SelfD, InitLoc); + SVal V = state->getSVal(loc::MemRegionVal(R)); + + if (const Loc *LV = dyn_cast<Loc>(&V)) { + // Assume that the pointer value in 'self' is non-null. + state = state->assume(*LV, true); + assert(state && "'self' cannot be null"); + } + } + } while (0); + + return state; +} + +//===----------------------------------------------------------------------===// +// Top-level transfer function logic (Dispatcher). +//===----------------------------------------------------------------------===// + +/// evalAssume - Called by ConstraintManager. Used to call checker-specific +/// logic for handling assumptions on symbolic values. +const GRState *ExprEngine::processAssume(const GRState *state, SVal cond, + bool assumption) { + state = getCheckerManager().runCheckersForEvalAssume(state, cond, assumption); + + // If the state is infeasible at this point, bail out. + if (!state) + return NULL; + + return TF->evalAssume(state, cond, assumption); +} + +bool ExprEngine::wantsRegionChangeUpdate(const GRState* state) { + return getCheckerManager().wantsRegionChangeUpdate(state); +} + +const GRState * +ExprEngine::processRegionChanges(const GRState *state, + const MemRegion * const *Begin, + const MemRegion * const *End) { + return getCheckerManager().runCheckersForRegionChanges(state, Begin, End); +} + +void ExprEngine::processEndWorklist(bool hasWorkRemaining) { + getCheckerManager().runCheckersForEndAnalysis(G, BR, *this); +} + +void ExprEngine::processCFGElement(const CFGElement E, + StmtNodeBuilder& builder) { + switch (E.getKind()) { + case CFGElement::Invalid: + llvm_unreachable("Unexpected CFGElement kind."); + case CFGElement::Statement: + ProcessStmt(E.getAs<CFGStmt>()->getStmt(), builder); + return; + case CFGElement::Initializer: + ProcessInitializer(E.getAs<CFGInitializer>()->getInitializer(), builder); + return; + case CFGElement::AutomaticObjectDtor: + case CFGElement::BaseDtor: + case CFGElement::MemberDtor: + case CFGElement::TemporaryDtor: + ProcessImplicitDtor(*E.getAs<CFGImplicitDtor>(), builder); + return; + } +} + +void ExprEngine::ProcessStmt(const CFGStmt S, StmtNodeBuilder& builder) { + // Reclaim any unnecessary nodes in the ExplodedGraph. + G.reclaimRecentlyAllocatedNodes(); + // Recycle any unused states in the GRStateManager. + StateMgr.recycleUnusedStates(); + + currentStmt = S.getStmt(); + PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(), + currentStmt->getLocStart(), + "Error evaluating statement"); + + Builder = &builder; + EntryNode = builder.getPredecessor(); + + // Create the cleaned state. + const LocationContext *LC = EntryNode->getLocationContext(); + SymbolReaper SymReaper(LC, currentStmt, SymMgr); + + if (AMgr.shouldPurgeDead()) { + const GRState *St = EntryNode->getState(); + getCheckerManager().runCheckersForLiveSymbols(St, SymReaper); + + const StackFrameContext *SFC = LC->getCurrentStackFrame(); + CleanedState = StateMgr.removeDeadBindings(St, SFC, SymReaper); + } else { + CleanedState = EntryNode->getState(); + } + + // Process any special transfer function for dead symbols. + ExplodedNodeSet Tmp; + + if (!SymReaper.hasDeadSymbols()) + Tmp.Add(EntryNode); + else { + SaveAndRestore<bool> OldSink(Builder->BuildSinks); + SaveOr OldHasGen(Builder->hasGeneratedNode); + + SaveAndRestore<bool> OldPurgeDeadSymbols(Builder->PurgingDeadSymbols); + Builder->PurgingDeadSymbols = true; + + // FIXME: This should soon be removed. + ExplodedNodeSet Tmp2; + getTF().evalDeadSymbols(Tmp2, *this, *Builder, EntryNode, + CleanedState, SymReaper); + + getCheckerManager().runCheckersForDeadSymbols(Tmp, Tmp2, + SymReaper, currentStmt, *this); + + if (!Builder->BuildSinks && !Builder->hasGeneratedNode) + Tmp.Add(EntryNode); + } + + bool HasAutoGenerated = false; + + for (ExplodedNodeSet::iterator I=Tmp.begin(), E=Tmp.end(); I!=E; ++I) { + ExplodedNodeSet Dst; + + // Set the cleaned state. + Builder->SetCleanedState(*I == EntryNode ? CleanedState : GetState(*I)); + + // Visit the statement. + Visit(currentStmt, *I, Dst); + + // Do we need to auto-generate a node? We only need to do this to generate + // a node with a "cleaned" state; CoreEngine will actually handle + // auto-transitions for other cases. + if (Dst.size() == 1 && *Dst.begin() == EntryNode + && !Builder->hasGeneratedNode && !HasAutoGenerated) { + HasAutoGenerated = true; + builder.generateNode(currentStmt, GetState(EntryNode), *I); + } + } + + // NULL out these variables to cleanup. + CleanedState = NULL; + EntryNode = NULL; + + currentStmt = 0; + + Builder = NULL; +} + +void ExprEngine::ProcessInitializer(const CFGInitializer Init, + StmtNodeBuilder &builder) { + // We don't set EntryNode and currentStmt. And we don't clean up state. + const CXXCtorInitializer *BMI = Init.getInitializer(); + + ExplodedNode *pred = builder.getPredecessor(); + + const StackFrameContext *stackFrame = cast<StackFrameContext>(pred->getLocationContext()); + const CXXConstructorDecl *decl = cast<CXXConstructorDecl>(stackFrame->getDecl()); + const CXXThisRegion *thisReg = getCXXThisRegion(decl, stackFrame); + + SVal thisVal = pred->getState()->getSVal(thisReg); + + if (BMI->isAnyMemberInitializer()) { + ExplodedNodeSet Dst; + + // Evaluate the initializer. + Visit(BMI->getInit(), pred, Dst); + + for (ExplodedNodeSet::iterator I = Dst.begin(), E = Dst.end(); I != E; ++I){ + ExplodedNode *Pred = *I; + const GRState *state = Pred->getState(); + + const FieldDecl *FD = BMI->getAnyMember(); + + SVal FieldLoc = state->getLValue(FD, thisVal); + SVal InitVal = state->getSVal(BMI->getInit()); + state = state->bindLoc(FieldLoc, InitVal); + + // Use a custom node building process. + PostInitializer PP(BMI, stackFrame); + // Builder automatically add the generated node to the deferred set, + // which are processed in the builder's dtor. + builder.generateNode(PP, state, Pred); + } + return; + } + + assert(BMI->isBaseInitializer()); + + // Get the base class declaration. + const CXXConstructExpr *ctorExpr = cast<CXXConstructExpr>(BMI->getInit()); + + // Create the base object region. + SVal baseVal = + getStoreManager().evalDerivedToBase(thisVal, ctorExpr->getType()); + const MemRegion *baseReg = baseVal.getAsRegion(); + assert(baseReg); + Builder = &builder; + ExplodedNodeSet dst; + VisitCXXConstructExpr(ctorExpr, baseReg, pred, dst); +} + +void ExprEngine::ProcessImplicitDtor(const CFGImplicitDtor D, + StmtNodeBuilder &builder) { + Builder = &builder; + + switch (D.getKind()) { + case CFGElement::AutomaticObjectDtor: + ProcessAutomaticObjDtor(cast<CFGAutomaticObjDtor>(D), builder); + break; + case CFGElement::BaseDtor: + ProcessBaseDtor(cast<CFGBaseDtor>(D), builder); + break; + case CFGElement::MemberDtor: + ProcessMemberDtor(cast<CFGMemberDtor>(D), builder); + break; + case CFGElement::TemporaryDtor: + ProcessTemporaryDtor(cast<CFGTemporaryDtor>(D), builder); + break; + default: + llvm_unreachable("Unexpected dtor kind."); + } +} + +void ExprEngine::ProcessAutomaticObjDtor(const CFGAutomaticObjDtor dtor, + StmtNodeBuilder &builder) { + ExplodedNode *pred = builder.getPredecessor(); + const GRState *state = pred->getState(); + const VarDecl *varDecl = dtor.getVarDecl(); + + QualType varType = varDecl->getType(); + + if (const ReferenceType *refType = varType->getAs<ReferenceType>()) + varType = refType->getPointeeType(); + + const CXXRecordDecl *recordDecl = varType->getAsCXXRecordDecl(); + assert(recordDecl && "get CXXRecordDecl fail"); + const CXXDestructorDecl *dtorDecl = recordDecl->getDestructor(); + + Loc dest = state->getLValue(varDecl, pred->getLocationContext()); + + ExplodedNodeSet dstSet; + VisitCXXDestructor(dtorDecl, cast<loc::MemRegionVal>(dest).getRegion(), + dtor.getTriggerStmt(), pred, dstSet); +} + +void ExprEngine::ProcessBaseDtor(const CFGBaseDtor D, + StmtNodeBuilder &builder) { +} + +void ExprEngine::ProcessMemberDtor(const CFGMemberDtor D, + StmtNodeBuilder &builder) { +} + +void ExprEngine::ProcessTemporaryDtor(const CFGTemporaryDtor D, + StmtNodeBuilder &builder) { +} + +void ExprEngine::Visit(const Stmt* S, ExplodedNode* Pred, + ExplodedNodeSet& Dst) { + PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(), + S->getLocStart(), + "Error evaluating statement"); + + // Expressions to ignore. + if (const Expr *Ex = dyn_cast<Expr>(S)) + S = Ex->IgnoreParens(); + + // FIXME: add metadata to the CFG so that we can disable + // this check when we KNOW that there is no block-level subexpression. + // The motivation is that this check requires a hashtable lookup. + + if (S != currentStmt && Pred->getLocationContext()->getCFG()->isBlkExpr(S)) { + Dst.Add(Pred); + return; + } + + switch (S->getStmtClass()) { + // C++ stuff we don't support yet. + case Stmt::CXXBindTemporaryExprClass: + case Stmt::CXXCatchStmtClass: + case Stmt::CXXDependentScopeMemberExprClass: + case Stmt::CXXForRangeStmtClass: + case Stmt::CXXPseudoDestructorExprClass: + case Stmt::CXXTemporaryObjectExprClass: + case Stmt::CXXThrowExprClass: + case Stmt::CXXTryStmtClass: + case Stmt::CXXTypeidExprClass: + case Stmt::CXXUuidofExprClass: + case Stmt::CXXUnresolvedConstructExprClass: + case Stmt::CXXScalarValueInitExprClass: + case Stmt::DependentScopeDeclRefExprClass: + case Stmt::UnaryTypeTraitExprClass: + case Stmt::BinaryTypeTraitExprClass: + case Stmt::ArrayTypeTraitExprClass: + case Stmt::ExpressionTraitExprClass: + case Stmt::UnresolvedLookupExprClass: + case Stmt::UnresolvedMemberExprClass: + case Stmt::CXXNoexceptExprClass: + case Stmt::PackExpansionExprClass: + case Stmt::SubstNonTypeTemplateParmPackExprClass: + case Stmt::SEHTryStmtClass: + case Stmt::SEHExceptStmtClass: + case Stmt::SEHFinallyStmtClass: + { + SaveAndRestore<bool> OldSink(Builder->BuildSinks); + Builder->BuildSinks = true; + const ExplodedNode *node = MakeNode(Dst, S, Pred, GetState(Pred)); + Engine.addAbortedBlock(node, Builder->getBlock()); + break; + } + + // We don't handle default arguments either yet, but we can fake it + // for now by just skipping them. + case Stmt::CXXDefaultArgExprClass: { + Dst.Add(Pred); + break; + } + + case Stmt::ParenExprClass: + llvm_unreachable("ParenExprs already handled."); + case Stmt::GenericSelectionExprClass: + llvm_unreachable("GenericSelectionExprs already handled."); + // Cases that should never be evaluated simply because they shouldn't + // appear in the CFG. + case Stmt::BreakStmtClass: + case Stmt::CaseStmtClass: + case Stmt::CompoundStmtClass: + case Stmt::ContinueStmtClass: + case Stmt::DefaultStmtClass: + case Stmt::DoStmtClass: + case Stmt::ForStmtClass: + case Stmt::GotoStmtClass: + case Stmt::IfStmtClass: + case Stmt::IndirectGotoStmtClass: + case Stmt::LabelStmtClass: + case Stmt::NoStmtClass: + case Stmt::NullStmtClass: + case Stmt::SwitchStmtClass: + case Stmt::WhileStmtClass: + llvm_unreachable("Stmt should not be in analyzer evaluation loop"); + break; + + case Stmt::GNUNullExprClass: { + MakeNode(Dst, S, Pred, GetState(Pred)->BindExpr(S, svalBuilder.makeNull())); + break; + } + + case Stmt::ObjCAtSynchronizedStmtClass: + VisitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(S), Pred, Dst); + break; + + case Stmt::ObjCPropertyRefExprClass: + VisitObjCPropertyRefExpr(cast<ObjCPropertyRefExpr>(S), Pred, Dst); + break; + + // Cases not handled yet; but will handle some day. + case Stmt::DesignatedInitExprClass: + case Stmt::ExtVectorElementExprClass: + case Stmt::ImaginaryLiteralClass: + case Stmt::ImplicitValueInitExprClass: + case Stmt::ObjCAtCatchStmtClass: + case Stmt::ObjCAtFinallyStmtClass: + case Stmt::ObjCAtTryStmtClass: + case Stmt::ObjCEncodeExprClass: + case Stmt::ObjCIsaExprClass: + case Stmt::ObjCProtocolExprClass: + case Stmt::ObjCSelectorExprClass: + case Stmt::ObjCStringLiteralClass: + case Stmt::ParenListExprClass: + case Stmt::PredefinedExprClass: + case Stmt::ShuffleVectorExprClass: + case Stmt::VAArgExprClass: + case Stmt::CUDAKernelCallExprClass: + case Stmt::OpaqueValueExprClass: + // Fall through. + + // Cases we intentionally don't evaluate, since they don't need + // to be explicitly evaluated. + case Stmt::AddrLabelExprClass: + case Stmt::IntegerLiteralClass: + case Stmt::CharacterLiteralClass: + case Stmt::CXXBoolLiteralExprClass: + case Stmt::ExprWithCleanupsClass: + case Stmt::FloatingLiteralClass: + case Stmt::SizeOfPackExprClass: + case Stmt::CXXNullPtrLiteralExprClass: + Dst.Add(Pred); // No-op. Simply propagate the current state unchanged. + break; + + case Stmt::ArraySubscriptExprClass: + VisitLvalArraySubscriptExpr(cast<ArraySubscriptExpr>(S), Pred, Dst); + break; + + case Stmt::AsmStmtClass: + VisitAsmStmt(cast<AsmStmt>(S), Pred, Dst); + break; + + case Stmt::BlockDeclRefExprClass: { + const BlockDeclRefExpr *BE = cast<BlockDeclRefExpr>(S); + VisitCommonDeclRefExpr(BE, BE->getDecl(), Pred, Dst); + break; + } + + case Stmt::BlockExprClass: + VisitBlockExpr(cast<BlockExpr>(S), Pred, Dst); + break; + + case Stmt::BinaryOperatorClass: { + const BinaryOperator* B = cast<BinaryOperator>(S); + if (B->isLogicalOp()) { + VisitLogicalExpr(B, Pred, Dst); + break; + } + else if (B->getOpcode() == BO_Comma) { + const GRState* state = GetState(Pred); + MakeNode(Dst, B, Pred, state->BindExpr(B, state->getSVal(B->getRHS()))); + break; + } + + if (AMgr.shouldEagerlyAssume() && + (B->isRelationalOp() || B->isEqualityOp())) { + ExplodedNodeSet Tmp; + VisitBinaryOperator(cast<BinaryOperator>(S), Pred, Tmp); + evalEagerlyAssume(Dst, Tmp, cast<Expr>(S)); + } + else + VisitBinaryOperator(cast<BinaryOperator>(S), Pred, Dst); + + break; + } + + case Stmt::CallExprClass: + case Stmt::CXXOperatorCallExprClass: + case Stmt::CXXMemberCallExprClass: { + VisitCallExpr(cast<CallExpr>(S), Pred, Dst); + break; + } + + case Stmt::CXXConstructExprClass: { + const CXXConstructExpr *C = cast<CXXConstructExpr>(S); + // For block-level CXXConstructExpr, we don't have a destination region. + // Let VisitCXXConstructExpr() create one. + VisitCXXConstructExpr(C, 0, Pred, Dst); + break; + } + + case Stmt::CXXNewExprClass: { + const CXXNewExpr *NE = cast<CXXNewExpr>(S); + VisitCXXNewExpr(NE, Pred, Dst); + break; + } + + case Stmt::CXXDeleteExprClass: { + const CXXDeleteExpr *CDE = cast<CXXDeleteExpr>(S); + VisitCXXDeleteExpr(CDE, Pred, Dst); + break; + } + // FIXME: ChooseExpr is really a constant. We need to fix + // the CFG do not model them as explicit control-flow. + + case Stmt::ChooseExprClass: { // __builtin_choose_expr + const ChooseExpr* C = cast<ChooseExpr>(S); + VisitGuardedExpr(C, C->getLHS(), C->getRHS(), Pred, Dst); + break; + } + + case Stmt::CompoundAssignOperatorClass: + VisitBinaryOperator(cast<BinaryOperator>(S), Pred, Dst); + break; + + case Stmt::CompoundLiteralExprClass: + VisitCompoundLiteralExpr(cast<CompoundLiteralExpr>(S), Pred, Dst); + break; + + case Stmt::BinaryConditionalOperatorClass: + case Stmt::ConditionalOperatorClass: { // '?' operator + const AbstractConditionalOperator *C + = cast<AbstractConditionalOperator>(S); + VisitGuardedExpr(C, C->getTrueExpr(), C->getFalseExpr(), Pred, Dst); + break; + } + + case Stmt::CXXThisExprClass: + VisitCXXThisExpr(cast<CXXThisExpr>(S), Pred, Dst); + break; + + case Stmt::DeclRefExprClass: { + const DeclRefExpr *DE = cast<DeclRefExpr>(S); + VisitCommonDeclRefExpr(DE, DE->getDecl(), Pred, Dst); + break; + } + + case Stmt::DeclStmtClass: + VisitDeclStmt(cast<DeclStmt>(S), Pred, Dst); + break; + + case Stmt::ImplicitCastExprClass: + case Stmt::CStyleCastExprClass: + case Stmt::CXXStaticCastExprClass: + case Stmt::CXXDynamicCastExprClass: + case Stmt::CXXReinterpretCastExprClass: + case Stmt::CXXConstCastExprClass: + case Stmt::CXXFunctionalCastExprClass: { + const CastExpr* C = cast<CastExpr>(S); + VisitCast(C, C->getSubExpr(), Pred, Dst); + break; + } + + case Stmt::InitListExprClass: + VisitInitListExpr(cast<InitListExpr>(S), Pred, Dst); + break; + + case Stmt::MemberExprClass: + VisitMemberExpr(cast<MemberExpr>(S), Pred, Dst); + break; + case Stmt::ObjCIvarRefExprClass: + VisitLvalObjCIvarRefExpr(cast<ObjCIvarRefExpr>(S), Pred, Dst); + break; + + case Stmt::ObjCForCollectionStmtClass: + VisitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(S), Pred, Dst); + break; + + case Stmt::ObjCMessageExprClass: + VisitObjCMessageExpr(cast<ObjCMessageExpr>(S), Pred, Dst); + break; + + case Stmt::ObjCAtThrowStmtClass: { + // FIXME: This is not complete. We basically treat @throw as + // an abort. + SaveAndRestore<bool> OldSink(Builder->BuildSinks); + Builder->BuildSinks = true; + MakeNode(Dst, S, Pred, GetState(Pred)); + break; + } + + case Stmt::ReturnStmtClass: + VisitReturnStmt(cast<ReturnStmt>(S), Pred, Dst); + break; + + case Stmt::OffsetOfExprClass: + VisitOffsetOfExpr(cast<OffsetOfExpr>(S), Pred, Dst); + break; + + case Stmt::UnaryExprOrTypeTraitExprClass: + VisitUnaryExprOrTypeTraitExpr(cast<UnaryExprOrTypeTraitExpr>(S), + Pred, Dst); + break; + + case Stmt::StmtExprClass: { + const StmtExpr* SE = cast<StmtExpr>(S); + + if (SE->getSubStmt()->body_empty()) { + // Empty statement expression. + assert(SE->getType() == getContext().VoidTy + && "Empty statement expression must have void type."); + Dst.Add(Pred); + break; + } + + if (Expr* LastExpr = dyn_cast<Expr>(*SE->getSubStmt()->body_rbegin())) { + const GRState* state = GetState(Pred); + MakeNode(Dst, SE, Pred, state->BindExpr(SE, state->getSVal(LastExpr))); + } + else + Dst.Add(Pred); + + break; + } + + case Stmt::StringLiteralClass: { + const GRState* state = GetState(Pred); + SVal V = state->getLValue(cast<StringLiteral>(S)); + MakeNode(Dst, S, Pred, state->BindExpr(S, V)); + return; + } + + case Stmt::UnaryOperatorClass: { + const UnaryOperator *U = cast<UnaryOperator>(S); + if (AMgr.shouldEagerlyAssume()&&(U->getOpcode() == UO_LNot)) { + ExplodedNodeSet Tmp; + VisitUnaryOperator(U, Pred, Tmp); + evalEagerlyAssume(Dst, Tmp, U); + } + else + VisitUnaryOperator(U, Pred, Dst); + break; + } + } +} + +//===----------------------------------------------------------------------===// +// Block entrance. (Update counters). +//===----------------------------------------------------------------------===// + +void ExprEngine::processCFGBlockEntrance(ExplodedNodeSet &dstNodes, + GenericNodeBuilder<BlockEntrance> &nodeBuilder){ + + // FIXME: Refactor this into a checker. + const CFGBlock *block = nodeBuilder.getProgramPoint().getBlock(); + ExplodedNode *pred = nodeBuilder.getPredecessor(); + + if (nodeBuilder.getBlockCounter().getNumVisited( + pred->getLocationContext()->getCurrentStackFrame(), + block->getBlockID()) >= AMgr.getMaxVisit()) { + + static int tag = 0; + nodeBuilder.generateNode(pred->getState(), pred, &tag, true); + } +} + +//===----------------------------------------------------------------------===// +// Generic node creation. +//===----------------------------------------------------------------------===// + +ExplodedNode* ExprEngine::MakeNode(ExplodedNodeSet& Dst, const Stmt* S, + ExplodedNode* Pred, const GRState* St, + ProgramPoint::Kind K, const void *tag) { + assert (Builder && "StmtNodeBuilder not present."); + SaveAndRestore<const void*> OldTag(Builder->Tag); + Builder->Tag = tag; + return Builder->MakeNode(Dst, S, Pred, St, K); +} + +//===----------------------------------------------------------------------===// +// Branch processing. +//===----------------------------------------------------------------------===// + +const GRState* ExprEngine::MarkBranch(const GRState* state, + const Stmt* Terminator, + bool branchTaken) { + + switch (Terminator->getStmtClass()) { + default: + return state; + + case Stmt::BinaryOperatorClass: { // '&&' and '||' + + const BinaryOperator* B = cast<BinaryOperator>(Terminator); + BinaryOperator::Opcode Op = B->getOpcode(); + + assert (Op == BO_LAnd || Op == BO_LOr); + + // For &&, if we take the true branch, then the value of the whole + // expression is that of the RHS expression. + // + // For ||, if we take the false branch, then the value of the whole + // expression is that of the RHS expression. + + const Expr* Ex = (Op == BO_LAnd && branchTaken) || + (Op == BO_LOr && !branchTaken) + ? B->getRHS() : B->getLHS(); + + return state->BindExpr(B, UndefinedVal(Ex)); + } + + case Stmt::BinaryConditionalOperatorClass: + case Stmt::ConditionalOperatorClass: { // ?: + const AbstractConditionalOperator* C + = cast<AbstractConditionalOperator>(Terminator); + + // For ?, if branchTaken == true then the value is either the LHS or + // the condition itself. (GNU extension). + + const Expr* Ex; + + if (branchTaken) + Ex = C->getTrueExpr(); + else + Ex = C->getFalseExpr(); + + return state->BindExpr(C, UndefinedVal(Ex)); + } + + case Stmt::ChooseExprClass: { // ?: + + const ChooseExpr* C = cast<ChooseExpr>(Terminator); + + const Expr* Ex = branchTaken ? C->getLHS() : C->getRHS(); + return state->BindExpr(C, UndefinedVal(Ex)); + } + } +} + +/// RecoverCastedSymbol - A helper function for ProcessBranch that is used +/// to try to recover some path-sensitivity for casts of symbolic +/// integers that promote their values (which are currently not tracked well). +/// This function returns the SVal bound to Condition->IgnoreCasts if all the +// cast(s) did was sign-extend the original value. +static SVal RecoverCastedSymbol(GRStateManager& StateMgr, const GRState* state, + const Stmt* Condition, ASTContext& Ctx) { + + const Expr *Ex = dyn_cast<Expr>(Condition); + if (!Ex) + return UnknownVal(); + + uint64_t bits = 0; + bool bitsInit = false; + + while (const CastExpr *CE = dyn_cast<CastExpr>(Ex)) { + QualType T = CE->getType(); + + if (!T->isIntegerType()) + return UnknownVal(); + + uint64_t newBits = Ctx.getTypeSize(T); + if (!bitsInit || newBits < bits) { + bitsInit = true; + bits = newBits; + } + + Ex = CE->getSubExpr(); + } + + // We reached a non-cast. Is it a symbolic value? + QualType T = Ex->getType(); + + if (!bitsInit || !T->isIntegerType() || Ctx.getTypeSize(T) > bits) + return UnknownVal(); + + return state->getSVal(Ex); +} + +void ExprEngine::processBranch(const Stmt* Condition, const Stmt* Term, + BranchNodeBuilder& builder) { + + // Check for NULL conditions; e.g. "for(;;)" + if (!Condition) { + builder.markInfeasible(false); + return; + } + + PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(), + Condition->getLocStart(), + "Error evaluating branch"); + + getCheckerManager().runCheckersForBranchCondition(Condition, builder, *this); + + // If the branch condition is undefined, return; + if (!builder.isFeasible(true) && !builder.isFeasible(false)) + return; + + const GRState* PrevState = builder.getState(); + SVal X = PrevState->getSVal(Condition); + + if (X.isUnknownOrUndef()) { + // Give it a chance to recover from unknown. + if (const Expr *Ex = dyn_cast<Expr>(Condition)) { + if (Ex->getType()->isIntegerType()) { + // Try to recover some path-sensitivity. Right now casts of symbolic + // integers that promote their values are currently not tracked well. + // If 'Condition' is such an expression, try and recover the + // underlying value and use that instead. + SVal recovered = RecoverCastedSymbol(getStateManager(), + builder.getState(), Condition, + getContext()); + + if (!recovered.isUnknown()) { + X = recovered; + } + } + } + // If the condition is still unknown, give up. + if (X.isUnknownOrUndef()) { + builder.generateNode(MarkBranch(PrevState, Term, true), true); + builder.generateNode(MarkBranch(PrevState, Term, false), false); + return; + } + } + + DefinedSVal V = cast<DefinedSVal>(X); + + // Process the true branch. + if (builder.isFeasible(true)) { + if (const GRState *state = PrevState->assume(V, true)) + builder.generateNode(MarkBranch(state, Term, true), true); + else + builder.markInfeasible(true); + } + + // Process the false branch. + if (builder.isFeasible(false)) { + if (const GRState *state = PrevState->assume(V, false)) + builder.generateNode(MarkBranch(state, Term, false), false); + else + builder.markInfeasible(false); + } +} + +/// processIndirectGoto - Called by CoreEngine. Used to generate successor +/// nodes by processing the 'effects' of a computed goto jump. +void ExprEngine::processIndirectGoto(IndirectGotoNodeBuilder &builder) { + + const GRState *state = builder.getState(); + SVal V = state->getSVal(builder.getTarget()); + + // Three possibilities: + // + // (1) We know the computed label. + // (2) The label is NULL (or some other constant), or Undefined. + // (3) We have no clue about the label. Dispatch to all targets. + // + + typedef IndirectGotoNodeBuilder::iterator iterator; + + if (isa<loc::GotoLabel>(V)) { + const LabelDecl *L = cast<loc::GotoLabel>(V).getLabel(); + + for (iterator I = builder.begin(), E = builder.end(); I != E; ++I) { + if (I.getLabel() == L) { + builder.generateNode(I, state); + return; + } + } + + assert(false && "No block with label."); + return; + } + + if (isa<loc::ConcreteInt>(V) || isa<UndefinedVal>(V)) { + // Dispatch to the first target and mark it as a sink. + //ExplodedNode* N = builder.generateNode(builder.begin(), state, true); + // FIXME: add checker visit. + // UndefBranches.insert(N); + return; + } + + // This is really a catch-all. We don't support symbolics yet. + // FIXME: Implement dispatch for symbolic pointers. + + for (iterator I=builder.begin(), E=builder.end(); I != E; ++I) + builder.generateNode(I, state); +} + + +void ExprEngine::VisitGuardedExpr(const Expr* Ex, const Expr* L, + const Expr* R, + ExplodedNode* Pred, ExplodedNodeSet& Dst) { + + assert(Ex == currentStmt && + Pred->getLocationContext()->getCFG()->isBlkExpr(Ex)); + + const GRState* state = GetState(Pred); + SVal X = state->getSVal(Ex); + + assert (X.isUndef()); + + const Expr *SE = (Expr*) cast<UndefinedVal>(X).getData(); + assert(SE); + X = state->getSVal(SE); + + // Make sure that we invalidate the previous binding. + MakeNode(Dst, Ex, Pred, state->BindExpr(Ex, X, true)); +} + +/// ProcessEndPath - Called by CoreEngine. Used to generate end-of-path +/// nodes when the control reaches the end of a function. +void ExprEngine::processEndOfFunction(EndOfFunctionNodeBuilder& builder) { + getTF().evalEndPath(*this, builder); + StateMgr.EndPath(builder.getState()); + getCheckerManager().runCheckersForEndPath(builder, *this); +} + +/// ProcessSwitch - Called by CoreEngine. Used to generate successor +/// nodes by processing the 'effects' of a switch statement. +void ExprEngine::processSwitch(SwitchNodeBuilder& builder) { + typedef SwitchNodeBuilder::iterator iterator; + const GRState* state = builder.getState(); + const Expr* CondE = builder.getCondition(); + SVal CondV_untested = state->getSVal(CondE); + + if (CondV_untested.isUndef()) { + //ExplodedNode* N = builder.generateDefaultCaseNode(state, true); + // FIXME: add checker + //UndefBranches.insert(N); + + return; + } + DefinedOrUnknownSVal CondV = cast<DefinedOrUnknownSVal>(CondV_untested); + + const GRState *DefaultSt = state; + + iterator I = builder.begin(), EI = builder.end(); + bool defaultIsFeasible = I == EI; + + for ( ; I != EI; ++I) { + // Successor may be pruned out during CFG construction. + if (!I.getBlock()) + continue; + + const CaseStmt* Case = I.getCase(); + + // Evaluate the LHS of the case value. + Expr::EvalResult V1; + bool b = Case->getLHS()->Evaluate(V1, getContext()); + + // Sanity checks. These go away in Release builds. + assert(b && V1.Val.isInt() && !V1.HasSideEffects + && "Case condition must evaluate to an integer constant."); + (void)b; // silence unused variable warning + assert(V1.Val.getInt().getBitWidth() == + getContext().getTypeSize(CondE->getType())); + + // Get the RHS of the case, if it exists. + Expr::EvalResult V2; + + if (const Expr* E = Case->getRHS()) { + b = E->Evaluate(V2, getContext()); + assert(b && V2.Val.isInt() && !V2.HasSideEffects + && "Case condition must evaluate to an integer constant."); + (void)b; // silence unused variable warning + } + else + V2 = V1; + + // FIXME: Eventually we should replace the logic below with a range + // comparison, rather than concretize the values within the range. + // This should be easy once we have "ranges" for NonLVals. + + do { + nonloc::ConcreteInt CaseVal(getBasicVals().getValue(V1.Val.getInt())); + DefinedOrUnknownSVal Res = svalBuilder.evalEQ(DefaultSt ? DefaultSt : state, + CondV, CaseVal); + + // Now "assume" that the case matches. + if (const GRState* stateNew = state->assume(Res, true)) { + builder.generateCaseStmtNode(I, stateNew); + + // If CondV evaluates to a constant, then we know that this + // is the *only* case that we can take, so stop evaluating the + // others. + if (isa<nonloc::ConcreteInt>(CondV)) + return; + } + + // Now "assume" that the case doesn't match. Add this state + // to the default state (if it is feasible). + if (DefaultSt) { + if (const GRState *stateNew = DefaultSt->assume(Res, false)) { + defaultIsFeasible = true; + DefaultSt = stateNew; + } + else { + defaultIsFeasible = false; + DefaultSt = NULL; + } + } + + // Concretize the next value in the range. + if (V1.Val.getInt() == V2.Val.getInt()) + break; + + ++V1.Val.getInt(); + assert (V1.Val.getInt() <= V2.Val.getInt()); + + } while (true); + } + + if (!defaultIsFeasible) + return; + + // If we have switch(enum value), the default branch is not + // feasible if all of the enum constants not covered by 'case:' statements + // are not feasible values for the switch condition. + // + // Note that this isn't as accurate as it could be. Even if there isn't + // a case for a particular enum value as long as that enum value isn't + // feasible then it shouldn't be considered for making 'default:' reachable. + const SwitchStmt *SS = builder.getSwitch(); + const Expr *CondExpr = SS->getCond()->IgnoreParenImpCasts(); + if (CondExpr->getType()->getAs<EnumType>()) { + if (SS->isAllEnumCasesCovered()) + return; + } + + builder.generateDefaultCaseNode(DefaultSt); +} + +void ExprEngine::processCallEnter(CallEnterNodeBuilder &B) { + const GRState *state = B.getState()->enterStackFrame(B.getCalleeContext()); + B.generateNode(state); +} + +void ExprEngine::processCallExit(CallExitNodeBuilder &B) { + const GRState *state = B.getState(); + const ExplodedNode *Pred = B.getPredecessor(); + const StackFrameContext *calleeCtx = + cast<StackFrameContext>(Pred->getLocationContext()); + const Stmt *CE = calleeCtx->getCallSite(); + + // If the callee returns an expression, bind its value to CallExpr. + const Stmt *ReturnedExpr = state->get<ReturnExpr>(); + if (ReturnedExpr) { + SVal RetVal = state->getSVal(ReturnedExpr); + state = state->BindExpr(CE, RetVal); + // Clear the return expr GDM. + state = state->remove<ReturnExpr>(); + } + + // Bind the constructed object value to CXXConstructExpr. + if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(CE)) { + const CXXThisRegion *ThisR = + getCXXThisRegion(CCE->getConstructor()->getParent(), calleeCtx); + + SVal ThisV = state->getSVal(ThisR); + // Always bind the region to the CXXConstructExpr. + state = state->BindExpr(CCE, ThisV); + } + + B.generateNode(state); +} + +//===----------------------------------------------------------------------===// +// Transfer functions: logical operations ('&&', '||'). +//===----------------------------------------------------------------------===// + +void ExprEngine::VisitLogicalExpr(const BinaryOperator* B, ExplodedNode* Pred, + ExplodedNodeSet& Dst) { + + assert(B->getOpcode() == BO_LAnd || + B->getOpcode() == BO_LOr); + + assert(B==currentStmt && Pred->getLocationContext()->getCFG()->isBlkExpr(B)); + + const GRState* state = GetState(Pred); + SVal X = state->getSVal(B); + assert(X.isUndef()); + + const Expr *Ex = (const Expr*) cast<UndefinedVal>(X).getData(); + assert(Ex); + + if (Ex == B->getRHS()) { + X = state->getSVal(Ex); + + // Handle undefined values. + if (X.isUndef()) { + MakeNode(Dst, B, Pred, state->BindExpr(B, X)); + return; + } + + DefinedOrUnknownSVal XD = cast<DefinedOrUnknownSVal>(X); + + // We took the RHS. Because the value of the '&&' or '||' expression must + // evaluate to 0 or 1, we must assume the value of the RHS evaluates to 0 + // or 1. Alternatively, we could take a lazy approach, and calculate this + // value later when necessary. We don't have the machinery in place for + // this right now, and since most logical expressions are used for branches, + // the payoff is not likely to be large. Instead, we do eager evaluation. + if (const GRState *newState = state->assume(XD, true)) + MakeNode(Dst, B, Pred, + newState->BindExpr(B, svalBuilder.makeIntVal(1U, B->getType()))); + + if (const GRState *newState = state->assume(XD, false)) + MakeNode(Dst, B, Pred, + newState->BindExpr(B, svalBuilder.makeIntVal(0U, B->getType()))); + } + else { + // We took the LHS expression. Depending on whether we are '&&' or + // '||' we know what the value of the expression is via properties of + // the short-circuiting. + X = svalBuilder.makeIntVal(B->getOpcode() == BO_LAnd ? 0U : 1U, + B->getType()); + MakeNode(Dst, B, Pred, state->BindExpr(B, X)); + } +} + +//===----------------------------------------------------------------------===// +// Transfer functions: Loads and stores. +//===----------------------------------------------------------------------===// + +void ExprEngine::VisitBlockExpr(const BlockExpr *BE, ExplodedNode *Pred, + ExplodedNodeSet &Dst) { + + ExplodedNodeSet Tmp; + + CanQualType T = getContext().getCanonicalType(BE->getType()); + SVal V = svalBuilder.getBlockPointer(BE->getBlockDecl(), T, + Pred->getLocationContext()); + + MakeNode(Tmp, BE, Pred, GetState(Pred)->BindExpr(BE, V), + ProgramPoint::PostLValueKind); + + // Post-visit the BlockExpr. + getCheckerManager().runCheckersForPostStmt(Dst, Tmp, BE, *this); +} + +void ExprEngine::VisitCommonDeclRefExpr(const Expr *Ex, const NamedDecl *D, + ExplodedNode *Pred, + ExplodedNodeSet &Dst) { + const GRState *state = GetState(Pred); + + if (const VarDecl* VD = dyn_cast<VarDecl>(D)) { + assert(Ex->isLValue()); + SVal V = state->getLValue(VD, Pred->getLocationContext()); + + // For references, the 'lvalue' is the pointer address stored in the + // reference region. + if (VD->getType()->isReferenceType()) { + if (const MemRegion *R = V.getAsRegion()) + V = state->getSVal(R); + else + V = UnknownVal(); + } + + MakeNode(Dst, Ex, Pred, state->BindExpr(Ex, V), + ProgramPoint::PostLValueKind); + return; + } + if (const EnumConstantDecl* ED = dyn_cast<EnumConstantDecl>(D)) { + assert(!Ex->isLValue()); + SVal V = svalBuilder.makeIntVal(ED->getInitVal()); + MakeNode(Dst, Ex, Pred, state->BindExpr(Ex, V)); + return; + } + if (const FunctionDecl* FD = dyn_cast<FunctionDecl>(D)) { + SVal V = svalBuilder.getFunctionPointer(FD); + MakeNode(Dst, Ex, Pred, state->BindExpr(Ex, V), + ProgramPoint::PostLValueKind); + return; + } + assert (false && + "ValueDecl support for this ValueDecl not implemented."); +} + +/// VisitArraySubscriptExpr - Transfer function for array accesses +void ExprEngine::VisitLvalArraySubscriptExpr(const ArraySubscriptExpr* A, + ExplodedNode* Pred, + ExplodedNodeSet& Dst){ + + const Expr* Base = A->getBase()->IgnoreParens(); + const Expr* Idx = A->getIdx()->IgnoreParens(); + + // Evaluate the base. + ExplodedNodeSet Tmp; + Visit(Base, Pred, Tmp); + + for (ExplodedNodeSet::iterator I1=Tmp.begin(), E1=Tmp.end(); I1!=E1; ++I1) { + ExplodedNodeSet Tmp2; + Visit(Idx, *I1, Tmp2); // Evaluate the index. + ExplodedNodeSet Tmp3; + getCheckerManager().runCheckersForPreStmt(Tmp3, Tmp2, A, *this); + + for (ExplodedNodeSet::iterator I2=Tmp3.begin(),E2=Tmp3.end();I2!