summaryrefslogtreecommitdiffstats
path: root/lib/Sema/SemaTemplate.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'lib/Sema/SemaTemplate.cpp')
-rw-r--r--lib/Sema/SemaTemplate.cpp2651
1 files changed, 2651 insertions, 0 deletions
diff --git a/lib/Sema/SemaTemplate.cpp b/lib/Sema/SemaTemplate.cpp
new file mode 100644
index 0000000..782a0d8
--- /dev/null
+++ b/lib/Sema/SemaTemplate.cpp
@@ -0,0 +1,2651 @@
+//===------- SemaTemplate.cpp - Semantic Analysis for C++ Templates -------===/
+
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//===----------------------------------------------------------------------===/
+
+//
+// This file implements semantic analysis for C++ templates.
+//===----------------------------------------------------------------------===/
+
+#include "Sema.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/Expr.h"
+#include "clang/AST/ExprCXX.h"
+#include "clang/AST/DeclTemplate.h"
+#include "clang/Parse/DeclSpec.h"
+#include "clang/Basic/LangOptions.h"
+
+using namespace clang;
+
+/// isTemplateName - Determines whether the identifier II is a
+/// template name in the current scope, and returns the template
+/// declaration if II names a template. An optional CXXScope can be
+/// passed to indicate the C++ scope in which the identifier will be
+/// found.
+TemplateNameKind Sema::isTemplateName(const IdentifierInfo &II, Scope *S,
+ TemplateTy &TemplateResult,
+ const CXXScopeSpec *SS) {
+ NamedDecl *IIDecl = LookupParsedName(S, SS, &II, LookupOrdinaryName);
+
+ TemplateNameKind TNK = TNK_Non_template;
+ TemplateDecl *Template = 0;
+
+ if (IIDecl) {
+ if ((Template = dyn_cast<TemplateDecl>(IIDecl))) {
+ if (isa<FunctionTemplateDecl>(IIDecl))
+ TNK = TNK_Function_template;
+ else if (isa<ClassTemplateDecl>(IIDecl) ||
+ isa<TemplateTemplateParmDecl>(IIDecl))
+ TNK = TNK_Type_template;
+ else
+ assert(false && "Unknown template declaration kind");
+ } else if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(IIDecl)) {
+ // C++ [temp.local]p1:
+ // Like normal (non-template) classes, class templates have an
+ // injected-class-name (Clause 9). The injected-class-name
+ // can be used with or without a template-argument-list. When
+ // it is used without a template-argument-list, it is
+ // equivalent to the injected-class-name followed by the
+ // template-parameters of the class template enclosed in
+ // <>. When it is used with a template-argument-list, it
+ // refers to the specified class template specialization,
+ // which could be the current specialization or another
+ // specialization.
+ if (Record->isInjectedClassName()) {
+ Record = cast<CXXRecordDecl>(Context.getCanonicalDecl(Record));
+ if ((Template = Record->getDescribedClassTemplate()))
+ TNK = TNK_Type_template;
+ else if (ClassTemplateSpecializationDecl *Spec
+ = dyn_cast<ClassTemplateSpecializationDecl>(Record)) {
+ Template = Spec->getSpecializedTemplate();
+ TNK = TNK_Type_template;
+ }
+ }
+ }
+
+ // FIXME: What follows is a gross hack.
+ if (FunctionDecl *FD = dyn_cast<FunctionDecl>(IIDecl)) {
+ if (FD->getType()->isDependentType()) {
+ TemplateResult = TemplateTy::make(FD);
+ return TNK_Function_template;
+ }
+ } else if (OverloadedFunctionDecl *Ovl
+ = dyn_cast<OverloadedFunctionDecl>(IIDecl)) {
+ for (OverloadedFunctionDecl::function_iterator F = Ovl->function_begin(),
+ FEnd = Ovl->function_end();
+ F != FEnd; ++F) {
+ if ((*F)->getType()->isDependentType()) {
+ TemplateResult = TemplateTy::make(Ovl);
+ return TNK_Function_template;
+ }
+ }
+ }
+
+ if (TNK != TNK_Non_template) {
+ if (SS && SS->isSet() && !SS->isInvalid()) {
+ NestedNameSpecifier *Qualifier
+ = static_cast<NestedNameSpecifier *>(SS->getScopeRep());
+ TemplateResult
+ = TemplateTy::make(Context.getQualifiedTemplateName(Qualifier,
+ false,
+ Template));
+ } else
+ TemplateResult = TemplateTy::make(TemplateName(Template));
+ }
+ }
+ return TNK;
+}
+
+/// DiagnoseTemplateParameterShadow - Produce a diagnostic complaining
+/// that the template parameter 'PrevDecl' is being shadowed by a new
+/// declaration at location Loc. Returns true to indicate that this is
+/// an error, and false otherwise.
+bool Sema::DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl) {
+ assert(PrevDecl->isTemplateParameter() && "Not a template parameter");
+
+ // Microsoft Visual C++ permits template parameters to be shadowed.
+ if (getLangOptions().Microsoft)
+ return false;
+
+ // C++ [temp.local]p4:
+ // A template-parameter shall not be redeclared within its
+ // scope (including nested scopes).
+ Diag(Loc, diag::err_template_param_shadow)
+ << cast<NamedDecl>(PrevDecl)->getDeclName();
+ Diag(PrevDecl->getLocation(), diag::note_template_param_here);
+ return true;
+}
+
+/// AdjustDeclIfTemplate - If the given decl happens to be a template, reset
+/// the parameter D to reference the templated declaration and return a pointer
+/// to the template declaration. Otherwise, do nothing to D and return null.
+TemplateDecl *Sema::AdjustDeclIfTemplate(DeclPtrTy &D) {
+ if (TemplateDecl *Temp = dyn_cast<TemplateDecl>(D.getAs<Decl>())) {
+ D = DeclPtrTy::make(Temp->getTemplatedDecl());
+ return Temp;
+ }
+ return 0;
+}
+
+/// ActOnTypeParameter - Called when a C++ template type parameter
+/// (e.g., "typename T") has been parsed. Typename specifies whether
+/// the keyword "typename" was used to declare the type parameter
+/// (otherwise, "class" was used), and KeyLoc is the location of the
+/// "class" or "typename" keyword. ParamName is the name of the
+/// parameter (NULL indicates an unnamed template parameter) and
+/// ParamName is the location of the parameter name (if any).
+/// If the type parameter has a default argument, it will be added
+/// later via ActOnTypeParameterDefault.
+Sema::DeclPtrTy Sema::ActOnTypeParameter(Scope *S, bool Typename,
+ SourceLocation KeyLoc,
+ IdentifierInfo *ParamName,
+ SourceLocation ParamNameLoc,
+ unsigned Depth, unsigned Position) {
+ assert(S->isTemplateParamScope() &&
+ "Template type parameter not in template parameter scope!");
+ bool Invalid = false;
+
+ if (ParamName) {
+ NamedDecl *PrevDecl = LookupName(S, ParamName, LookupTagName);
+ if (PrevDecl && PrevDecl->isTemplateParameter())
+ Invalid = Invalid || DiagnoseTemplateParameterShadow(ParamNameLoc,
+ PrevDecl);
+ }
+
+ SourceLocation Loc = ParamNameLoc;
+ if (!ParamName)
+ Loc = KeyLoc;
+
+ TemplateTypeParmDecl *Param
+ = TemplateTypeParmDecl::Create(Context, CurContext, Loc,
+ Depth, Position, ParamName, Typename);
+ if (Invalid)
+ Param->setInvalidDecl();
+
+ if (ParamName) {
+ // Add the template parameter into the current scope.
+ S->AddDecl(DeclPtrTy::make(Param));
+ IdResolver.AddDecl(Param);
+ }
+
+ return DeclPtrTy::make(Param);
+}
+
+/// ActOnTypeParameterDefault - Adds a default argument (the type
+/// Default) to the given template type parameter (TypeParam).
+void Sema::ActOnTypeParameterDefault(DeclPtrTy TypeParam,
+ SourceLocation EqualLoc,
+ SourceLocation DefaultLoc,
+ TypeTy *DefaultT) {
+ TemplateTypeParmDecl *Parm
+ = cast<TemplateTypeParmDecl>(TypeParam.getAs<Decl>());
+ QualType Default = QualType::getFromOpaquePtr(DefaultT);
+
+ // C++ [temp.param]p14:
+ // A template-parameter shall not be used in its own default argument.
+ // FIXME: Implement this check! Needs a recursive walk over the types.
+
+ // Check the template argument itself.
+ if (CheckTemplateArgument(Parm, Default, DefaultLoc)) {
+ Parm->setInvalidDecl();
+ return;
+ }
+
+ Parm->setDefaultArgument(Default, DefaultLoc, false);
+}
+
+/// \brief Check that the type of a non-type template parameter is
+/// well-formed.
+///
+/// \returns the (possibly-promoted) parameter type if valid;
+/// otherwise, produces a diagnostic and returns a NULL type.
+QualType
+Sema::CheckNonTypeTemplateParameterType(QualType T, SourceLocation Loc) {
+ // C++ [temp.param]p4:
+ //
+ // A non-type template-parameter shall have one of the following
+ // (optionally cv-qualified) types:
+ //
+ // -- integral or enumeration type,
+ if (T->isIntegralType() || T->isEnumeralType() ||
+ // -- pointer to object or pointer to function,
+ (T->isPointerType() &&
+ (T->getAsPointerType()->getPointeeType()->isObjectType() ||
+ T->getAsPointerType()->getPointeeType()->isFunctionType())) ||
+ // -- reference to object or reference to function,
+ T->isReferenceType() ||
+ // -- pointer to member.
+ T->isMemberPointerType() ||
+ // If T is a dependent type, we can't do the check now, so we
+ // assume that it is well-formed.
+ T->isDependentType())
+ return T;
+ // C++ [temp.param]p8:
+ //
+ // A non-type template-parameter of type "array of T" or
+ // "function returning T" is adjusted to be of type "pointer to
+ // T" or "pointer to function returning T", respectively.
+ else if (T->isArrayType())
+ // FIXME: Keep the type prior to promotion?
+ return Context.getArrayDecayedType(T);
+ else if (T->isFunctionType())
+ // FIXME: Keep the type prior to promotion?
+ return Context.getPointerType(T);
+
+ Diag(Loc, diag::err_template_nontype_parm_bad_type)
+ << T;
+
+ return QualType();
+}
+
+/// ActOnNonTypeTemplateParameter - Called when a C++ non-type
+/// template parameter (e.g., "int Size" in "template<int Size>
+/// class Array") has been parsed. S is the current scope and D is
+/// the parsed declarator.
+Sema::DeclPtrTy Sema::ActOnNonTypeTemplateParameter(Scope *S, Declarator &D,
+ unsigned Depth,
+ unsigned Position) {
+ QualType T = GetTypeForDeclarator(D, S);
+
+ assert(S->isTemplateParamScope() &&
+ "Non-type template parameter not in template parameter scope!");
+ bool Invalid = false;
+
+ IdentifierInfo *ParamName = D.getIdentifier();
+ if (ParamName) {
+ NamedDecl *PrevDecl = LookupName(S, ParamName, LookupTagName);
+ if (PrevDecl && PrevDecl->isTemplateParameter())
+ Invalid = Invalid || DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
+ PrevDecl);
+ }
+
+ T = CheckNonTypeTemplateParameterType(T, D.getIdentifierLoc());
+ if (T.isNull()) {
+ T = Context.IntTy; // Recover with an 'int' type.
+ Invalid = true;
+ }
+
+ NonTypeTemplateParmDecl *Param
+ = NonTypeTemplateParmDecl::Create(Context, CurContext, D.getIdentifierLoc(),
+ Depth, Position, ParamName, T);
+ if (Invalid)
+ Param->setInvalidDecl();
+
+ if (D.getIdentifier()) {
+ // Add the template parameter into the current scope.
+ S->AddDecl(DeclPtrTy::make(Param));
+ IdResolver.AddDecl(Param);
+ }
+ return DeclPtrTy::make(Param);
+}
+
+/// \brief Adds a default argument to the given non-type template
+/// parameter.
+void Sema::ActOnNonTypeTemplateParameterDefault(DeclPtrTy TemplateParamD,
+ SourceLocation EqualLoc,
+ ExprArg DefaultE) {
+ NonTypeTemplateParmDecl *TemplateParm
+ = cast<NonTypeTemplateParmDecl>(TemplateParamD.getAs<Decl>());
+ Expr *Default = static_cast<Expr *>(DefaultE.get());
+
+ // C++ [temp.param]p14:
+ // A template-parameter shall not be used in its own default argument.
+ // FIXME: Implement this check! Needs a recursive walk over the types.
+
+ // Check the well-formedness of the default template argument.
+ if (CheckTemplateArgument(TemplateParm, TemplateParm->getType(), Default)) {
+ TemplateParm->setInvalidDecl();
+ return;
+ }
+
+ TemplateParm->setDefaultArgument(DefaultE.takeAs<Expr>());
+}
+
+
+/// ActOnTemplateTemplateParameter - Called when a C++ template template
+/// parameter (e.g. T in template <template <typename> class T> class array)
+/// has been parsed. S is the current scope.
+Sema::DeclPtrTy Sema::ActOnTemplateTemplateParameter(Scope* S,
+ SourceLocation TmpLoc,
+ TemplateParamsTy *Params,
+ IdentifierInfo *Name,
+ SourceLocation NameLoc,
+ unsigned Depth,
+ unsigned Position)
+{
+ assert(S->isTemplateParamScope() &&
+ "Template template parameter not in template parameter scope!");
+
+ // Construct the parameter object.
