summaryrefslogtreecommitdiffstats
path: root/lib/Sema/SemaStmt.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'lib/Sema/SemaStmt.cpp')
-rw-r--r--lib/Sema/SemaStmt.cpp1266
1 files changed, 1266 insertions, 0 deletions
diff --git a/lib/Sema/SemaStmt.cpp b/lib/Sema/SemaStmt.cpp
new file mode 100644
index 0000000..15262e9
--- /dev/null
+++ b/lib/Sema/SemaStmt.cpp
@@ -0,0 +1,1266 @@
+//===--- SemaStmt.cpp - Semantic Analysis for Statements ------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements semantic analysis for statements.
+//
+//===----------------------------------------------------------------------===//
+
+#include "Sema.h"
+#include "clang/AST/APValue.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/DeclObjC.h"
+#include "clang/AST/Expr.h"
+#include "clang/AST/StmtObjC.h"
+#include "clang/AST/StmtCXX.h"
+#include "clang/Basic/TargetInfo.h"
+using namespace clang;
+
+Sema::OwningStmtResult Sema::ActOnExprStmt(FullExprArg expr) {
+ Expr *E = expr->takeAs<Expr>();
+ assert(E && "ActOnExprStmt(): missing expression");
+
+ // C99 6.8.3p2: The expression in an expression statement is evaluated as a
+ // void expression for its side effects. Conversion to void allows any
+ // operand, even incomplete types.
+
+ // Same thing in for stmt first clause (when expr) and third clause.
+ return Owned(static_cast<Stmt*>(E));
+}
+
+
+Sema::OwningStmtResult Sema::ActOnNullStmt(SourceLocation SemiLoc) {
+ return Owned(new (Context) NullStmt(SemiLoc));
+}
+
+Sema::OwningStmtResult Sema::ActOnDeclStmt(DeclGroupPtrTy dg,
+ SourceLocation StartLoc,
+ SourceLocation EndLoc) {
+ DeclGroupRef DG = dg.getAsVal<DeclGroupRef>();
+
+ // If we have an invalid decl, just return an error.
+ if (DG.isNull()) return StmtError();
+
+ return Owned(new (Context) DeclStmt(DG, StartLoc, EndLoc));
+}
+
+Action::OwningStmtResult
+Sema::ActOnCompoundStmt(SourceLocation L, SourceLocation R,
+ MultiStmtArg elts, bool isStmtExpr) {
+ unsigned NumElts = elts.size();
+ Stmt **Elts = reinterpret_cast<Stmt**>(elts.release());
+ // If we're in C89 mode, check that we don't have any decls after stmts. If
+ // so, emit an extension diagnostic.
+ if (!getLangOptions().C99 && !getLangOptions().CPlusPlus) {
+ // Note that __extension__ can be around a decl.
+ unsigned i = 0;
+ // Skip over all declarations.
+ for (; i != NumElts && isa<DeclStmt>(Elts[i]); ++i)
+ /*empty*/;
+
+ // We found the end of the list or a statement. Scan for another declstmt.
+ for (; i != NumElts && !isa<DeclStmt>(Elts[i]); ++i)
+ /*empty*/;
+
+ if (i != NumElts) {
+ Decl *D = *cast<DeclStmt>(Elts[i])->decl_begin();
+ Diag(D->getLocation(), diag::ext_mixed_decls_code);
+ }
+ }
+ // Warn about unused expressions in statements.
+ for (unsigned i = 0; i != NumElts; ++i) {
+ Expr *E = dyn_cast<Expr>(Elts[i]);
+ if (!E) continue;
+
+ // Warn about expressions with unused results if they are non-void and if
+ // this not the last stmt in a stmt expr.
+ if (E->getType()->isVoidType() || (isStmtExpr && i == NumElts-1))
+ continue;
+
+ SourceLocation Loc;
+ SourceRange R1, R2;
+ if (!E->isUnusedResultAWarning(Loc, R1, R2))
+ continue;
+
+ Diag(Loc, diag::warn_unused_expr) << R1 << R2;
+ }
+
+ return Owned(new (Context) CompoundStmt(Context, Elts, NumElts, L, R));
+}
+
+Action::OwningStmtResult
+Sema::ActOnCaseStmt(SourceLocation CaseLoc, ExprArg lhsval,
+ SourceLocation DotDotDotLoc, ExprArg rhsval,
+ SourceLocation ColonLoc) {
+ assert((lhsval.get() != 0) && "missing expression in case statement");
+
+ // C99 6.8.4.2p3: The expression shall be an integer constant.
+ // However, GCC allows any evaluatable integer expression.
+ Expr *LHSVal = static_cast<Expr*>(lhsval.get());
+ if (!LHSVal->isTypeDependent() && !LHSVal->isValueDependent() &&
+ VerifyIntegerConstantExpression(LHSVal))
+ return StmtError();
+
+ // GCC extension: The expression shall be an integer constant.
