summaryrefslogtreecommitdiffstats
path: root/lib/Sema/SemaType.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'lib/Sema/SemaType.cpp')
-rw-r--r--lib/Sema/SemaType.cpp1301
1 files changed, 1301 insertions, 0 deletions
diff --git a/lib/Sema/SemaType.cpp b/lib/Sema/SemaType.cpp
new file mode 100644
index 0000000..81ac211
--- /dev/null
+++ b/lib/Sema/SemaType.cpp
@@ -0,0 +1,1301 @@
+//===--- SemaType.cpp - Semantic Analysis for Types -----------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements type-related semantic analysis.
+//
+//===----------------------------------------------------------------------===//
+
+#include "Sema.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/DeclObjC.h"
+#include "clang/AST/DeclTemplate.h"
+#include "clang/AST/Expr.h"
+#include "clang/Parse/DeclSpec.h"
+using namespace clang;
+
+/// \brief Perform adjustment on the parameter type of a function.
+///
+/// This routine adjusts the given parameter type @p T to the actual
+/// parameter type used by semantic analysis (C99 6.7.5.3p[7,8],
+/// C++ [dcl.fct]p3). The adjusted parameter type is returned.
+QualType Sema::adjustParameterType(QualType T) {
+ // C99 6.7.5.3p7:
+ if (T->isArrayType()) {
+ // C99 6.7.5.3p7:
+ // A declaration of a parameter as "array of type" shall be
+ // adjusted to "qualified pointer to type", where the type
+ // qualifiers (if any) are those specified within the [ and ] of
+ // the array type derivation.
+ return Context.getArrayDecayedType(T);
+ } else if (T->isFunctionType())
+ // C99 6.7.5.3p8:
+ // A declaration of a parameter as "function returning type"
+ // shall be adjusted to "pointer to function returning type", as
+ // in 6.3.2.1.
+ return Context.getPointerType(T);
+
+ return T;
+}
+
+/// \brief Convert the specified declspec to the appropriate type
+/// object.
+/// \param DS the declaration specifiers
+/// \param DeclLoc The location of the declarator identifier or invalid if none.
+/// \returns The type described by the declaration specifiers. This function
+/// never returns null.
+QualType Sema::ConvertDeclSpecToType(const DeclSpec &DS,
+ SourceLocation DeclLoc,
+ bool &isInvalid) {
+ // FIXME: Should move the logic from DeclSpec::Finish to here for validity
+ // checking.
+ QualType Result;
+
+ switch (DS.getTypeSpecType()) {
+ case DeclSpec::TST_void:
+ Result = Context.VoidTy;
+ break;
+ case DeclSpec::TST_char:
+ if (DS.getTypeSpecSign() == DeclSpec::TSS_unspecified)
+ Result = Context.CharTy;
+ else if (DS.getTypeSpecSign() == DeclSpec::TSS_signed)
+ Result = Context.SignedCharTy;
+ else {
+ assert(DS.getTypeSpecSign() == DeclSpec::TSS_unsigned &&
+ "Unknown TSS value");
+ Result = Context.UnsignedCharTy;
+ }
+ break;
+ case DeclSpec::TST_wchar:
+ if (DS.getTypeSpecSign() == DeclSpec::TSS_unspecified)
+ Result = Context.WCharTy;
+ else if (DS.getTypeSpecSign() == DeclSpec::TSS_signed) {
+ Diag(DS.getTypeSpecSignLoc(), diag::ext_invalid_sign_spec)
+ << DS.getSpecifierName(DS.getTypeSpecType());
+ Result = Context.getSignedWCharType();
+ } else {
+ assert(DS.getTypeSpecSign() == DeclSpec::TSS_unsigned &&
+ "Unknown TSS value");
+ Diag(DS.getTypeSpecSignLoc(), diag::ext_invalid_sign_spec)
+ << DS.getSpecifierName(DS.getTypeSpecType());
+ Result = Context.getUnsignedWCharType();
+ }
+ break;
+ case DeclSpec::TST_unspecified:
+ // "<proto1,proto2>" is an objc qualified ID with a missing id.
+ if (DeclSpec::ProtocolQualifierListTy PQ = DS.getProtocolQualifiers()) {
+ Result = Context.getObjCQualifiedIdType((ObjCProtocolDecl**)PQ,
+ DS.getNumProtocolQualifiers());
+ break;
+ }
+
+ // Unspecified typespec defaults to int in C90. However, the C90 grammar
+ // [C90 6.5] only allows a decl-spec if there was *some* type-specifier,
+ // type-qualifier, or storage-class-specifier. If not, emit an extwarn.
+ // Note that the one exception to this is function definitions, which are
+ // allowed to be completely missing a declspec. This is handled in the
+ // parser already though by it pretending to have seen an 'int' in this
+ // case.
+ if (getLangOptions().ImplicitInt) {
+ // In C89 mode, we only warn if there is a completely missing declspec
+ // when one is not allowed.
+ if (DS.isEmpty()) {
+ if (DeclLoc.isInvalid())
+ DeclLoc = DS.getSourceRange().getBegin();
+ Diag(DeclLoc, diag::warn_missing_declspec)
+ << DS.getSourceRange()
+ << CodeModificationHint::CreateInsertion(DS.getSourceRange().getBegin(),
+ "int");
+ }
+ } else if (!DS.hasTypeSpecifier()) {
+ // C99 and C++ require a type specifier. For example, C99 6.7.2p2 says:
+ // "At least one type specifier shall be given in the declaration
+ // specifiers in each declaration, and in the specifier-qualifier list in
+ // each struct declaration and type name."
+ // FIXME: Does Microsoft really have the implicit int extension in C++?
+ if (DeclLoc.isInvalid())
+ DeclLoc = DS.getSourceRange().getBegin();
+
+ if (getLangOptions().CPlusPlus && !getLangOptions().Microsoft)
+ Diag(DeclLoc, diag::err_missing_type_specifier)
+ << DS.getSourceRange();
+ else
+ Diag(DeclLoc, diag::warn_missing_type_specifier)
+ << DS.getSourceRange();
+
+ // FIXME: If we could guarantee that the result would be well-formed, it
+ // would be useful to have a code insertion hint here. However, after
+ // emitting this warning/error, we often emit other errors.
+ }
+
+ // FALL THROUGH.