+ TemplateTemplateParmDecl *Param =
+ TemplateTemplateParmDecl::Create(Context, CurContext, TmpLoc, Depth,
+ Position, Name,
+ (TemplateParameterList*)Params);
+
+ // Make sure the parameter is valid.
+ // FIXME: Decl object is not currently invalidated anywhere so this doesn't
+ // do anything yet. However, if the template parameter list or (eventual)
+ // default value is ever invalidated, that will propagate here.
+ bool Invalid = false;
+ if (Invalid) {
+ Param->setInvalidDecl();
+ }
+
+ // If the tt-param has a name, then link the identifier into the scope
+ // and lookup mechanisms.
+ if (Name) {
+ S->AddDecl(DeclPtrTy::make(Param));
+ IdResolver.AddDecl(Param);
+ }
+
+ return DeclPtrTy::make(Param);
+}
+
+/// \brief Adds a default argument to the given template template
+/// parameter.
+void Sema::ActOnTemplateTemplateParameterDefault(DeclPtrTy TemplateParamD,
+ SourceLocation EqualLoc,
+ ExprArg DefaultE) {
+ TemplateTemplateParmDecl *TemplateParm
+ = cast<TemplateTemplateParmDecl>(TemplateParamD.getAs<Decl>());
+
+ // Since a template-template parameter's default argument is an
+ // id-expression, it must be a DeclRefExpr.
+ DeclRefExpr *Default
+ = cast<DeclRefExpr>(static_cast<Expr *>(DefaultE.get()));
+
+ // C++ [temp.param]p14:
+ // A template-parameter shall not be used in its own default argument.
+ // FIXME: Implement this check! Needs a recursive walk over the types.
+
+ // Check the well-formedness of the template argument.
+ if (!isa<TemplateDecl>(Default->getDecl())) {
+ Diag(Default->getSourceRange().getBegin(),
+ diag::err_template_arg_must_be_template)
+ << Default->getSourceRange();
+ TemplateParm->setInvalidDecl();
+ return;
+ }
+ if (CheckTemplateArgument(TemplateParm, Default)) {
+ TemplateParm->setInvalidDecl();
+ return;
+ }
+
+ DefaultE.release();
+ TemplateParm->setDefaultArgument(Default);
+}
+
+/// ActOnTemplateParameterList - Builds a TemplateParameterList that
+/// contains the template parameters in Params/NumParams.
+Sema::TemplateParamsTy *
+Sema::ActOnTemplateParameterList(unsigned Depth,
+ SourceLocation ExportLoc,
+ SourceLocation TemplateLoc,
+ SourceLocation LAngleLoc,
+ DeclPtrTy *Params, unsigned NumParams,
+ SourceLocation RAngleLoc) {
+ if (ExportLoc.isValid())
+ Diag(ExportLoc, diag::note_template_export_unsupported);
+
+ return TemplateParameterList::Create(Context, TemplateLoc, LAngleLoc,
+ (Decl**)Params, NumParams, RAngleLoc);
+}
+
+Sema::DeclResult
+Sema::ActOnClassTemplate(Scope *S, unsigned TagSpec, TagKind TK,
+ SourceLocation KWLoc, const CXXScopeSpec &SS,
+ IdentifierInfo *Name, SourceLocation NameLoc,
+ AttributeList *Attr,
+ MultiTemplateParamsArg TemplateParameterLists,
+ AccessSpecifier AS) {
+ assert(TemplateParameterLists.size() > 0 && "No template parameter lists?");
+ assert(TK != TK_Reference && "Can only declare or define class templates");
+ bool Invalid = false;
+
+ // Check that we can declare a template here.
+ if (CheckTemplateDeclScope(S, TemplateParameterLists))
+ return true;
+
+ TagDecl::TagKind Kind;
+ switch (TagSpec) {
+ default: assert(0 && "Unknown tag type!");
+ case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break;
+ case DeclSpec::TST_union: Kind = TagDecl::TK_union; break;
+ case DeclSpec::TST_class: Kind = TagDecl::TK_class; break;
+ }
+
+ // There is no such thing as an unnamed class template.
+ if (!Name) {
+ Diag(KWLoc, diag::err_template_unnamed_class);
+ return true;
+ }
+
+ // Find any previous declaration with this name.
+ LookupResult Previous = LookupParsedName(S, &SS, Name, LookupOrdinaryName,
+ true);
+ assert(!Previous.isAmbiguous() && "Ambiguity in class template redecl?");
+ NamedDecl *PrevDecl = 0;
+ if (Previous.begin() != Previous.end())
+ PrevDecl = *Previous.begin();
+
+ DeclContext *SemanticContext = CurContext;
+ if (SS.isNotEmpty() && !SS.isInvalid()) {
+ SemanticContext = computeDeclContext(SS);
+
+ // FIXME: need to match up several levels of template parameter lists here.
+ }
+
+ // FIXME: member templates!
+ TemplateParameterList *TemplateParams
+ = static_cast<TemplateParameterList *>(*TemplateParameterLists.release());
+
+ // If there is a previous declaration with the same name, check
+ // whether this is a valid redeclaration.
+ ClassTemplateDecl *PrevClassTemplate
+ = dyn_cast_or_null<ClassTemplateDecl>(PrevDecl);
+ if (PrevClassTemplate) {
+ // Ensure that the template parameter lists are compatible.
+ if (!TemplateParameterListsAreEqual(TemplateParams,
+ PrevClassTemplate->getTemplateParameters(),
+ /*Complain=*/true))
+ return true;
+
+ // C++ [temp.class]p4:
+ // In a redeclaration, partial specialization, explicit
+ // specialization or explicit instantiation of a class template,
+ // the class-key shall agree in kind with the original class
+ // template declaration (7.1.5.3).
+ RecordDecl *PrevRecordDecl = PrevClassTemplate->getTemplatedDecl();
+ if (!isAcceptableTagRedeclaration(PrevRecordDecl, Kind, KWLoc, *Name)) {
+ Diag(KWLoc, diag::err_use_with_wrong_tag)
+ << Name
+ << CodeModificationHint::CreateReplacement(KWLoc,
+ PrevRecordDecl->getKindName());
+ Diag(PrevRecordDecl->getLocation(), diag::note_previous_use);
+ Kind = PrevRecordDecl->getTagKind();
+ }
+
+ // Check for redefinition of this class template.
+ if (TK == TK_Definition) {
+ if (TagDecl *Def = PrevRecordDecl->getDefinition(Context)) {
+ Diag(NameLoc, diag::err_redefinition) << Name;
+ Diag(Def->getLocation(), diag::note_previous_definition);
+ // FIXME: Would it make sense to try to "forget" the previous
+ // definition, as part of error recovery?
+ return true;
+ }
+ }
+ } else if (PrevDecl && PrevDecl->isTemplateParameter()) {
+ // Maybe we will complain about the shadowed template parameter.
+ DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
+ // Just pretend that we didn't see the previous declaration.
+ PrevDecl = 0;
+ } else if (PrevDecl) {
+ // C++ [temp]p5:
+ // A class template shall not have the same name as any other
+ // template, class, function, object, enumeration, enumerator,
+ // namespace, or type in the same scope (3.3), except as specified
+ // in (14.5.4).
+ Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
+ Diag(PrevDecl->getLocation(), diag::note_previous_definition);
+ return true;
+ }
+
+ // Check the template parameter list of this declaration, possibly
+ // merging in the template parameter list from the previous class
+ // template declaration.
+ if (CheckTemplateParameterList(TemplateParams,
+ PrevClassTemplate? PrevClassTemplate->getTemplateParameters() : 0))
+ Invalid = true;
+
+ // FIXME: If we had a scope specifier, we better have a previous template
+ // declaration!
+
+ CXXRecordDecl *NewClass =
+ CXXRecordDecl::Create(Context, Kind, SemanticContext, NameLoc, Name,
+ PrevClassTemplate?
+ PrevClassTemplate->getTemplatedDecl() : 0,
+ /*DelayTypeCreation=*/true);
+
+ ClassTemplateDecl *NewTemplate
+ = ClassTemplateDecl::Create(Context, SemanticContext, NameLoc,
+ DeclarationName(Name), TemplateParams,
+ NewClass, PrevClassTemplate);
+ NewClass->setDescribedClassTemplate(NewTemplate);
+
+ // Build the type for the class template declaration now.
+ QualType T =
+ Context.getTypeDeclType(NewClass,
+ PrevClassTemplate?
+ PrevClassTemplate->getTemplatedDecl() : 0);
+ assert(T->isDependentType() && "Class template type is not dependent?");
+ (void)T;
+
+ // Set the access specifier.
+ SetMemberAccessSpecifier(NewTemplate, PrevClassTemplate, AS);
+
+ // Set the lexical context of these templates
+ NewClass->setLexicalDeclContext(CurContext);
+ NewTemplate->setLexicalDeclContext(CurContext);
+
+ if (TK == TK_Definition)
+ NewClass->startDefinition();
+
+ if (Attr)
+ ProcessDeclAttributeList(NewClass, Attr);
+
+ PushOnScopeChains(NewTemplate, S);
+
+ if (Invalid) {
+ NewTemplate->setInvalidDecl();
+ NewClass->setInvalidDecl();
+ }
+ return DeclPtrTy::make(NewTemplate);
+}
+
+/// \brief Checks the validity of a template parameter list, possibly
+/// considering the template parameter list from a previous
+/// declaration.
+///
+/// If an "old" template parameter list is provided, it must be
+/// equivalent (per TemplateParameterListsAreEqual) to the "new"
+/// template parameter list.
+///
+/// \param NewParams Template parameter list for a new template
+/// declaration. This template parameter list will be updated with any
+/// default arguments that are carried through from the previous
+/// template parameter list.
+///
+/// \param OldParams If provided, template parameter list from a
+/// previous declaration of the same template. Default template
+/// arguments will be merged from the old template parameter list to
+/// the new template parameter list.
+///
+/// \returns true if an error occurred, false otherwise.
+bool Sema::CheckTemplateParameterList(TemplateParameterList *NewParams,
+ TemplateParameterList *OldParams) {
+ bool Invalid = false;
+
+ // C++ [temp.param]p10:
+ // The set of default template-arguments available for use with a
+ // template declaration or definition is obtained by merging the
+ // default arguments from the definition (if in scope) and all
+ // declarations in scope in the same way default function
+ // arguments are (8.3.6).
+ bool SawDefaultArgument = false;
+ SourceLocation PreviousDefaultArgLoc;
+
+ // Dummy initialization to avoid warnings.
+ TemplateParameterList::iterator OldParam = NewParams->end();
+ if (OldParams)
+ OldParam = OldParams->begin();
+
+ for (TemplateParameterList::iterator NewParam = NewParams->begin(),
+ NewParamEnd = NewParams->end();
+ NewParam != NewParamEnd; ++NewParam) {
+ // Variables used to diagnose redundant default arguments
+ bool RedundantDefaultArg = false;
+ SourceLocation OldDefaultLoc;
+ SourceLocation NewDefaultLoc;
+
+ // Variables used to diagnose missing default arguments
+ bool MissingDefaultArg = false;
+
+ // Merge default arguments for template type parameters.
+ if (TemplateTypeParmDecl *NewTypeParm
+ = dyn_cast<TemplateTypeParmDecl>(*NewParam)) {
+ TemplateTypeParmDecl *OldTypeParm
+ = OldParams? cast<TemplateTypeParmDecl>(*OldParam) : 0;
+
+ if (OldTypeParm && OldTypeParm->hasDefaultArgument() &&
+ NewTypeParm->hasDefaultArgument()) {
+ OldDefaultLoc = OldTypeParm->getDefaultArgumentLoc();
+ NewDefaultLoc = NewTypeParm->getDefaultArgumentLoc();
+ SawDefaultArgument = true;
+ RedundantDefaultArg = true;
+ PreviousDefaultArgLoc = NewDefaultLoc;
+ } else if (OldTypeParm && OldTypeParm->hasDefaultArgument()) {
+ // Merge the default argument from the old declaration to the
+ // new declaration.
+ SawDefaultArgument = true;
+ NewTypeParm->setDefaultArgument(OldTypeParm->getDefaultArgument(),
+ OldTypeParm->getDefaultArgumentLoc(),
+ true);
+ PreviousDefaultArgLoc = OldTypeParm->getDefaultArgumentLoc();
+ } else if (NewTypeParm->hasDefaultArgument()) {
+ SawDefaultArgument = true;
+ PreviousDefaultArgLoc = NewTypeParm->getDefaultArgumentLoc();
+ } else if (SawDefaultArgument)
+ MissingDefaultArg = true;
+ }
+ // Merge default arguments for non-type template parameters
+ else if (NonTypeTemplateParmDecl *NewNonTypeParm
+ = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) {
+ NonTypeTemplateParmDecl *OldNonTypeParm
+ = OldParams? cast<NonTypeTemplateParmDecl>(*OldParam) : 0;
+ if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument() &&
+ NewNonTypeParm->hasDefaultArgument()) {
+ OldDefaultLoc = OldNonTypeParm->getDefaultArgumentLoc();
+ NewDefaultLoc = NewNonTypeParm->getDefaultArgumentLoc();
+ SawDefaultArgument = true;
+ RedundantDefaultArg = true;
+ PreviousDefaultArgLoc = NewDefaultLoc;
+ } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument()) {
+ // Merge the default argument from the old declaration to the
+ // new declaration.
+ SawDefaultArgument = true;
+ // FIXME: We need to create a new kind of "default argument"
+ // expression that points to a previous template template
+ // parameter.