=E2; ++I2) { + const GRState* state = GetState(*I2); + SVal V = state->getLValue(A->getType(), state->getSVal(Idx), + state->getSVal(Base)); + assert(A->isLValue()); + MakeNode(Dst, A, *I2, state->BindExpr(A, V), ProgramPoint::PostLValueKind); + } + } +} + +/// VisitMemberExpr - Transfer function for member expressions. +void ExprEngine::VisitMemberExpr(const MemberExpr* M, ExplodedNode* Pred, + ExplodedNodeSet& Dst) { + + Expr *baseExpr = M->getBase()->IgnoreParens(); + ExplodedNodeSet dstBase; + Visit(baseExpr, Pred, dstBase); + + FieldDecl *field = dyn_cast<FieldDecl>(M->getMemberDecl()); + if (!field) // FIXME: skipping member expressions for non-fields + return; + + for (ExplodedNodeSet::iterator I = dstBase.begin(), E = dstBase.end(); + I != E; ++I) { + const GRState* state = GetState(*I); + SVal baseExprVal = state->getSVal(baseExpr); + if (isa<nonloc::LazyCompoundVal>(baseExprVal) || + isa<nonloc::CompoundVal>(baseExprVal) || + // FIXME: This can originate by conjuring a symbol for an unknown + // temporary struct object, see test/Analysis/fields.c: + // (p = getit()).x + isa<nonloc::SymbolVal>(baseExprVal)) { + MakeNode(Dst, M, *I, state->BindExpr(M, UnknownVal())); + continue; + } + + // FIXME: Should we insert some assumption logic in here to determine + // if "Base" is a valid piece of memory? Before we put this assumption + // later when using FieldOffset lvals (which we no longer have). + + // For all other cases, compute an lvalue. + SVal L = state->getLValue(field, baseExprVal); + if (M->isLValue()) + MakeNode(Dst, M, *I, state->BindExpr(M, L), ProgramPoint::PostLValueKind); + else + evalLoad(Dst, M, *I, state, L); + } +} + +/// evalBind - Handle the semantics of binding a value to a specific location. +/// This method is used by evalStore and (soon) VisitDeclStmt, and others. +void ExprEngine::evalBind(ExplodedNodeSet& Dst, const Stmt* StoreE, + ExplodedNode* Pred, const GRState* state, + SVal location, SVal Val, bool atDeclInit) { + + + // Do a previsit of the bind. + ExplodedNodeSet CheckedSet, Src; + Src.Add(Pred); + getCheckerManager().runCheckersForBind(CheckedSet, Src, location, Val, StoreE, + *this); + + for (ExplodedNodeSet::iterator I = CheckedSet.begin(), E = CheckedSet.end(); + I!=E; ++I) { + + if (Pred != *I) + state = GetState(*I); + + const GRState* newState = 0; + + if (atDeclInit) { + const VarRegion *VR = + cast<VarRegion>(cast<loc::MemRegionVal>(location).getRegion()); + + newState = state->bindDecl(VR, Val); + } + else { + if (location.isUnknown()) { + // We know that the new state will be the same as the old state since + // the location of the binding is "unknown". Consequently, there + // is no reason to just create a new node. + newState = state; + } + else { + // We are binding to a value other than 'unknown'. Perform the binding + // using the StoreManager. + newState = state->bindLoc(cast<Loc>(location), Val); + } + } + + // The next thing to do is check if the TransferFuncs object wants to + // update the state based on the new binding. If the GRTransferFunc object + // doesn't do anything, just auto-propagate the current state. + + // NOTE: We use 'AssignE' for the location of the PostStore if 'AssignE' + // is non-NULL. Checkers typically care about + + StmtNodeBuilderRef BuilderRef(Dst, *Builder, *this, *I, newState, StoreE, + true); + + getTF().evalBind(BuilderRef, location, Val); + } +} + +/// evalStore - Handle the semantics of a store via an assignment. +/// @param Dst The node set to store generated state nodes +/// @param AssignE The assignment expression if the store happens in an +/// assignment. +/// @param LocatioinE The location expression that is stored to. +/// @param state The current simulation state +/// @param location The location to store the value +/// @param Val The value to be stored +void ExprEngine::evalStore(ExplodedNodeSet& Dst, const Expr *AssignE, + const Expr* LocationE, + ExplodedNode* Pred, + const GRState* state, SVal location, SVal Val, + const void *tag) { + + assert(Builder && "StmtNodeBuilder must be defined."); + + // Proceed with the store. We use AssignE as the anchor for the PostStore + // ProgramPoint if it is non-NULL, and LocationE otherwise. + const Expr *StoreE = AssignE ? AssignE : LocationE; + + if (isa<loc::ObjCPropRef>(location)) { + loc::ObjCPropRef prop = cast<loc::ObjCPropRef>(location); + ExplodedNodeSet src = Pred; + return VisitObjCMessage(ObjCPropertySetter(prop.getPropRefExpr(), + StoreE, Val), src, Dst); + } + + // Evaluate the location (checks for bad dereferences). + ExplodedNodeSet Tmp; + evalLocation(Tmp, LocationE, Pred, state, location, tag, false); + + if (Tmp.empty()) + return; + + if (location.isUndef()) + return; + + SaveAndRestore<ProgramPoint::Kind> OldSPointKind(Builder->PointKind, + ProgramPoint::PostStoreKind); + + for (ExplodedNodeSet::iterator NI=Tmp.begin(), NE=Tmp.end(); NI!=NE; ++NI) + evalBind(Dst, StoreE, *NI, GetState(*NI), location, Val); +} + +void ExprEngine::evalLoad(ExplodedNodeSet& Dst, const Expr *Ex, + ExplodedNode* Pred, + const GRState* state, SVal location, + const void *tag, QualType LoadTy) { + assert(!isa<NonLoc>(location) && "location cannot be a NonLoc."); + + if (isa<loc::ObjCPropRef>(location)) { + loc::ObjCPropRef prop = cast<loc::ObjCPropRef>(location); + ExplodedNodeSet src = Pred; + return VisitObjCMessage(ObjCPropertyGetter(prop.getPropRefExpr(), Ex), + src, Dst); + } + + // Are we loading from a region? This actually results in two loads; one + // to fetch the address of the referenced value and one to fetch the + // referenced value. + if (const TypedRegion *TR = + dyn_cast_or_null<TypedRegion>(location.getAsRegion())) { + + QualType ValTy = TR->getValueType(); + if (const ReferenceType *RT = ValTy->getAs<ReferenceType>()) { + static int loadReferenceTag = 0; + ExplodedNodeSet Tmp; + evalLoadCommon(Tmp, Ex, Pred, state, location, &loadReferenceTag, + getContext().getPointerType(RT->getPointeeType())); + + // Perform the load from the referenced value. + for (ExplodedNodeSet::iterator I=Tmp.begin(), E=Tmp.end() ; I!=E; ++I) { + state = GetState(*I); + location = state->getSVal(Ex); + evalLoadCommon(Dst, Ex, *I, state, location, tag, LoadTy); + } + return; + } + } + + evalLoadCommon(Dst, Ex, Pred, state, location, tag, LoadTy); +} + +void ExprEngine::evalLoadCommon(ExplodedNodeSet& Dst, const Expr *Ex, + ExplodedNode* Pred, + const GRState* state, SVal location, + const void *tag, QualType LoadTy) { + + // Evaluate the location (checks for bad dereferences). + ExplodedNodeSet Tmp; + evalLocation(Tmp, Ex, Pred, state, location, tag, true); + + if (Tmp.empty()) + return; + + if (location.isUndef()) + return; + + SaveAndRestore<ProgramPoint::Kind> OldSPointKind(Builder->PointKind); + + // Proceed with the load. + for (ExplodedNodeSet::iterator NI=Tmp.begin(), NE=Tmp.end(); NI!=NE; ++NI) { + state = GetState(*NI); + + if (location.isUnknown()) { + // This is important. We must nuke the old binding. + MakeNode(Dst, Ex, *NI, state->BindExpr(Ex, UnknownVal()), + ProgramPoint::PostLoadKind, tag); + } + else { + if (LoadTy.isNull()) + LoadTy = Ex->getType(); + SVal V = state->getSVal(cast<Loc>(location), LoadTy); + MakeNode(Dst, Ex, *NI, state->bindExprAndLocation(Ex, location, V), + ProgramPoint::PostLoadKind, tag); + } + } +} + +void ExprEngine::evalLocation(ExplodedNodeSet &Dst, const Stmt *S, + ExplodedNode* Pred, + const GRState* state, SVal location, + const void *tag, bool isLoad) { + // Early checks for performance reason. + if (location.isUnknown()) { + Dst.Add(Pred); + return; + } + + ExplodedNodeSet Src; + if (Builder->GetState(Pred) == state) { + Src.Add(Pred); + } else { + // Associate this new state with an ExplodedNode. + // FIXME: If I pass null tag, the graph is incorrect, e.g for + // int *p; + // p = 0; + // *p = 0xDEADBEEF; + // "p = 0" is not noted as "Null pointer value stored to 'p'" but + // instead "int *p" is noted as + // "Variable 'p' initialized to a null pointer value" + ExplodedNode *N = Builder->generateNode(S, state, Pred, this); + Src.Add(N ? N : Pred); + } + getCheckerManager().runCheckersForLocation(Dst, Src, location, isLoad, S, + *this); +} + +bool ExprEngine::InlineCall(ExplodedNodeSet &Dst, const CallExpr *CE, + ExplodedNode *Pred) { + return false; + + // Inlining isn't correct right now because we: + // (a) don't generate CallExit nodes. + // (b) we need a way to postpone doing post-visits of CallExprs until + // the CallExit. This means we need CallExits for the non-inline + // cases as well. + +#if 0 + const GRState *state = GetState(Pred); + const Expr *Callee = CE->getCallee(); + SVal L = state->getSVal(Callee); + + const FunctionDecl *FD = L.getAsFunctionDecl(); + if (!FD) + return false; + + // Specially handle CXXMethods. + const CXXMethodDecl *methodDecl = 0; + + switch (CE->getStmtClass()) { + default: break; + case Stmt::CXXOperatorCallExprClass: { + const CXXOperatorCallExpr *opCall = cast<CXXOperatorCallExpr>(CE); + methodDecl = + llvm::dyn_cast_or_null<CXXMethodDecl>(opCall->getCalleeDecl()); + break; + } + case Stmt::CXXMemberCallExprClass: { + const CXXMemberCallExpr *memberCall = cast<CXXMemberCallExpr>(CE); + const MemberExpr *memberExpr = + cast<MemberExpr>(memberCall->getCallee()->IgnoreParens()); + methodDecl = cast<CXXMethodDecl>(memberExpr->getMemberDecl()); + break; + } + } + + + + + // Check if the function definition is in the same translation unit. + if (FD->hasBody(FD)) { + const StackFrameContext *stackFrame = + AMgr.getStackFrame(AMgr.getAnalysisContext(FD), + Pred->getLocationContext(), + CE, Builder->getBlock(), Builder->getIndex()); + // Now we have the definition of the callee, create a CallEnter node. + CallEnter Loc(CE, stackFrame, Pred->getLocationContext()); + + ExplodedNode *N = Builder->generateNode(Loc, state, Pred); + Dst.Add(N); + return true; + } + + // Check if we can find the function definition in other translation units. + if (AMgr.hasIndexer()) { + AnalysisContext *C = AMgr.getAnalysisContextInAnotherTU(FD); + if (C == 0) + return false; + const StackFrameContext *stackFrame = + AMgr.getStackFrame(C, Pred->getLocationContext(), + CE, Builder->getBlock(), Builder->getIndex()); + CallEnter Loc(CE, stackFrame, Pred->getLocationContext()); + ExplodedNode *N = Builder->generateNode(Loc, state, Pred); + Dst.Add(N); + return true; + } + + // Generate the CallExit node. + + return false; +#endif +} + +void ExprEngine::VisitCallExpr(const CallExpr* CE, ExplodedNode* Pred, + ExplodedNodeSet& dst) { + + // Determine the type of function we're calling (if available). + const FunctionProtoType *Proto = NULL; + QualType FnType = CE->getCallee()->IgnoreParens()->getType(); + if (const PointerType *FnTypePtr = FnType->getAs<PointerType>()) + Proto = FnTypePtr->getPointeeType()->getAs<FunctionProtoType>(); + + // Should the first argument be evaluated as an lvalue? + bool firstArgumentAsLvalue = false; + switch (CE->getStmtClass()) { + case Stmt::CXXOperatorCallExprClass: + firstArgumentAsLvalue = true; + break; + default: + break; + } + + // Evaluate the arguments. + ExplodedNodeSet dstArgsEvaluated; + evalArguments(CE->arg_begin(), CE->arg_end(), Proto, Pred, dstArgsEvaluated, + firstArgumentAsLvalue); + + // Evaluate the callee. + ExplodedNodeSet dstCalleeEvaluated; + evalCallee(CE, dstArgsEvaluated, dstCalleeEvaluated); + + // Perform the previsit of the CallExpr. + ExplodedNodeSet dstPreVisit; + getCheckerManager().runCheckersForPreStmt(dstPreVisit, dstCalleeEvaluated, + CE, *this); + + // Now evaluate the call itself. + class DefaultEval : public GraphExpander { + ExprEngine &Eng; + const CallExpr *CE; + public: + + DefaultEval(ExprEngine &eng, const CallExpr *ce) + : Eng(eng), CE(ce) {} + virtual void expandGraph(ExplodedNodeSet &Dst, ExplodedNode *Pred) { + // Should we inline the call? + if (Eng.getAnalysisManager().shouldInlineCall() && + Eng.InlineCall(Dst, CE, Pred)) { + return; + } + + StmtNodeBuilder &Builder = Eng.getBuilder(); + assert(&Builder && "StmtNodeBuilder must be defined."); + + // Dispatch