+ case DeclSpec::TST_int: {
+ if (DS.getTypeSpecSign() != DeclSpec::TSS_unsigned) {
+ switch (DS.getTypeSpecWidth()) {
+ case DeclSpec::TSW_unspecified: Result = Context.IntTy; break;
+ case DeclSpec::TSW_short: Result = Context.ShortTy; break;
+ case DeclSpec::TSW_long: Result = Context.LongTy; break;
+ case DeclSpec::TSW_longlong: Result = Context.LongLongTy; break;
+ }
+ } else {
+ switch (DS.getTypeSpecWidth()) {
+ case DeclSpec::TSW_unspecified: Result = Context.UnsignedIntTy; break;
+ case DeclSpec::TSW_short: Result = Context.UnsignedShortTy; break;
+ case DeclSpec::TSW_long: Result = Context.UnsignedLongTy; break;
+ case DeclSpec::TSW_longlong: Result =Context.UnsignedLongLongTy; break;
+ }
+ }
+ break;
+ }
+ case DeclSpec::TST_float: Result = Context.FloatTy; break;
+ case DeclSpec::TST_double:
+ if (DS.getTypeSpecWidth() == DeclSpec::TSW_long)
+ Result = Context.LongDoubleTy;
+ else
+ Result = Context.DoubleTy;
+ break;
+ case DeclSpec::TST_bool: Result = Context.BoolTy; break; // _Bool or bool
+ case DeclSpec::TST_decimal32: // _Decimal32
+ case DeclSpec::TST_decimal64: // _Decimal64
+ case DeclSpec::TST_decimal128: // _Decimal128
+ Diag(DS.getTypeSpecTypeLoc(), diag::err_decimal_unsupported);
+ Result = Context.IntTy;
+ isInvalid = true;
+ break;
+ case DeclSpec::TST_class:
+ case DeclSpec::TST_enum:
+ case DeclSpec::TST_union:
+ case DeclSpec::TST_struct: {
+ Decl *D = static_cast<Decl *>(DS.getTypeRep());
+ assert(D && "Didn't get a decl for a class/enum/union/struct?");
+ assert(DS.getTypeSpecWidth() == 0 && DS.getTypeSpecComplex() == 0 &&
+ DS.getTypeSpecSign() == 0 &&
+ "Can't handle qualifiers on typedef names yet!");
+ // TypeQuals handled by caller.
+ Result = Context.getTypeDeclType(cast<TypeDecl>(D));
+
+ if (D->isInvalidDecl())
+ isInvalid = true;
+ break;
+ }
+ case DeclSpec::TST_typename: {
+ assert(DS.getTypeSpecWidth() == 0 && DS.getTypeSpecComplex() == 0 &&
+ DS.getTypeSpecSign() == 0 &&
+ "Can't handle qualifiers on typedef names yet!");
+ Result = QualType::getFromOpaquePtr(DS.getTypeRep());
+
+ if (DeclSpec::ProtocolQualifierListTy PQ = DS.getProtocolQualifiers()) {
+ // FIXME: Adding a TST_objcInterface clause doesn't seem ideal, so we have
+ // this "hack" for now...
+ if (const ObjCInterfaceType *Interface = Result->getAsObjCInterfaceType())
+ Result = Context.getObjCQualifiedInterfaceType(Interface->getDecl(),
+ (ObjCProtocolDecl**)PQ,
+ DS.getNumProtocolQualifiers());
+ else if (Result == Context.getObjCIdType())
+ // id<protocol-list>
+ Result = Context.getObjCQualifiedIdType((ObjCProtocolDecl**)PQ,
+ DS.getNumProtocolQualifiers());
+ else if (Result == Context.getObjCClassType()) {
+ if (DeclLoc.isInvalid())
+ DeclLoc = DS.getSourceRange().getBegin();
+ // Class<protocol-list>
+ Diag(DeclLoc, diag::err_qualified_class_unsupported)
+ << DS.getSourceRange();
+ } else {
+ if (DeclLoc.isInvalid())
+ DeclLoc = DS.getSourceRange().getBegin();
+ Diag(DeclLoc, diag::err_invalid_protocol_qualifiers)
+ << DS.getSourceRange();
+ isInvalid = true;
+ }
+ }
+
+ // If this is a reference to an invalid typedef, propagate the invalidity.
+ if (TypedefType *TDT = dyn_cast<TypedefType>(Result))
+ if (TDT->getDecl()->isInvalidDecl())
+ isInvalid = true;
+
+ // TypeQuals handled by caller.
+ break;
+ }
+ case DeclSpec::TST_typeofType:
+ Result = QualType::getFromOpaquePtr(DS.getTypeRep());
+ assert(!Result.isNull() && "Didn't get a type for typeof?");
+ // TypeQuals handled by caller.
+ Result = Context.getTypeOfType(Result);
+ break;
+ case DeclSpec::TST_typeofExpr: {
+ Expr *E = static_cast<Expr *>(DS.getTypeRep());
+ assert(E && "Didn't get an expression for typeof?");
+ // TypeQuals handled by caller.
+ Result = Context.getTypeOfExprType(E);
+ break;
+ }
+ case DeclSpec::TST_error:
+ Result = Context.IntTy;
+ isInvalid = true;
+ break;
+ }
+
+ // Handle complex types.
+ if (DS.getTypeSpecComplex() == DeclSpec::TSC_complex) {
+ if (getLangOptions().Freestanding)
+ Diag(DS.getTypeSpecComplexLoc(), diag::ext_freestanding_complex);
+ Result = Context.getComplexType(Result);
+ }
+
+ assert(DS.getTypeSpecComplex() != DeclSpec::TSC_imaginary &&
+ "FIXME: imaginary types not supported yet!");
+
+ // See if there are any attributes on the declspec that apply to the type (as
+ // opposed to the decl).
+ if (const AttributeList *AL = DS.getAttributes())
+ ProcessTypeAttributeList(Result, AL);
+
+ // Apply const/volatile/restrict qualifiers to T.
+ if (unsigned TypeQuals = DS.getTypeQualifiers()) {
+
+ // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
+ // or incomplete types shall not be restrict-qualified." C++ also allows
+ // restrict-qualified references.
+ if (TypeQuals & QualType::Restrict) {
+ if (Result->isPointerType() || Result->isReferenceType()) {
+ QualType EltTy = Result->isPointerType() ?
+ Result->getAsPointerType()->getPointeeType() :
+ Result->getAsReferenceType()->getPointeeType();
+
+ // If we have a pointer or reference, the pointee must have an object
+ // incomplete type.
+ if (!EltTy->isIncompleteOrObjectType()) {
+ Diag(DS.getRestrictSpecLoc(),
+ diag::err_typecheck_invalid_restrict_invalid_pointee)
+ << EltTy << DS.getSourceRange();
+ TypeQuals &= ~QualType::Restrict; // Remove the restrict qualifier.
+ }
+ } else {
+ Diag(DS.getRestrictSpecLoc(),
+ diag::err_typecheck_invalid_restrict_not_pointer)
+ << Result << DS.getSourceRange();
+ TypeQuals &= ~QualType::Restrict; // Remove the restrict qualifier.
+ }
+ }
+
+ // Warn about CV qualifiers on functions: C99 6.7.3p8: "If the specification
+ // of a function type includes any type qualifiers, the behavior is
+ // undefined."
+ if (Result->isFunctionType() && TypeQuals) {
+ // Get some location to point at, either the C or V location.
+ SourceLocation Loc;
+ if (TypeQuals & QualType::Const)
+ Loc = DS.getConstSpecLoc();
+ else {
+ assert((TypeQuals & QualType::Volatile) &&
+ "Has CV quals but not C or V?");
+ Loc = DS.getVolatileSpecLoc();
+ }
+ Diag(Loc, diag::warn_typecheck_function_qualifiers)
+ << Result << DS.getSourceRange();
+ }
+
+ // C++ [dcl.ref]p1:
+ // Cv-qualified references are ill-formed except when the
+ // cv-qualifiers are introduced through the use of a typedef
+ // (7.1.3) or of a template type argument (14.3), in which
+ // case the cv-qualifiers are ignored.