+ NewNonTypeParm->setDefaultArgument(
+ OldNonTypeParm->getDefaultArgument());
+ PreviousDefaultArgLoc = OldNonTypeParm->getDefaultArgumentLoc();
+ } else if (NewNonTypeParm->hasDefaultArgument()) {
+ SawDefaultArgument = true;
+ PreviousDefaultArgLoc = NewNonTypeParm->getDefaultArgumentLoc();
+ } else if (SawDefaultArgument)
+ MissingDefaultArg = true;
+ }
+ // Merge default arguments for template template parameters
+ else {
+ TemplateTemplateParmDecl *NewTemplateParm
+ = cast<TemplateTemplateParmDecl>(*NewParam);
+ TemplateTemplateParmDecl *OldTemplateParm
+ = OldParams? cast<TemplateTemplateParmDecl>(*OldParam) : 0;
+ if (OldTemplateParm && OldTemplateParm->hasDefaultArgument() &&
+ NewTemplateParm->hasDefaultArgument()) {
+ OldDefaultLoc = OldTemplateParm->getDefaultArgumentLoc();
+ NewDefaultLoc = NewTemplateParm->getDefaultArgumentLoc();
+ SawDefaultArgument = true;
+ RedundantDefaultArg = true;
+ PreviousDefaultArgLoc = NewDefaultLoc;
+ } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument()) {
+ // Merge the default argument from the old declaration to the
+ // new declaration.
+ SawDefaultArgument = true;
+ // FIXME: We need to create a new kind of "default argument" expression
+ // that points to a previous template template parameter.
+ NewTemplateParm->setDefaultArgument(
+ OldTemplateParm->getDefaultArgument());
+ PreviousDefaultArgLoc = OldTemplateParm->getDefaultArgumentLoc();
+ } else if (NewTemplateParm->hasDefaultArgument()) {
+ SawDefaultArgument = true;
+ PreviousDefaultArgLoc = NewTemplateParm->getDefaultArgumentLoc();
+ } else if (SawDefaultArgument)
+ MissingDefaultArg = true;
+ }
+
+ if (RedundantDefaultArg) {
+ // C++ [temp.param]p12:
+ // A template-parameter shall not be given default arguments
+ // by two different declarations in the same scope.
+ Diag(NewDefaultLoc, diag::err_template_param_default_arg_redefinition);
+ Diag(OldDefaultLoc, diag::note_template_param_prev_default_arg);
+ Invalid = true;
+ } else if (MissingDefaultArg) {
+ // C++ [temp.param]p11:
+ // If a template-parameter has a default template-argument,
+ // all subsequent template-parameters shall have a default
+ // template-argument supplied.
+ Diag((*NewParam)->getLocation(),
+ diag::err_template_param_default_arg_missing);
+ Diag(PreviousDefaultArgLoc, diag::note_template_param_prev_default_arg);
+ Invalid = true;
+ }
+
+ // If we have an old template parameter list that we're merging
+ // in, move on to the next parameter.
+ if (OldParams)
+ ++OldParam;
+ }
+
+ return Invalid;
+}
+
+/// \brief Translates template arguments as provided by the parser
+/// into template arguments used by semantic analysis.
+static void
+translateTemplateArguments(ASTTemplateArgsPtr &TemplateArgsIn,
+ SourceLocation *TemplateArgLocs,
+ llvm::SmallVector<TemplateArgument, 16> &TemplateArgs) {
+ TemplateArgs.reserve(TemplateArgsIn.size());
+
+ void **Args = TemplateArgsIn.getArgs();
+ bool *ArgIsType = TemplateArgsIn.getArgIsType();
+ for (unsigned Arg = 0, Last = TemplateArgsIn.size(); Arg != Last; ++Arg) {
+ TemplateArgs.push_back(
+ ArgIsType[Arg]? TemplateArgument(TemplateArgLocs[Arg],
+ QualType::getFromOpaquePtr(Args[Arg]))
+ : TemplateArgument(reinterpret_cast<Expr *>(Args[Arg])));
+ }
+}
+
+/// \brief Build a canonical version of a template argument list.
+///
+/// This function builds a canonical version of the given template
+/// argument list, where each of the template arguments has been
+/// converted into its canonical form. This routine is typically used
+/// to canonicalize a template argument list when the template name
+/// itself is dependent. When the template name refers to an actual
+/// template declaration, Sema::CheckTemplateArgumentList should be
+/// used to check and canonicalize the template arguments.
+///
+/// \param TemplateArgs The incoming template arguments.
+///
+/// \param NumTemplateArgs The number of template arguments in \p
+/// TemplateArgs.
+///
+/// \param Canonical A vector to be filled with the canonical versions
+/// of the template arguments.
+///
+/// \param Context The ASTContext in which the template arguments live.
+static void CanonicalizeTemplateArguments(const TemplateArgument *TemplateArgs,
+ unsigned NumTemplateArgs,
+ llvm::SmallVectorImpl<TemplateArgument> &Canonical,
+ ASTContext &Context) {
+ Canonical.reserve(NumTemplateArgs);
+ for (unsigned Idx = 0; Idx < NumTemplateArgs; ++Idx) {
+ switch (TemplateArgs[Idx].getKind()) {
+ case TemplateArgument::Expression:
+ // FIXME: Build canonical expression (!)
+ Canonical.push_back(TemplateArgs[Idx]);
+ break;
+
+ case TemplateArgument::Declaration:
+ Canonical.push_back(
+ TemplateArgument(SourceLocation(),
+ Context.getCanonicalDecl(TemplateArgs[Idx].getAsDecl())));
+ break;
+
+ case TemplateArgument::Integral:
+ Canonical.push_back(TemplateArgument(SourceLocation(),
+ *TemplateArgs[Idx].getAsIntegral(),
+ TemplateArgs[Idx].getIntegralType()));
+
+ case TemplateArgument::Type: {
+ QualType CanonType
+ = Context.getCanonicalType(TemplateArgs[Idx].getAsType());
+ Canonical.push_back(TemplateArgument(SourceLocation(), CanonType));
+ }
+ }
+ }
+}
+
+QualType Sema::CheckTemplateIdType(TemplateName Name,
+ SourceLocation TemplateLoc,
+ SourceLocation LAngleLoc,
+ const TemplateArgument *TemplateArgs,
+ unsigned NumTemplateArgs,
+ SourceLocation RAngleLoc) {
+ TemplateDecl *Template = Name.getAsTemplateDecl();
+ if (!Template) {
+ // The template name does not resolve to a template, so we just
+ // build a dependent template-id type.
+
+ // Canonicalize the template arguments to build the canonical
+ // template-id type.
+ llvm::SmallVector<TemplateArgument, 16> CanonicalTemplateArgs;
+ CanonicalizeTemplateArguments(TemplateArgs, NumTemplateArgs,
+ CanonicalTemplateArgs, Context);
+
+ TemplateName CanonName = Context.getCanonicalTemplateName(Name);
+ QualType CanonType
+ = Context.getTemplateSpecializationType(CanonName,
+ &CanonicalTemplateArgs[0],
+ CanonicalTemplateArgs.size());
+
+ // Build the dependent template-id type.
+ return Context.getTemplateSpecializationType(Name, TemplateArgs,
+ NumTemplateArgs, CanonType);
+ }
+
+ // Check that the template argument list is well-formed for this
+ // template.
+ llvm::SmallVector<TemplateArgument, 16> ConvertedTemplateArgs;
+ if (CheckTemplateArgumentList(Template, TemplateLoc, LAngleLoc,
+ TemplateArgs, NumTemplateArgs, RAngleLoc,
+ ConvertedTemplateArgs))
+ return QualType();
+
+ assert((ConvertedTemplateArgs.size() ==
+ Template->getTemplateParameters()->size()) &&
+ "Converted template argument list is too short!");
+
+ QualType CanonType;
+
+ if (TemplateSpecializationType::anyDependentTemplateArguments(
+ TemplateArgs,
+ NumTemplateArgs)) {
+ // This class template specialization is a dependent
+ // type. Therefore, its canonical type is another class template
+ // specialization type that contains all of the converted
+ // arguments in canonical form. This ensures that, e.g., A<T> and
+ // A<T, T> have identical types when A is declared as:
+ //
+ // template<typename T, typename U = T> struct A;
+ TemplateName CanonName = Context.getCanonicalTemplateName(Name);
+ CanonType = Context.getTemplateSpecializationType(CanonName,
+ &ConvertedTemplateArgs[0],
+ ConvertedTemplateArgs.size());
+ } else if (ClassTemplateDecl *ClassTemplate
+ = dyn_cast<ClassTemplateDecl>(Template)) {
+ // Find the class template specialization declaration that
+ // corresponds to these arguments.
+ llvm::FoldingSetNodeID ID;
+ ClassTemplateSpecializationDecl::Profile(ID, &ConvertedTemplateArgs[0],
+ ConvertedTemplateArgs.size());
+ void *InsertPos = 0;
+ ClassTemplateSpecializationDecl *Decl
+ = ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos);
+ if (!Decl) {
+ // This is the first time we have referenced this class template
+ // specialization. Create the canonical declaration and add it to
+ // the set of specializations.
+ Decl = ClassTemplateSpecializationDecl::Create(Context,
+ ClassTemplate->getDeclContext(),
+ TemplateLoc,
+ ClassTemplate,
+ &ConvertedTemplateArgs[0],
+ ConvertedTemplateArgs.size(),
+ 0);
+ ClassTemplate->getSpecializations().InsertNode(Decl, InsertPos);
+ Decl->setLexicalDeclContext(CurContext);
+ }
+
+ CanonType = Context.getTypeDeclType(Decl);
+ }
+
+ // Build the fully-sugared type for this class template
+ // specialization, which refers back to the class template
+ // specialization we created or found.
+ return Context.getTemplateSpecializationType(Name, TemplateArgs,
+ NumTemplateArgs, CanonType);
+}
+
+Action::TypeResult
+Sema::ActOnTemplateIdType(TemplateTy TemplateD, SourceLocation TemplateLoc,
+ SourceLocation LAngleLoc,
+ ASTTemplateArgsPtr TemplateArgsIn,
+ SourceLocation *TemplateArgLocs,
+ SourceLocation RAngleLoc) {
+ TemplateName Template = TemplateD.getAsVal<TemplateName>();
+
+ // Translate the parser's template argument list in our AST format.
+ llvm::SmallVector<TemplateArgument, 16> TemplateArgs;
+ translateTemplateArguments(TemplateArgsIn, TemplateArgLocs, TemplateArgs);
+
+ QualType Result = CheckTemplateIdType(Template, TemplateLoc, LAngleLoc,
+ TemplateArgs.data(),
+ TemplateArgs.size(),
+ RAngleLoc);
+ TemplateArgsIn.release();
+
+ if (Result.isNull())
+ return true;
+
+ return Result.getAsOpaquePtr();
+}
+
+/// \brief Form a dependent template name.
+///
+/// This action forms a dependent template name given the template
+/// name and its (presumably dependent) scope specifier. For
+/// example, given "MetaFun::template apply", the scope specifier \p
+/// SS will be "MetaFun::", \p TemplateKWLoc contains the location
+/// of the "template" keyword, and "apply" is the \p Name.
+Sema::TemplateTy
+Sema::ActOnDependentTemplateName(SourceLocation TemplateKWLoc,
+ const IdentifierInfo &Name,
+ SourceLocation NameLoc,
+ const CXXScopeSpec &SS) {
+ if (!SS.isSet() || SS.isInvalid())
+ return TemplateTy();
+
+ NestedNameSpecifier *Qualifier
+ = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
+
+ // FIXME: member of the current instantiation
+
+ if (!Qualifier->isDependent()) {
+ // C++0x [temp.names]p5:
+ // If a name prefixed by the keyword template is not the name of
+ // a template, the program is ill-formed. [Note: the keyword
+ // template may not be applied to non-template members of class
+ // templates. -end note ] [ Note: as is the case with the
+ // typename prefix, the template prefix is allowed in cases
+ // where it is not strictly necessary; i.e., when the
+ // nested-name-specifier or the expression on the left of the ->
+ // or . is not dependent on a template-parameter, or the use
+ // does not appear in the scope of a template. -end note]
+ //
+ // Note: C++03 was more strict here, because it banned the use of
+ // the "template" keyword prior to a template-name that was not a
+ // dependent name. C++ DR468 relaxed this requirement (the
+ // "template" keyword is now permitted). We follow the C++0x
+ // rules, even in C++03 mode, retroactively applying the DR.
+ TemplateTy Template;
+ TemplateNameKind TNK = isTemplateName(Name, 0, Template, &SS);
+ if (TNK == TNK_Non_template) {
+ Diag(NameLoc, diag::err_template_kw_refers_to_non_template)
+ << &Name;
+ return TemplateTy();
+ }
+
+ return Template;
+ }
+
+ return TemplateTy::make(Context.getDependentTemplateName(Qualifier, &Name));
+}
+
+/// \brief Check that the given template argument list is well-formed
+/// for specializing the given template.
+bool Sema::CheckTemplateArgumentList(TemplateDecl *Template,
+ SourceLocation TemplateLoc,
+ SourceLocation LAngleLoc,
+ const TemplateArgument *TemplateArgs,
+ unsigned NumTemplateArgs,
+ SourceLocation RAngleLoc,
+ llvm::SmallVectorImpl<TemplateArgument> &Converted) {
+ TemplateParameterList *Params = Template->getTemplateParameters();
+ unsigned NumParams = Params->size();
+ unsigned NumArgs = NumTemplateArgs;
+ bool Invalid = false;
+
+ if (NumArgs > NumParams ||
+ NumArgs < Params->getMinRequiredArguments()) {
+ // FIXME: point at either the first arg beyond what we can handle,
+ // or the '>', depending on whether we have too many or too few
+ // arguments.