to the plug-in transfer function. + unsigned oldSize = Dst.size(); + SaveOr OldHasGen(Builder.hasGeneratedNode); + + // Dispatch to transfer function logic to handle the call itself. + const Expr* Callee = CE->getCallee()->IgnoreParens(); + const GRState* state = Eng.GetState(Pred); + SVal L = state->getSVal(Callee); + Eng.getTF().evalCall(Dst, Eng, Builder, CE, L, Pred); + + // Handle the case where no nodes where generated. Auto-generate that + // contains the updated state if we aren't generating sinks. + if (!Builder.BuildSinks && Dst.size() == oldSize && + !Builder.hasGeneratedNode) + Eng.MakeNode(Dst, CE, Pred, state); + } + }; + + // Finally, evaluate the function call. We try each of the checkers + // to see if the can evaluate the function call. + ExplodedNodeSet dstCallEvaluated; + DefaultEval defEval(*this, CE); + getCheckerManager().runCheckersForEvalCall(dstCallEvaluated, + dstPreVisit, + CE, *this, &defEval); + + // Finally, perform the post-condition check of the CallExpr and store + // the created nodes in 'Dst'. + getCheckerManager().runCheckersForPostStmt(dst, dstCallEvaluated, CE, + *this); +} + +//===----------------------------------------------------------------------===// +// Transfer function: Objective-C dot-syntax to access a property. +//===----------------------------------------------------------------------===// + +void ExprEngine::VisitObjCPropertyRefExpr(const ObjCPropertyRefExpr *Ex, + ExplodedNode *Pred, + ExplodedNodeSet &Dst) { + ExplodedNodeSet dstBase; + + // Visit the receiver (if any). + if (Ex->isObjectReceiver()) + Visit(Ex->getBase(), Pred, dstBase); + else + dstBase = Pred; + + ExplodedNodeSet dstPropRef; + + // Using the base, compute the lvalue of the instance variable. + for (ExplodedNodeSet::iterator I = dstBase.begin(), E = dstBase.end(); + I!=E; ++I) { + ExplodedNode *nodeBase = *I; + const GRState *state = GetState(nodeBase); + MakeNode(dstPropRef, Ex, *I, state->BindExpr(Ex, loc::ObjCPropRef(Ex))); + } + + Dst.insert(dstPropRef); +} + +//===----------------------------------------------------------------------===// +// Transfer function: Objective-C ivar references. +//===----------------------------------------------------------------------===// + +static std::pair<const void*,const void*> EagerlyAssumeTag + = std::pair<const void*,const void*>(&EagerlyAssumeTag,static_cast<void*>(0)); + +void ExprEngine::evalEagerlyAssume(ExplodedNodeSet &Dst, ExplodedNodeSet &Src, + const Expr *Ex) { + for (ExplodedNodeSet::iterator I=Src.begin(), E=Src.end(); I!=E; ++I) { + ExplodedNode *Pred = *I; + + // Test if the previous node was as the same expression. This can happen + // when the expression fails to evaluate to anything meaningful and + // (as an optimization) we don't generate a node. + ProgramPoint P = Pred->getLocation(); + if (!isa<PostStmt>(P) || cast<PostStmt>(P).getStmt() != Ex) { + Dst.Add(Pred); + continue; + } + + const GRState* state = GetState(Pred); + SVal V = state->getSVal(Ex); + if (nonloc::SymExprVal *SEV = dyn_cast<nonloc::SymExprVal>(&V)) { + // First assume that the condition is true. + if (const GRState *stateTrue = state->assume(*SEV, true)) { + stateTrue = stateTrue->BindExpr(Ex, + svalBuilder.makeIntVal(1U, Ex->getType())); + Dst.Add(Builder->generateNode(PostStmtCustom(Ex, + &EagerlyAssumeTag, Pred->getLocationContext()), + stateTrue, Pred)); + } + + // Next, assume that the condition is false. + if (const GRState *stateFalse = state->assume(*SEV, false)) { + stateFalse = stateFalse->BindExpr(Ex, + svalBuilder.makeIntVal(0U, Ex->getType())); + Dst.Add(Builder->generateNode(PostStmtCustom(Ex, &EagerlyAssumeTag, + Pred->getLocationContext()), + stateFalse, Pred)); + } + } + else + Dst.Add(Pred); + } +} + +//===----------------------------------------------------------------------===// +// Transfer function: Objective-C @synchronized. +//===----------------------------------------------------------------------===// + +void ExprEngine::VisitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt *S, + ExplodedNode *Pred, + ExplodedNodeSet &Dst) { + + // The mutex expression is a CFGElement, so we don't need to explicitly + // visit it since it will already be processed. + + // Pre-visit the ObjCAtSynchronizedStmt. + ExplodedNodeSet Tmp; + Tmp.Add(Pred); + getCheckerManager().runCheckersForPreStmt(Dst, Tmp, S, *this); +} + +//===----------------------------------------------------------------------===// +// Transfer function: Objective-C ivar references. +//===----------------------------------------------------------------------===// + +void ExprEngine::VisitLvalObjCIvarRefExpr(const ObjCIvarRefExpr* Ex, + ExplodedNode* Pred, + ExplodedNodeSet& Dst) { + + // Visit the base expression, which is needed for computing the lvalue + // of the ivar. + ExplodedNodeSet dstBase; + const Expr *baseExpr = Ex->getBase(); + Visit(baseExpr, Pred, dstBase); + + ExplodedNodeSet dstIvar; + + // Using the base, compute the lvalue of the instance variable. + for (ExplodedNodeSet::iterator I = dstBase.begin(), E = dstBase.end(); + I!=E; ++I) { + ExplodedNode *nodeBase = *I; + const GRState *state = GetState(nodeBase); + SVal baseVal = state->getSVal(baseExpr); + SVal location = state->getLValue(Ex->getDecl(), baseVal); + MakeNode(dstIvar, Ex, *I, state->BindExpr(Ex, location)); + } + + // Perform the post-condition check of the ObjCIvarRefExpr and store + // the created nodes in 'Dst'. + getCheckerManager().runCheckersForPostStmt(Dst, dstIvar, Ex, *this); +} + +//===----------------------------------------------------------------------===// +// Transfer function: Objective-C fast enumeration 'for' statements. +//===----------------------------------------------------------------------===// + +void ExprEngine::VisitObjCForCollectionStmt(const ObjCForCollectionStmt* S, + ExplodedNode* Pred, ExplodedNodeSet& Dst) { + + // ObjCForCollectionStmts are processed in two places. This method + // handles the case where an ObjCForCollectionStmt* occurs as one of the + // statements within a basic block. This transfer function does two things: + // + // (1) binds the next container value to 'element'. This creates a new + // node in the ExplodedGraph. + // + // (2) binds the value 0/1 to the ObjCForCollectionStmt* itself, indicating + // whether or not the container has any more elements. This value + // will be tested in ProcessBranch. We need to explicitly bind + // this value because a container can contain nil elements. + // + // FIXME: Eventually this logic should actually do dispatches to + // 'countByEnumeratingWithState:objects:count:' (NSFastEnumeration). + // This will require simulating a temporary NSFastEnumerationState, either + // through an SVal or through the use of MemRegions. This value can + // be affixed to the ObjCForCollectionStmt* instead of 0/1; when the loop + // terminates we reclaim the temporary (it goes out of scope) and we + // we can test if the SVal is 0 or if the MemRegion is null (depending + // on what approach we take). + // + // For now: simulate (1) by assigning either a symbol or nil if the + // container is empty. Thus this transfer function will by default + // result in state splitting. + + const Stmt* elem = S->getElement(); + SVal ElementV; + + if (const DeclStmt* DS = dyn_cast<DeclStmt>(elem)) { + const VarDecl* ElemD = cast<VarDecl>(DS->getSingleDecl()); + assert (ElemD->getInit() == 0); + ElementV = GetState(Pred)->getLValue(ElemD, Pred->getLocationContext()); + VisitObjCForCollectionStmtAux(S, Pred, Dst, ElementV); + return; + } + + ExplodedNodeSet Tmp; + Visit(cast<Expr>(elem), Pred, Tmp); + for (ExplodedNodeSet::iterator I = Tmp.begin(), E = Tmp.end(); I!=E; ++I) { + const GRState* state = GetState(*I); + VisitObjCForCollectionStmtAux(S, *I, Dst, state->getSVal(elem)); + } +} + +void ExprEngine::VisitObjCForCollectionStmtAux(const ObjCForCollectionStmt* S, + ExplodedNode* Pred, ExplodedNodeSet& Dst, + SVal ElementV) { + + // Check if the location we are writing back to is a null pointer. + const Stmt* elem = S->getElement(); + ExplodedNodeSet Tmp; + evalLocation(Tmp, elem, Pred, GetState(Pred), ElementV, NULL, false); + + if (Tmp.empty()) + return; + + for (ExplodedNodeSet::iterator NI=Tmp.begin(), NE=Tmp.end(); NI!=NE; ++NI) { + Pred = *NI; + const GRState *state = GetState(Pred); + + // Handle the case where the container still has elements. + SVal TrueV = svalBuilder.makeTruthVal(1); + const GRState *hasElems = state->BindExpr(S, TrueV); + + // Handle the case where the container has no elements. + SVal FalseV = svalBuilder.makeTruthVal(0); + const GRState *noElems = state->BindExpr(S, FalseV); + + if (loc::MemRegionVal* MV = dyn_cast<loc::MemRegionVal>(&ElementV)) + if (const TypedRegion* R = dyn_cast<TypedRegion>(MV->getRegion())) { + // FIXME: The proper thing to do is to really iterate over the + // container. We will do this with dispatch logic to the store. + // For now, just 'conjure' up a symbolic value. + QualType T = R->getValueType(); + assert(Loc::isLocType(T)); + unsigned Count = Builder->getCurrentBlockCount(); + SymbolRef Sym = SymMgr.getConjuredSymbol(elem, T, Count); + SVal V = svalBuilder.makeLoc(Sym); + hasElems = hasElems->bindLoc(ElementV, V); + + // Bind the location to 'nil' on the false branch. + SVal nilV = svalBuilder.makeIntVal(0, T); + noElems = noElems->bindLoc(ElementV, nilV); + } + + // Create the new nodes. + MakeNode(Dst, S, Pred, hasElems); + MakeNode(Dst, S, Pred, noElems); + } +} + +//===----------------------------------------------------------------------===// +// Transfer function: Objective-C message expressions. +//===----------------------------------------------------------------------===// + +namespace { +class ObjCMsgWLItem { +public: + ObjCMessageExpr::const_arg_iterator I; + ExplodedNode *N; + + ObjCMsgWLItem(const ObjCMessageExpr::const_arg_iterator &i, ExplodedNode *n) + : I(i), N(n) {} +}; +} // end anonymous namespace + +void ExprEngine::VisitObjCMessageExpr(const ObjCMessageExpr* ME, + ExplodedNode* Pred, + ExplodedNodeSet& Dst){ + + // Create a worklist to process both the arguments. + llvm::SmallVector<ObjCMsgWLItem, 20> WL; + + // But first evaluate the receiver (if any). + ObjCMessageExpr::const_arg_iterator AI = ME->arg_begin(), AE = ME->arg_end(); + if (const Expr *Receiver = ME->getInstanceReceiver()) { + ExplodedNodeSet Tmp; + Visit(Receiver, Pred, Tmp); + + if (Tmp.empty()) + return; + + for (ExplodedNodeSet::iterator I=Tmp.begin(), E=Tmp.end(); I!=E; ++I) + WL.push_back(ObjCMsgWLItem(AI, *I)); + } + else + WL.push_back(ObjCMsgWLItem(AI, Pred)); + + // Evaluate the arguments. + ExplodedNodeSet ArgsEvaluated; + while (!WL.empty()) { + ObjCMsgWLItem Item = WL.back(); + WL.pop_back(); + + if (Item.I == AE) { + ArgsEvaluated.insert(Item.N); + continue; + } + + // Evaluate the subexpression. + ExplodedNodeSet Tmp; + + // FIXME: [Objective-C++] handle arguments that are references + Visit(*Item.I, Item.N, Tmp); + + // Enqueue evaluating the next argument on the worklist. + ++(Item.I); + for (ExplodedNodeSet::iterator NI=Tmp.begin(), NE=Tmp.end(); NI!