+ // FIXME: Shouldn't we be checking SCS_typedef here?
+ if (DS.getTypeSpecType() == DeclSpec::TST_typename &&
+ TypeQuals && Result->isReferenceType()) {
+ TypeQuals &= ~QualType::Const;
+ TypeQuals &= ~QualType::Volatile;
+ }
+
+ Result = Result.getQualifiedType(TypeQuals);
+ }
+ return Result;
+}
+
+static std::string getPrintableNameForEntity(DeclarationName Entity) {
+ if (Entity)
+ return Entity.getAsString();
+
+ return "type name";
+}
+
+/// \brief Build a pointer type.
+///
+/// \param T The type to which we'll be building a pointer.
+///
+/// \param Quals The cvr-qualifiers to be applied to the pointer type.
+///
+/// \param Loc The location of the entity whose type involves this
+/// pointer type or, if there is no such entity, the location of the
+/// type that will have pointer type.
+///
+/// \param Entity The name of the entity that involves the pointer
+/// type, if known.
+///
+/// \returns A suitable pointer type, if there are no
+/// errors. Otherwise, returns a NULL type.
+QualType Sema::BuildPointerType(QualType T, unsigned Quals,
+ SourceLocation Loc, DeclarationName Entity) {
+ if (T->isReferenceType()) {
+ // C++ 8.3.2p4: There shall be no ... pointers to references ...
+ Diag(Loc, diag::err_illegal_decl_pointer_to_reference)
+ << getPrintableNameForEntity(Entity);
+ return QualType();
+ }
+
+ // Enforce C99 6.7.3p2: "Types other than pointer types derived from
+ // object or incomplete types shall not be restrict-qualified."
+ if ((Quals & QualType::Restrict) && !T->isIncompleteOrObjectType()) {
+ Diag(Loc, diag::err_typecheck_invalid_restrict_invalid_pointee)
+ << T;
+ Quals &= ~QualType::Restrict;
+ }
+
+ // Build the pointer type.
+ return Context.getPointerType(T).getQualifiedType(Quals);
+}
+
+/// \brief Build a reference type.
+///
+/// \param T The type to which we'll be building a reference.
+///
+/// \param Quals The cvr-qualifiers to be applied to the reference type.
+///
+/// \param Loc The location of the entity whose type involves this
+/// reference type or, if there is no such entity, the location of the
+/// type that will have reference type.
+///
+/// \param Entity The name of the entity that involves the reference
+/// type, if known.
+///
+/// \returns A suitable reference type, if there are no
+/// errors. Otherwise, returns a NULL type.
+QualType Sema::BuildReferenceType(QualType T, bool LValueRef, unsigned Quals,
+ SourceLocation Loc, DeclarationName Entity) {
+ if (LValueRef) {
+ if (const RValueReferenceType *R = T->getAsRValueReferenceType()) {
+ // C++0x [dcl.typedef]p9: If a typedef TD names a type that is a
+ // reference to a type T, and attempt to create the type "lvalue
+ // reference to cv TD" creates the type "lvalue reference to T".
+ // We use the qualifiers (restrict or none) of the original reference,
+ // not the new ones. This is consistent with GCC.
+ return Context.getLValueReferenceType(R->getPointeeType()).
+ getQualifiedType(T.getCVRQualifiers());
+ }
+ }
+ if (T->isReferenceType()) {
+ // C++ [dcl.ref]p4: There shall be no references to references.
+ //
+ // According to C++ DR 106, references to references are only
+ // diagnosed when they are written directly (e.g., "int & &"),
+ // but not when they happen via a typedef:
+ //
+ // typedef int& intref;
+ // typedef intref& intref2;
+ //
+ // Parser::ParserDeclaratorInternal diagnoses the case where
+ // references are written directly; here, we handle the
+ // collapsing of references-to-references as described in C++
+ // DR 106 and amended by C++ DR 540.
+ return T;
+ }
+
+ // C++ [dcl.ref]p1:
+ // A declarator that specifies the type “reference to cv void”
+ // is ill-formed.
+ if (T->isVoidType()) {
+ Diag(Loc, diag::err_reference_to_void);
+ return QualType();
+ }
+
+ // Enforce C99 6.7.3p2: "Types other than pointer types derived from
+ // object or incomplete types shall not be restrict-qualified."
+ if ((Quals & QualType::Restrict) && !T->isIncompleteOrObjectType()) {
+ Diag(Loc, diag::err_typecheck_invalid_restrict_invalid_pointee)
+ << T;
+ Quals &= ~QualType::Restrict;
+ }
+
+ // C++ [dcl.ref]p1:
+ // [...] Cv-qualified references are ill-formed except when the
+ // cv-qualifiers are introduced through the use of a typedef
+ // (7.1.3) or of a template type argument (14.3), in which case
+ // the cv-qualifiers are ignored.
+ //
+ // We diagnose extraneous cv-qualifiers for the non-typedef,
+ // non-template type argument case within the parser. Here, we just
+ // ignore any extraneous cv-qualifiers.
+ Quals &= ~QualType::Const;
+ Quals &= ~QualType::Volatile;
+
+ // Handle restrict on references.
+ if (LValueRef)
+ return Context.getLValueReferenceType(T).getQualifiedType(Quals);
+ return Context.getRValueReferenceType(T).getQualifiedType(Quals);
+}
+
+/// \brief Build an array type.
+///
+/// \param T The type of each element in the array.
+///
+/// \param ASM C99 array size modifier (e.g., '*', 'static').
+///
+/// \param ArraySize Expression describing the size of the array.
+///
+/// \param Quals The cvr-qualifiers to be applied to the array's
+/// element type.
+///
+/// \param Loc The location of the entity whose type involves this
+/// array type or, if there is no such entity, the location of the
+/// type that will have array type.
+///
+/// \param Entity The name of the entity that involves the array
+/// type, if known.
+///
+/// \returns A suitable array type, if there are no errors. Otherwise,
+/// returns a NULL type.
+QualType Sema::BuildArrayType(QualType T, ArrayType::ArraySizeModifier ASM,
+ Expr *ArraySize, unsigned Quals,
+ SourceLocation Loc, DeclarationName Entity) {
+ // C99 6.7.5.2p1: If the element type is an incomplete or function type,
+ // reject it (e.g. void ary[7], struct foo ary[7], void ary[7]())
+ if (RequireCompleteType(Loc, T,
+ diag::err_illegal_decl_array_incomplete_type))
+ return QualType();
+
+ if (T->isFunctionType()) {
+ Diag(Loc, diag::err_illegal_decl_array_of_functions)
+ << getPrintableNameForEntity(Entity);
+ return QualType();
+ }
+
+ // C++ 8.3.2p4: There shall be no ... arrays of references ...
+ if (T->isReferenceType()) {
+ Diag(Loc, diag::err_illegal_decl_array_of_references)
+ << getPrintableNameForEntity(Entity);
+ return QualType();
+ }
+
+ if (const RecordType *EltTy = T->getAsRecordType()) {
+ // If the element type is a struct or union that contains a variadic
+ // array, accept it as a GNU extension: C99 6.7.2.1p2.