+
+ Expr *RHSVal = static_cast<Expr*>(rhsval.get());
+ if (RHSVal && !RHSVal->isTypeDependent() && !RHSVal->isValueDependent() &&
+ VerifyIntegerConstantExpression(RHSVal)) {
+ RHSVal = 0; // Recover by just forgetting about it.
+ rhsval = 0;
+ }
+
+ if (getSwitchStack().empty()) {
+ Diag(CaseLoc, diag::err_case_not_in_switch);
+ return StmtError();
+ }
+
+ // Only now release the smart pointers.
+ lhsval.release();
+ rhsval.release();
+ CaseStmt *CS = new (Context) CaseStmt(LHSVal, RHSVal, CaseLoc, DotDotDotLoc,
+ ColonLoc);
+ getSwitchStack().back()->addSwitchCase(CS);
+ return Owned(CS);
+}
+
+/// ActOnCaseStmtBody - This installs a statement as the body of a case.
+void Sema::ActOnCaseStmtBody(StmtTy *caseStmt, StmtArg subStmt) {
+ CaseStmt *CS = static_cast<CaseStmt*>(caseStmt);
+ Stmt *SubStmt = subStmt.takeAs<Stmt>();
+ CS->setSubStmt(SubStmt);
+}
+
+Action::OwningStmtResult
+Sema::ActOnDefaultStmt(SourceLocation DefaultLoc, SourceLocation ColonLoc,
+ StmtArg subStmt, Scope *CurScope) {
+ Stmt *SubStmt = subStmt.takeAs<Stmt>();
+
+ if (getSwitchStack().empty()) {
+ Diag(DefaultLoc, diag::err_default_not_in_switch);
+ return Owned(SubStmt);
+ }
+
+ DefaultStmt *DS = new (Context) DefaultStmt(DefaultLoc, ColonLoc, SubStmt);
+ getSwitchStack().back()->addSwitchCase(DS);
+ return Owned(DS);
+}
+
+Action::OwningStmtResult
+Sema::ActOnLabelStmt(SourceLocation IdentLoc, IdentifierInfo *II,
+ SourceLocation ColonLoc, StmtArg subStmt) {
+ Stmt *SubStmt = subStmt.takeAs<Stmt>();
+ // Look up the record for this label identifier.
+ LabelStmt *&LabelDecl = getLabelMap()[II];
+
+ // If not forward referenced or defined already, just create a new LabelStmt.
+ if (LabelDecl == 0)
+ return Owned(LabelDecl = new (Context) LabelStmt(IdentLoc, II, SubStmt));
+
+ assert(LabelDecl->getID() == II && "Label mismatch!");
+
+ // Otherwise, this label was either forward reference or multiply defined. If
+ // multiply defined, reject it now.
+ if (LabelDecl->getSubStmt()) {
+ Diag(IdentLoc, diag::err_redefinition_of_label) << LabelDecl->getID();
+ Diag(LabelDecl->getIdentLoc(), diag::note_previous_definition);
+ return Owned(SubStmt);
+ }
+
+ // Otherwise, this label was forward declared, and we just found its real
+ // definition. Fill in the forward definition and return it.
+ LabelDecl->setIdentLoc(IdentLoc);
+ LabelDecl->setSubStmt(SubStmt);
+ return Owned(LabelDecl);
+}
+
+Action::OwningStmtResult
+Sema::ActOnIfStmt(SourceLocation IfLoc, FullExprArg CondVal,
+ StmtArg ThenVal, SourceLocation ElseLoc,
+ StmtArg ElseVal) {
+ OwningExprResult CondResult(CondVal.release());
+
+ Expr *condExpr = CondResult.takeAs<Expr>();
+
+ assert(condExpr && "ActOnIfStmt(): missing expression");
+
+ if (!condExpr->isTypeDependent()) {
+ DefaultFunctionArrayConversion(condExpr);
+ // Take ownership again until we're past the error checking.
+ CondResult = condExpr;
+ QualType condType = condExpr->getType();
+
+ if (getLangOptions().CPlusPlus) {
+ if (CheckCXXBooleanCondition(condExpr)) // C++ 6.4p4
+ return StmtError();
+ } else if (!condType->isScalarType()) // C99 6.8.4.1p1
+ return StmtError(Diag(IfLoc,
+ diag::err_typecheck_statement_requires_scalar)
+ << condType << condExpr->getSourceRange());
+ }
+
+ Stmt *thenStmt = ThenVal.takeAs<Stmt>();
+
+ // Warn if the if block has a null body without an else value.