+ SourceRange Range;
+ if (NumArgs > NumParams)
+ Range = SourceRange(TemplateArgs[NumParams].getLocation(), RAngleLoc);
+ Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
+ << (NumArgs > NumParams)
+ << (isa<ClassTemplateDecl>(Template)? 0 :
+ isa<FunctionTemplateDecl>(Template)? 1 :
+ isa<TemplateTemplateParmDecl>(Template)? 2 : 3)
+ << Template << Range;
+ Diag(Template->getLocation(), diag::note_template_decl_here)
+ << Params->getSourceRange();
+ Invalid = true;
+ }
+
+ // C++ [temp.arg]p1:
+ // [...] The type and form of each template-argument specified in
+ // a template-id shall match the type and form specified for the
+ // corresponding parameter declared by the template in its
+ // template-parameter-list.
+ unsigned ArgIdx = 0;
+ for (TemplateParameterList::iterator Param = Params->begin(),
+ ParamEnd = Params->end();
+ Param != ParamEnd; ++Param, ++ArgIdx) {
+ // Decode the template argument
+ TemplateArgument Arg;
+ if (ArgIdx >= NumArgs) {
+ // Retrieve the default template argument from the template
+ // parameter.
+ if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) {
+ if (!TTP->hasDefaultArgument())
+ break;
+
+ QualType ArgType = TTP->getDefaultArgument();
+
+ // If the argument type is dependent, instantiate it now based
+ // on the previously-computed template arguments.
+ if (ArgType->isDependentType()) {
+ InstantiatingTemplate Inst(*this, TemplateLoc,
+ Template, &Converted[0],
+ Converted.size(),
+ SourceRange(TemplateLoc, RAngleLoc));
+
+ TemplateArgumentList TemplateArgs(Context, &Converted[0],
+ Converted.size(),
+ /*CopyArgs=*/false);
+ ArgType = InstantiateType(ArgType, TemplateArgs,
+ TTP->getDefaultArgumentLoc(),
+ TTP->getDeclName());
+ }
+
+ if (ArgType.isNull())
+ return true;
+
+ Arg = TemplateArgument(TTP->getLocation(), ArgType);
+ } else if (NonTypeTemplateParmDecl *NTTP
+ = dyn_cast<NonTypeTemplateParmDecl>(*Param)) {
+ if (!NTTP->hasDefaultArgument())
+ break;
+
+ // FIXME: Instantiate default argument
+ Arg = TemplateArgument(NTTP->getDefaultArgument());
+ } else {
+ TemplateTemplateParmDecl *TempParm
+ = cast<TemplateTemplateParmDecl>(*Param);
+
+ if (!TempParm->hasDefaultArgument())
+ break;
+
+ // FIXME: Instantiate default argument
+ Arg = TemplateArgument(TempParm->getDefaultArgument());
+ }
+ } else {
+ // Retrieve the template argument produced by the user.
+ Arg = TemplateArgs[ArgIdx];
+ }
+
+
+ if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) {
+ // Check template type parameters.
+ if (Arg.getKind() == TemplateArgument::Type) {
+ if (CheckTemplateArgument(TTP, Arg.getAsType(), Arg.getLocation()))
+ Invalid = true;
+
+ // Add the converted template type argument.
+ Converted.push_back(
+ TemplateArgument(Arg.getLocation(),
+ Context.getCanonicalType(Arg.getAsType())));
+ continue;
+ }
+
+ // C++ [temp.arg.type]p1:
+ // A template-argument for a template-parameter which is a
+ // type shall be a type-id.
+
+ // We have a template type parameter but the template argument
+ // is not a type.
+ Diag(Arg.getLocation(), diag::err_template_arg_must_be_type);
+ Diag((*Param)->getLocation(), diag::note_template_param_here);
+ Invalid = true;
+ } else if (NonTypeTemplateParmDecl *NTTP
+ = dyn_cast<NonTypeTemplateParmDecl>(*Param)) {
+ // Check non-type template parameters.
+
+ // Instantiate the type of the non-type template parameter with
+ // the template arguments we've seen thus far.
+ QualType NTTPType = NTTP->getType();
+ if (NTTPType->isDependentType()) {
+ // Instantiate the type of the non-type template parameter.
+ InstantiatingTemplate Inst(*this, TemplateLoc,
+ Template, &Converted[0],
+ Converted.size(),
+ SourceRange(TemplateLoc, RAngleLoc));
+
+ TemplateArgumentList TemplateArgs(Context, &Converted[0],
+ Converted.size(),
+ /*CopyArgs=*/false);
+ NTTPType = InstantiateType(NTTPType, TemplateArgs,
+ NTTP->getLocation(),
+ NTTP->getDeclName());
+ // If that worked, check the non-type template parameter type
+ // for validity.
+ if (!NTTPType.isNull())
+ NTTPType = CheckNonTypeTemplateParameterType(NTTPType,
+ NTTP->getLocation());
+
+ if (NTTPType.isNull()) {
+ Invalid = true;
+ break;
+ }
+ }
+
+ switch (Arg.getKind()) {
+ case TemplateArgument::Expression: {
+ Expr *E = Arg.getAsExpr();
+ if (CheckTemplateArgument(NTTP, NTTPType, E, &Converted))
+ Invalid = true;
+ break;
+ }
+
+ case TemplateArgument::Declaration:
+ case TemplateArgument::Integral:
+ // We've already checked this template argument, so just copy
+ // it to the list of converted arguments.
+ Converted.push_back(Arg);
+ break;
+
+ case TemplateArgument::Type:
+ // We have a non-type template parameter but the template
+ // argument is a type.
+
+ // C++ [temp.arg]p2:
+ // In a template-argument, an ambiguity between a type-id and
+ // an expression is resolved to a type-id, regardless of the
+ // form of the corresponding template-parameter.
+ //
+ // We warn specifically about this case, since it can be rather
+ // confusing for users.
+ if (Arg.getAsType()->isFunctionType())
+ Diag(Arg.getLocation(), diag::err_template_arg_nontype_ambig)
+ << Arg.getAsType();
+ else
+ Diag(Arg.getLocation(), diag::err_template_arg_must_be_expr);
+ Diag((*Param)->getLocation(), diag::note_template_param_here);
+ Invalid = true;
+ }
+ } else {
+ // Check template template parameters.
+ TemplateTemplateParmDecl *TempParm
+ = cast<TemplateTemplateParmDecl>(*Param);
+
+ switch (Arg.getKind()) {
+ case TemplateArgument::Expression: {
+ Expr *ArgExpr = Arg.getAsExpr();
+ if (ArgExpr && isa<DeclRefExpr>(ArgExpr) &&
+ isa<TemplateDecl>(cast<DeclRefExpr>(ArgExpr)->getDecl())) {
+ if (CheckTemplateArgument(TempParm, cast<DeclRefExpr>(ArgExpr)))
+ Invalid = true;
+
+ // Add the converted template argument.
+ Decl *D
+ = Context.getCanonicalDecl(cast<DeclRefExpr>(ArgExpr)->getDecl());
+ Converted.push_back(TemplateArgument(Arg.getLocation(), D));
+ continue;
+ }
+ }
+ // fall through
+
+ case TemplateArgument::Type: {
+ // We have a template template parameter but the template
+ // argument does not refer to a template.
+ Diag(Arg.getLocation(), diag::err_template_arg_must_be_template);
+ Invalid = true;
+ break;
+ }
+
+ case TemplateArgument::Declaration:
+ // We've already checked this template argument, so just copy
+ // it to the list of converted arguments.
+ Converted.push_back(Arg);
+ break;
+
+ case TemplateArgument::Integral:
+ assert(false && "Integral argument with template template parameter");
+ break;
+ }
+ }
+ }
+
+ return Invalid;
+}
+
+/// \brief Check a template argument against its corresponding
+/// template type parameter.
+///
+/// This routine implements the semantics of C++ [temp.arg.type]. It
+/// returns true if an error occurred, and false otherwise.
+bool Sema::CheckTemplateArgument(TemplateTypeParmDecl *Param,
+ QualType Arg, SourceLocation ArgLoc) {
+ // C++ [temp.arg.type]p2:
+ // A local type, a type with no linkage, an unnamed type or a type
+ // compounded from any of these types shall not be used as a
+ // template-argument for a template type-parameter.
+ //
+ // FIXME: Perform the recursive and no-linkage type checks.
+ const TagType *Tag = 0;
+ if (const EnumType *EnumT = Arg->getAsEnumType())
+ Tag = EnumT;
+ else if (const RecordType *RecordT = Arg->getAsRecordType())
+ Tag = RecordT;
+ if (Tag && Tag->getDecl()->getDeclContext()->isFunctionOrMethod())
+ return Diag(ArgLoc, diag::err_template_arg_local_type)
+ << QualType(Tag, 0);
+ else if (Tag && !Tag->getDecl()->getDeclName() &&
+ !Tag->getDecl()->getTypedefForAnonDecl()) {
+ Diag(ArgLoc, diag::err_template_arg_unnamed_type);
+ Diag(Tag->getDecl()->getLocation(), diag::note_template_unnamed_type_here);
+ return true;
+ }
+
+ return false;
+}
+
+/// \brief Checks whether the given template argument is the address
+/// of an object or function according to C++ [temp.arg.nontype]p1.
+bool Sema::CheckTemplateArgumentAddressOfObjectOrFunction(Expr *Arg,
+ NamedDecl *&Entity) {
+ bool Invalid = false;
+
+ // See through any implicit casts we added to fix the type.
+ if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg))
+ Arg = Cast->getSubExpr();
+
+ // C++0x allows nullptr, and there's no further checking to be done for that.
+ if (Arg->getType()->isNullPtrType())
+ return false;
+
+ // C++ [temp.arg.nontype]p1:
+ //
+ // A template-argument for a non-type, non-template
+ // template-parameter shall be one of: [...]
+ //
+ // -- the address of an object or function with external
+ // linkage, including function templates and function
+ // template-ids but excluding non-static class members,
+ // expressed as & id-expression where the & is optional if
+ // the name refers to a function or array, or if the
+ // corresponding template-parameter is a reference; or
+ DeclRefExpr *DRE = 0;
+
+ // Ignore (and complain about) any excess parentheses.
+ while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
+ if (!Invalid) {
+ Diag(Arg->getSourceRange().getBegin(),
+ diag::err_template_arg_extra_parens)
+ << Arg->getSourceRange();
+ Invalid = true;
+ }
+
+ Arg = Parens->getSubExpr();
+ }
+
+ if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
+ if (UnOp->getOpcode() == UnaryOperator::AddrOf)
+ DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr());
+ } else
+ DRE = dyn_cast<DeclRefExpr>(Arg);
+
+ if (!DRE || !isa<ValueDecl>(DRE->getDecl()))
+ return Diag(Arg->getSourceRange().getBegin(),
+ diag::err_template_arg_not_object_or_func_form)
+ << Arg->getSourceRange();
+
+ // Cannot refer to non-static data members
+ if (FieldDecl *Field = dyn_cast<FieldDecl>(DRE->getDecl()))
+ return Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_field)
+ << Field << Arg->getSourceRange();
+
+ // Cannot refer to non-static member functions
+ if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(DRE->getDecl()))
+ if (!Method->isStatic())
+ return Diag(Arg->getSourceRange().getBegin(),
+ diag::err_template_arg_method)
+ << Method << Arg->getSourceRange();
+
+ // Functions must have external linkage.
+ if (FunctionDecl *Func = dyn_cast<FunctionDecl>(DRE->getDecl())) {
+ if (Func->getStorageClass() == FunctionDecl::Static) {
+ Diag(Arg->getSourceRange().getBegin(),
+ diag::err_template_arg_function_not_extern)
+ << Func << Arg->getSourceRange();
+ Diag(Func->getLocation(), diag::note_template_arg_internal_object)
+ << true;
+ return true;
+ }
+
+ // Okay: we've named a function with external linkage.
+ Entity = Func;
+ return Invalid;
+ }
+
+ if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
+ if (!Var->hasGlobalStorage()) {
+ Diag(Arg->getSourceRange().getBegin(),
+ diag::err_template_arg_object_not_extern)
+ << Var << Arg->getSourceRange();
+ Diag(Var->getLocation(), diag::note_template_arg_internal_object)
+ << true;
+ return true;
+ }
+
+ // Okay: we've named an object with external linkage
+ Entity = Var;
+ return Invalid;
+ }
+
+ // We found something else, but we don't know specifically what it is.
+ Diag(Arg->getSourceRange().getBegin(),
+ diag::err_template_arg_not_object_or_func)
+ << Arg->getSourceRange();
+ Diag(DRE->getDecl()->getLocation(),
+ diag::note_template_arg_refers_here);
+ return true;
+}
+
+/// \brief Checks whether the given template argument is a pointer to
+/// member constant according to C++ [temp.arg.nontype]p1.
+bool
+Sema::CheckTemplateArgumentPointerToMember(Expr *Arg, NamedDecl *&Member) {
+ bool Invalid = false;
+
+ // See through any implicit casts we added to fix the type.
+ if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg))
+ Arg = Cast->getSubExpr();
+
+ // C++0x allows nullptr, and there's no further checking to be done for that.
+ if (Arg->getType()->isNullPtrType())
+ return false;
+
+ // C++ [temp.arg.nontype]p1:
+ //
+ // A template-argument for a non-type, non-template
+ // template-parameter shall be one of: [...]
+ //
+ // -- a pointer to member expressed as described in 5.3.1.
+ QualifiedDeclRefExpr *DRE = 0;
+
+ // Ignore (and complain about) any excess parentheses.