+ if (EltTy->getDecl()->hasFlexibleArrayMember())
+ Diag(Loc, diag::ext_flexible_array_in_array) << T;
+ } else if (T->isObjCInterfaceType()) {
+ Diag(Loc, diag::err_objc_array_of_interfaces) << T;
+ return QualType();
+ }
+
+ // C99 6.7.5.2p1: The size expression shall have integer type.
+ if (ArraySize && !ArraySize->isTypeDependent() &&
+ !ArraySize->getType()->isIntegerType()) {
+ Diag(ArraySize->getLocStart(), diag::err_array_size_non_int)
+ << ArraySize->getType() << ArraySize->getSourceRange();
+ ArraySize->Destroy(Context);
+ return QualType();
+ }
+ llvm::APSInt ConstVal(32);
+ if (!ArraySize) {
+ if (ASM == ArrayType::Star)
+ T = Context.getVariableArrayType(T, 0, ASM, Quals);
+ else
+ T = Context.getIncompleteArrayType(T, ASM, Quals);
+ } else if (ArraySize->isValueDependent()) {
+ T = Context.getDependentSizedArrayType(T, ArraySize, ASM, Quals);
+ } else if (!ArraySize->isIntegerConstantExpr(ConstVal, Context) ||
+ (!T->isDependentType() && !T->isConstantSizeType())) {
+ // Per C99, a variable array is an array with either a non-constant
+ // size or an element type that has a non-constant-size
+ T = Context.getVariableArrayType(T, ArraySize, ASM, Quals);
+ } else {
+ // C99 6.7.5.2p1: If the expression is a constant expression, it shall
+ // have a value greater than zero.
+ if (ConstVal.isSigned()) {
+ if (ConstVal.isNegative()) {
+ Diag(ArraySize->getLocStart(),
+ diag::err_typecheck_negative_array_size)
+ << ArraySize->getSourceRange();
+ return QualType();
+ } else if (ConstVal == 0) {
+ // GCC accepts zero sized static arrays.
+ Diag(ArraySize->getLocStart(), diag::ext_typecheck_zero_array_size)
+ << ArraySize->getSourceRange();
+ }
+ }
+ T = Context.getConstantArrayType(T, ConstVal, ASM, Quals);
+ }
+ // If this is not C99, extwarn about VLA's and C99 array size modifiers.
+ if (!getLangOptions().C99) {
+ if (ArraySize && !ArraySize->isTypeDependent() &&
+ !ArraySize->isValueDependent() &&
+ !ArraySize->isIntegerConstantExpr(Context))
+ Diag(Loc, diag::ext_vla);
+ else if (ASM != ArrayType::Normal || Quals != 0)
+ Diag(Loc, diag::ext_c99_array_usage);
+ }
+
+ return T;
+}
+
+/// \brief Build a function type.
+///
+/// This routine checks the function type according to C++ rules and
+/// under the assumption that the result type and parameter types have
+/// just been instantiated from a template. It therefore duplicates
+/// some of the behavior of GetTypeForDeclarator, but in a much
+/// simpler form that is only suitable for this narrow use case.
+///
+/// \param T The return type of the function.
+///
+/// \param ParamTypes The parameter types of the function. This array
+/// will be modified to account for adjustments to the types of the
+/// function parameters.
+///
+/// \param NumParamTypes The number of parameter types in ParamTypes.
+///
+/// \param Variadic Whether this is a variadic function type.
+///
+/// \param Quals The cvr-qualifiers to be applied to the function type.
+///
+/// \param Loc The location of the entity whose type involves this
+/// function type or, if there is no such entity, the location of the
+/// type that will have function type.
+///
+/// \param Entity The name of the entity that involves the function
+/// type, if known.
+///
+/// \returns A suitable function type, if there are no
+/// errors. Otherwise, returns a NULL type.
+QualType Sema::BuildFunctionType(QualType T,
+ QualType *ParamTypes,
+ unsigned NumParamTypes,
+ bool Variadic, unsigned Quals,
+ SourceLocation Loc, DeclarationName Entity) {
+ if (T->isArrayType() || T->isFunctionType()) {
+ Diag(Loc, diag::err_func_returning_array_function) << T;
+ return QualType();
+ }
+
+ bool Invalid = false;
+ for (unsigned Idx = 0; Idx < NumParamTypes; ++Idx) {
+ QualType ParamType = adjustParameterType(ParamTypes[Idx]);
+ if (ParamType->isVoidType()) {
+ Diag(Loc, diag::err_param_with_void_type);
+ Invalid = true;
+ }
+
+ ParamTypes[Idx] = ParamType;
+ }
+
+ if (Invalid)
+ return QualType();
+
+ return Context.getFunctionType(T, ParamTypes, NumParamTypes, Variadic,
+ Quals);
+}
+
+/// GetTypeForDeclarator - Convert the type for the specified
+/// declarator to Type instances. Skip the outermost Skip type
+/// objects.
+///
+/// If OwnedDecl is non-NULL, and this declarator's decl-specifier-seq
+/// owns the declaration of a type (e.g., the definition of a struct
+/// type), then *OwnedDecl will receive the owned declaration.
+QualType Sema::GetTypeForDeclarator(Declarator &D, Scope *S, unsigned Skip,
+ TagDecl **OwnedDecl) {
+ bool OmittedReturnType = false;
+
+ if (D.getContext() == Declarator::BlockLiteralContext
+ && Skip == 0
+ && !D.getDeclSpec().hasTypeSpecifier()
+ && (D.getNumTypeObjects() == 0
+ || (D.getNumTypeObjects() == 1
+ && D.getTypeObject(0).Kind == DeclaratorChunk::Function)))
+ OmittedReturnType = true;
+
+ // long long is a C99 feature.
+ if (!getLangOptions().C99 && !getLangOptions().CPlusPlus0x &&
+ D.getDeclSpec().getTypeSpecWidth() == DeclSpec::TSW_longlong)
+ Diag(D.getDeclSpec().getTypeSpecWidthLoc(), diag::ext_longlong);
+
+ // Determine the type of the declarator. Not all forms of declarator
+ // have a type.
+ QualType T;
+ switch (D.getKind()) {
+ case Declarator::DK_Abstract:
+ case Declarator::DK_Normal:
+ case Declarator::DK_Operator: {
+ const DeclSpec &DS = D.getDeclSpec();
+ if (OmittedReturnType) {
+ // We default to a dependent type initially. Can be modified by
+ // the first return statement.
+ T = Context.DependentTy;
+ } else {
+ bool isInvalid = false;
+ T = ConvertDeclSpecToType(DS, D.getIdentifierLoc(), isInvalid);
+ if (isInvalid)
+ D.setInvalidType(true);
+ else if (OwnedDecl && DS.isTypeSpecOwned())
+ *OwnedDecl = cast<TagDecl>((Decl *)DS.getTypeRep());
+ }
+ break;
+ }
+
+ case Declarator::DK_Constructor:
+ case Declarator::DK_Destructor:
+ case Declarator::DK_Conversion:
+ // Constructors and destructors don't have return types. Use
+ // "void" instead. Conversion operators will check their return
+ // types separately.
