summaryrefslogtreecommitdiffstats
path: root/lib/StaticAnalyzer/Core/BasicConstraintManager.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'lib/StaticAnalyzer/Core/BasicConstraintManager.cpp')
-rw-r--r--lib/StaticAnalyzer/Core/BasicConstraintManager.cpp241
1 files changed, 160 insertions, 81 deletions
diff --git a/lib/StaticAnalyzer/Core/BasicConstraintManager.cpp b/lib/StaticAnalyzer/Core/BasicConstraintManager.cpp
index 2d9addd..8897756 100644
--- a/lib/StaticAnalyzer/Core/BasicConstraintManager.cpp
+++ b/lib/StaticAnalyzer/Core/BasicConstraintManager.cpp
@@ -13,6 +13,7 @@
//===----------------------------------------------------------------------===//
#include "SimpleConstraintManager.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/APSIntType.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h"
#include "llvm/Support/raw_ostream.h"
@@ -53,18 +54,25 @@ class BasicConstraintManager
ProgramState::IntSetTy::Factory ISetFactory;
public:
BasicConstraintManager(ProgramStateManager &statemgr, SubEngine &subengine)
- : SimpleConstraintManager(subengine),
+ : SimpleConstraintManager(subengine, statemgr.getBasicVals()),
ISetFactory(statemgr.getAllocator()) {}
- ProgramStateRef assumeSymNE(ProgramStateRef state,
- SymbolRef sym,
- const llvm::APSInt& V,
- const llvm::APSInt& Adjustment);
+ ProgramStateRef assumeSymEquality(ProgramStateRef State, SymbolRef Sym,
+ const llvm::APSInt &V,
+ const llvm::APSInt &Adjustment,
+ bool Assumption);
- ProgramStateRef assumeSymEQ(ProgramStateRef state,
- SymbolRef sym,
- const llvm::APSInt& V,
- const llvm::APSInt& Adjustment);
+ ProgramStateRef assumeSymNE(ProgramStateRef State, SymbolRef Sym,
+ const llvm::APSInt &V,
+ const llvm::APSInt &Adjustment) {
+ return assumeSymEquality(State, Sym, V, Adjustment, false);
+ }
+
+ ProgramStateRef assumeSymEQ(ProgramStateRef State, SymbolRef Sym,
+ const llvm::APSInt &V,
+ const llvm::APSInt &Adjustment) {
+ return assumeSymEquality(State, Sym, V, Adjustment, true);
+ }
ProgramStateRef assumeSymLT(ProgramStateRef state,
SymbolRef sym,
@@ -108,6 +116,9 @@ public:
ProgramStateRef removeDeadBindings(ProgramStateRef state,
SymbolReaper& SymReaper);
+ bool performTest(llvm::APSInt SymVal, llvm::APSInt Adjustment,
+ BinaryOperator::Opcode Op, llvm::APSInt ComparisonVal);
+
void print(ProgramStateRef state,
raw_ostream &Out,
const char* nl,
@@ -122,60 +133,94 @@ ento::CreateBasicConstraintManager(ProgramStateManager& statemgr,
return new BasicConstraintManager(statemgr, subengine);
}
-ProgramStateRef
-BasicConstraintManager::assumeSymNE(ProgramStateRef state,
- SymbolRef sym,
- const llvm::APSInt &V,
- const llvm::APSInt &Adjustment) {
- // First, determine if sym == X, where X+Adjustment != V.
- llvm::APSInt Adjusted = V-Adjustment;
- if (const llvm::APSInt* X = getSymVal(state, sym)) {
- bool isFeasible = (*X != Adjusted);
- return isFeasible ? state : NULL;
- }
-
- // Second, determine if sym+Adjustment != V.
- if (isNotEqual(state, sym, Adjusted))
- return state;
-
- // If we reach here, sym is not a constant and we don't know if it is != V.
- // Make that assumption.
- return AddNE(state, sym, Adjusted);
+// FIXME: This is a more general utility and should live somewhere else.
