diff options
Diffstat (limited to 'lib/StaticAnalyzer/Core/BasicConstraintManager.cpp')
-rw-r--r-- | lib/StaticAnalyzer/Core/BasicConstraintManager.cpp | 241 |
1 files changed, 160 insertions, 81 deletions
diff --git a/lib/StaticAnalyzer/Core/BasicConstraintManager.cpp b/lib/StaticAnalyzer/Core/BasicConstraintManager.cpp index 2d9addd..8897756 100644 --- a/lib/StaticAnalyzer/Core/BasicConstraintManager.cpp +++ b/lib/StaticAnalyzer/Core/BasicConstraintManager.cpp @@ -13,6 +13,7 @@ //===----------------------------------------------------------------------===// #include "SimpleConstraintManager.h" +#include "clang/StaticAnalyzer/Core/PathSensitive/APSIntType.h" #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h" #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h" #include "llvm/Support/raw_ostream.h" @@ -53,18 +54,25 @@ class BasicConstraintManager ProgramState::IntSetTy::Factory ISetFactory; public: BasicConstraintManager(ProgramStateManager &statemgr, SubEngine &subengine) - : SimpleConstraintManager(subengine), + : SimpleConstraintManager(subengine, statemgr.getBasicVals()), ISetFactory(statemgr.getAllocator()) {} - ProgramStateRef assumeSymNE(ProgramStateRef state, - SymbolRef sym, - const llvm::APSInt& V, - const llvm::APSInt& Adjustment); + ProgramStateRef assumeSymEquality(ProgramStateRef State, SymbolRef Sym, + const llvm::APSInt &V, + const llvm::APSInt &Adjustment, + bool Assumption); - ProgramStateRef assumeSymEQ(ProgramStateRef state, - SymbolRef sym, - const llvm::APSInt& V, - const llvm::APSInt& Adjustment); + ProgramStateRef assumeSymNE(ProgramStateRef State, SymbolRef Sym, + const llvm::APSInt &V, + const llvm::APSInt &Adjustment) { + return assumeSymEquality(State, Sym, V, Adjustment, false); + } + + ProgramStateRef assumeSymEQ(ProgramStateRef State, SymbolRef Sym, + const llvm::APSInt &V, + const llvm::APSInt &Adjustment) { + return assumeSymEquality(State, Sym, V, Adjustment, true); + } ProgramStateRef assumeSymLT(ProgramStateRef state, SymbolRef sym, @@ -108,6 +116,9 @@ public: ProgramStateRef removeDeadBindings(ProgramStateRef state, SymbolReaper& SymReaper); + bool performTest(llvm::APSInt SymVal, llvm::APSInt Adjustment, + BinaryOperator::Opcode Op, llvm::APSInt ComparisonVal); + void print(ProgramStateRef state, raw_ostream &Out, const char* nl, @@ -122,60 +133,94 @@ ento::CreateBasicConstraintManager(ProgramStateManager& statemgr, return new BasicConstraintManager(statemgr, subengine); } -ProgramStateRef -BasicConstraintManager::assumeSymNE(ProgramStateRef state, - SymbolRef sym, - const llvm::APSInt &V, - const llvm::APSInt &Adjustment) { - // First, determine if sym == X, where X+Adjustment != V. - llvm::APSInt Adjusted = V-Adjustment; - if (const llvm::APSInt* X = getSymVal(state, sym)) { - bool isFeasible = (*X != Adjusted); - return isFeasible ? state : NULL; - } - - // Second, determine if sym+Adjustment != V. - if (isNotEqual(state, sym, Adjusted)) - return state; - - // If we reach here, sym is not a constant and we don't know if it is != V. - // Make that assumption. - return AddNE(state, sym, Adjusted); +// FIXME: This is a more general utility and should live somewhere else. +bool BasicConstraintManager::performTest(llvm::APSInt SymVal, + llvm::APSInt Adjustment, + BinaryOperator::Opcode Op, + llvm::APSInt ComparisonVal) { + APSIntType Type(Adjustment); + Type.apply(SymVal); + Type.apply(ComparisonVal); + SymVal += Adjustment; + + assert(BinaryOperator::isComparisonOp(Op)); + BasicValueFactory &BVF = getBasicVals(); + const llvm::APSInt *Result = BVF.evalAPSInt(Op, SymVal, ComparisonVal); + assert(Result && "Comparisons should always have valid results."); + + return Result->getBoolValue(); } -ProgramStateRef -BasicConstraintManager::assumeSymEQ(ProgramStateRef state, - SymbolRef sym, - const llvm::APSInt &V, - const llvm::APSInt &Adjustment) { - // First, determine if sym == X, where X+Adjustment != V. - llvm::APSInt Adjusted = V-Adjustment; - if (const llvm::APSInt* X = getSymVal(state, sym)) { - bool isFeasible = (*X == Adjusted); - return isFeasible ? state : NULL; +ProgramStateRef +BasicConstraintManager::assumeSymEquality(ProgramStateRef State, SymbolRef Sym, + const llvm::APSInt &V, + const llvm::APSInt &Adjustment, + bool Assumption) { + // Before we do any real work, see if the value can even show up. + APSIntType AdjustmentType(Adjustment); + if (AdjustmentType.testInRange(V) != APSIntType::RTR_Within) + return