+ T = Context.VoidTy;
+ break;
+ }
+
+ // The name we're declaring, if any.
+ DeclarationName Name;
+ if (D.getIdentifier())
+ Name = D.getIdentifier();
+
+ // Walk the DeclTypeInfo, building the recursive type as we go.
+ // DeclTypeInfos are ordered from the identifier out, which is
+ // opposite of what we want :).
+ for (unsigned i = Skip, e = D.getNumTypeObjects(); i != e; ++i) {
+ DeclaratorChunk &DeclType = D.getTypeObject(e-i-1+Skip);
+ switch (DeclType.Kind) {
+ default: assert(0 && "Unknown decltype!");
+ case DeclaratorChunk::BlockPointer:
+ // If blocks are disabled, emit an error.
+ if (!LangOpts.Blocks)
+ Diag(DeclType.Loc, diag::err_blocks_disable);
+
+ if (!T.getTypePtr()->isFunctionType())
+ Diag(D.getIdentifierLoc(), diag::err_nonfunction_block_type);
+ else
+ T = (Context.getBlockPointerType(T)
+ .getQualifiedType(DeclType.Cls.TypeQuals));
+ break;
+ case DeclaratorChunk::Pointer:
+ // Verify that we're not building a pointer to pointer to function with
+ // exception specification.
+ if (getLangOptions().CPlusPlus && CheckDistantExceptionSpec(T)) {
+ Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
+ D.setInvalidType(true);
+ // Build the type anyway.
+ }
+ T = BuildPointerType(T, DeclType.Ptr.TypeQuals, DeclType.Loc, Name);
+ break;
+ case DeclaratorChunk::Reference:
+ // Verify that we're not building a reference to pointer to function with
+ // exception specification.
+ if (getLangOptions().CPlusPlus && CheckDistantExceptionSpec(T)) {
+ Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
+ D.setInvalidType(true);
+ // Build the type anyway.
+ }
+ T = BuildReferenceType(T, DeclType.Ref.LValueRef,
+ DeclType.Ref.HasRestrict ? QualType::Restrict : 0,
+ DeclType.Loc, Name);
+ break;
+ case DeclaratorChunk::Array: {
+ // Verify that we're not building an array of pointers to function with
+ // exception specification.
+ if (getLangOptions().CPlusPlus && CheckDistantExceptionSpec(T)) {
+ Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
+ D.setInvalidType(true);
+ // Build the type anyway.
+ }
+ DeclaratorChunk::ArrayTypeInfo &ATI = DeclType.Arr;
+ Expr *ArraySize = static_cast<Expr*>(ATI.NumElts);
+ ArrayType::ArraySizeModifier ASM;
+ if (ATI.isStar)
+ ASM = ArrayType::Star;
+ else if (ATI.hasStatic)
+ ASM = ArrayType::Static;
+ else
+ ASM = ArrayType::Normal;
+ if (ASM == ArrayType::Star &&
+ D.getContext() != Declarator::PrototypeContext) {
+ // FIXME: This check isn't quite right: it allows star in prototypes
+ // for function definitions, and disallows some edge cases detailed
+ // in http://gcc.gnu.org/ml/gcc-patches/2009-02/msg00133.html
+ Diag(DeclType.Loc, diag::err_array_star_outside_prototype);
+ ASM = ArrayType::Normal;
+ D.setInvalidType(true);
+ }
+ T = BuildArrayType(T, ASM, ArraySize, ATI.TypeQuals, DeclType.Loc, Name);
+ break;
+ }
+ case DeclaratorChunk::Function: {
+ // If the function declarator has a prototype (i.e. it is not () and
+ // does not have a K&R-style identifier list), then the arguments are part
+ // of the type, otherwise the argument list is ().
+ const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
+
+ // C99 6.7.5.3p1: The return type may not be a function or array type.
+ if (T->isArrayType() || T->isFunctionType()) {
+ Diag(DeclType.Loc, diag::err_func_returning_array_function) << T;
+ T = Context.IntTy;
+ D.setInvalidType(true);
+ }
+
+ if (getLangOptions().CPlusPlus && D.getDeclSpec().isTypeSpecOwned()) {
+ // C++ [dcl.fct]p6:
+ // Types shall not be defined in return or parameter types.
+ TagDecl *Tag = cast<TagDecl>((Decl *)D.getDeclSpec().getTypeRep());
+ if (Tag->isDefinition())
+ Diag(Tag->getLocation(), diag::err_type_defined_in_result_type)
+ << Context.getTypeDeclType(Tag);
+ }
+
+ // Exception specs are not allowed in typedefs. Complain, but add it
+ // anyway.
+ if (FTI.hasExceptionSpec &&
+ D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
+ Diag(FTI.getThrowLoc(), diag::err_exception_spec_in_typedef);
+
+ if (FTI.NumArgs == 0) {
+ if (getLangOptions().CPlusPlus) {
+ // C++ 8.3.5p2: If the parameter-declaration-clause is empty, the
+ // function takes no arguments.
+ llvm::SmallVector<QualType, 4> Exceptions;
+ Exceptions.reserve(FTI.NumExceptions);
+ for(unsigned ei = 0, ee = FTI.NumExceptions; ei != ee; ++ei) {
+ QualType ET = QualType::getFromOpaquePtr(FTI.Exceptions[ei].Ty);
+ // Check that the type is valid for an exception spec, and drop it
+ // if not.
+ if (!CheckSpecifiedExceptionType(ET, FTI.Exceptions[ei].Range))
+ Exceptions.push_back(ET);
+ }
+ T = Context.getFunctionType(T, NULL, 0, FTI.isVariadic, FTI.TypeQuals,
+ FTI.hasExceptionSpec,
+ FTI.hasAnyExceptionSpec,
+ Exceptions.size(), Exceptions.data());
+ } else if (FTI.isVariadic) {
+ // We allow a zero-parameter variadic function in C if the
+ // function is marked with the "overloadable"
+ // attribute. Scan for this attribute now.
+ bool Overloadable = false;
+ for (const AttributeList *Attrs = D.getAttributes();
+ Attrs; Attrs = Attrs->getNext()) {
+ if (Attrs->getKind() == AttributeList::AT_overloadable) {
+ Overloadable = true;
+ break;
+ }
+ }
+
+ if (!Overloadable)
+ Diag(FTI.getEllipsisLoc(), diag::err_ellipsis_first_arg);
+ T = Context.getFunctionType(T, NULL, 0, FTI.isVariadic, 0);
+ } else {
+ // Simple void foo(), where the incoming T is the result type.
+ T = Context.getFunctionNoProtoType(T);
+ }
+ } else if (FTI.ArgInfo[0].Param == 0) {
+ // C99 6.7.5.3p3: Reject int(x,y,z) when it's not a function definition.
+ Diag(FTI.ArgInfo[0].IdentLoc, diag::err_ident_list_in_fn_declaration);
+ } else {
+ // Otherwise, we have a function with an argument list that is
+ // potentially variadic.