+ // this helps prevent bugs due to typos, such as
+ // if (condition);
+ // do_stuff();
+ if (!ElseVal.get()) {
+ if (NullStmt* stmt = dyn_cast<NullStmt>(thenStmt))
+ Diag(stmt->getSemiLoc(), diag::warn_empty_if_body);
+ }
+
+ CondResult.release();
+ return Owned(new (Context) IfStmt(IfLoc, condExpr, thenStmt,
+ ElseLoc, ElseVal.takeAs<Stmt>()));
+}
+
+Action::OwningStmtResult
+Sema::ActOnStartOfSwitchStmt(ExprArg cond) {
+ Expr *Cond = cond.takeAs<Expr>();
+
+ if (getLangOptions().CPlusPlus) {
+ // C++ 6.4.2.p2:
+ // The condition shall be of integral type, enumeration type, or of a class
+ // type for which a single conversion function to integral or enumeration
+ // type exists (12.3). If the condition is of class type, the condition is
+ // converted by calling that conversion function, and the result of the
+ // conversion is used in place of the original condition for the remainder
+ // of this section. Integral promotions are performed.
+ if (!Cond->isTypeDependent()) {
+ QualType Ty = Cond->getType();
+
+ // FIXME: Handle class types.
+
+ // If the type is wrong a diagnostic will be emitted later at
+ // ActOnFinishSwitchStmt.
+ if (Ty->isIntegralType() || Ty->isEnumeralType()) {
+ // Integral promotions are performed.
+ // FIXME: Integral promotions for C++ are not complete.
+ UsualUnaryConversions(Cond);
+ }
+ }
+ } else {
+ // C99 6.8.4.2p5 - Integer promotions are performed on the controlling expr.
+ UsualUnaryConversions(Cond);
+ }
+
+ SwitchStmt *SS = new (Context) SwitchStmt(Cond);
+ getSwitchStack().push_back(SS);
+ return Owned(SS);
+}
+
+/// ConvertIntegerToTypeWarnOnOverflow - Convert the specified APInt to have
+/// the specified width and sign. If an overflow occurs, detect it and emit
+/// the specified diagnostic.
+void Sema::ConvertIntegerToTypeWarnOnOverflow(llvm::APSInt &Val,
+ unsigned NewWidth, bool NewSign,
+ SourceLocation Loc,
+ unsigned DiagID) {
+ // Perform a conversion to the promoted condition type if needed.
+ if (NewWidth > Val.getBitWidth()) {
+ // If this is an extension, just do it.
+ llvm::APSInt OldVal(Val);
+ Val.extend(NewWidth);
+
+ // If the input was signed and negative and the output is unsigned,
+ // warn.
+ if (!NewSign && OldVal.isSigned() && OldVal.isNegative())
+ Diag(Loc, DiagID) << OldVal.toString(10) << Val.toString(10);
+
+ Val.setIsSigned(NewSign);
+ } else if (NewWidth < Val.getBitWidth()) {
+ // If this is a truncation, check for overflow.
+ llvm::APSInt ConvVal(Val);
+ ConvVal.trunc(NewWidth);
+ ConvVal.setIsSigned(NewSign);
+ ConvVal.extend(Val.getBitWidth());
+ ConvVal.setIsSigned(Val.isSigned());
+ if (ConvVal != Val)
+ Diag(Loc, DiagID) << Val.toString(10) << ConvVal.toString(10);
+
+ // Regardless of whether a diagnostic was emitted, really do the
+ // truncation.
+ Val.trunc(NewWidth);
+ Val.setIsSigned(NewSign);
+ } else if (NewSign != Val.isSigned()) {
+ // Convert the sign to match the sign of the condition. This can cause
+ // overflow as well: unsigned(INTMIN)
+ llvm::APSInt OldVal(Val);
+ Val.setIsSigned(NewSign);
+
+ if (Val.isNegative()) // Sign bit changes meaning.
+ Diag(Loc, DiagID) << OldVal.toString(10) << Val.toString(10);
+ }
+}
+
+namespace {
+ struct CaseCompareFunctor {
+ bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS,
+ const llvm::APSInt &RHS) {
+ return LHS.first < RHS;
+ }
+ bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS,
+ const std::pair<llvm::APSInt, CaseStmt*> &RHS) {
+ return LHS.first < RHS.first;
+ }
+ bool operator()(const llvm::APSInt &LHS,
+ const std::pair<llvm::APSInt, CaseStmt*> &RHS) {
+ return LHS < RHS.first;
+ }
+ };
+}
+
+/// CmpCaseVals - Comparison predicate for sorting case values.
+///
+static bool CmpCaseVals(const std::pair<llvm::APSInt, CaseStmt*>& lhs,
+ const std::pair<llvm::APSInt, CaseStmt*>& rhs) {
+ if (lhs.first < rhs.first)
+ return true;
+
+ if (lhs.first == rhs.first &&
+ lhs.second->getCaseLoc().getRawEncoding()
+ < rhs.second->getCaseLoc().getRawEncoding())
+ return true;
+ return false;
+}
+
+Action::OwningStmtResult
+Sema::ActOnFinishSwitchStmt(SourceLocation SwitchLoc, StmtArg Switch,
+ StmtArg Body) {
+ Stmt *BodyStmt = Body.takeAs<Stmt>();
+
+ SwitchStmt *SS = getSwitchStack().back();
+ assert(SS == (SwitchStmt*)Switch.get() && "switch stack missing push/pop!");
+
+ SS->setBody(BodyStmt, SwitchLoc);
+ getSwitchStack().pop_back();
+
+ Expr *CondExpr = SS->getCond();
+ QualType CondType = CondExpr->getType();
+
+ if (!CondExpr->isTypeDependent() &&
+ !CondType->isIntegerType()) { // C99 6.8.4.2p1
+ Diag(SwitchLoc, diag::err_typecheck_statement_requires_integer)
+ << CondType << CondExpr->getSourceRange();
+ return StmtError();
+ }
+
+ // Get the bitwidth of the switched-on value before promotions. We must
+ // convert the integer case values to this width before comparison.