+ while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
+ if (!Invalid) {
+ Diag(Arg->getSourceRange().getBegin(),
+ diag::err_template_arg_extra_parens)
+ << Arg->getSourceRange();
+ Invalid = true;
+ }
+
+ Arg = Parens->getSubExpr();
+ }
+
+ if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg))
+ if (UnOp->getOpcode() == UnaryOperator::AddrOf)
+ DRE = dyn_cast<QualifiedDeclRefExpr>(UnOp->getSubExpr());
+
+ if (!DRE)
+ return Diag(Arg->getSourceRange().getBegin(),
+ diag::err_template_arg_not_pointer_to_member_form)
+ << Arg->getSourceRange();
+
+ if (isa<FieldDecl>(DRE->getDecl()) || isa<CXXMethodDecl>(DRE->getDecl())) {
+ assert((isa<FieldDecl>(DRE->getDecl()) ||
+ !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) &&
+ "Only non-static member pointers can make it here");
+
+ // Okay: this is the address of a non-static member, and therefore
+ // a member pointer constant.
+ Member = DRE->getDecl();
+ return Invalid;
+ }
+
+ // We found something else, but we don't know specifically what it is.
+ Diag(Arg->getSourceRange().getBegin(),
+ diag::err_template_arg_not_pointer_to_member_form)
+ << Arg->getSourceRange();
+ Diag(DRE->getDecl()->getLocation(),
+ diag::note_template_arg_refers_here);
+ return true;
+}
+
+/// \brief Check a template argument against its corresponding
+/// non-type template parameter.
+///
+/// This routine implements the semantics of C++ [temp.arg.nontype].
+/// It returns true if an error occurred, and false otherwise. \p
+/// InstantiatedParamType is the type of the non-type template
+/// parameter after it has been instantiated.
+///
+/// If Converted is non-NULL and no errors occur, the value
+/// of this argument will be added to the end of the Converted vector.
+bool Sema::CheckTemplateArgument(NonTypeTemplateParmDecl *Param,
+ QualType InstantiatedParamType, Expr *&Arg,
+ llvm::SmallVectorImpl<TemplateArgument> *Converted) {
+ SourceLocation StartLoc = Arg->getSourceRange().getBegin();
+
+ // If either the parameter has a dependent type or the argument is
+ // type-dependent, there's nothing we can check now.
+ // FIXME: Add template argument to Converted!
+ if (InstantiatedParamType->isDependentType() || Arg->isTypeDependent()) {
+ // FIXME: Produce a cloned, canonical expression?
+ Converted->push_back(TemplateArgument(Arg));
+ return false;
+ }
+
+ // C++ [temp.arg.nontype]p5:
+ // The following conversions are performed on each expression used
+ // as a non-type template-argument. If a non-type
+ // template-argument cannot be converted to the type of the
+ // corresponding template-parameter then the program is
+ // ill-formed.
+ //
+ // -- for a non-type template-parameter of integral or
+ // enumeration type, integral promotions (4.5) and integral
+ // conversions (4.7) are applied.
+ QualType ParamType = InstantiatedParamType;
+ QualType ArgType = Arg->getType();
+ if (ParamType->isIntegralType() || ParamType->isEnumeralType()) {
+ // C++ [temp.arg.nontype]p1:
+ // A template-argument for a non-type, non-template
+ // template-parameter shall be one of:
+ //
+ // -- an integral constant-expression of integral or enumeration
+ // type; or
+ // -- the name of a non-type template-parameter; or
+ SourceLocation NonConstantLoc;
+ llvm::APSInt Value;
+ if (!ArgType->isIntegralType() && !ArgType->isEnumeralType()) {
+ Diag(Arg->getSourceRange().getBegin(),
+ diag::err_template_arg_not_integral_or_enumeral)
+ << ArgType << Arg->getSourceRange();
+ Diag(Param->getLocation(), diag::note_template_param_here);
+ return true;
+ } else if (!Arg->isValueDependent() &&
+ !Arg->isIntegerConstantExpr(Value, Context, &NonConstantLoc)) {
+ Diag(NonConstantLoc, diag::err_template_arg_not_ice)
+ << ArgType << Arg->getSourceRange();
+ return true;
+ }
+
+ // FIXME: We need some way to more easily get the unqualified form
+ // of the types without going all the way to the
+ // canonical type.
+ if (Context.getCanonicalType(ParamType).getCVRQualifiers())
+ ParamType = Context.getCanonicalType(ParamType).getUnqualifiedType();
+ if (Context.getCanonicalType(ArgType).getCVRQualifiers())
+ ArgType = Context.getCanonicalType(ArgType).getUnqualifiedType();
+
+ // Try to convert the argument to the parameter's type.
+ if (ParamType == ArgType) {
+ // Okay: no conversion necessary
+ } else if (IsIntegralPromotion(Arg, ArgType, ParamType) ||
+ !ParamType->isEnumeralType()) {
+ // This is an integral promotion or conversion.
+ ImpCastExprToType(Arg, ParamType);
+ } else {
+ // We can't perform this conversion.
+ Diag(Arg->getSourceRange().getBegin(),
+ diag::err_template_arg_not_convertible)
+ << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
+ Diag(Param->getLocation(), diag::note_template_param_here);
+ return true;
+ }
+
+ QualType IntegerType = Context.getCanonicalType(ParamType);
+ if (const EnumType *Enum = IntegerType->getAsEnumType())
+ IntegerType = Enum->getDecl()->getIntegerType();
+
+ if (!Arg->isValueDependent()) {
+ // Check that an unsigned parameter does not receive a negative
+ // value.
+ if (IntegerType->isUnsignedIntegerType()
+ && (Value.isSigned() && Value.isNegative())) {
+ Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_negative)
+ << Value.toString(10) << Param->getType()
+ << Arg->getSourceRange();
+ Diag(Param->getLocation(), diag::note_template_param_here);
+ return true;
+ }
+
+ // Check that we don't overflow the template parameter type.
+ unsigned AllowedBits = Context.getTypeSize(IntegerType);
+ if (Value.getActiveBits() > AllowedBits) {
+ Diag(Arg->getSourceRange().getBegin(),
+ diag::err_template_arg_too_large)
+ << Value.toString(10) << Param->getType()
+ << Arg->getSourceRange();
+ Diag(Param->getLocation(), diag::note_template_param_here);
+ return true;
+ }
+
+ if (Value.getBitWidth() != AllowedBits)
+ Value.extOrTrunc(AllowedBits);
+ Value.setIsSigned(IntegerType->isSignedIntegerType());
+ }
+
+ if (Converted) {
+ // Add the value of this argument to the list of converted
+ // arguments. We use the bitwidth and signedness of the template
+ // parameter.
+ if (Arg->isValueDependent()) {
+ // The argument is value-dependent. Create a new
+ // TemplateArgument with the converted expression.
+ Converted->push_back(TemplateArgument(Arg));
+ return false;
+ }
+
+ Converted->push_back(TemplateArgument(StartLoc, Value,
+ ParamType->isEnumeralType() ? ParamType : IntegerType));
+ }
+
+ return false;
+ }
+
+ // Handle pointer-to-function, reference-to-function, and
+ // pointer-to-member-function all in (roughly) the same way.
+ if (// -- For a non-type template-parameter of type pointer to
+ // function, only the function-to-pointer conversion (4.3) is
+ // applied. If the template-argument represents a set of
+ // overloaded functions (or a pointer to such), the matching
+ // function is selected from the set (13.4).
+ // In C++0x, any std::nullptr_t value can be converted.
+ (ParamType->isPointerType() &&
+ ParamType->getAsPointerType()->getPointeeType()->isFunctionType()) ||
+ // -- For a non-type template-parameter of type reference to
+ // function, no conversions apply. If the template-argument
+ // represents a set of overloaded functions, the matching
+ // function is selected from the set (13.4).
+ (ParamType->isReferenceType() &&
+ ParamType->getAsReferenceType()->getPointeeType()->isFunctionType()) ||
+ // -- For a non-type template-parameter of type pointer to
+ // member function, no conversions apply. If the
+ // template-argument represents a set of overloaded member
+ // functions, the matching member function is selected from
+ // the set (13.4).
+ // Again, C++0x allows a std::nullptr_t value.
+ (ParamType->isMemberPointerType() &&
+ ParamType->getAsMemberPointerType()->getPointeeType()
+ ->isFunctionType())) {
+ if (Context.hasSameUnqualifiedType(ArgType,
+ ParamType.getNonReferenceType())) {
+ // We don't have to do anything: the types already match.
+ } else if (ArgType->isNullPtrType() && (ParamType->isPointerType() ||
+ ParamType->isMemberPointerType())) {
+ ArgType = ParamType;
+ ImpCastExprToType(Arg, ParamType);
+ } else if (ArgType->isFunctionType() && ParamType->isPointerType()) {
+ ArgType = Context.getPointerType(ArgType);
+ ImpCastExprToType(Arg, ArgType);
+ } else if (FunctionDecl *Fn
+ = ResolveAddressOfOverloadedFunction(Arg, ParamType, true)) {
+ if (DiagnoseUseOfDecl(Fn, Arg->getSourceRange().getBegin()))
+ return true;
+
+ FixOverloadedFunctionReference(Arg, Fn);
+ ArgType = Arg->getType();
+ if (ArgType->isFunctionType() && ParamType->isPointerType()) {
+ ArgType = Context.getPointerType(Arg->getType());
+ ImpCastExprToType(Arg, ArgType);
+ }
+ }
+
+ if (!Context.hasSameUnqualifiedType(ArgType,
+ ParamType.getNonReferenceType())) {
+ // We can't perform this conversion.
+ Diag(Arg->getSourceRange().getBegin(),
+ diag::err_template_arg_not_convertible)
+ << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
+ Diag(Param->getLocation(), diag::note_template_param_here);
+ return true;
+ }
+
+ if (ParamType->isMemberPointerType()) {
+ NamedDecl *Member = 0;
+ if (CheckTemplateArgumentPointerToMember(Arg, Member))
+ return true;
+
+ if (Converted) {
+ Member = cast_or_null<NamedDecl>(Context.getCanonicalDecl(Member));
+ Converted->push_back(TemplateArgument(StartLoc, Member));
+ }
+
+ return false;
+ }
+
+ NamedDecl *Entity = 0;
+ if (CheckTemplateArgumentAddressOfObjectOrFunction(Arg, Entity))
+ return true;
+
+ if (Converted) {
+ Entity = cast_or_null<NamedDecl>(Context.getCanonicalDecl(Entity));
+ Converted->push_back(TemplateArgument(StartLoc, Entity));
+ }
+ return false;
+ }
+
+ if (ParamType->isPointerType()) {
+ // -- for a non-type template-parameter of type pointer to
+ // object, qualification conversions (4.4) and the
+ // array-to-pointer conversion (4.2) are applied.
+ // C++0x also allows a value of std::nullptr_t.
+ assert(ParamType->getAsPointerType()->getPointeeType()->isObjectType() &&
+ "Only object pointers allowed here");
+
+ if (ArgType->isNullPtrType()) {
+ ArgType = ParamType;
+ ImpCastExprToType(Arg, ParamType);
+ } else if (ArgType->isArrayType()) {
+ ArgType = Context.getArrayDecayedType(ArgType);
+ ImpCastExprToType(Arg, ArgType);
+ }
+
+ if (IsQualificationConversion(ArgType, ParamType)) {
+ ArgType = ParamType;
+ ImpCastExprToType(Arg, ParamType);
+ }
+
+ if (!Context.hasSameUnqualifiedType(ArgType, ParamType)) {
+ // We can't perform this conversion.
+ Diag(Arg->getSourceRange().getBegin(),
+ diag::err_template_arg_not_convertible)
+ << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
+ Diag(Param->getLocation(), diag::note_template_param_here);
+ return true;
+ }
+
+ NamedDecl *Entity = 0;
+ if (CheckTemplateArgumentAddressOfObjectOrFunction(Arg, Entity))
+ return true;
+
+ if (Converted) {
+ Entity = cast_or_null<NamedDecl>(Context.getCanonicalDecl(Entity));
+ Converted->push_back(TemplateArgument(StartLoc, Entity));
+ }
+
+ return false;
+ }
+
+ if (const ReferenceType *ParamRefType = ParamType->getAsReferenceType()) {
+ // -- For a non-type template-parameter of type reference to
+ // object, no conversions apply. The type referred to by the
+ // reference may be more cv-qualified than the (otherwise
+ // identical) type of the template-argument. The
+ // template-parameter is bound directly to the
+ // template-argument, which must be an lvalue.
+ assert(ParamRefType->getPointeeType()->isObjectType() &&
+ "Only object references allowed here");
+
+ if (!Context.hasSameUnqualifiedType(ParamRefType->getPointeeType(), ArgType)) {
+ Diag(Arg->getSourceRange().getBegin(),
+ diag::err_template_arg_no_ref_bind)
+ << InstantiatedParamType << Arg->getType()
+ << Arg->getSourceRange();
+ Diag(Param->getLocation(), diag::note_template_param_here);
+ return true;
+ }
+
+ unsigned ParamQuals
+ = Context.getCanonicalType(ParamType).getCVRQualifiers();
+ unsigned ArgQuals = Context.getCanonicalType(ArgType).getCVRQualifiers();
+
+ if ((ParamQuals | ArgQuals) != ParamQuals) {
+ Diag(Arg->getSourceRange().getBegin(),
+ diag::err_template_arg_ref_bind_ignores_quals)
+ << InstantiatedParamType << Arg->getType()
+ << Arg->getSourceRange();
+ Diag(Param->getLocation(), diag::note_template_param_here);
+ return true;
+ }
+
+ NamedDecl *Entity = 0;
+ if (CheckTemplateArgumentAddressOfObjectOrFunction(Arg, Entity))
+ return true;
+
+ if (Converted) {
+ Entity = cast<NamedDecl>(Context.getCanonicalDecl(Entity));
+ Converted->push_back(TemplateArgument(StartLoc, Entity));
+ }
+
+ return false;
+ }
+
+ // -- For a non-type template-parameter of type pointer to data
+ // member, qualification conversions (4.4) are applied.