+ llvm::SmallVector<QualType, 16> ArgTys;
+
+ for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
+ ParmVarDecl *Param =
+ cast<ParmVarDecl>(FTI.ArgInfo[i].Param.getAs<Decl>());
+ QualType ArgTy = Param->getType();
+ assert(!ArgTy.isNull() && "Couldn't parse type?");
+
+ // Adjust the parameter type.
+ assert((ArgTy == adjustParameterType(ArgTy)) && "Unadjusted type?");
+
+ // Look for 'void'. void is allowed only as a single argument to a
+ // function with no other parameters (C99 6.7.5.3p10). We record
+ // int(void) as a FunctionProtoType with an empty argument list.
+ if (ArgTy->isVoidType()) {
+ // If this is something like 'float(int, void)', reject it. 'void'
+ // is an incomplete type (C99 6.2.5p19) and function decls cannot
+ // have arguments of incomplete type.
+ if (FTI.NumArgs != 1 || FTI.isVariadic) {
+ Diag(DeclType.Loc, diag::err_void_only_param);
+ ArgTy = Context.IntTy;
+ Param->setType(ArgTy);
+ } else if (FTI.ArgInfo[i].Ident) {
+ // Reject, but continue to parse 'int(void abc)'.
+ Diag(FTI.ArgInfo[i].IdentLoc,
+ diag::err_param_with_void_type);
+ ArgTy = Context.IntTy;
+ Param->setType(ArgTy);
+ } else {
+ // Reject, but continue to parse 'float(const void)'.
+ if (ArgTy.getCVRQualifiers())
+ Diag(DeclType.Loc, diag::err_void_param_qualified);
+
+ // Do not add 'void' to the ArgTys list.
+ break;
+ }
+ } else if (!FTI.hasPrototype) {
+ if (ArgTy->isPromotableIntegerType()) {
+ ArgTy = Context.IntTy;
+ } else if (const BuiltinType* BTy = ArgTy->getAsBuiltinType()) {
+ if (BTy->getKind() == BuiltinType::Float)
+ ArgTy = Context.DoubleTy;
+ }
+ }
+
+ ArgTys.push_back(ArgTy);
+ }
+
+ llvm::SmallVector<QualType, 4> Exceptions;
+ Exceptions.reserve(FTI.NumExceptions);
+ for(unsigned ei = 0, ee = FTI.NumExceptions; ei != ee; ++ei) {
+ QualType ET = QualType::getFromOpaquePtr(FTI.Exceptions[ei].Ty);
+ // Check that the type is valid for an exception spec, and drop it if
+ // not.
+ if (!CheckSpecifiedExceptionType(ET, FTI.Exceptions[ei].Range))
+ Exceptions.push_back(ET);
+ }
+
+ T = Context.getFunctionType(T, ArgTys.data(), ArgTys.size(),
+ FTI.isVariadic, FTI.TypeQuals,
+ FTI.hasExceptionSpec,
+ FTI.hasAnyExceptionSpec,
+ Exceptions.size(), Exceptions.data());
+ }
+ break;
+ }
+ case DeclaratorChunk::MemberPointer:
+ // Verify that we're not building a pointer to pointer to function with
+ // exception specification.
+ if (getLangOptions().CPlusPlus && CheckDistantExceptionSpec(T)) {
+ Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
+ D.setInvalidType(true);
+ // Build the type anyway.
+ }
+ // The scope spec must refer to a class, or be dependent.
+ DeclContext *DC = computeDeclContext(DeclType.Mem.Scope());
+ QualType ClsType;
+ // FIXME: Extend for dependent types when it's actually supported.
+ // See ActOnCXXNestedNameSpecifier.
+ if (CXXRecordDecl *RD = dyn_cast_or_null<CXXRecordDecl>(DC)) {
+ ClsType = Context.getTagDeclType(RD);
+ } else {
+ if (DC) {
+ Diag(DeclType.Mem.Scope().getBeginLoc(),
+ diag::err_illegal_decl_mempointer_in_nonclass)
+ << (D.getIdentifier() ? D.getIdentifier()->getName() : "type name")
+ << DeclType.Mem.Scope().getRange();
+ }
+ D.setInvalidType(true);
+ ClsType = Context.IntTy;
+ }
+
+ // C++ 8.3.3p3: A pointer to member shall not pointer to ... a member
+ // with reference type, or "cv void."
+ if (T->isReferenceType()) {
+ Diag(DeclType.Loc, diag::err_illegal_decl_pointer_to_reference)
+ << (D.getIdentifier() ? D.getIdentifier()->getName() : "type name");
+ D.setInvalidType(true);
+ T = Context.IntTy;
+ }
+ if (T->isVoidType()) {
+ Diag(DeclType.Loc, diag::err_illegal_decl_mempointer_to_void)
+ << (D.getIdentifier() ? D.getIdentifier()->getName() : "type name");
+ T = Context.IntTy;
+ }
+
+ // Enforce C99 6.7.3p2: "Types other than pointer types derived from
+ // object or incomplete types shall not be restrict-qualified."
+ if ((DeclType.Mem.TypeQuals & QualType::Restrict) &&
+ !T->isIncompleteOrObjectType()) {
+ Diag(DeclType.Loc, diag::err_typecheck_invalid_restrict_invalid_pointee)
+ << T;
+ DeclType.Mem.TypeQuals &= ~QualType::Restrict;
+ }
+
+ T = Context.getMemberPointerType(T, ClsType.getTypePtr()).
+ getQualifiedType(DeclType.Mem.TypeQuals);
+
+ break;
+ }
+
+ if (T.isNull()) {
+ D.setInvalidType(true);
+ T = Context.IntTy;
+ }
+
+ // See if there are any attributes on this declarator chunk.
+ if (const AttributeList *AL = DeclType.getAttrs())
+ ProcessTypeAttributeList(T, AL);
+ }
+
+ if (getLangOptions().CPlusPlus && T->isFunctionType()) {
+ const FunctionProtoType *FnTy = T->getAsFunctionProtoType();
+ assert(FnTy && "Why oh why is there not a FunctionProtoType here ?");
+
+ // C++ 8.3.5p4: A cv-qualifier-seq shall only be part of the function type
+ // for a nonstatic member function, the function type to which a pointer
+ // to member refers, or the top-level function type of a function typedef
+ // declaration.
+ if (FnTy->getTypeQuals() != 0 &&
+ D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
+ ((D.getContext() != Declarator::MemberContext &&
+ (!D.getCXXScopeSpec().isSet() ||
+ !computeDeclContext(D.getCXXScopeSpec())->isRecord())) ||
+ D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_static)) {
+ if (D.isFunctionDeclarator())
+ Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_function_type);
+ else
+ Diag(D.getIdentifierLoc(),
+ diag::err_invalid_qualified_typedef_function_type_use);
+
+ // Strip the cv-quals from the type.
+ T = Context.getFunctionType(FnTy->getResultType(), FnTy->arg_type_begin(),
+ FnTy->getNumArgs(), FnTy->isVariadic(), 0);
+ }
+ }
+
+ // If there were any type attributes applied to the decl itself (not the
+ // type, apply the type attribute to the type!)