Assumption ? NULL : State; + + // Get the symbol type. + BasicValueFactory &BVF = getBasicVals(); + ASTContext &Ctx = BVF.getContext(); + APSIntType SymbolType = BVF.getAPSIntType(Sym->getType(Ctx)); + + // First, see if the adjusted value is within range for the symbol. + llvm::APSInt Adjusted = AdjustmentType.convert(V) - Adjustment; + if (SymbolType.testInRange(Adjusted) != APSIntType::RTR_Within) + return Assumption ? NULL : State; + + // Now we can do things properly in the symbol space. + SymbolType.apply(Adjusted); + + // Second, determine if sym == X, where X+Adjustment != V. + if (const llvm::APSInt *X = getSymVal(State, Sym)) { + bool IsFeasible = (*X == Adjusted); + return (IsFeasible == Assumption) ? State : NULL; } - // Second, determine if sym+Adjustment != V. - if (isNotEqual(state, sym, Adjusted)) - return NULL; + // Third, determine if we already know sym+Adjustment != V. + if (isNotEqual(State, Sym, Adjusted)) + return Assumption ? NULL : State; - // If we reach here, sym is not a constant and we don't know if it is == V. - // Make that assumption. - return AddEQ(state, sym, Adjusted); + // If we reach here, sym is not a constant and we don't know if it is != V. + // Make the correct assumption. + if (Assumption) + return AddEQ(State, Sym, Adjusted); + else + return AddNE(State, Sym, Adjusted); } // The logic for these will be handled in another ConstraintManager. +// Approximate it here anyway by handling some edge cases. ProgramStateRef BasicConstraintManager::assumeSymLT(ProgramStateRef state, SymbolRef sym, const llvm::APSInt &V, const llvm::APSInt &Adjustment) { - // Is 'V' the smallest possible value? - if (V == llvm::APSInt::getMinValue(V.getBitWidth(), V.isUnsigned())) { + APSIntType ComparisonType(V), AdjustmentType(Adjustment); + + // Is 'V' out of range above the type? + llvm::APSInt Max = AdjustmentType.getMaxValue(); + if (V > ComparisonType.convert(Max)) { + // This path is trivially feasible. + return state; + } + + // Is 'V' the smallest possible value, or out of range below the type? + llvm::APSInt Min = AdjustmentType.getMinValue(); + if (V <= ComparisonType.convert(Min)) { // sym cannot be any value less than 'V'. This path is infeasible. return NULL; } + // Reject a path if the value of sym is a constant X and !(X+Adj < V). + if (const llvm::APSInt *X = getSymVal(state, sym)) { + bool isFeasible = performTest(*X, Adjustment, BO_LT, V); + return isFeasible ? state : NULL; + } + // FIXME: For now have assuming x < y be the same as assuming sym != V; return assumeSymNE(state, sym, V, Adjustment); } @@ -185,12 +230,28 @@ BasicConstraintManager::assumeSymGT(ProgramStateRef state, SymbolRef sym, const llvm::APSInt &V, const llvm::APSInt &Adjustment) { - // Is 'V' the largest possible value? - if (V == llvm::APSInt::getMaxValue(V.getBitWidth(), V.isUnsigned())) { + APSIntType ComparisonType(V), AdjustmentType(Adjustment); + + // Is 'V' the largest possible value, or out of range above the type? + llvm::APSInt Max = AdjustmentType.getMaxValue(); + if (V >= ComparisonType.convert(Max)) { // sym cannot be any value greater than 'V'. This path is infeasible. return NULL; } + // Is 'V' out of range below the type? + llvm::APSInt Min = AdjustmentType.getMinValue(); + if (V < ComparisonType.convert(Min)) { + // This path is trivially feasible. + return state; + } + + // Reject a path if the value of sym is a constant X and !(X+Adj > V). + if (const llvm::APSInt *X = getSymVal(state, sym)) { + bool isFeasible = performTest(*X, Adjustment, BO_GT, V); + return isFeasible ? state : NULL; + } + // FIXME: For now have assuming x > y be the same as assuming sym != V; return assumeSymNE(state, sym, V, Adjustment); } @@ -200,25 +261,33 @@ BasicConstraintManager::assumeSymGE(ProgramStateRef state, SymbolRef sym, const llvm::APSInt &V, const llvm::APSInt &Adjustment) { - // Reject a path if the value of sym is a constant X and !