=NE; ++NI) + WL.push_back(ObjCMsgWLItem(Item.I, *NI)); + } + + // Now that the arguments are processed, handle the ObjC message. + VisitObjCMessage(ME, ArgsEvaluated, Dst); +} + +void ExprEngine::VisitObjCMessage(const ObjCMessage &msg, + ExplodedNodeSet &Src, ExplodedNodeSet& Dst) { + + // Handle the previsits checks. + ExplodedNodeSet DstPrevisit; + getCheckerManager().runCheckersForPreObjCMessage(DstPrevisit, Src, msg,*this); + + // Proceed with evaluate the message expression. + ExplodedNodeSet dstEval; + + for (ExplodedNodeSet::iterator DI = DstPrevisit.begin(), + DE = DstPrevisit.end(); DI != DE; ++DI) { + + ExplodedNode *Pred = *DI; + bool RaisesException = false; + unsigned oldSize = dstEval.size(); + SaveAndRestore<bool> OldSink(Builder->BuildSinks); + SaveOr OldHasGen(Builder->hasGeneratedNode); + + if (const Expr *Receiver = msg.getInstanceReceiver()) { + const GRState *state = GetState(Pred); + SVal recVal = state->getSVal(Receiver); + if (!recVal.isUndef()) { + // Bifurcate the state into nil and non-nil ones. + DefinedOrUnknownSVal receiverVal = cast<DefinedOrUnknownSVal>(recVal); + + const GRState *notNilState, *nilState; + llvm::tie(notNilState, nilState) = state->assume(receiverVal); + + // There are three cases: can be nil or non-nil, must be nil, must be + // non-nil. We ignore must be nil, and merge the rest two into non-nil. + if (nilState && !notNilState) { + dstEval.insert(Pred); + continue; + } + + // Check if the "raise" message was sent. + assert(notNilState); + if (msg.getSelector() == RaiseSel) + RaisesException = true; + + // Check if we raise an exception. For now treat these as sinks. + // Eventually we will want to handle exceptions properly. + if (RaisesException) + Builder->BuildSinks = true; + + // Dispatch to plug-in transfer function. + evalObjCMessage(dstEval, msg, Pred, notNilState); + } + } + else if (const ObjCInterfaceDecl *Iface = msg.getReceiverInterface()) { + IdentifierInfo* ClsName = Iface->getIdentifier(); + Selector S = msg.getSelector(); + + // Check for special instance methods. + if (!NSExceptionII) { + ASTContext& Ctx = getContext(); + NSExceptionII = &Ctx.Idents.get("NSException"); + } + + if (ClsName == NSExceptionII) { + enum { NUM_RAISE_SELECTORS = 2 }; + + // Lazily create a cache of the selectors. + if (!NSExceptionInstanceRaiseSelectors) { + ASTContext& Ctx = getContext(); + NSExceptionInstanceRaiseSelectors = + new Selector[NUM_RAISE_SELECTORS]; + llvm::SmallVector<IdentifierInfo*, NUM_RAISE_SELECTORS> II; + unsigned idx = 0; + + // raise:format: + II.push_back(&Ctx.Idents.get("raise")); + II.push_back(&Ctx.Idents.get("format")); + NSExceptionInstanceRaiseSelectors[idx++] = + Ctx.Selectors.getSelector(II.size(), &II[0]); + + // raise:format::arguments: + II.push_back(&Ctx.Idents.get("arguments")); + NSExceptionInstanceRaiseSelectors[idx++] = + Ctx.Selectors.getSelector(II.size(), &II[0]); + } + + for (unsigned i = 0; i < NUM_RAISE_SELECTORS; ++i) + if (S == NSExceptionInstanceRaiseSelectors[i]) { + RaisesException = true; + break; + } + } + + // Check if we raise an exception. For now treat these as sinks. + // Eventually we will want to handle exceptions properly. + if (RaisesException) + Builder->BuildSinks = true; + + // Dispatch to plug-in transfer function. + evalObjCMessage(dstEval, msg, Pred, Builder->GetState(Pred)); + } + + // Handle the case where no nodes where generated. Auto-generate that + // contains the updated state if we aren't generating sinks. + if (!Builder->BuildSinks && dstEval.size() == oldSize && + !Builder->hasGeneratedNode) + MakeNode(dstEval, msg.getOriginExpr(), Pred, GetState(Pred)); + } + + // Finally, perform the post-condition check of the ObjCMessageExpr and store + // the created nodes in 'Dst'. + getCheckerManager().runCheckersForPostObjCMessage(Dst, dstEval, msg, *this); +} + +//===----------------------------------------------------------------------===// +// Transfer functions: Miscellaneous statements. +//===----------------------------------------------------------------------===// + +void ExprEngine::VisitCast(const CastExpr *CastE, const Expr *Ex, + ExplodedNode *Pred, ExplodedNodeSet &Dst) { + + ExplodedNodeSet S1; + Visit(Ex, Pred, S1); + ExplodedNodeSet S2; + getCheckerManager().runCheckersForPreStmt(S2, S1, CastE, *this); + + if (CastE->getCastKind() == CK_LValueToRValue || + CastE->getCastKind() == CK_GetObjCProperty) { + for (ExplodedNodeSet::iterator I = S2.begin(), E = S2.end(); I!=E; ++I) { + ExplodedNode *subExprNode = *I; + const GRState *state = GetState(subExprNode); + evalLoad(Dst, CastE, subExprNode, state, state->getSVal(Ex)); + } + return; + } + + // All other casts. + QualType T = CastE->getType(); + QualType ExTy = Ex->getType(); + + if (const ExplicitCastExpr *ExCast=dyn_cast_or_null<ExplicitCastExpr>(CastE)) + T = ExCast->getTypeAsWritten(); + + for (ExplodedNodeSet::iterator I = S2.begin(), E = S2.end(); I != E; ++I) { + Pred = *I; + + switch (CastE->getCastKind()) { + case CK_ToVoid: + Dst.Add(Pred); + continue; + case CK_LValueToRValue: + case CK_NoOp: + case CK_FunctionToPointerDecay: { + // Copy the SVal of Ex to CastE. + const GRState *state = GetState(Pred); + SVal V = state->getSVal(Ex); + state = state->BindExpr(CastE, V); + MakeNode(Dst, CastE, Pred, state); + continue; + } + case CK_GetObjCProperty: + case CK_Dependent: + case CK_ArrayToPointerDecay: + case CK_BitCast: + case CK_LValueBitCast: + case CK_IntegralCast: + case CK_NullToPointer: + case CK_IntegralToPointer: + case CK_PointerToIntegral: + case CK_PointerToBoolean: + case CK_IntegralToBoolean: + case CK_IntegralToFloating: + case CK_FloatingToIntegral: + case CK_FloatingToBoolean: + case CK_FloatingCast: + case CK_FloatingRealToComplex: + case CK_FloatingComplexToReal: + case CK_FloatingComplexToBoolean: + case CK_FloatingComplexCast: + case CK_FloatingComplexToIntegralComplex: + case CK_IntegralRealToComplex: + case CK_IntegralComplexToReal: + case CK_IntegralComplexToBoolean: + case CK_IntegralComplexCast: + case CK_IntegralComplexToFloatingComplex: + case CK_AnyPointerToObjCPointerCast: + case CK_AnyPointerToBlockPointerCast: + case CK_ObjCObjectLValueCast: { + // Delegate to SValBuilder to process. + const GRState* state = GetState(Pred); + SVal V = state->getSVal(Ex); + V = svalBuilder.evalCast(V, T, ExTy); + state = state->BindExpr(CastE, V); + MakeNode(Dst, CastE, Pred, state); + continue; + } + case CK_DerivedToBase: + case CK_UncheckedDerivedToBase: { + // For DerivedToBase cast, delegate to the store manager. + const GRState *state = GetState(Pred); + SVal val = state->getSVal(Ex); + val = getStoreManager().evalDerivedToBase(val, T); + state = state->BindExpr(CastE, val); + MakeNode(Dst, CastE, Pred, state); + continue; + } + // Various C++ casts that are not handled yet. + case CK_Dynamic: + case CK_ToUnion: + case CK_BaseToDerived: + case CK_NullToMemberPointer: + case CK_BaseToDerivedMemberPointer: + case CK_DerivedToBaseMemberPointer: + case CK_UserDefinedConversion: + case CK_ConstructorConversion: + case CK_VectorSplat: + case CK_MemberPointerToBoolean: { + // Recover some path-sensitivty by conjuring a new value. + QualType resultType = CastE->getType(); + if (CastE->isLValue()) + resultType = getContext().getPointerType(resultType); + + SVal result = + svalBuilder.getConjuredSymbolVal(NULL, CastE, resultType, + Builder->getCurrentBlockCount()); + + const GRState *state = GetState(Pred)->BindExpr(CastE, result); + MakeNode(Dst, CastE, Pred, state); + continue; + } + } + } +} + +void ExprEngine::VisitCompoundLiteralExpr(const CompoundLiteralExpr* CL, + ExplodedNode* Pred, + ExplodedNodeSet& Dst) { + const InitListExpr* ILE + = cast<InitListExpr>(CL->getInitializer()->IgnoreParens()); + ExplodedNodeSet Tmp; + Visit(ILE, Pred, Tmp); + + for (ExplodedNodeSet::iterator I = Tmp.begin(), EI = Tmp.end(); I!=EI; ++I) { + const GRState* state = GetState(*I); + SVal ILV = state->getSVal(ILE); + const LocationContext *LC = (*I)->getLocationContext(); + state = state->bindCompoundLiteral(CL, LC, ILV); + + if (CL->isLValue()) { + MakeNode(Dst, CL, *I, state->BindExpr(CL, state->getLValue(CL, LC))); + } + else + MakeNode(Dst, CL, *I, state->BindExpr(CL, ILV)); + } +} + +void ExprEngine::VisitDeclStmt(const DeclStmt *DS, ExplodedNode *Pred, + ExplodedNodeSet& Dst) { + + // The CFG has one DeclStmt per Decl. + const Decl* D = *DS->decl_begin(); + + if (!D || !isa<VarDecl>(D)) + return; + + const VarDecl* VD = dyn_cast<VarDecl>(D); + const Expr* InitEx = VD->getInit(); + + // FIXME: static variables may have an initializer, but the second + // time a function is called those values may not be current. + ExplodedNodeSet Tmp; + + if (InitEx) { + if (VD->getType()->isReferenceType() && !InitEx->isLValue()) { + // If the initializer is C++ record type, it should already has a + // temp object. + if (!InitEx->getType()->isRecordType()) + CreateCXXTemporaryObject(InitEx, Pred, Tmp); + else + Tmp.Add(Pred); + } else + Visit(InitEx, Pred, Tmp); + } else + Tmp.Add(Pred); + + ExplodedNodeSet Tmp2; + getCheckerManager().runCheckersForPreStmt(Tmp2, Tmp, DS, *this); + + for (ExplodedNodeSet::iterator I=Tmp2.begin(), E=Tmp2.end(); I!=E; ++I) { + ExplodedNode *N = *I; + const GRState *state = GetState(N); + + // Decls without InitExpr are not initialized explicitly. + const LocationContext *LC = N->getLocationContext(); + + if (InitEx) { + SVal InitVal = state->getSVal(InitEx); + + // We bound the temp obj region to the CXXConstructExpr. Now recover + // the lazy compound value when the variable is not a reference. + if (AMgr.getLangOptions().CPlusPlus && VD->getType()->isRecordType() && + !VD->getType()->isReferenceType() && isa<loc::MemRegionVal>(InitVal)){ + InitVal = state->getSVal(cast<loc::MemRegionVal>(InitVal).getRegion()); + assert(isa<nonloc::LazyCompoundVal>(InitVal)); + } + + // Recover some path-sensitivity if a scalar value evaluated to + // UnknownVal. + if ((InitVal.isUnknown() || + !getConstraintManager().canReasonAbout(InitVal)) && + !VD->getType()->isReferenceType()) { + InitVal = svalBuilder.getConjuredSymbolVal(NULL, InitEx, + Builder->getCurrentBlockCount()); + } + + evalBind(Dst, DS, *I, state, + loc::MemRegionVal(state->getRegion(VD, LC)), InitVal, true); + } + else { + state = state->bindDeclWithNoInit(state->getRegion(VD, LC)); + MakeNode(Dst, DS, *I, state); + } + } +} + +namespace { + // This class is used by VisitInitListExpr as an item in a worklist + // for processing the values contained in an InitListExpr. +class InitListWLItem { +public: + llvm::ImmutableList<SVal> Vals; + ExplodedNode* N; + InitListExpr::const_reverse_iterator Itr; + + InitListWLItem(ExplodedNode* n, llvm::ImmutableList<SVal> vals, + InitListExpr::const_reverse_iterator itr) + : Vals(vals), N(n), Itr(itr) {} +}; +} + + +void ExprEngine::VisitInitListExpr(const InitListExpr* E, ExplodedNode* Pred, + ExplodedNodeSet& Dst) { + + const GRState* state = GetState(Pred); + QualType T = getContext().getCanonicalType(E->getType()); + unsigned NumInitElements = E->getNumInits(); + + if (T->isArrayType() || T->isRecordType() || T->isVectorType()) { + llvm::ImmutableList<SVal> StartVals = getBasicVals().getEmptySValList(); + + // Handle base case where the initializer has no elements. + // e.g: static int* myArray[] = {}; + if (NumInitElements == 0) { + SVal V = svalBuilder.makeCompoundVal(T, StartVals); + MakeNode(Dst, E, Pred, state->BindExpr(E, V)); + return; + } + + // Create a worklist to process the initializers. + llvm::SmallVector<InitListWLItem, 10> WorkList; + WorkList.reserve(NumInitElements); + WorkList.push_back(InitListWLItem(Pred, StartVals, E->rbegin())); + InitListExpr::const_reverse_iterator ItrEnd = E->rend(); + assert(!(E->rbegin() == E->rend())); + + // Process the worklist until it is empty. + while (!WorkList.empty()) { + InitListWLItem X = WorkList.back(); + WorkList.pop_back(); + + ExplodedNodeSet Tmp; + Visit(*X.Itr, X.N, Tmp); + + InitListExpr::const_reverse_iterator NewItr = X.Itr + 1; + + for (ExplodedNodeSet::iterator NI=Tmp.begin(),NE=Tmp.end();NI!