+ if (const AttributeList *Attrs = D.getAttributes())
+ ProcessTypeAttributeList(T, Attrs);
+
+ return T;
+}
+
+/// CheckSpecifiedExceptionType - Check if the given type is valid in an
+/// exception specification. Incomplete types, or pointers to incomplete types
+/// other than void are not allowed.
+bool Sema::CheckSpecifiedExceptionType(QualType T, const SourceRange &Range) {
+ // FIXME: This may not correctly work with the fix for core issue 437,
+ // where a class's own type is considered complete within its body.
+
+ // C++ 15.4p2: A type denoted in an exception-specification shall not denote
+ // an incomplete type.
+ if (T->isIncompleteType())
+ return Diag(Range.getBegin(), diag::err_incomplete_in_exception_spec)
+ << Range << T << /*direct*/0;
+
+ // C++ 15.4p2: A type denoted in an exception-specification shall not denote
+ // an incomplete type a pointer or reference to an incomplete type, other
+ // than (cv) void*.
+ int kind;
+ if (const PointerType* IT = T->getAsPointerType()) {
+ T = IT->getPointeeType();
+ kind = 1;
+ } else if (const ReferenceType* IT = T->getAsReferenceType()) {
+ T = IT->getPointeeType();
+ kind = 2;
+ } else
+ return false;
+
+ if (T->isIncompleteType() && !T->isVoidType())
+ return Diag(Range.getBegin(), diag::err_incomplete_in_exception_spec)
+ << Range << T << /*indirect*/kind;
+
+ return false;
+}
+
+/// CheckDistantExceptionSpec - Check if the given type is a pointer or pointer
+/// to member to a function with an exception specification. This means that
+/// it is invalid to add another level of indirection.
+bool Sema::CheckDistantExceptionSpec(QualType T) {
+ if (const PointerType *PT = T->getAsPointerType())
+ T = PT->getPointeeType();
+ else if (const MemberPointerType *PT = T->getAsMemberPointerType())
+ T = PT->getPointeeType();
+ else
+ return false;
+
+ const FunctionProtoType *FnT = T->getAsFunctionProtoType();
+ if (!FnT)
+ return false;
+
+ return FnT->hasExceptionSpec();
+}
+
+/// ObjCGetTypeForMethodDefinition - Builds the type for a method definition
+/// declarator
+QualType Sema::ObjCGetTypeForMethodDefinition(DeclPtrTy D) {
+ ObjCMethodDecl *MDecl = cast<ObjCMethodDecl>(D.getAs<Decl>());
+ QualType T = MDecl->getResultType();
+ llvm::SmallVector<QualType, 16> ArgTys;
+
+ // Add the first two invisible argument types for self and _cmd.
+ if (MDecl->isInstanceMethod()) {
+ QualType selfTy = Context.getObjCInterfaceType(MDecl->getClassInterface());
+ selfTy = Context.getPointerType(selfTy);
+ ArgTys.push_back(selfTy);
+ } else
+ ArgTys.push_back(Context.getObjCIdType());
+ ArgTys.push_back(Context.getObjCSelType());
+
+ for (ObjCMethodDecl::param_iterator PI = MDecl->param_begin(),
+ E = MDecl->param_end(); PI != E; ++PI) {
+ QualType ArgTy = (*PI)->getType();
+ assert(!ArgTy.isNull() && "Couldn't parse type?");
+ ArgTy = adjustParameterType(ArgTy);
+ ArgTys.push_back(ArgTy);
+ }
+ T = Context.getFunctionType(T, &ArgTys[0], ArgTys.size(),
+ MDecl->isVariadic(), 0);
+ return T;
+}
+
+/// UnwrapSimilarPointerTypes - If T1 and T2 are pointer types that
+/// may be similar (C++ 4.4), replaces T1 and T2 with the type that
+/// they point to and return true. If T1 and T2 aren't pointer types
+/// or pointer-to-member types, or if they are not similar at this
+/// level, returns false and leaves T1 and T2 unchanged. Top-level
+/// qualifiers on T1 and T2 are ignored. This function will typically
+/// be called in a loop that successively "unwraps" pointer and
+/// pointer-to-member types to compare them at each level.
+bool Sema::UnwrapSimilarPointerTypes(QualType& T1, QualType& T2) {
+ const PointerType *T1PtrType = T1->getAsPointerType(),
+ *T2PtrType = T2->getAsPointerType();
+ if (T1PtrType && T2PtrType) {
+ T1 = T1PtrType->getPointeeType();
+ T2 = T2PtrType->getPointeeType();
+ return true;
+ }
+
+ const MemberPointerType *T1MPType = T1->getAsMemberPointerType(),
+ *T2MPType = T2->getAsMemberPointerType();
+ if (T1MPType && T2MPType &&
+ Context.getCanonicalType(T1MPType->getClass()) ==
+ Context.getCanonicalType(T2MPType->getClass())) {
+ T1 = T1MPType->getPointeeType();
+ T2 = T2MPType->getPointeeType();
+ return true;
+ }
+ return false;
+}
+
+Sema::TypeResult Sema::ActOnTypeName(Scope *S, Declarator &D) {
+ // C99 6.7.6: Type names have no identifier. This is already validated by
+ // the parser.
+ assert(D.getIdentifier() == 0 && "Type name should have no identifier!");
+
+ TagDecl *OwnedTag = 0;
+ QualType T = GetTypeForDeclarator(D, S, /*Skip=*/0, &OwnedTag);
+ if (D.isInvalidType())
+ return true;
+
+ if (getLangOptions().CPlusPlus) {
+ // Check that there are no default arguments (C++ only).
+ CheckExtraCXXDefaultArguments(D);
+
+ // C++0x [dcl.type]p3:
+ // A type-specifier-seq shall not define a class or enumeration
+ // unless it appears in the type-id of an alias-declaration
+ // (7.1.3).
+ if (OwnedTag && OwnedTag->isDefinition())
+ Diag(OwnedTag->getLocation(), diag::err_type_defined_in_type_specifier)
+ << Context.getTypeDeclType(OwnedTag);
+ }
+
+ return T.getAsOpaquePtr();
+}
+
+
+
+//===----------------------------------------------------------------------===//
+// Type Attribute Processing
+//===----------------------------------------------------------------------===//
+
+/// HandleAddressSpaceTypeAttribute - Process an address_space attribute on the
+/// specified type. The attribute contains 1 argument, the id of the address
+/// space for the type.
+static void HandleAddressSpaceTypeAttribute(QualType &Type,
+ const AttributeList &Attr, Sema &S){
+ // If this type is already address space qualified, reject it.
+ // Clause 6.7.3 - Type qualifiers: "No type shall be qualified by qualifiers
+ // for two or more different address spaces."
+ if (Type.getAddressSpace()) {
+ S.Diag(Attr.getLoc(), diag::err_attribute_address_multiple_qualifiers);
+ return;
+ }
+
+ // Check the attribute arguments.