+ bool HasDependentValue
+ = CondExpr->isTypeDependent() || CondExpr->isValueDependent();
+ unsigned CondWidth
+ = HasDependentValue? 0
+ : static_cast<unsigned>(Context.getTypeSize(CondType));
+ bool CondIsSigned = CondType->isSignedIntegerType();
+
+ // Accumulate all of the case values in a vector so that we can sort them
+ // and detect duplicates. This vector contains the APInt for the case after
+ // it has been converted to the condition type.
+ typedef llvm::SmallVector<std::pair<llvm::APSInt, CaseStmt*>, 64> CaseValsTy;
+ CaseValsTy CaseVals;
+
+ // Keep track of any GNU case ranges we see. The APSInt is the low value.
+ std::vector<std::pair<llvm::APSInt, CaseStmt*> > CaseRanges;
+
+ DefaultStmt *TheDefaultStmt = 0;
+
+ bool CaseListIsErroneous = false;
+
+ for (SwitchCase *SC = SS->getSwitchCaseList(); SC && !HasDependentValue;
+ SC = SC->getNextSwitchCase()) {
+
+ if (DefaultStmt *DS = dyn_cast<DefaultStmt>(SC)) {
+ if (TheDefaultStmt) {
+ Diag(DS->getDefaultLoc(), diag::err_multiple_default_labels_defined);
+ Diag(TheDefaultStmt->getDefaultLoc(), diag::note_duplicate_case_prev);
+
+ // FIXME: Remove the default statement from the switch block so that
+ // we'll return a valid AST. This requires recursing down the AST and
+ // finding it, not something we are set up to do right now. For now,
+ // just lop the entire switch stmt out of the AST.
+ CaseListIsErroneous = true;
+ }
+ TheDefaultStmt = DS;
+
+ } else {
+ CaseStmt *CS = cast<CaseStmt>(SC);
+
+ // We already verified that the expression has a i-c-e value (C99
+ // 6.8.4.2p3) - get that value now.
+ Expr *Lo = CS->getLHS();
+
+ if (Lo->isTypeDependent() || Lo->isValueDependent()) {
+ HasDependentValue = true;
+ break;
+ }
+
+ llvm::APSInt LoVal = Lo->EvaluateAsInt(Context);
+
+ // Convert the value to the same width/sign as the condition.
+ ConvertIntegerToTypeWarnOnOverflow(LoVal, CondWidth, CondIsSigned,
+ CS->getLHS()->getLocStart(),
+ diag::warn_case_value_overflow);
+
+ // If the LHS is not the same type as the condition, insert an implicit
+ // cast.
+ ImpCastExprToType(Lo, CondType);
+ CS->setLHS(Lo);
+
+ // If this is a case range, remember it in CaseRanges, otherwise CaseVals.
+ if (CS->getRHS()) {
+ if (CS->getRHS()->isTypeDependent() ||
+ CS->getRHS()->isValueDependent()) {
+ HasDependentValue = true;
+ break;
+ }
+ CaseRanges.push_back(std::make_pair(LoVal, CS));
+ } else
+ CaseVals.push_back(std::make_pair(LoVal, CS));
+ }
+ }
+
+ if (!HasDependentValue) {
+ // Sort all the scalar case values so we can easily detect duplicates.
+ std::stable_sort(CaseVals.begin(), CaseVals.end(), CmpCaseVals);
+
+ if (!CaseVals.empty()) {
+ for (unsigned i = 0, e = CaseVals.size()-1; i != e; ++i) {
+ if (CaseVals[i].first == CaseVals[i+1].first) {
+ // If we have a duplicate, report it.
+ Diag(CaseVals[i+1].second->getLHS()->getLocStart(),
+ diag::err_duplicate_case) << CaseVals[i].first.toString(10);
+ Diag(CaseVals[i].second->getLHS()->getLocStart(),
+ diag::note_duplicate_case_prev);
+ // FIXME: We really want to remove the bogus case stmt from the
+ // substmt, but we have no way to do this right now.
+ CaseListIsErroneous = true;
+ }
+ }
+ }
+
+ // Detect duplicate case ranges, which usually don't exist at all in
+ // the first place.
+ if (!CaseRanges.empty()) {
+ // Sort all the case ranges by their low value so we can easily detect
+ // overlaps between ranges.