=NE;++NI) { + // Get the last initializer value. + state = GetState(*NI); + SVal InitV = state->getSVal(cast<Expr>(*X.Itr)); + + // Construct the new list of values by prepending the new value to + // the already constructed list. + llvm::ImmutableList<SVal> NewVals = + getBasicVals().consVals(InitV, X.Vals); + + if (NewItr == ItrEnd) { + // Now we have a list holding all init values. Make CompoundValData. + SVal V = svalBuilder.makeCompoundVal(T, NewVals); + + // Make final state and node. + MakeNode(Dst, E, *NI, state->BindExpr(E, V)); + } + else { + // Still some initializer values to go. Push them onto the worklist. + WorkList.push_back(InitListWLItem(*NI, NewVals, NewItr)); + } + } + } + + return; + } + + if (Loc::isLocType(T) || T->isIntegerType()) { + assert (E->getNumInits() == 1); + ExplodedNodeSet Tmp; + const Expr* Init = E->getInit(0); + Visit(Init, Pred, Tmp); + for (ExplodedNodeSet::iterator I=Tmp.begin(), EI=Tmp.end(); I != EI; ++I) { + state = GetState(*I); + MakeNode(Dst, E, *I, state->BindExpr(E, state->getSVal(Init))); + } + return; + } + + assert(0 && "unprocessed InitListExpr type"); +} + +/// VisitUnaryExprOrTypeTraitExpr - Transfer function for sizeof(type). +void ExprEngine::VisitUnaryExprOrTypeTraitExpr( + const UnaryExprOrTypeTraitExpr* Ex, + ExplodedNode* Pred, + ExplodedNodeSet& Dst) { + QualType T = Ex->getTypeOfArgument(); + + if (Ex->getKind() == UETT_SizeOf) { + if (!T->isIncompleteType() && !T->isConstantSizeType()) { + assert(T->isVariableArrayType() && "Unknown non-constant-sized type."); + + // FIXME: Add support for VLA type arguments, not just VLA expressions. + // When that happens, we should probably refactor VLASizeChecker's code. + if (Ex->isArgumentType()) { + Dst.Add(Pred); + return; + } + + // Get the size by getting the extent of the sub-expression. + // First, visit the sub-expression to find its region. + const Expr *Arg = Ex->getArgumentExpr(); + ExplodedNodeSet Tmp; + Visit(Arg, Pred, Tmp); + + for (ExplodedNodeSet::iterator I=Tmp.begin(), E=Tmp.end(); I!=E; ++I) { + const GRState* state = GetState(*I); + const MemRegion *MR = state->getSVal(Arg).getAsRegion(); + + // If the subexpression can't be resolved to a region, we don't know + // anything about its size. Just leave the state as is and continue. + if (!MR) { + Dst.Add(*I); + continue; + } + + // The result is the extent of the VLA. + SVal Extent = cast<SubRegion>(MR)->getExtent(svalBuilder); + MakeNode(Dst, Ex, *I, state->BindExpr(Ex, Extent)); + } + + return; + } + else if (T->getAs<ObjCObjectType>()) { + // Some code tries to take the sizeof an ObjCObjectType, relying that + // the compiler has laid out its representation. Just report Unknown + // for these. + Dst.Add(Pred); + return; + } + } + + Expr::EvalResult Result; + Ex->Evaluate(Result, getContext()); + CharUnits amt = CharUnits::fromQuantity(Result.Val.getInt().getZExtValue()); + + MakeNode(Dst, Ex, Pred, + GetState(Pred)->BindExpr(Ex, + svalBuilder.makeIntVal(amt.getQuantity(), Ex->getType()))); +} + +void ExprEngine::VisitOffsetOfExpr(const OffsetOfExpr* OOE, + ExplodedNode* Pred, ExplodedNodeSet& Dst) { + Expr::EvalResult Res; + if (OOE->Evaluate(Res, getContext()) && Res.Val.isInt()) { + const APSInt &IV = Res.Val.getInt(); + assert(IV.getBitWidth() == getContext().getTypeSize(OOE->getType())); + assert(OOE->getType()->isIntegerType()); + assert(IV.isSigned() == OOE->getType()->isSignedIntegerType()); + SVal X = svalBuilder.makeIntVal(IV); + MakeNode(Dst, OOE, Pred, GetState(Pred)->BindExpr(OOE, X)); + return; + } + // FIXME: Handle the case where __builtin_offsetof is not a constant. + Dst.Add(Pred); +} + +void ExprEngine::VisitUnaryOperator(const UnaryOperator* U, + ExplodedNode* Pred, + ExplodedNodeSet& Dst) { + + switch (U->getOpcode()) { + + default: + break; + + case UO_Real: { + const Expr* Ex = U->getSubExpr()->IgnoreParens(); + ExplodedNodeSet Tmp; + Visit(Ex, Pred, Tmp); + + for (ExplodedNodeSet::iterator I=Tmp.begin(), E=Tmp.end(); I!=E; ++I) { + + // FIXME: We don't have complex SValues yet. + if (Ex->getType()->isAnyComplexType()) { + // Just report "Unknown." + Dst.Add(*I); + continue; + } + + // For all other types, UO_Real is an identity operation. + assert (U->getType() == Ex->getType()); + const GRState* state = GetState(*I); + MakeNode(Dst, U, *I, state->BindExpr(U, state->getSVal(Ex))); + } + + return; + } + + case UO_Imag: { + + const Expr* Ex = U->getSubExpr()->IgnoreParens(); + ExplodedNodeSet Tmp; + Visit(Ex, Pred, Tmp); + + for (ExplodedNodeSet::iterator I=Tmp.begin(), E=Tmp.end(); I!=E; ++I) { + // FIXME: We don't have complex SValues yet. + if (Ex->getType()->isAnyComplexType()) { + // Just report "Unknown." + Dst.Add(*I); + continue; + } + + // For all other types, UO_Imag returns 0. + const GRState* state = GetState(*I); + SVal X = svalBuilder.makeZeroVal(Ex->getType()); + MakeNode(Dst, U, *I, state->BindExpr(U, X)); + } + + return; + } + + case UO_Plus: + assert(!U->isLValue()); + // FALL-THROUGH. + case UO_Deref: + case UO_AddrOf: + case UO_Extension: { + + // Unary "+" is a no-op, similar to a parentheses. We still have places + // where it may be a block-level expression, so we need to + // generate an extra node that just propagates the value of the + // subexpression. + + const Expr* Ex = U->getSubExpr()->IgnoreParens(); + ExplodedNodeSet Tmp; + Visit(Ex, Pred, Tmp); + + for (ExplodedNodeSet::iterator I=Tmp.begin(), E=Tmp.end(); I!=E; ++I) { + const GRState* state = GetState(*I); + MakeNode(Dst, U, *I, state->BindExpr(U, state->getSVal(Ex))); + } + + return; + } + + case UO_LNot: + case UO_Minus: + case UO_Not: { + assert (!U->isLValue()); + const Expr* Ex = U->getSubExpr()->IgnoreParens(); + ExplodedNodeSet Tmp; + Visit(Ex, Pred, Tmp); + + for (ExplodedNodeSet::iterator I=Tmp.begin(), E=Tmp.end(); I!=E; ++I) { + const GRState* state = GetState(*I); + + // Get the value of the subexpression. + SVal V = state->getSVal(Ex); + + if (V.isUnknownOrUndef()) { + MakeNode(Dst, U, *I, state->BindExpr(U, V)); + continue; + } + +// QualType DstT = getContext().getCanonicalType(U->getType()); +// QualType SrcT = getContext().getCanonicalType(Ex->getType()); +// +// if (DstT != SrcT) // Perform promotions. +// V = evalCast(V, DstT); +// +// if (V.isUnknownOrUndef()) { +// MakeNode(Dst, U, *I, BindExpr(St, U, V)); +// continue; +// } + + switch (U->getOpcode()) { + default: + assert(false && "Invalid Opcode."); + break; + + case UO_Not: + // FIXME: Do we need to handle promotions? + state = state->BindExpr(U, evalComplement(cast<NonLoc>(V))); + break; + + case UO_Minus: + // FIXME: Do we need to handle promotions? + state = state->BindExpr(U, evalMinus(cast<NonLoc>(V))); + break; + + case UO_LNot: + + // C99 6.5.3.3: "The expression !E is equivalent to (0==E)." + // + // Note: technically we do "E == 0", but this is the same in the + // transfer functions as "0 == E". + SVal Result; + + if (isa<Loc>(V)) { + Loc X = svalBuilder.makeNull(); + Result = evalBinOp(state, BO_EQ, cast<Loc>(V), X, + U->getType()); + } + else { + nonloc::ConcreteInt X(getBasicVals().getValue(0, Ex->getType())); + Result = evalBinOp(state, BO_EQ, cast<NonLoc>(V), X, + U->getType()); + } + + state = state->BindExpr(U, Result); + + break; + } + + MakeNode(Dst, U, *I, state); + } + + return; + } + } + + // Handle ++ and -- (both pre- and post-increment). + assert (U->isIncrementDecrementOp()); + ExplodedNodeSet Tmp; + const Expr* Ex = U->getSubExpr()->IgnoreParens(); + Visit(Ex, Pred, Tmp); + + for (ExplodedNodeSet::iterator I = Tmp.begin(), E = Tmp.end(); I!=E; ++I) { + + const GRState* state = GetState(*I); + SVal loc = state->getSVal(Ex); + + // Perform a load. + ExplodedNodeSet Tmp2; + evalLoad(Tmp2, Ex, *I, state, loc); + + for (ExplodedNodeSet::iterator I2=Tmp2.begin(), E2=Tmp2.end();I2!=E2;++I2) { + + state = GetState(*I2); + SVal V2_untested = state->getSVal(Ex); + + // Propagate unknown and undefined values. + if (V2_untested.isUnknownOrUndef()) { + MakeNode(Dst, U, *I2, state->BindExpr(U, V2_untested)); + continue; + } + DefinedSVal V2 = cast<DefinedSVal>(V2_untested); + + // Handle all other values. + BinaryOperator::Opcode Op = U->isIncrementOp() ? BO_Add + : BO_Sub; + + // If the UnaryOperator has non-location type, use its type to create the + // constant value. If the UnaryOperator has location type, create the + // constant with int type and pointer width. + SVal RHS; + + if (U->getType()->isAnyPointerType()) + RHS = svalBuilder.makeArrayIndex(1); + else + RHS = svalBuilder.makeIntVal(1, U->getType()); + + SVal Result = evalBinOp(state, Op, V2, RHS, U->getType()); + + // Conjure a new symbol if necessary to recover precision. + if (Result.isUnknown() || !getConstraintManager().canReasonAbout(Result)){ + DefinedOrUnknownSVal SymVal = + svalBuilder.getConjuredSymbolVal(NULL, Ex, + Builder->getCurrentBlockCount()); + Result = SymVal; + + // If the value is a location, ++/-- should always preserve + // non-nullness. Check if the original value was non-null, and if so + // propagate that constraint. + if (Loc::isLocType(U->getType())) { + DefinedOrUnknownSVal Constraint = + svalBuilder.evalEQ(state, V2,svalBuilder.makeZeroVal(U->getType())); + + if (!state->assume(Constraint, true)) { + // It isn't feasible for the original value to be null. + // Propagate this constraint. + Constraint = svalBuilder.evalEQ(state, SymVal, + svalBuilder.makeZeroVal(U->getType())); + + + state = state->assume(Constraint, false); + assert(state); + } + } + } + + // Since the lvalue-to-rvalue conversion is explicit in the AST, + // we bind an l-value if the operator is prefix and an lvalue (in C++). + if (U->isLValue()) + state = state->BindExpr(U, loc); + else + state = state->BindExpr(U, V2); + + // Perform the store. + evalStore(Dst, NULL, U, *I2, state, loc, Result); + } + } +} + +void ExprEngine::VisitAsmStmt(const AsmStmt* A, ExplodedNode* Pred, + ExplodedNodeSet& Dst) { + VisitAsmStmtHelperOutputs(A, A->begin_outputs(), A->end_outputs(), Pred, Dst); +} + +void ExprEngine::VisitAsmStmtHelperOutputs(const AsmStmt* A, + AsmStmt::const_outputs_iterator I, + AsmStmt::const_outputs_iterator E, + ExplodedNode* Pred, ExplodedNodeSet& Dst) { + if (I == E) { + VisitAsmStmtHelperInputs(A, A->begin_inputs(), A->end_inputs(), Pred, Dst); + return; + } + + ExplodedNodeSet Tmp; + Visit(*I, Pred, Tmp); + ++I; + + for (ExplodedNodeSet::iterator NI = Tmp.begin(), NE = Tmp.end();NI != NE;++NI) + VisitAsmStmtHelperOutputs(A, I, E, *NI, Dst); +} + +void ExprEngine::VisitAsmStmtHelperInputs(const AsmStmt* A, + AsmStmt::const_inputs_iterator I, + AsmStmt::const_inputs_iterator E, + ExplodedNode* Pred, + ExplodedNodeSet& Dst) { + if (I == E) { + + // We have processed both the inputs and the outputs. All of the outputs + // should evaluate to Locs. Nuke all of their values. + + // FIXME: Some day in the future it would be nice to allow a "plug-in" + // which interprets the inline asm and stores proper results in the + // outputs. + + const GRState* state = GetState(Pred); + + for (AsmStmt::const_outputs_iterator OI = A->begin_outputs(), + OE = A->end_outputs(); OI != OE; ++OI) { + + SVal X = state->getSVal(*OI); + assert (!isa<NonLoc>(X)); // Should be an Lval, or unknown, undef. + + if (isa<Loc>(X)) + state = state->bindLoc(cast<Loc>(X), UnknownVal()); + } + + MakeNode(Dst, A, Pred, state); + return; + } + + ExplodedNodeSet Tmp; + Visit(*I, Pred, Tmp); + + ++I; + + for (ExplodedNodeSet::iterator NI = Tmp.begin(), NE = Tmp.end(); NI!