+bool BasicConstraintManager::performTest(llvm::APSInt SymVal,
+ llvm::APSInt Adjustment,
+ BinaryOperator::Opcode Op,
+ llvm::APSInt ComparisonVal) {
+ APSIntType Type(Adjustment);
+ Type.apply(SymVal);
+ Type.apply(ComparisonVal);
+ SymVal += Adjustment;
+
+ assert(BinaryOperator::isComparisonOp(Op));
+ BasicValueFactory &BVF = getBasicVals();
+ const llvm::APSInt *Result = BVF.evalAPSInt(Op, SymVal, ComparisonVal);
+ assert(Result && "Comparisons should always have valid results.");
+
+ return Result->getBoolValue();
}
-ProgramStateRef
-BasicConstraintManager::assumeSymEQ(ProgramStateRef state,
- SymbolRef sym,
- const llvm::APSInt &V,
- const llvm::APSInt &Adjustment) {
- // First, determine if sym == X, where X+Adjustment != V.
- llvm::APSInt Adjusted = V-Adjustment;
- if (const llvm::APSInt* X = getSymVal(state, sym)) {
- bool isFeasible = (*X == Adjusted);
- return isFeasible ? state : NULL;
+ProgramStateRef
+BasicConstraintManager::assumeSymEquality(ProgramStateRef State, SymbolRef Sym,
+ const llvm::APSInt &V,
+ const llvm::APSInt &Adjustment,
+ bool Assumption) {
+ // Before we do any real work, see if the value can even show up.
+ APSIntType AdjustmentType(Adjustment);
+ if (AdjustmentType.testInRange(V) != APSIntType::RTR_Within)
+ return Assumption ? NULL : State;
+
+ // Get the symbol type.
+ BasicValueFactory &BVF = getBasicVals();
+ ASTContext &Ctx = BVF.getContext();
+ APSIntType SymbolType = BVF.getAPSIntType(Sym->getType(Ctx));
+
+ // First, see if the adjusted value is within range for the symbol.
+ llvm::APSInt Adjusted = AdjustmentType.convert(V) - Adjustment;
+ if (SymbolType.testInRange(Adjusted) != APSIntType::RTR_Within)
+ return Assumption ? NULL : State;
+
+ // Now we can do things properly in the symbol space.
+ SymbolType.apply(Adjusted);
+
+ // Second, determine if sym == X, where X+Adjustment != V.
+ if (const llvm::APSInt *X = getSymVal(State, Sym)) {
+ bool IsFeasible = (*X == Adjusted);
+ return (IsFeasible == Assumption) ? State : NULL;
}
- // Second, determine if sym+Adjustment != V.
- if (isNotEqual(state, sym, Adjusted))
- return NULL;
+ // Third, determine if we already know sym+Adjustment != V.
+ if (isNotEqual(State, Sym, Adjusted))
+ return Assumption ? NULL : State;
- // If we reach here, sym is not a constant and we don't know if it is == V.
- // Make that assumption.
- return AddEQ(state, sym, Adjusted);
+ // If we reach here, sym is not a constant and we don't know if it is != V.
+ // Make the correct assumption.
+ if (Assumption)
+ return AddEQ(State, Sym, Adjusted);
+ else
+ return AddNE(State, Sym, Adjusted);
}
// The logic for these will be handled in another ConstraintManager.
+// Approximate it here anyway by handling some edge cases.
ProgramStateRef
BasicConstraintManager::assumeSymLT(ProgramStateRef state,
SymbolRef sym,
const llvm::APSInt &V,
const llvm::APSInt &Adjustment) {
- // Is 'V' the smallest possible value?
- if (V == llvm::APSInt::getMinValue(V.getBitWidth(), V.isUnsigned())) {
+ APSIntType ComparisonType(V), AdjustmentType(Adjustment);
+
+ // Is 'V' out of range above the type?
+ llvm::APSInt Max = AdjustmentType.getMaxValue();
+ if (V > ComparisonType.convert(Max)) {
+ // This path is trivially feasible.
+ return state;
+ }
+
+ // Is 'V' the smallest possible value, or out of range below the type?