+ if (Attr.getNumArgs() != 1) {
+ S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
+ return;
+ }
+ Expr *ASArgExpr = static_cast<Expr *>(Attr.getArg(0));
+ llvm::APSInt addrSpace(32);
+ if (!ASArgExpr->isIntegerConstantExpr(addrSpace, S.Context)) {
+ S.Diag(Attr.getLoc(), diag::err_attribute_address_space_not_int)
+ << ASArgExpr->getSourceRange();
+ return;
+ }
+
+ unsigned ASIdx = static_cast<unsigned>(addrSpace.getZExtValue());
+ Type = S.Context.getAddrSpaceQualType(Type, ASIdx);
+}
+
+/// HandleObjCGCTypeAttribute - Process an objc's gc attribute on the
+/// specified type. The attribute contains 1 argument, weak or strong.
+static void HandleObjCGCTypeAttribute(QualType &Type,
+ const AttributeList &Attr, Sema &S) {
+ if (Type.getObjCGCAttr() != QualType::GCNone) {
+ S.Diag(Attr.getLoc(), diag::err_attribute_multiple_objc_gc);
+ return;
+ }
+
+ // Check the attribute arguments.
+ if (!Attr.getParameterName()) {
+ S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_string)
+ << "objc_gc" << 1;
+ return;
+ }
+ QualType::GCAttrTypes GCAttr;
+ if (Attr.getNumArgs() != 0) {
+ S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
+ return;
+ }
+ if (Attr.getParameterName()->isStr("weak"))
+ GCAttr = QualType::Weak;
+ else if (Attr.getParameterName()->isStr("strong"))
+ GCAttr = QualType::Strong;
+ else {
+ S.Diag(Attr.getLoc(), diag::warn_attribute_type_not_supported)
+ << "objc_gc" << Attr.getParameterName();
+ return;
+ }
+
+ Type = S.Context.getObjCGCQualType(Type, GCAttr);
+}
+
+void Sema::ProcessTypeAttributeList(QualType &Result, const AttributeList *AL) {
+ // Scan through and apply attributes to this type where it makes sense. Some
+ // attributes (such as __address_space__, __vector_size__, etc) apply to the
+ // type, but others can be present in the type specifiers even though they
+ // apply to the decl. Here we apply type attributes and ignore the rest.
+ for (; AL; AL = AL->getNext()) {
+ // If this is an attribute we can handle, do so now, otherwise, add it to
+ // the LeftOverAttrs list for rechaining.
+ switch (AL->getKind()) {
+ default: break;
+ case AttributeList::AT_address_space:
+ HandleAddressSpaceTypeAttribute(Result, *AL, *this);
+ break;
+ case AttributeList::AT_objc_gc:
+ HandleObjCGCTypeAttribute(Result, *AL, *this);
+ break;
+ }
+ }
+}
+
+/// @brief Ensure that the type T is a complete type.
+///
+/// This routine checks whether the type @p T is complete in any
+/// context where a complete type is required. If @p T is a complete
+/// type, returns false. If @p T is a class template specialization,
+/// this routine then attempts to perform class template
+/// instantiation. If instantiation fails, or if @p T is incomplete
+/// and cannot be completed, issues the diagnostic @p diag (giving it
+/// the type @p T) and returns true.
+///
+/// @param Loc The location in the source that the incomplete type
+/// diagnostic should refer to.
+///
+/// @param T The type that this routine is examining for completeness.
+///
+/// @param diag The diagnostic value (e.g.,
+/// @c diag::err_typecheck_decl_incomplete_type) that will be used
+/// for the error message if @p T is incomplete.
+///
+/// @param Range1 An optional range in the source code that will be a
+/// part of the "incomplete type" error message.
+///
+/// @param Range2 An optional range in the source code that will be a
+/// part of the "incomplete type" error message.
+///
+/// @param PrintType If non-NULL, the type that should be printed
+/// instead of @p T. This parameter should be used when the type that
+/// we're checking for incompleteness isn't the type that should be
+/// displayed to the user, e.g., when T is a type and PrintType is a
+/// pointer to T.
+///
+/// @returns @c true if @p T is incomplete and a diagnostic was emitted,
+/// @c false otherwise.
+bool Sema::RequireCompleteType(SourceLocation Loc, QualType T, unsigned diag,
+ SourceRange Range1, SourceRange Range2,
+ QualType PrintType) {
+ // FIXME: Add this assertion to help us flush out problems with
+ // checking for dependent types and type-dependent expressions.
+ //
+ // assert(!T->isDependentType() &&
+ // "Can't ask whether a dependent type is complete");
+
+ // If we have a complete type, we're done.
+ if (!T->isIncompleteType())
+ return false;
+
+ // If we have a class template specialization or a class member of a
+ // class template specialization, try to instantiate it.
+ if (const RecordType *Record = T->getAsRecordType()) {
+ if (ClassTemplateSpecializationDecl *ClassTemplateSpec
+ = dyn_cast<ClassTemplateSpecializationDecl>(Record->getDecl())) {
+ if (ClassTemplateSpec->getSpecializationKind() == TSK_Undeclared) {
+ // Update the class template specialization's location to
+ // refer to the point of instantiation.
+ if (Loc.isValid())
+ ClassTemplateSpec->setLocation(Loc);
+ return InstantiateClassTemplateSpecialization(ClassTemplateSpec,
+ /*ExplicitInstantiation=*/false);
+ }
+ } else if (CXXRecordDecl *Rec
+ = dyn_cast<CXXRecordDecl>(Record->getDecl())) {
+ if (CXXRecordDecl *Pattern = Rec->getInstantiatedFromMemberClass()) {
+ // Find the class template specialization that surrounds this
+ // member class.
+ ClassTemplateSpecializationDecl *Spec = 0;
+ for (DeclContext *Parent = Rec->getDeclContext();
+ Parent && !Spec; Parent = Parent->getParent())
+ Spec = dyn_cast<ClassTemplateSpecializationDecl>(Parent);
+ assert(Spec && "Not a member of a class template specialization?");
+ return InstantiateClass(Loc, Rec, Pattern, Spec->getTemplateArgs(),
+ /*ExplicitInstantiation=*/false);
+ }
+ }
+ }
+
+ if (PrintType.isNull())
+ PrintType = T;
+
+ // We have an incomplete type. Produce a diagnostic.
+ Diag(Loc, diag) << PrintType << Range1 << Range2;
+
+ // If the type was a forward declaration of a class/struct/union
+ // type, produce
+ const TagType *Tag = 0;
+ if (const RecordType *Record = T->getAsRecordType())
+ Tag = Record;
+ else if (const EnumType *Enum = T->getAsEnumType())
+ Tag = Enum;
+
+ if (Tag && !Tag->getDecl()->isInvalidDecl())
+ Diag(Tag->getDecl()->getLocation(),
+ Tag->isBeingDefined() ? diag::note_type_being_defined
+ : diag::note_forward_declaration)
+ << QualType(Tag, 0);
+
+ return true;
+}
+
+/// \brief Retrieve a version of the type 'T' that is qualified by the
+/// nested-name-specifier contained in SS.
+QualType Sema::getQualifiedNameType(const CXXScopeSpec &SS, QualType T) {
+ if (!SS.isSet() || SS.isInvalid() || T.isNull())
+ return T;
+
+ NestedNameSpecifier *NNS
+ = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
+ return Context.getQualifiedNameType(NNS, T);
+}
OpenPOWER on IntegriCloud