+ std::stable_sort(CaseRanges.begin(), CaseRanges.end());
+
+ // Scan the ranges, computing the high values and removing empty ranges.
+ std::vector<llvm::APSInt> HiVals;
+ for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) {
+ CaseStmt *CR = CaseRanges[i].second;
+ Expr *Hi = CR->getRHS();
+ llvm::APSInt HiVal = Hi->EvaluateAsInt(Context);
+
+ // Convert the value to the same width/sign as the condition.
+ ConvertIntegerToTypeWarnOnOverflow(HiVal, CondWidth, CondIsSigned,
+ CR->getRHS()->getLocStart(),
+ diag::warn_case_value_overflow);
+
+ // If the LHS is not the same type as the condition, insert an implicit
+ // cast.
+ ImpCastExprToType(Hi, CondType);
+ CR->setRHS(Hi);
+
+ // If the low value is bigger than the high value, the case is empty.
+ if (CaseRanges[i].first > HiVal) {
+ Diag(CR->getLHS()->getLocStart(), diag::warn_case_empty_range)
+ << SourceRange(CR->getLHS()->getLocStart(),
+ CR->getRHS()->getLocEnd());
+ CaseRanges.erase(CaseRanges.begin()+i);
+ --i, --e;
+ continue;
+ }
+ HiVals.push_back(HiVal);
+ }
+
+ // Rescan the ranges, looking for overlap with singleton values and other
+ // ranges. Since the range list is sorted, we only need to compare case
+ // ranges with their neighbors.
+ for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) {
+ llvm::APSInt &CRLo = CaseRanges[i].first;
+ llvm::APSInt &CRHi = HiVals[i];
+ CaseStmt *CR = CaseRanges[i].second;
+
+ // Check to see whether the case range overlaps with any
+ // singleton cases.
+ CaseStmt *OverlapStmt = 0;
+ llvm::APSInt OverlapVal(32);
+
+ // Find the smallest value >= the lower bound. If I is in the
+ // case range, then we have overlap.
+ CaseValsTy::iterator I = std::lower_bound(CaseVals.begin(),
+ CaseVals.end(), CRLo,
+ CaseCompareFunctor());
+ if (I != CaseVals.end() && I->first < CRHi) {
+ OverlapVal = I->first; // Found overlap with scalar.
+ OverlapStmt = I->second;
+ }
+
+ // Find the smallest value bigger than the upper bound.
+ I = std::upper_bound(I, CaseVals.end(), CRHi, CaseCompareFunctor());
+ if (I != CaseVals.begin() && (I-1)->first >= CRLo) {
+ OverlapVal = (I-1)->first; // Found overlap with scalar.
+ OverlapStmt = (I-1)->second;
+ }
+
+ // Check to see if this case stmt overlaps with the subsequent
+ // case range.
+ if (i && CRLo <= HiVals[i-1]) {
+ OverlapVal = HiVals[i-1]; // Found overlap with range.
+ OverlapStmt = CaseRanges[i-1].second;
+ }
+
+ if (OverlapStmt) {
+ // If we have a duplicate, report it.
+ Diag(CR->getLHS()->getLocStart(), diag::err_duplicate_case)
+ << OverlapVal.toString(10);
+ Diag(OverlapStmt->getLHS()->getLocStart(),
+ diag::note_duplicate_case_prev);
+ // FIXME: We really want to remove the bogus case stmt from the
+ // substmt, but we have no way to do this right now.
+ CaseListIsErroneous = true;
+ }
+ }
+ }
+ }
+
+ // FIXME: If the case list was broken is some way, we don't have a good system
+ // to patch it up. Instead, just return the whole substmt as broken.