+ llvm::APSInt Min = AdjustmentType.getMinValue();
+ if (V <= ComparisonType.convert(Min)) {
// sym cannot be any value less than 'V'. This path is infeasible.
return NULL;
}
+ // Reject a path if the value of sym is a constant X and !(X+Adj < V).
+ if (const llvm::APSInt *X = getSymVal(state, sym)) {
+ bool isFeasible = performTest(*X, Adjustment, BO_LT, V);
+ return isFeasible ? state : NULL;
+ }
+
// FIXME: For now have assuming x < y be the same as assuming sym != V;
return assumeSymNE(state, sym, V, Adjustment);
}
@@ -185,12 +230,28 @@ BasicConstraintManager::assumeSymGT(ProgramStateRef state,
SymbolRef sym,
const llvm::APSInt &V,
const llvm::APSInt &Adjustment) {
- // Is 'V' the largest possible value?
- if (V == llvm::APSInt::getMaxValue(V.getBitWidth(), V.isUnsigned())) {
+ APSIntType ComparisonType(V), AdjustmentType(Adjustment);
+
+ // Is 'V' the largest possible value, or out of range above the type?
+ llvm::APSInt Max = AdjustmentType.getMaxValue();
+ if (V >= ComparisonType.convert(Max)) {
// sym cannot be any value greater than 'V'. This path is infeasible.
return NULL;
}
+ // Is 'V' out of range below the type?
+ llvm::APSInt Min = AdjustmentType.getMinValue();
+ if (V < ComparisonType.convert(Min)) {
+ // This path is trivially feasible.
+ return state;
+ }
+
+ // Reject a path if the value of sym is a constant X and !(X+Adj > V).
+ if (const llvm::APSInt *X = getSymVal(state, sym)) {
+ bool isFeasible = performTest(*X, Adjustment, BO_GT, V);
+ return isFeasible ? state : NULL;
+ }
+
// FIXME: For now have assuming x > y be the same as assuming sym != V;
return assumeSymNE(state, sym, V, Adjustment);
}
@@ -200,25 +261,33 @@ BasicConstraintManager::assumeSymGE(ProgramStateRef state,
SymbolRef sym,
const llvm::APSInt &V,
const llvm::APSInt &Adjustment) {
- // Reject a path if the value of sym is a constant X and !(X+Adj >= V).
- if (const llvm::APSInt *X = getSymVal(state, sym)) {
- bool isFeasible = (*X >= V-Adjustment);
- return isFeasible ? state : NULL;
- }
+ APSIntType ComparisonType(V), AdjustmentType(Adjustment);
- // Sym is not a constant, but it is worth looking to see if V is the
- // maximum integer value.
- if (V == llvm::APSInt::getMaxValue(V.getBitWidth(), V.isUnsigned())) {
- llvm::APSInt Adjusted = V-Adjustment;
+ // Is 'V' the largest possible value, or out of range above the type?
+ llvm::APSInt Max = AdjustmentType.getMaxValue();
+ ComparisonType.apply(Max);
- // If we know that sym != V (after adjustment), then this condition
- // is infeasible since there is no other value greater than V.
- bool isFeasible = !isNotEqual(state, sym, Adjusted);
-
- // If the path is still feasible then as a consequence we know that
+ if (V > Max) {
+ // sym cannot be any value greater than 'V'. This path is infeasible.
+ return NULL;
+ } else if (V == Max) {
+ // If the path is feasible then as a consequence we know that
// 'sym+Adjustment == V' because there are no larger values.
// Add this constraint.
- return isFeasible ? AddEQ(state, sym, Adjusted) : NULL;
+ return assumeSymEQ(state, sym, V, Adjustment);
+ }
+
+ // Is 'V' out of range below the type?
+ llvm::APSInt Min = AdjustmentType.getMinValue();
+ if (V < ComparisonType.convert(Min)) {
+ // This path is trivially feasible.
+ return state;
+ }
+
+ // Reject a path if the value of sym is a constant X and !(X+Adj >= V).