+ // C++0x allows std::nullptr_t values.
+ assert(ParamType->isMemberPointerType() && "Only pointers to members remain");
+
+ if (Context.hasSameUnqualifiedType(ParamType, ArgType)) {
+ // Types match exactly: nothing more to do here.
+ } else if (ArgType->isNullPtrType()) {
+ ImpCastExprToType(Arg, ParamType);
+ } else if (IsQualificationConversion(ArgType, ParamType)) {
+ ImpCastExprToType(Arg, ParamType);
+ } else {
+ // We can't perform this conversion.
+ Diag(Arg->getSourceRange().getBegin(),
+ diag::err_template_arg_not_convertible)
+ << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
+ Diag(Param->getLocation(), diag::note_template_param_here);
+ return true;
+ }
+
+ NamedDecl *Member = 0;
+ if (CheckTemplateArgumentPointerToMember(Arg, Member))
+ return true;
+
+ if (Converted) {
+ Member = cast_or_null<NamedDecl>(Context.getCanonicalDecl(Member));
+ Converted->push_back(TemplateArgument(StartLoc, Member));
+ }
+
+ return false;
+}
+
+/// \brief Check a template argument against its corresponding
+/// template template parameter.
+///
+/// This routine implements the semantics of C++ [temp.arg.template].
+/// It returns true if an error occurred, and false otherwise.
+bool Sema::CheckTemplateArgument(TemplateTemplateParmDecl *Param,
+ DeclRefExpr *Arg) {
+ assert(isa<TemplateDecl>(Arg->getDecl()) && "Only template decls allowed");
+ TemplateDecl *Template = cast<TemplateDecl>(Arg->getDecl());
+
+ // C++ [temp.arg.template]p1:
+ // A template-argument for a template template-parameter shall be
+ // the name of a class template, expressed as id-expression. Only
+ // primary class templates are considered when matching the
+ // template template argument with the corresponding parameter;
+ // partial specializations are not considered even if their
+ // parameter lists match that of the template template parameter.
+ if (!isa<ClassTemplateDecl>(Template)) {
+ assert(isa<FunctionTemplateDecl>(Template) &&
+ "Only function templates are possible here");
+ Diag(Arg->getSourceRange().getBegin(),
+ diag::note_template_arg_refers_here_func)
+ << Template;
+ }
+
+ return !TemplateParameterListsAreEqual(Template->getTemplateParameters(),
+ Param->getTemplateParameters(),
+ true, true,
+ Arg->getSourceRange().getBegin());
+}
+
+/// \brief Determine whether the given template parameter lists are
+/// equivalent.
+///
+/// \param New The new template parameter list, typically written in the
+/// source code as part of a new template declaration.
+///
+/// \param Old The old template parameter list, typically found via
+/// name lookup of the template declared with this template parameter
+/// list.
+///
+/// \param Complain If true, this routine will produce a diagnostic if
+/// the template parameter lists are not equivalent.
+///
+/// \param IsTemplateTemplateParm If true, this routine is being
+/// called to compare the template parameter lists of a template
+/// template parameter.
+///
+/// \param TemplateArgLoc If this source location is valid, then we
+/// are actually checking the template parameter list of a template
+/// argument (New) against the template parameter list of its
+/// corresponding template template parameter (Old). We produce
+/// slightly different diagnostics in this scenario.
+///
+/// \returns True if the template parameter lists are equal, false
+/// otherwise.
+bool
+Sema::TemplateParameterListsAreEqual(TemplateParameterList *New,
+ TemplateParameterList *Old,
+ bool Complain,
+ bool IsTemplateTemplateParm,
+ SourceLocation TemplateArgLoc) {
+ if (Old->size() != New->size()) {
+ if (Complain) {
+ unsigned NextDiag = diag::err_template_param_list_different_arity;
+ if (TemplateArgLoc.isValid()) {
+ Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
+ NextDiag = diag::note_template_param_list_different_arity;
+ }
+ Diag(New->getTemplateLoc(), NextDiag)
+ << (New->size() > Old->size())
+ << IsTemplateTemplateParm
+ << SourceRange(New->getTemplateLoc(), New->getRAngleLoc());
+ Diag(Old->getTemplateLoc(), diag::note_template_prev_declaration)
+ << IsTemplateTemplateParm
+ << SourceRange(Old->getTemplateLoc(), Old->getRAngleLoc());
+ }
+
+ return false;
+ }
+
+ for (TemplateParameterList::iterator OldParm = Old->begin(),
+ OldParmEnd = Old->end(), NewParm = New->begin();
+ OldParm != OldParmEnd; ++OldParm, ++NewParm) {
+ if ((*OldParm)->getKind() != (*NewParm)->getKind()) {
+ unsigned NextDiag = diag::err_template_param_different_kind;
+ if (TemplateArgLoc.isValid()) {
+ Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
+ NextDiag = diag::note_template_param_different_kind;
+ }
+ Diag((*NewParm)->getLocation(), NextDiag)
+ << IsTemplateTemplateParm;
+ Diag((*OldParm)->getLocation(), diag::note_template_prev_declaration)
+ << IsTemplateTemplateParm;
+ return false;
+ }
+
+ if (isa<TemplateTypeParmDecl>(*OldParm)) {
+ // Okay; all template type parameters are equivalent (since we
+ // know we're at the same index).
+#if 0
+ // FIXME: Enable this code in debug mode *after* we properly go through
+ // and "instantiate" the template parameter lists of template template
+ // parameters. It's only after this instantiation that (1) any dependent
+ // types within the template parameter list of the template template
+ // parameter can be checked, and (2) the template type parameter depths
+ // will match up.
+ QualType OldParmType
+ = Context.getTypeDeclType(cast<TemplateTypeParmDecl>(*OldParm));
+ QualType NewParmType
+ = Context.getTypeDeclType(cast<TemplateTypeParmDecl>(*NewParm));
+ assert(Context.getCanonicalType(OldParmType) ==
+ Context.getCanonicalType(NewParmType) &&
+ "type parameter mismatch?");
+#endif
+ } else if (NonTypeTemplateParmDecl *OldNTTP
+ = dyn_cast<NonTypeTemplateParmDecl>(*OldParm)) {
+ // The types of non-type template parameters must agree.
+ NonTypeTemplateParmDecl *NewNTTP
+ = cast<NonTypeTemplateParmDecl>(*NewParm);
+ if (Context.getCanonicalType(OldNTTP->getType()) !=
+ Context.getCanonicalType(NewNTTP->getType())) {
+ if (Complain) {
+ unsigned NextDiag = diag::err_template_nontype_parm_different_type;
+ if (TemplateArgLoc.isValid()) {
+ Diag(TemplateArgLoc,
+ diag::err_template_arg_template_params_mismatch);
+ NextDiag = diag::note_template_nontype_parm_different_type;
+ }
+ Diag(NewNTTP->getLocation(), NextDiag)
+ << NewNTTP->getType()
+ << IsTemplateTemplateParm;
+ Diag(OldNTTP->getLocation(),
+ diag::note_template_nontype_parm_prev_declaration)
+ << OldNTTP->getType();
+ }
+ return false;
+ }
+ } else {
+ // The template parameter lists of template template
+ // parameters must agree.
+ // FIXME: Could we perform a faster "type" comparison here?
+ assert(isa<TemplateTemplateParmDecl>(*OldParm) &&
+ "Only template template parameters handled here");
+ TemplateTemplateParmDecl *OldTTP
+ = cast<TemplateTemplateParmDecl>(*OldParm);
+ TemplateTemplateParmDecl *NewTTP
+ = cast<TemplateTemplateParmDecl>(*NewParm);
+ if (!TemplateParameterListsAreEqual(NewTTP->getTemplateParameters(),
+ OldTTP->getTemplateParameters(),
+ Complain,
+ /*IsTemplateTemplateParm=*/true,
+ TemplateArgLoc))
+ return false;
+ }
+ }
+
+ return true;
+}
+
+/// \brief Check whether a template can be declared within this scope.
+///
+/// If the template declaration is valid in this scope, returns
+/// false. Otherwise, issues a diagnostic and returns true.
+bool
+Sema::CheckTemplateDeclScope(Scope *S,
+ MultiTemplateParamsArg &TemplateParameterLists) {
+ assert(TemplateParameterLists.size() > 0 && "Not a template");
+
+ // Find the nearest enclosing declaration scope.
+ while ((S->getFlags() & Scope::DeclScope) == 0 ||
+ (S->getFlags() & Scope::TemplateParamScope) != 0)
+ S = S->getParent();
+
+ TemplateParameterList *TemplateParams =
+ static_cast<TemplateParameterList*>(*TemplateParameterLists.get());
+ SourceLocation TemplateLoc = TemplateParams->getTemplateLoc();
+ SourceRange TemplateRange
+ = SourceRange(TemplateLoc, TemplateParams->getRAngleLoc());
+
+ // C++ [temp]p2:
+ // A template-declaration can appear only as a namespace scope or
+ // class scope declaration.
+ DeclContext *Ctx = static_cast<DeclContext *>(S->getEntity());
+ while (Ctx && isa<LinkageSpecDecl>(Ctx)) {
+ if (cast<LinkageSpecDecl>(Ctx)->getLanguage() != LinkageSpecDecl::lang_cxx)
+ return Diag(TemplateLoc, diag::err_template_linkage)
+ << TemplateRange;
+
+ Ctx = Ctx->getParent();
+ }
+
+ if (Ctx && (Ctx->isFileContext() || Ctx->isRecord()))
+ return false;
+
+ return Diag(TemplateLoc, diag::err_template_outside_namespace_or_class_scope)
+ << TemplateRange;
+}
+
+/// \brief Check whether a class template specialization or explicit
+/// instantiation in the current context is well-formed.
+///
+/// This routine determines whether a class template specialization or
+/// explicit instantiation can be declared in the current context
+/// (C++ [temp.expl.spec]p2, C++0x [temp.explicit]p2) and emits
+/// appropriate diagnostics if there was an error. It returns true if
+// there was an error that we cannot recover from, and false otherwise.
+bool
+Sema::CheckClassTemplateSpecializationScope(ClassTemplateDecl *ClassTemplate,
+ ClassTemplateSpecializationDecl *PrevDecl,
+ SourceLocation TemplateNameLoc,
+ SourceRange ScopeSpecifierRange,
+ bool ExplicitInstantiation) {
+ // C++ [temp.expl.spec]p2:
+ // An explicit specialization shall be declared in the namespace
+ // of which the template is a member, or, for member templates, in
+ // the namespace of which the enclosing class or enclosing class
+ // template is a member. An explicit specialization of a member
+ // function, member class or static data member of a class
+ // template shall be declared in the namespace of which the class
+ // template is a member. Such a declaration may also be a
+ // definition. If the declaration is not a definition, the
+ // specialization may be defined later in the name- space in which
+ // the explicit specialization was declared, or in a namespace
+ // that encloses the one in which the explicit specialization was
+ // declared.
+ if (CurContext->getLookupContext()->isFunctionOrMethod()) {
+ Diag(TemplateNameLoc, diag::err_template_spec_decl_function_scope)
+ << ExplicitInstantiation << ClassTemplate;
+ return true;
+ }
+
+ DeclContext *DC = CurContext->getEnclosingNamespaceContext();
+ DeclContext *TemplateContext
+ = ClassTemplate->getDeclContext()->getEnclosingNamespaceContext();
+ if ((!PrevDecl || PrevDecl->getSpecializationKind() == TSK_Undeclared) &&
+ !ExplicitInstantiation) {
+ // There is no prior declaration of this entity, so this
+ // specialization must be in the same context as the template
+ // itself.
+ if (DC != TemplateContext) {
+ if (isa<TranslationUnitDecl>(TemplateContext))
+ Diag(TemplateNameLoc, diag::err_template_spec_decl_out_of_scope_global)
+ << ClassTemplate << ScopeSpecifierRange;
+ else if (isa<NamespaceDecl>(TemplateContext))
+ Diag(TemplateNameLoc, diag::err_template_spec_decl_out_of_scope)
+ << ClassTemplate << cast<NamedDecl>(TemplateContext)
+ << ScopeSpecifierRange;
+
+ Diag(ClassTemplate->getLocation(), diag::note_template_decl_here);
+ }
+
+ return false;
+ }
+
+ // We have a previous declaration of this entity. Make sure that
+ // this redeclaration (or definition) occurs in an enclosing namespace.
+ if (!CurContext->Encloses(TemplateContext)) {
+ // FIXME: In C++98, we would like to turn these errors into warnings,
+ // dependent on a -Wc++0x flag.