+ if (CaseListIsErroneous)
+ return StmtError();
+
+ Switch.release();
+ return Owned(SS);
+}
+
+Action::OwningStmtResult
+Sema::ActOnWhileStmt(SourceLocation WhileLoc, FullExprArg Cond, StmtArg Body) {
+ ExprArg CondArg(Cond.release());
+ Expr *condExpr = CondArg.takeAs<Expr>();
+ assert(condExpr && "ActOnWhileStmt(): missing expression");
+
+ if (!condExpr->isTypeDependent()) {
+ DefaultFunctionArrayConversion(condExpr);
+ CondArg = condExpr;
+ QualType condType = condExpr->getType();
+
+ if (getLangOptions().CPlusPlus) {
+ if (CheckCXXBooleanCondition(condExpr)) // C++ 6.4p4
+ return StmtError();
+ } else if (!condType->isScalarType()) // C99 6.8.5p2
+ return StmtError(Diag(WhileLoc,
+ diag::err_typecheck_statement_requires_scalar)
+ << condType << condExpr->getSourceRange());
+ }
+
+ CondArg.release();
+ return Owned(new (Context) WhileStmt(condExpr, Body.takeAs<Stmt>(),
+ WhileLoc));
+}
+
+Action::OwningStmtResult
+Sema::ActOnDoStmt(SourceLocation DoLoc, StmtArg Body,
+ SourceLocation WhileLoc, ExprArg Cond) {
+ Expr *condExpr = Cond.takeAs<Expr>();
+ assert(condExpr && "ActOnDoStmt(): missing expression");
+
+ if (!condExpr->isTypeDependent()) {
+ DefaultFunctionArrayConversion(condExpr);
+ Cond = condExpr;
+ QualType condType = condExpr->getType();
+
+ if (getLangOptions().CPlusPlus) {
+ if (CheckCXXBooleanCondition(condExpr)) // C++ 6.4p4
+ return StmtError();
+ } else if (!condType->isScalarType()) // C99 6.8.5p2
+ return StmtError(Diag(DoLoc,
+ diag::err_typecheck_statement_requires_scalar)
+ << condType << condExpr->getSourceRange());
+ }
+
+ Cond.release();
+ return Owned(new (Context) DoStmt(Body.takeAs<Stmt>(), condExpr, DoLoc,
+ WhileLoc));
+}
+
+Action::OwningStmtResult
+Sema::ActOnForStmt(SourceLocation ForLoc, SourceLocation LParenLoc,
+ StmtArg first, ExprArg second, ExprArg third,
+ SourceLocation RParenLoc, StmtArg body) {
+ Stmt *First = static_cast<Stmt*>(first.get());
+ Expr *Second = static_cast<Expr*>(second.get());
+ Expr *Third = static_cast<Expr*>(third.get());
+ Stmt *Body = static_cast<Stmt*>(body.get());
+
+ if (!getLangOptions().CPlusPlus) {
+ if (DeclStmt *DS = dyn_cast_or_null<DeclStmt>(First)) {
+ // C99 6.8.5p3: The declaration part of a 'for' statement shall only
+ // declare identifiers for objects having storage class 'auto' or
+ // 'register'.
+ for (DeclStmt::decl_iterator DI=DS->decl_begin(), DE=DS->decl_end();
+ DI!=DE; ++DI) {
+ VarDecl *VD = dyn_cast<VarDecl>(*DI);
+ if (VD && VD->isBlockVarDecl() && !VD->hasLocalStorage())
+ VD = 0;
+ if (VD == 0)
+ Diag((*DI)->getLocation(), diag::err_non_variable_decl_in_for);
+ // FIXME: mark decl erroneous!
+ }
+ }
+ }
+ if (Second && !Second->isTypeDependent()) {
+ DefaultFunctionArrayConversion(Second);
+ QualType SecondType = Second->getType();
+
+ if (getLangOptions().CPlusPlus) {
+ if (CheckCXXBooleanCondition(Second)) // C++ 6.4p4
+ return StmtError();
+ } else if (!SecondType->isScalarType()) // C99 6.8.5p2
+ return StmtError(Diag(ForLoc,
+ diag::err_typecheck_statement_requires_scalar)
+ << SecondType << Second->getSourceRange());
+ }
+ first.release();
+ second.release();
+ third.release();
+ body.release();
+ return Owned(new (Context) ForStmt(First, Second, Third, Body, ForLoc,
+ LParenLoc, RParenLoc));
+}
+
+Action::OwningStmtResult
+Sema::ActOnObjCForCollectionStmt(SourceLocation ForLoc,
+ SourceLocation LParenLoc,
+ StmtArg first, ExprArg second,
+ SourceLocation RParenLoc, StmtArg body) {
+ Stmt *First = static_cast<Stmt*>(first.get());
+ Expr *Second = static_cast<Expr*>(second.get());
+ Stmt *Body = static_cast<Stmt*>(body.get());
+ if (First) {
+ QualType FirstType;
+ if (DeclStmt *DS = dyn_cast<DeclStmt>(First)) {
+ if (!DS->isSingleDecl())
+ return StmtError(Diag((*DS->decl_begin())->getLocation(),
+ diag::err_toomany_element_decls));
+
+ Decl *D = DS->getSingleDecl();
+ FirstType = cast<ValueDecl>(D)->getType();
+ // C99 6.8.5p3: The declaration part of a 'for' statement shall only
+ // declare identifiers for objects having storage class 'auto' or
+ // 'register'.
+ VarDecl *VD = cast<VarDecl>(D);
+ if (VD->isBlockVarDecl() && !VD->hasLocalStorage())
+ return StmtError(Diag(VD->getLocation(),
+ diag::err_non_variable_decl_in_for));
+ } else {
+ if (cast<Expr>(First)->isLvalue(Context) != Expr::LV_Valid)
+ return StmtError(Diag(First->getLocStart(),
+ diag::err_selector_element_not_lvalue)
+ << First->getSourceRange());
+
+ FirstType = static_cast<Expr*>(First)->getType();
+ }
+ if (!Context.isObjCObjectPointerType(FirstType))
+ Diag(ForLoc, diag::err_selector_element_type)
+ << FirstType << First->getSourceRange();
+ }
+ if (Second) {
+ DefaultFunctionArrayConversion(Second);
+ QualType SecondType = Second->getType();
+ if (!Context.isObjCObjectPointerType(SecondType))
+ Diag(ForLoc, diag::err_collection_expr_type)
+ << SecondType << Second->getSourceRange();
+ }
+ first.release();
+ second.release();
+ body.release();
+ return Owned(new (Context) ObjCForCollectionStmt(First, Second, Body,
+ ForLoc, RParenLoc));
+}
+
+Action::OwningStmtResult
+Sema::ActOnGotoStmt(SourceLocation GotoLoc, SourceLocation LabelLoc,
+ IdentifierInfo *LabelII) {
+ // If we are in a block, reject all gotos for now.