=NE; ++NI) + VisitAsmStmtHelperInputs(A, I, E, *NI, Dst); +} + +void ExprEngine::VisitReturnStmt(const ReturnStmt *RS, ExplodedNode *Pred, + ExplodedNodeSet &Dst) { + ExplodedNodeSet Src; + if (const Expr *RetE = RS->getRetValue()) { + // Record the returned expression in the state. It will be used in + // processCallExit to bind the return value to the call expr. + { + static int tag = 0; + const GRState *state = GetState(Pred); + state = state->set<ReturnExpr>(RetE); + Pred = Builder->generateNode(RetE, state, Pred, &tag); + } + // We may get a NULL Pred because we generated a cached node. + if (Pred) + Visit(RetE, Pred, Src); + } + else { + Src.Add(Pred); + } + + ExplodedNodeSet CheckedSet; + getCheckerManager().runCheckersForPreStmt(CheckedSet, Src, RS, *this); + + for (ExplodedNodeSet::iterator I = CheckedSet.begin(), E = CheckedSet.end(); + I != E; ++I) { + + assert(Builder && "StmtNodeBuilder must be defined."); + + Pred = *I; + unsigned size = Dst.size(); + + SaveAndRestore<bool> OldSink(Builder->BuildSinks); + SaveOr OldHasGen(Builder->hasGeneratedNode); + + getTF().evalReturn(Dst, *this, *Builder, RS, Pred); + + // Handle the case where no nodes where generated. + if (!Builder->BuildSinks && Dst.size() == size && + !Builder->hasGeneratedNode) + MakeNode(Dst, RS, Pred, GetState(Pred)); + } +} + +//===----------------------------------------------------------------------===// +// Transfer functions: Binary operators. +//===----------------------------------------------------------------------===// + +void ExprEngine::VisitBinaryOperator(const BinaryOperator* B, + ExplodedNode* Pred, + ExplodedNodeSet& Dst) { + ExplodedNodeSet Tmp1; + Expr* LHS = B->getLHS()->IgnoreParens(); + Expr* RHS = B->getRHS()->IgnoreParens(); + + Visit(LHS, Pred, Tmp1); + ExplodedNodeSet Tmp3; + + for (ExplodedNodeSet::iterator I1=Tmp1.begin(), E1=Tmp1.end(); I1!=E1; ++I1) { + SVal LeftV = GetState(*I1)->getSVal(LHS); + ExplodedNodeSet Tmp2; + Visit(RHS, *I1, Tmp2); + + ExplodedNodeSet CheckedSet; + getCheckerManager().runCheckersForPreStmt(CheckedSet, Tmp2, B, *this); + + // With both the LHS and RHS evaluated, process the operation itself. + + for (ExplodedNodeSet::iterator I2=CheckedSet.begin(), E2=CheckedSet.end(); + I2 != E2; ++I2) { + + const GRState *state = GetState(*I2); + SVal RightV = state->getSVal(RHS); + + BinaryOperator::Opcode Op = B->getOpcode(); + + if (Op == BO_Assign) { + // EXPERIMENTAL: "Conjured" symbols. + // FIXME: Handle structs. + if (RightV.isUnknown() ||!getConstraintManager().canReasonAbout(RightV)) + { + unsigned Count = Builder->getCurrentBlockCount(); + RightV = svalBuilder.getConjuredSymbolVal(NULL, B->getRHS(), Count); + } + + SVal ExprVal = B->isLValue() ? LeftV : RightV; + + // Simulate the effects of a "store": bind the value of the RHS + // to the L-Value represented by the LHS. + evalStore(Tmp3, B, LHS, *I2, state->BindExpr(B, ExprVal), LeftV,RightV); + continue; + } + + if (!B->isAssignmentOp()) { + // Process non-assignments except commas or short-circuited + // logical expressions (LAnd and LOr). + SVal Result = evalBinOp(state, Op, LeftV, RightV, B->getType()); + + if (Result.isUnknown()) { + MakeNode(Tmp3, B, *I2, state); + continue; + } + + state = state->BindExpr(B, Result); + + MakeNode(Tmp3, B, *I2, state); + continue; + } + + assert (B->isCompoundAssignmentOp()); + + switch (Op) { + default: + assert(0 && "Invalid opcode for compound assignment."); + case BO_MulAssign: Op = BO_Mul; break; + case BO_DivAssign: Op = BO_Div; break; + case BO_RemAssign: Op = BO_Rem; break; + case BO_AddAssign: Op = BO_Add; break; + case BO_SubAssign: Op = BO_Sub; break; + case BO_ShlAssign: Op = BO_Shl; break; + case BO_ShrAssign: Op = BO_Shr; break; + case BO_AndAssign: Op = BO_And; break; + case BO_XorAssign: Op = BO_Xor; break; + case BO_OrAssign: Op = BO_Or; break; + } + + // Perform a load (the LHS). This performs the checks for + // null dereferences, and so on. + ExplodedNodeSet Tmp4; + SVal location = state->getSVal(LHS); + evalLoad(Tmp4, LHS, *I2, state, location); + + for (ExplodedNodeSet::iterator I4=Tmp4.begin(), E4=Tmp4.end(); I4!=E4; + ++I4) { + state = GetState(*I4); + SVal V = state->getSVal(LHS); + + // Get the computation type. + QualType CTy = + cast<CompoundAssignOperator>(B)->getComputationResultType(); + CTy = getContext().getCanonicalType(CTy); + + QualType CLHSTy = + cast<CompoundAssignOperator>(B)->getComputationLHSType(); + CLHSTy = getContext().getCanonicalType(CLHSTy); + + QualType LTy = getContext().getCanonicalType(LHS->getType()); + + // Promote LHS. + V = svalBuilder.evalCast(V, CLHSTy, LTy); + + // Compute the result of the operation. + SVal Result = svalBuilder.evalCast(evalBinOp(state, Op, V, RightV, CTy), + B->getType(), CTy); + + // EXPERIMENTAL: "Conjured" symbols. + // FIXME: Handle structs. + + SVal LHSVal; + + if (Result.isUnknown() || + !getConstraintManager().canReasonAbout(Result)) { + + unsigned Count = Builder->getCurrentBlockCount(); + + // The symbolic value is actually for the type of the left-hand side + // expression, not the computation type, as this is the value the + // LValue on the LHS will bind to. + LHSVal = svalBuilder.getConjuredSymbolVal(NULL, B->getRHS(), LTy, Count); + + // However, we need to convert the symbol to the computation type. + Result = svalBuilder.evalCast(LHSVal, CTy, LTy); + } + else { + // The left-hand side may bind to a different value then the + // computation type. + LHSVal = svalBuilder.evalCast(Result, LTy, CTy); + } + + // In C++, assignment and compound assignment operators return an + // lvalue. + if (B->isLValue()) + state = state->BindExpr(B, location); + else + state = state->BindExpr(B, Result); + + evalStore(Tmp3, B, LHS, *I4, state, location, LHSVal); + } + } + } + + getCheckerManager().runCheckersForPostStmt(Dst, Tmp3, B, *this); +} + +//===----------------------------------------------------------------------===// +// Visualization. +//===----------------------------------------------------------------------===// + +#ifndef NDEBUG +static ExprEngine* GraphPrintCheckerState; +static SourceManager* GraphPrintSourceManager; + +namespace llvm { +template<> +struct DOTGraphTraits<ExplodedNode*> : + public DefaultDOTGraphTraits { + + DOTGraphTraits (bool isSimple=false) : DefaultDOTGraphTraits(isSimple) {} + + // FIXME: Since we do not cache error nodes in ExprEngine now, this does not + // work. + static std::string getNodeAttributes(const ExplodedNode* N, void*) { + +#if 0 + // FIXME: Replace with a general scheme to tell if the node is + // an error node. + if (GraphPrintCheckerState->isImplicitNullDeref(N) || + GraphPrintCheckerState->isExplicitNullDeref(N) || + GraphPrintCheckerState->isUndefDeref(N) || + GraphPrintCheckerState->isUndefStore(N) || + GraphPrintCheckerState->isUndefControlFlow(N) || + GraphPrintCheckerState->isUndefResult(N) || + GraphPrintCheckerState->isBadCall(N) || + GraphPrintCheckerState->isUndefArg(N)) + return "color=\"red\",style=\"filled\""; + + if (GraphPrintCheckerState->isNoReturnCall(N)) + return "color=\"blue\",style=\"filled\""; +#endif + return ""; + } + + static std::string getNodeLabel(const ExplodedNode* N, void*){ + + std::string sbuf; + llvm::raw_string_ostream Out(sbuf); + + // Program Location. + ProgramPoint Loc = N->getLocation(); + + switch (Loc.getKind()) { + case ProgramPoint::BlockEntranceKind: + Out << "Block Entrance: B" + << cast<BlockEntrance>(Loc).getBlock()->getBlockID(); + break; + + case ProgramPoint::BlockExitKind: + assert (false); + break; + + case ProgramPoint::CallEnterKind: + Out << "CallEnter"; + break; + + case ProgramPoint::CallExitKind: + Out << "CallExit"; + break; + + default: { + if (StmtPoint *L = dyn_cast<StmtPoint>(&Loc)) { + const Stmt* S = L->getStmt(); + SourceLocation SLoc = S->getLocStart(); + + Out << S->getStmtClassName() << ' ' << (void*) S << ' '; + LangOptions LO; // FIXME. + S->printPretty(Out, 0, PrintingPolicy(LO)); + + if (SLoc.isFileID()) { + Out << "\\lline=" + << GraphPrintSourceManager->getInstantiationLineNumber(SLoc) + << " col=" + << GraphPrintSourceManager->getInstantiationColumnNumber(SLoc) + << "\\l"; + } + + if (isa<PreStmt>(Loc)) + Out << "\\lPreStmt\\l;"; + else if (isa<PostLoad>(Loc)) + Out << "\\lPostLoad\\l;"; + else if (isa<PostStore>(Loc)) + Out << "\\lPostStore\\l"; + else if (isa<PostLValue>(Loc)) + Out << "\\lPostLValue\\l"; + +#if 0 + // FIXME: Replace with a general scheme to determine + // the name of the check. + if (GraphPrintCheckerState->isImplicitNullDeref(N)) + Out << "\\|Implicit-Null Dereference.\\l"; + else if (GraphPrintCheckerState->isExplicitNullDeref(N)) + Out << "\\|Explicit-Null Dereference.\\l"; + else if (GraphPrintCheckerState->isUndefDeref(N)) + Out << "\\|Dereference of undefialied value.\\l"; + else if (GraphPrintCheckerState->isUndefStore(N)) + Out << "\\|Store to Undefined Loc."; + else if (GraphPrintCheckerState->isUndefResult(N)) + Out << "\\|Result of operation is undefined."; + else if (GraphPrintCheckerState->isNoReturnCall(N)) + Out << "\\|Call to function marked \"noreturn\"."; + else if (GraphPrintCheckerState->isBadCall(N)) + Out << "\\|Call to NULL/Undefined."; + else if (GraphPrintCheckerState->isUndefArg(N)) + Out << "\\|Argument in call is undefined"; +#endif + + break; + } + + const BlockEdge& E = cast<BlockEdge>(Loc); + Out << "Edge: (B" << E.getSrc()->getBlockID() << ", B" + << E.getDst()->getBlockID() << ')'; + + if (const Stmt* T = E.getSrc()->getTerminator()) { + + SourceLocation SLoc = T->getLocStart(); + + Out << "\\|Terminator: "; + LangOptions LO; // FIXME. + E.getSrc()->printTerminator(Out, LO); + + if (SLoc.isFileID()) { + Out << "\\lline=" + << GraphPrintSourceManager->getInstantiationLineNumber(SLoc) + << " col=" + << GraphPrintSourceManager->getInstantiationColumnNumber(SLoc); + } + + if (isa<SwitchStmt>(T)) { + const Stmt* Label = E.getDst()->getLabel(); + + if (Label) { + if (const CaseStmt* C = dyn_cast<CaseStmt>(Label)) { + Out << "\\lcase "; + LangOptions LO; // FIXME. + C->getLHS()->printPretty(Out, 0, PrintingPolicy(LO)); + + if (const Stmt* RHS = C->getRHS()) { + Out << " .. "; + RHS->printPretty(Out, 0, PrintingPolicy(LO)); + } + + Out << ":"; + } + else { + assert (isa<DefaultStmt>(Label)); + Out << "\\ldefault:"; + } + } + else + Out << "\\l(implicit) default:"; + } + else if (isa<IndirectGotoStmt>(T)) { + // FIXME + } + else { + Out << "\\lCondition: "; + if (*E.getSrc()->succ_begin() == E.getDst()) + Out << "true"; + else + Out << "false"; + } + + Out << "\\l"; + } + +#if 0 + // FIXME: Replace with a general scheme to determine + // the name of the check. + if (GraphPrintCheckerState->isUndefControlFlow(N)) { + Out << "\\|Control-flow based on\\lUndefined value.\\l"; + } +#endif + } + } + + const GRState *state = N->getState(); + Out << "\\|StateID: " << (void*) state + << " NodeID: " << (void*) N << "\\|"; + state->printDOT(Out, *N->getLocationContext()->getCFG()); + Out << "\\l"; + return Out.str(); + } +}; +} // end llvm namespace +#endif + +#ifndef NDEBUG +template <typename ITERATOR> +ExplodedNode* GetGraphNode(ITERATOR I) { return *I; } + +template <> ExplodedNode* +GetGraphNode<llvm::DenseMap<ExplodedNode*, Expr*>::iterator> + (llvm::DenseMap<ExplodedNode*, Expr*>::iterator I) { + return I->first; +} +#endif + +void ExprEngine::ViewGraph(bool trim) { +#ifndef NDEBUG + if (trim) { + std::vector<ExplodedNode*> Src; + + // Flush any outstanding reports to make sure we cover all the nodes. + // This does not cause them to get displayed. + for (BugReporter::iterator I=BR.begin(), E=BR.end(); I!=E; ++I) + const_cast<BugType*>(*I)->FlushReports(BR); + + // Iterate through the reports and get their nodes. + for (BugReporter::EQClasses_iterator + EI = BR.EQClasses_begin(), EE = BR.EQClasses_end(); EI != EE; ++EI) { + BugReportEquivClass& EQ = *EI; + const BugReport &R = **EQ.begin(); + ExplodedNode *N = const_cast<ExplodedNode*>(R.getErrorNode()); + if (N) Src.push_back(N); + } + + ViewGraph(&Src[0], &Src[0]+Src.size()); + } + else { + GraphPrintCheckerState = this; + GraphPrintSourceManager = &getContext().getSourceManager(); + + llvm::ViewGraph(*G.roots_begin(), "ExprEngine"); + + GraphPrintCheckerState = NULL; + GraphPrintSourceManager = NULL; + } +#endif +} + +void ExprEngine::ViewGraph(ExplodedNode** Beg, ExplodedNode** End) { +#ifndef NDEBUG + GraphPrintCheckerState = this; + GraphPrintSourceManager = &getContext().getSourceManager(); + + std::auto_ptr<ExplodedGraph> TrimmedG(G.Trim(Beg, End).first); + + if (!TrimmedG.get()) + llvm::errs() << "warning: Trimmed ExplodedGraph is empty.\n"; + else + llvm::ViewGraph(*TrimmedG->roots_begin(), "TrimmedExprEngine"); + + GraphPrintCheckerState = NULL; + GraphPrintSourceManager = NULL; +#endif +} |