+ bool SuppressedDiag = false;
+ if (isa<TranslationUnitDecl>(TemplateContext)) {
+ if (!ExplicitInstantiation || getLangOptions().CPlusPlus0x)
+ Diag(TemplateNameLoc, diag::err_template_spec_redecl_global_scope)
+ << ExplicitInstantiation << ClassTemplate << ScopeSpecifierRange;
+ else
+ SuppressedDiag = true;
+ } else if (isa<NamespaceDecl>(TemplateContext)) {
+ if (!ExplicitInstantiation || getLangOptions().CPlusPlus0x)
+ Diag(TemplateNameLoc, diag::err_template_spec_redecl_out_of_scope)
+ << ExplicitInstantiation << ClassTemplate
+ << cast<NamedDecl>(TemplateContext) << ScopeSpecifierRange;
+ else
+ SuppressedDiag = true;
+ }
+
+ if (!SuppressedDiag)
+ Diag(ClassTemplate->getLocation(), diag::note_template_decl_here);
+ }
+
+ return false;
+}
+
+Sema::DeclResult
+Sema::ActOnClassTemplateSpecialization(Scope *S, unsigned TagSpec, TagKind TK,
+ SourceLocation KWLoc,
+ const CXXScopeSpec &SS,
+ TemplateTy TemplateD,
+ SourceLocation TemplateNameLoc,
+ SourceLocation LAngleLoc,
+ ASTTemplateArgsPtr TemplateArgsIn,
+ SourceLocation *TemplateArgLocs,
+ SourceLocation RAngleLoc,
+ AttributeList *Attr,
+ MultiTemplateParamsArg TemplateParameterLists) {
+ // Find the class template we're specializing
+ TemplateName Name = TemplateD.getAsVal<TemplateName>();
+ ClassTemplateDecl *ClassTemplate
+ = cast<ClassTemplateDecl>(Name.getAsTemplateDecl());
+
+ bool isPartialSpecialization = false;
+
+ // Check the validity of the template headers that introduce this
+ // template.
+ // FIXME: Once we have member templates, we'll need to check
+ // C++ [temp.expl.spec]p17-18, where we could have multiple levels of
+ // template<> headers.
+ if (TemplateParameterLists.size() == 0)
+ Diag(KWLoc, diag::err_template_spec_needs_header)
+ << CodeModificationHint::CreateInsertion(KWLoc, "template<> ");
+ else {
+ TemplateParameterList *TemplateParams
+ = static_cast<TemplateParameterList*>(*TemplateParameterLists.get());
+ if (TemplateParameterLists.size() > 1) {
+ Diag(TemplateParams->getTemplateLoc(),
+ diag::err_template_spec_extra_headers);
+ return true;
+ }
+
+ // FIXME: We'll need more checks, here!
+ if (TemplateParams->size() > 0)
+ isPartialSpecialization = true;
+ }
+
+ // Check that the specialization uses the same tag kind as the
+ // original template.
+ TagDecl::TagKind Kind;
+ switch (TagSpec) {
+ default: assert(0 && "Unknown tag type!");
+ case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break;
+ case DeclSpec::TST_union: Kind = TagDecl::TK_union; break;
+ case DeclSpec::TST_class: Kind = TagDecl::TK_class; break;
+ }
+ if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
+ Kind, KWLoc,
+ *ClassTemplate->getIdentifier())) {
+ Diag(KWLoc, diag::err_use_with_wrong_tag)
+ << ClassTemplate
+ << CodeModificationHint::CreateReplacement(KWLoc,
+ ClassTemplate->getTemplatedDecl()->getKindName());
+ Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
+ diag::note_previous_use);
+ Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
+ }
+
+ // Translate the parser's template argument list in our AST format.
+ llvm::SmallVector<TemplateArgument, 16> TemplateArgs;
+ translateTemplateArguments(TemplateArgsIn, TemplateArgLocs, TemplateArgs);
+
+ // Check that the template argument list is well-formed for this
+ // template.
+ llvm::SmallVector<TemplateArgument, 16> ConvertedTemplateArgs;
+ if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc, LAngleLoc,
+ &TemplateArgs[0], TemplateArgs.size(),
+ RAngleLoc, ConvertedTemplateArgs))
+ return true;
+
+ assert((ConvertedTemplateArgs.size() ==
+ ClassTemplate->getTemplateParameters()->size()) &&
+ "Converted template argument list is too short!");
+
+ // Find the class template (partial) specialization declaration that
+ // corresponds to these arguments.
+ llvm::FoldingSetNodeID ID;
+ if (isPartialSpecialization)
+ // FIXME: Template parameter list matters, too
+ ClassTemplatePartialSpecializationDecl::Profile(ID, &ConvertedTemplateArgs[0],
+ ConvertedTemplateArgs.size());
+ else
+ ClassTemplateSpecializationDecl::Profile(ID, &ConvertedTemplateArgs[0],
+ ConvertedTemplateArgs.size());
+ void *InsertPos = 0;
+ ClassTemplateSpecializationDecl *PrevDecl = 0;
+
+ if (isPartialSpecialization)
+ PrevDecl
+ = ClassTemplate->getPartialSpecializations().FindNodeOrInsertPos(ID,
+ InsertPos);
+ else
+ PrevDecl
+ = ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos);
+
+ ClassTemplateSpecializationDecl *Specialization = 0;
+
+ // Check whether we can declare a class template specialization in
+ // the current scope.
+ if (CheckClassTemplateSpecializationScope(ClassTemplate, PrevDecl,
+ TemplateNameLoc,
+ SS.getRange(),
+ /*ExplicitInstantiation=*/false))
+ return true;
+
+ if (PrevDecl && PrevDecl->getSpecializationKind() == TSK_Undeclared) {
+ // Since the only prior class template specialization with these
+ // arguments was referenced but not declared, reuse that
+ // declaration node as our own, updating its source location to
+ // reflect our new declaration.
+ Specialization = PrevDecl;
+ Specialization->setLocation(TemplateNameLoc);
+ PrevDecl = 0;
+ } else if (isPartialSpecialization) {
+ // FIXME: extra checking for partial specializations
+
+ // Create a new class template partial specialization declaration node.
+ TemplateParameterList *TemplateParams
+ = static_cast<TemplateParameterList*>(*TemplateParameterLists.get());
+ ClassTemplatePartialSpecializationDecl *PrevPartial
+ = cast_or_null<ClassTemplatePartialSpecializationDecl>(PrevDecl);
+ ClassTemplatePartialSpecializationDecl *Partial
+ = ClassTemplatePartialSpecializationDecl::Create(Context,
+ ClassTemplate->getDeclContext(),
+ TemplateNameLoc,
+ TemplateParams,
+ ClassTemplate,
+ &ConvertedTemplateArgs[0],
+ ConvertedTemplateArgs.size(),
+ PrevPartial);
+
+ if (PrevPartial) {
+ ClassTemplate->getPartialSpecializations().RemoveNode(PrevPartial);
+ ClassTemplate->getPartialSpecializations().GetOrInsertNode(Partial);
+ } else {
+ ClassTemplate->getPartialSpecializations().InsertNode(Partial, InsertPos);
+ }
+ Specialization = Partial;
+ } else {
+ // Create a new class template specialization declaration node for
+ // this explicit specialization.
+ Specialization
+ = ClassTemplateSpecializationDecl::Create(Context,
+ ClassTemplate->getDeclContext(),
+ TemplateNameLoc,
+ ClassTemplate,
+ &ConvertedTemplateArgs[0],
+ ConvertedTemplateArgs.size(),
+ PrevDecl);
+
+ if (PrevDecl) {
+ ClassTemplate->getSpecializations().RemoveNode(PrevDecl);
+ ClassTemplate->getSpecializations().GetOrInsertNode(Specialization);
+ } else {
+ ClassTemplate->getSpecializations().InsertNode(Specialization,
+ InsertPos);
+ }
+ }
+
+ // Note that this is an explicit specialization.
+ Specialization->setSpecializationKind(TSK_ExplicitSpecialization);
+
+ // Check that this isn't a redefinition of this specialization.
+ if (TK == TK_Definition) {
+ if (RecordDecl *Def = Specialization->getDefinition(Context)) {
+ // FIXME: Should also handle explicit specialization after implicit
+ // instantiation with a special diagnostic.
+ SourceRange Range(TemplateNameLoc, RAngleLoc);
+ Diag(TemplateNameLoc, diag::err_redefinition)
+ << Context.getTypeDeclType(Specialization) << Range;
+ Diag(Def->getLocation(), diag::note_previous_definition);
+ Specialization->setInvalidDecl();
+ return true;
+ }
+ }
+
+ // Build the fully-sugared type for this class template
+ // specialization as the user wrote in the specialization
+ // itself. This means that we'll pretty-print the type retrieved
+ // from the specialization's declaration the way that the user
+ // actually wrote the specialization, rather than formatting the
+ // name based on the "canonical" representation used to store the
+ // template arguments in the specialization.
+ QualType WrittenTy
+ = Context.getTemplateSpecializationType(Name,
+ &TemplateArgs[0],
+ TemplateArgs.size(),
+ Context.getTypeDeclType(Specialization));
+ Specialization->setTypeAsWritten(WrittenTy);
+ TemplateArgsIn.release();
+
+ // C++ [temp.expl.spec]p9:
+ // A template explicit specialization is in the scope of the
+ // namespace in which the template was defined.
+ //
+ // We actually implement this paragraph where we set the semantic
+ // context (in the creation of the ClassTemplateSpecializationDecl),
+ // but we also maintain the lexical context where the actual
+ // definition occurs.
+ Specialization->setLexicalDeclContext(CurContext);
+
+ // We may be starting the definition of this specialization.
+ if (TK == TK_Definition)
+ Specialization->startDefinition();
+
+ // Add the specialization into its lexical context, so that it can
+ // be seen when iterating through the list of declarations in that
+ // context. However, specializations are not found by name lookup.
+ CurContext->addDecl(Context, Specialization);
+ return DeclPtrTy::make(Specialization);
+}
+
+// Explicit instantiation of a class template specialization
+Sema::DeclResult
+Sema::ActOnExplicitInstantiation(Scope *S, SourceLocation TemplateLoc,
+ unsigned TagSpec,
+ SourceLocation KWLoc,
+ const CXXScopeSpec &SS,
+ TemplateTy TemplateD,
+ SourceLocation TemplateNameLoc,
+ SourceLocation LAngleLoc,
+ ASTTemplateArgsPtr TemplateArgsIn,
+ SourceLocation *TemplateArgLocs,
+ SourceLocation RAngleLoc,
+ AttributeList *Attr) {
+ // Find the class template we're specializing
+ TemplateName Name = TemplateD.getAsVal<TemplateName>();
+ ClassTemplateDecl *ClassTemplate
+ = cast<ClassTemplateDecl>(Name.getAsTemplateDecl());
+
+ // Check that the specialization uses the same tag kind as the
+ // original template.
+ TagDecl::TagKind Kind;
+ switch (TagSpec) {
+ default: assert(0 && "Unknown tag type!");
+ case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break;
+ case DeclSpec::TST_union: Kind = TagDecl::TK_union; break;
+ case DeclSpec::TST_class: Kind = TagDecl::TK_class; break;
+ }
+ if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
+ Kind, KWLoc,
+ *ClassTemplate->getIdentifier())) {
+ Diag(KWLoc, diag::err_use_with_wrong_tag)
+ << ClassTemplate
+ << CodeModificationHint::CreateReplacement(KWLoc,
+ ClassTemplate->getTemplatedDecl()->getKindName());
+ Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
+ diag::note_previous_use);
+ Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
+ }
+
+ // C++0x [temp.explicit]p2:
+ // [...] An explicit instantiation shall appear in an enclosing
+ // namespace of its template. [...]
+ //
+ // This is C++ DR 275.
+ if (CheckClassTemplateSpecializationScope(ClassTemplate, 0,
+ TemplateNameLoc,
+ SS.getRange(),
+ /*ExplicitInstantiation=*/true))
+ return true;
+
+ // Translate the parser's template argument list in our AST format.
+ llvm::SmallVector<TemplateArgument, 16> TemplateArgs;
+ translateTemplateArguments(TemplateArgsIn, TemplateArgLocs, TemplateArgs);
+
+ // Check that the template argument list is well-formed for this
+ // template.
+ llvm::SmallVector<TemplateArgument, 16> ConvertedTemplateArgs;
+ if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc, LAngleLoc,
+ &TemplateArgs[0], TemplateArgs.size(),
+ RAngleLoc, ConvertedTemplateArgs))
+ return true;
+
+ assert((ConvertedTemplateArgs.size() ==
+ ClassTemplate->getTemplateParameters()->size()) &&
+ "Converted template argument list is too short!");
+
+ // Find the class template specialization declaration that
+ // corresponds to these arguments.
+ llvm::FoldingSetNodeID ID;
+ ClassTemplateSpecializationDecl::Profile(ID, &ConvertedTemplateArgs[0],
+ ConvertedTemplateArgs.size());
+ void *InsertPos = 0;
+ ClassTemplateSpecializationDecl *PrevDecl
+ = ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos);
+
+ ClassTemplateSpecializationDecl *Specialization = 0;
+
+ bool SpecializationRequiresInstantiation = true;
+ if (PrevDecl) {
+ if (PrevDecl->getSpecializationKind() == TSK_ExplicitInstantiation) {
+ // This particular specialization has already been declared or
+ // instantiated. We cannot explicitly instantiate it.
+ Diag(TemplateNameLoc, diag::err_explicit_instantiation_duplicate)
+ << Context.getTypeDeclType(PrevDecl);
+ Diag(PrevDecl->getLocation(),
+ diag::note_previous_explicit_instantiation);
+ return DeclPtrTy::make(PrevDecl);
+ }
+
+ if (PrevDecl->getSpecializationKind() == TSK_ExplicitSpecialization) {
+ // C++ DR 259, C++0x [temp.explicit]p4:
+ // For a given set of template parameters, if an explicit
+ // instantiation of a template appears after a declaration of
+ // an explicit specialization for that template, the explicit
+ // instantiation has no effect.
+ if (!getLangOptions().CPlusPlus0x) {
+ Diag(TemplateNameLoc,
+ diag::ext_explicit_instantiation_after_specialization)
+ << Context.getTypeDeclType(PrevDecl);
+ Diag(PrevDecl->getLocation(),
+ diag::note_previous_template_specialization);
+ }
+
+ // Create a new class template specialization declaration node
+ // for this explicit specialization. This node is only used to
+ // record the existence of this explicit instantiation for
+ // accurate reproduction of the source code; we don't actually
+ // use it for anything, since it is semantically irrelevant.