+ if (CurBlock)
+ return StmtError(Diag(GotoLoc, diag::err_goto_in_block));
+
+ // Look up the record for this label identifier.
+ LabelStmt *&LabelDecl = getLabelMap()[LabelII];
+
+ // If we haven't seen this label yet, create a forward reference.
+ if (LabelDecl == 0)
+ LabelDecl = new (Context) LabelStmt(LabelLoc, LabelII, 0);
+
+ return Owned(new (Context) GotoStmt(LabelDecl, GotoLoc, LabelLoc));
+}
+
+Action::OwningStmtResult
+Sema::ActOnIndirectGotoStmt(SourceLocation GotoLoc, SourceLocation StarLoc,
+ ExprArg DestExp) {
+ // Convert operand to void*
+ Expr* E = DestExp.takeAs<Expr>();
+ if (!E->isTypeDependent()) {
+ QualType ETy = E->getType();
+ AssignConvertType ConvTy =
+ CheckSingleAssignmentConstraints(Context.VoidPtrTy, E);
+ if (DiagnoseAssignmentResult(ConvTy, StarLoc, Context.VoidPtrTy, ETy,
+ E, "passing"))
+ return StmtError();
+ }
+ return Owned(new (Context) IndirectGotoStmt(GotoLoc, StarLoc, E));
+}
+
+Action::OwningStmtResult
+Sema::ActOnContinueStmt(SourceLocation ContinueLoc, Scope *CurScope) {
+ Scope *S = CurScope->getContinueParent();
+ if (!S) {
+ // C99 6.8.6.2p1: A break shall appear only in or as a loop body.
+ return StmtError(Diag(ContinueLoc, diag::err_continue_not_in_loop));
+ }
+
+ return Owned(new (Context) ContinueStmt(ContinueLoc));
+}
+
+Action::OwningStmtResult
+Sema::ActOnBreakStmt(SourceLocation BreakLoc, Scope *CurScope) {
+ Scope *S = CurScope->getBreakParent();
+ if (!S) {
+ // C99 6.8.6.3p1: A break shall appear only in or as a switch/loop body.
+ return StmtError(Diag(BreakLoc, diag::err_break_not_in_loop_or_switch));
+ }
+
+ return Owned(new (Context) BreakStmt(BreakLoc));
+}
+
+/// ActOnBlockReturnStmt - Utility routine to figure out block's return type.
+///
+Action::OwningStmtResult
+Sema::ActOnBlockReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp) {
+ // If this is the first return we've seen in the block, infer the type of
+ // the block from it.
+ if (CurBlock->ReturnType == 0) {
+ if (RetValExp) {
+ // Don't call UsualUnaryConversions(), since we don't want to do
+ // integer promotions here.
+ DefaultFunctionArrayConversion(RetValExp);
+ CurBlock->ReturnType = RetValExp->getType().getTypePtr();
+ } else
+ CurBlock->ReturnType = Context.VoidTy.getTypePtr();
+ }
+ QualType FnRetType = QualType(CurBlock->ReturnType, 0);
+
+ if (CurBlock->TheDecl->hasAttr<NoReturnAttr>()) {
+ Diag(ReturnLoc, diag::err_noreturn_block_has_return_expr)
+ << getCurFunctionOrMethodDecl()->getDeclName();
+ return StmtError();
+ }
+
+ // Otherwise, verify that this result type matches the previous one. We are
+ // pickier with blocks than for normal functions because we don't have GCC
+ // compatibility to worry about here.
+ if (CurBlock->ReturnType->isVoidType()) {
+ if (RetValExp) {
+ Diag(ReturnLoc, diag::err_return_block_has_expr);
+ RetValExp->Destroy(Context);
+ RetValExp = 0;
+ }
+ return Owned(new (Context) ReturnStmt(ReturnLoc, RetValExp));
+ }
+
+ if (!RetValExp)
+ return StmtError(Diag(ReturnLoc, diag::err_block_return_missing_expr));
+
+ if (!FnRetType->isDependentType() && !RetValExp->isTypeDependent()) {
+ // we have a non-void block with an expression, continue checking
+ QualType RetValType = RetValExp->getType();
+
+ // C99 6.8.6.4p3(136): The return statement is not an assignment. The
+ // overlap restriction of subclause 6.5.16.1 does not apply to the case of
+ // function return.