(X+Adj >= V). - if (const llvm::APSInt *X = getSymVal(state, sym)) { - bool isFeasible = (*X >= V-Adjustment); - return isFeasible ? state : NULL; - } + APSIntType ComparisonType(V), AdjustmentType(Adjustment); - // Sym is not a constant, but it is worth looking to see if V is the - // maximum integer value. - if (V == llvm::APSInt::getMaxValue(V.getBitWidth(), V.isUnsigned())) { - llvm::APSInt Adjusted = V-Adjustment; + // Is 'V' the largest possible value, or out of range above the type? + llvm::APSInt Max = AdjustmentType.getMaxValue(); + ComparisonType.apply(Max); - // If we know that sym != V (after adjustment), then this condition - // is infeasible since there is no other value greater than V. - bool isFeasible = !isNotEqual(state, sym, Adjusted); - - // If the path is still feasible then as a consequence we know that + if (V > Max) { + // sym cannot be any value greater than 'V'. This path is infeasible. + return NULL; + } else if (V == Max) { + // If the path is feasible then as a consequence we know that // 'sym+Adjustment == V' because there are no larger values. // Add this constraint. - return isFeasible ? AddEQ(state, sym, Adjusted) : NULL; + return assumeSymEQ(state, sym, V, Adjustment); + } + + // Is 'V' out of range below the type? + llvm::APSInt Min = AdjustmentType.getMinValue(); + if (V < ComparisonType.convert(Min)) { + // This path is trivially feasible. + return state; + } + + // Reject a path if the value of sym is a constant X and !(X+Adj >= V). + if (const llvm::APSInt *X = getSymVal(state, sym)) { + bool isFeasible = performTest(*X, Adjustment, BO_GE, V); + return isFeasible ? state : NULL; } return state; @@ -229,25 +298,33 @@ BasicConstraintManager::assumeSymLE(ProgramStateRef state, SymbolRef sym, const llvm::APSInt &V, const llvm::APSInt &Adjustment) { - // Reject a path if the value of sym is a constant X and !(X+Adj <= V). - if (const llvm::APSInt* X = getSymVal(state, sym)) { - bool isFeasible = (*X <= V-Adjustment); - return isFeasible ? state : NULL; - } + APSIntType ComparisonType(V), AdjustmentType(Adjustment); - // Sym is not a constant, but it is worth looking to see if V is the - // minimum integer value. - if (V == llvm::APSInt::getMinValue(V.getBitWidth(), V.isUnsigned())) { - llvm::APSInt Adjusted = V-Adjustment; + // Is 'V' out of range above the type? + llvm::APSInt Max = AdjustmentType.getMaxValue(); + if (V > ComparisonType.convert(Max)) { + // This path is trivially feasible. + return state; + } - // If we know that sym != V (after adjustment), then this condition - // is infeasible since there is no other value less than V. - bool isFeasible = !isNotEqual(state, sym, Adjusted); + // Is 'V' the smallest possible value, or out of range below the type? + llvm::APSInt Min = AdjustmentType.getMinValue(); + ComparisonType.apply(Min); - // If the path is still feasible then as a consequence we know that + if (V < Min) { + // sym cannot be any value less than 'V'. This path is infeasible. + return NULL; + } else if (V == Min) { + // If the path is feasible then as a consequence we know that // 'sym+Adjustment == V' because there are no smaller values. // Add this constraint. - return isFeasible ? AddEQ(state, sym, Adjusted) : NULL; + return assumeSymEQ(state, sym, V, Adjustment); + } + + // Reject a path if the value of sym is a constant X and !(X+Adj >= V). + if (const llvm::APSInt *X = getSymVal(state, sym)) { + bool isFeasible = performTest(*X, Adjustment, BO_LE, V); + return isFeasible ? state : NULL; } return state; @@ -256,8 +333,10 @@ BasicConstraintManager::assumeSymLE(ProgramStateRef state, ProgramStateRef BasicConstraintManager::AddEQ(ProgramStateRef state, SymbolRef sym, const llvm::APSInt& V) { - // Create a new state with the old binding replaced. - return state->set<ConstEq>(sym, &state->getBasicVals().getValue(V)); + // Now that we have an actual value, we can throw out the NE-set. + // Create a new state with the old bindings replaced. + state = state->remove<ConstNotEq>(sym); + return state->set<ConstEq>(sym, &getBasicVals().getValue(V)); } ProgramStateRef BasicConstraintManager::AddNE(ProgramStateRef state, @@ -269,7 +348,7 @@ ProgramStateRef BasicConstraintManager::AddNE(ProgramStateRef state, ProgramState::IntSetTy S = T ? *T : ISetFactory.getEmptySet(); // Now add V to the NE set. - S = ISetFactory.add(S, &state->getBasicVals().getValue(V)); + S = ISetFactory.add(S, &getBasicVals().getValue(V)); // Create a new state with the old binding replaced. return state->set<ConstNotEq>(sym, S); @@ -289,7 +368,7 @@ bool BasicConstraintManager::isNotEqual(ProgramStateRef state, const ConstNotEqTy::data_type* T = state->get<ConstNotEq>(sym); // See if V is present in the NE-set. - return T ? T->contains(&state->getBasicVals().getValue(V)) : false; + return T ? T->contains(&getBasicVals().getValue(V)) : false; } bool BasicConstraintManager::isEqual(ProgramStateRef state, |