+ Specialization
+ = ClassTemplateSpecializationDecl::Create(Context,
+ ClassTemplate->getDeclContext(),
+ TemplateNameLoc,
+ ClassTemplate,
+ &ConvertedTemplateArgs[0],
+ ConvertedTemplateArgs.size(),
+ 0);
+ Specialization->setLexicalDeclContext(CurContext);
+ CurContext->addDecl(Context, Specialization);
+ return DeclPtrTy::make(Specialization);
+ }
+
+ // If we have already (implicitly) instantiated this
+ // specialization, there is less work to do.
+ if (PrevDecl->getSpecializationKind() == TSK_ImplicitInstantiation)
+ SpecializationRequiresInstantiation = false;
+
+ // Since the only prior class template specialization with these
+ // arguments was referenced but not declared, reuse that
+ // declaration node as our own, updating its source location to
+ // reflect our new declaration.
+ Specialization = PrevDecl;
+ Specialization->setLocation(TemplateNameLoc);
+ PrevDecl = 0;
+ } else {
+ // Create a new class template specialization declaration node for
+ // this explicit specialization.
+ Specialization
+ = ClassTemplateSpecializationDecl::Create(Context,
+ ClassTemplate->getDeclContext(),
+ TemplateNameLoc,
+ ClassTemplate,
+ &ConvertedTemplateArgs[0],
+ ConvertedTemplateArgs.size(),
+ 0);
+
+ ClassTemplate->getSpecializations().InsertNode(Specialization,
+ InsertPos);
+ }
+
+ // Build the fully-sugared type for this explicit instantiation as
+ // the user wrote in the explicit instantiation itself. This means
+ // that we'll pretty-print the type retrieved from the
+ // specialization's declaration the way that the user actually wrote
+ // the explicit instantiation, rather than formatting the name based
+ // on the "canonical" representation used to store the template
+ // arguments in the specialization.
+ QualType WrittenTy
+ = Context.getTemplateSpecializationType(Name,
+ &TemplateArgs[0],
+ TemplateArgs.size(),
+ Context.getTypeDeclType(Specialization));
+ Specialization->setTypeAsWritten(WrittenTy);
+ TemplateArgsIn.release();
+
+ // Add the explicit instantiation into its lexical context. However,
+ // since explicit instantiations are never found by name lookup, we
+ // just put it into the declaration context directly.
+ Specialization->setLexicalDeclContext(CurContext);
+ CurContext->addDecl(Context, Specialization);
+
+ // C++ [temp.explicit]p3:
+ // A definition of a class template or class member template
+ // shall be in scope at the point of the explicit instantiation of
+ // the class template or class member template.
+ //
+ // This check comes when we actually try to perform the
+ // instantiation.
+ if (SpecializationRequiresInstantiation)
+ InstantiateClassTemplateSpecialization(Specialization, true);
+ else // Instantiate the members of this class template specialization.
+ InstantiateClassTemplateSpecializationMembers(TemplateLoc, Specialization);
+
+ return DeclPtrTy::make(Specialization);
+}
+
+// Explicit instantiation of a member class of a class template.
+Sema::DeclResult
+Sema::ActOnExplicitInstantiation(Scope *S, SourceLocation TemplateLoc,
+ unsigned TagSpec,
+ SourceLocation KWLoc,
+ const CXXScopeSpec &SS,
+ IdentifierInfo *Name,
+ SourceLocation NameLoc,
+ AttributeList *Attr) {
+
+ bool Owned = false;
+ DeclPtrTy TagD = ActOnTag(S, TagSpec, Action::TK_Reference,
+ KWLoc, SS, Name, NameLoc, Attr, AS_none, Owned);
+ if (!TagD)
+ return true;
+
+ TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
+ if (Tag->isEnum()) {
+ Diag(TemplateLoc, diag::err_explicit_instantiation_enum)
+ << Context.getTypeDeclType(Tag);
+ return true;
+ }
+
+ if (Tag->isInvalidDecl())
+ return true;
+
+ CXXRecordDecl *Record = cast<CXXRecordDecl>(Tag);
+ CXXRecordDecl *Pattern = Record->getInstantiatedFromMemberClass();
+ if (!Pattern) {
+ Diag(TemplateLoc, diag::err_explicit_instantiation_nontemplate_type)
+ << Context.getTypeDeclType(Record);
+ Diag(Record->getLocation(), diag::note_nontemplate_decl_here);
+ return true;
+ }
+
+ // C++0x [temp.explicit]p2:
+ // [...] An explicit instantiation shall appear in an enclosing
+ // namespace of its template. [...]
+ //
+ // This is C++ DR 275.
+ if (getLangOptions().CPlusPlus0x) {
+ // FIXME: In C++98, we would like to turn these errors into warnings,
+ // dependent on a -Wc++0x flag.
+ DeclContext *PatternContext
+ = Pattern->getDeclContext()->getEnclosingNamespaceContext();
+ if (!CurContext->Encloses(PatternContext)) {
+ Diag(TemplateLoc, diag::err_explicit_instantiation_out_of_scope)
+ << Record << cast<NamedDecl>(PatternContext) << SS.getRange();
+ Diag(Pattern->getLocation(), diag::note_previous_declaration);
+ }
+ }
+
+ if (!Record->getDefinition(Context)) {
+ // If the class has a definition, instantiate it (and all of its
+ // members, recursively).
+ Pattern = cast_or_null<CXXRecordDecl>(Pattern->getDefinition(Context));
+ if (Pattern && InstantiateClass(TemplateLoc, Record, Pattern,
+ getTemplateInstantiationArgs(Record),
+ /*ExplicitInstantiation=*/true))
+ return true;
+ } else // Instantiate all of the members of class.
+ InstantiateClassMembers(TemplateLoc, Record,
+ getTemplateInstantiationArgs(Record));
+
+ // FIXME: We don't have any representation for explicit instantiations of
+ // member classes. Such a representation is not needed for compilation, but it
+ // should be available for clients that want to see all of the declarations in
+ // the source code.
+ return TagD;
+}
+
+Sema::TypeResult
+Sema::ActOnTypenameType(SourceLocation TypenameLoc, const CXXScopeSpec &SS,
+ const IdentifierInfo &II, SourceLocation IdLoc) {
+ NestedNameSpecifier *NNS
+ = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
+ if (!NNS)
+ return true;
+
+ QualType T = CheckTypenameType(NNS, II, SourceRange(TypenameLoc, IdLoc));
+ if (T.isNull())
+ return true;
+ return T.getAsOpaquePtr();
+}
+
+Sema::TypeResult
+Sema::ActOnTypenameType(SourceLocation TypenameLoc, const CXXScopeSpec &SS,
+ SourceLocation TemplateLoc, TypeTy *Ty) {
+ QualType T = QualType::getFromOpaquePtr(Ty);
+ NestedNameSpecifier *NNS
+ = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
+ const TemplateSpecializationType *TemplateId
+ = T->getAsTemplateSpecializationType();
+ assert(TemplateId && "Expected a template specialization type");
+
+ if (NNS->isDependent())
+ return Context.getTypenameType(NNS, TemplateId).getAsOpaquePtr();
+
+ return Context.getQualifiedNameType(NNS, T).getAsOpaquePtr();
+}
+
+/// \brief Build the type that describes a C++ typename specifier,
+/// e.g., "typename T::type".
+QualType
+Sema::CheckTypenameType(NestedNameSpecifier *NNS, const IdentifierInfo &II,
+ SourceRange Range) {
+ CXXRecordDecl *CurrentInstantiation = 0;
+ if (NNS->isDependent()) {
+ CurrentInstantiation = getCurrentInstantiationOf(NNS);
+
+ // If the nested-name-specifier does not refer to the current
+ // instantiation, then build a typename type.
+ if (!CurrentInstantiation)
+ return Context.getTypenameType(NNS, &II);
+ }
+
+ DeclContext *Ctx = 0;
+
+ if (CurrentInstantiation)
+ Ctx = CurrentInstantiation;
+ else {
+ CXXScopeSpec SS;
+ SS.setScopeRep(NNS);
+ SS.setRange(Range);
+ if (RequireCompleteDeclContext(SS))
+ return QualType();
+
+ Ctx = computeDeclContext(SS);
+ }
+ assert(Ctx && "No declaration context?");
+
+ DeclarationName Name(&II);
+ LookupResult Result = LookupQualifiedName(Ctx, Name, LookupOrdinaryName,
+ false);
+ unsigned DiagID = 0;
+ Decl *Referenced = 0;
+ switch (Result.getKind()) {
+ case LookupResult::NotFound:
+ if (Ctx->isTranslationUnit())
+ DiagID = diag::err_typename_nested_not_found_global;
+ else
+ DiagID = diag::err_typename_nested_not_found;
+ break;
+
+ case LookupResult::Found:
+ if (TypeDecl *Type = dyn_cast<TypeDecl>(Result.getAsDecl())) {
+ // We found a type. Build a QualifiedNameType, since the
+ // typename-specifier was just sugar. FIXME: Tell
+ // QualifiedNameType that it has a "typename" prefix.
+ return Context.getQualifiedNameType(NNS, Context.getTypeDeclType(Type));
+ }
+
+ DiagID = diag::err_typename_nested_not_type;
+ Referenced = Result.getAsDecl();
+ break;
+
+ case LookupResult::FoundOverloaded:
+ DiagID = diag::err_typename_nested_not_type;
+ Referenced = *Result.begin();
+ break;
+
+ case LookupResult::AmbiguousBaseSubobjectTypes:
+ case LookupResult::AmbiguousBaseSubobjects:
+ case LookupResult::AmbiguousReference:
+ DiagnoseAmbiguousLookup(Result, Name, Range.getEnd(), Range);
+ return QualType();
+ }
+
+ // If we get here, it's because name lookup did not find a
+ // type. Emit an appropriate diagnostic and return an error.
+ if (NamedDecl *NamedCtx = dyn_cast<NamedDecl>(Ctx))
+ Diag(Range.getEnd(), DiagID) << Range << Name << NamedCtx;
+ else
+ Diag(Range.getEnd(), DiagID) << Range << Name;
+ if (Referenced)
+ Diag(Referenced->getLocation(), diag::note_typename_refers_here)
+ << Name;
+ return QualType();
+}
+
+// FIXME: Move to SemaTemplateDeduction.cpp
+bool
+Sema::DeduceTemplateArguments(QualType Param, QualType Arg,
+ llvm::SmallVectorImpl<TemplateArgument> &Deduced) {
+ // We only want to look at the canonical types, since typedefs and
+ // sugar are not part of template argument deduction.
+ Param = Context.getCanonicalType(Param);
+ Arg = Context.getCanonicalType(Arg);
+
+ // If the parameter type is not dependent, just compare the types
+ // directly.
+ if (!Param->isDependentType())
+ return Param == Arg;
+
+ // FIXME: Use a visitor or switch to handle all of the kinds of
+ // types that the parameter may be.
+ if (const TemplateTypeParmType *TemplateTypeParm
+ = Param->getAsTemplateTypeParmType()) {
+ (void)TemplateTypeParm; // FIXME: use this
+ // The argument type can not be less qualified than the parameter
+ // type.
+ if (Param.isMoreQualifiedThan(Arg))
+ return false;
+
+ unsigned Quals = Arg.getCVRQualifiers() & ~Param.getCVRQualifiers();
+ QualType DeducedType = Arg.getQualifiedType(Quals);
+ // FIXME: actually save the deduced type, and check that this
+ // deduction is consistent.
+ return true;
+ }
+
+ if (Param.getCVRQualifiers() != Arg.getCVRQualifiers())
+ return false;
+
+ if (const PointerType *PointerParam = Param->getAsPointerType()) {
+ const PointerType *PointerArg = Arg->getAsPointerType();
+ if (!PointerArg)
+ return false;
+
+ return DeduceTemplateArguments(PointerParam->getPointeeType(),
+ PointerArg->getPointeeType(),
+ Deduced);
+ }
+
+ // FIXME: Many more cases to go (to go).
+ return false;
+}
+
+bool
+Sema::DeduceTemplateArguments(const TemplateArgument &Param,
+ const TemplateArgument &Arg,
+ llvm::SmallVectorImpl<TemplateArgument> &Deduced) {
+ assert(Param.getKind() == Arg.getKind() &&
+ "Template argument kind mismatch during deduction");
+ switch (Param.getKind()) {
+ case TemplateArgument::Type:
+ return DeduceTemplateArguments(Param.getAsType(), Arg.getAsType(),
+ Deduced);
+
+ default:
+ return false;
+ }
+}
+
+bool
+Sema::DeduceTemplateArguments(const TemplateArgumentList &ParamList,
+ const TemplateArgumentList &ArgList,
+ llvm::SmallVectorImpl<TemplateArgument> &Deduced) {
+ assert(ParamList.size() == ArgList.size());
+ for (unsigned I = 0, N = ParamList.size(); I != N; ++I) {
+ if (!DeduceTemplateArguments(ParamList[I], ArgList[I], Deduced))
+ return false;
+ }
+ return true;
+}
+
+
+bool
+Sema::DeduceTemplateArguments(ClassTemplatePartialSpecializationDecl *Partial,
+ const TemplateArgumentList &TemplateArgs) {
+ llvm::SmallVector<TemplateArgument, 4> Deduced;
+ Deduced.resize(Partial->getTemplateParameters()->size());
+ return DeduceTemplateArguments(Partial->getTemplateArgs(), TemplateArgs,
+ Deduced);
+}
OpenPOWER on IntegriCloud