+ if (const llvm::APSInt *X = getSymVal(state, sym)) {
+ bool isFeasible = performTest(*X, Adjustment, BO_GE, V);
+ return isFeasible ? state : NULL;
}
return state;
@@ -229,25 +298,33 @@ BasicConstraintManager::assumeSymLE(ProgramStateRef state,
SymbolRef sym,
const llvm::APSInt &V,
const llvm::APSInt &Adjustment) {
- // Reject a path if the value of sym is a constant X and !(X+Adj <= V).
- if (const llvm::APSInt* X = getSymVal(state, sym)) {
- bool isFeasible = (*X <= V-Adjustment);
- return isFeasible ? state : NULL;
- }
+ APSIntType ComparisonType(V), AdjustmentType(Adjustment);
- // Sym is not a constant, but it is worth looking to see if V is the
- // minimum integer value.
- if (V == llvm::APSInt::getMinValue(V.getBitWidth(), V.isUnsigned())) {
- llvm::APSInt Adjusted = V-Adjustment;
+ // Is 'V' out of range above the type?
+ llvm::APSInt Max = AdjustmentType.getMaxValue();
+ if (V > ComparisonType.convert(Max)) {
+ // This path is trivially feasible.
+ return state;
+ }
- // If we know that sym != V (after adjustment), then this condition
- // is infeasible since there is no other value less than V.
- bool isFeasible = !isNotEqual(state, sym, Adjusted);
+ // Is 'V' the smallest possible value, or out of range below the type?
+ llvm::APSInt Min = AdjustmentType.getMinValue();
+ ComparisonType.apply(Min);
- // If the path is still feasible then as a consequence we know that
+ if (V < Min) {
+ // sym cannot be any value less than 'V'. This path is infeasible.
+ return NULL;
+ } else if (V == Min) {
+ // If the path is feasible then as a consequence we know that
// 'sym+Adjustment == V' because there are no smaller values.
// Add this constraint.
- return isFeasible ? AddEQ(state, sym, Adjusted) : NULL;
+ return assumeSymEQ(state, sym, V, Adjustment);
+ }
+
+ // Reject a path if the value of sym is a constant X and !(X+Adj >= V).
+ if (const llvm::APSInt *X = getSymVal(state, sym)) {
+ bool isFeasible = performTest(*X, Adjustment, BO_LE, V);
+ return isFeasible ? state : NULL;
}
return state;
@@ -256,8 +333,10 @@ BasicConstraintManager::assumeSymLE(ProgramStateRef state,
ProgramStateRef BasicConstraintManager::AddEQ(ProgramStateRef state,
SymbolRef sym,
const llvm::APSInt& V) {
- // Create a new state with the old binding replaced.
- return state->set<ConstEq>(sym, &state->getBasicVals().getValue(V));
+ // Now that we have an actual value, we can throw out the NE-set.
+ // Create a new state with the old bindings replaced.
+ state = state->remove<ConstNotEq>(sym);
+ return state->set<ConstEq>(sym, &getBasicVals().getValue(V));
}
ProgramStateRef BasicConstraintManager::AddNE(ProgramStateRef state,
@@ -269,7 +348,7 @@ ProgramStateRef BasicConstraintManager::AddNE(ProgramStateRef state,
ProgramState::IntSetTy S = T ? *T : ISetFactory.getEmptySet();
// Now add V to the NE set.
- S = ISetFactory.add(S, &state->getBasicVals().getValue(V));
+ S = ISetFactory.add(S, &getBasicVals().getValue(V));
// Create a new state with the old binding replaced.
return state->set<ConstNotEq>(sym, S);
@@ -289,7 +368,7 @@ bool BasicConstraintManager::isNotEqual(ProgramStateRef state,
const ConstNotEqTy::data_type* T = state->get<ConstNotEq>(sym);
// See if V is present in the NE-set.
- return T ? T->contains(&state->getBasicVals().getValue(V)) : false;
+ return T ? T->contains(&getBasicVals().getValue(V)) : false;
}
bool BasicConstraintManager::isEqual(ProgramStateRef state,
OpenPOWER on IntegriCloud