+
+ // In C++ the return statement is handled via a copy initialization.
+ // the C version of which boils down to CheckSingleAssignmentConstraints.
+ // FIXME: Leaks RetValExp.
+ if (PerformCopyInitialization(RetValExp, FnRetType, "returning"))
+ return StmtError();
+
+ if (RetValExp) CheckReturnStackAddr(RetValExp, FnRetType, ReturnLoc);
+ }
+
+ return Owned(new (Context) ReturnStmt(ReturnLoc, RetValExp));
+}
+
+/// IsReturnCopyElidable - Whether returning @p RetExpr from a function that
+/// returns a @p RetType fulfills the criteria for copy elision (C++0x 12.8p15).
+static bool IsReturnCopyElidable(ASTContext &Ctx, QualType RetType,
+ Expr *RetExpr) {
+ QualType ExprType = RetExpr->getType();
+ // - in a return statement in a function with ...
+ // ... a class return type ...
+ if (!RetType->isRecordType())
+ return false;
+ // ... the same cv-unqualified type as the function return type ...
+ if (Ctx.getCanonicalType(RetType).getUnqualifiedType() !=
+ Ctx.getCanonicalType(ExprType).getUnqualifiedType())
+ return false;
+ // ... the expression is the name of a non-volatile automatic object ...
+ // We ignore parentheses here.
+ // FIXME: Is this compliant?
+ const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(RetExpr->IgnoreParens());
+ if (!DR)
+ return false;
+ const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl());
+ if (!VD)
+ return false;
+ return VD->hasLocalStorage() && !VD->getType()->isReferenceType()
+ && !VD->getType().isVolatileQualified();
+}
+
+Action::OwningStmtResult
+Sema::ActOnReturnStmt(SourceLocation ReturnLoc, FullExprArg rex) {
+ Expr *RetValExp = rex->takeAs<Expr>();
+ if (CurBlock)
+ return ActOnBlockReturnStmt(ReturnLoc, RetValExp);
+
+ QualType FnRetType;
+ if (const FunctionDecl *FD = getCurFunctionDecl()) {
+ FnRetType = FD->getResultType();
+ if (FD->hasAttr<NoReturnAttr>())
+ Diag(ReturnLoc, diag::warn_noreturn_function_has_return_expr)
+ << getCurFunctionOrMethodDecl()->getDeclName();
+ } else if (ObjCMethodDecl *MD = getCurMethodDecl())
+ FnRetType = MD->getResultType();
+ else // If we don't have a function/method context, bail.
+ return StmtError();
+
+ if (FnRetType->isVoidType()) {
+ if (RetValExp) {// C99 6.8.6.4p1 (ext_ since GCC warns)
+ unsigned D = diag::ext_return_has_expr;
+ if (RetValExp->getType()->isVoidType())
+ D = diag::ext_return_has_void_expr;
+
+ // return (some void expression); is legal in C++.
+ if (D != diag::ext_return_has_void_expr ||
+ !getLangOptions().CPlusPlus) {
+ NamedDecl *CurDecl = getCurFunctionOrMethodDecl();
+ Diag(ReturnLoc, D)
+ << CurDecl->getDeclName() << isa<ObjCMethodDecl>(CurDecl)
+ << RetValExp->getSourceRange();
+ }
+ }
+ return Owned(new (Context) ReturnStmt(ReturnLoc, RetValExp));
+ }
+
+ if (!RetValExp && !FnRetType->isDependentType()) {
+ unsigned DiagID = diag::warn_return_missing_expr; // C90 6.6.6.4p4
+ // C99 6.8.6.4p1 (ext_ since GCC warns)
+ if (getLangOptions().C99) DiagID = diag::ext_return_missing_expr;
+
+ if (FunctionDecl *FD = getCurFunctionDecl())
+ Diag(ReturnLoc, DiagID) << FD->getIdentifier() << 0/*fn*/;
+ else
+ Diag(ReturnLoc, DiagID) << getCurMethodDecl()->getDeclName() << 1/*meth*/;
+ return Owned(new (Context) ReturnStmt(ReturnLoc, (Expr*)0));
+ }
+
+ if (!FnRetType->isDependentType() && !RetValExp->isTypeDependent()) {
+ // we have a non-void function with an expression, continue checking
+
+ // C99 6.8.6.4p3(136): The return statement is not an assignment. The
+ // overlap restriction of subclause 6.5.16.1 does not apply to the case of
+ // function return.
+
+ // C++0x 12.8p15: When certain criteria are met, an implementation is
+ // allowed to omit the copy construction of a class object, [...]
+ // - in a return statement in a function with a class return type, when
+ // the expression is the name of a non-volatile automatic object with
+ // the same cv-unqualified type as the function return type, the copy
+ // operation can be omitted [...]
+ // C++0x 12.8p16: When the criteria for elision of a copy operation are met
+ // and the object to be copied is designated by an lvalue, overload
+ // resolution to select the constructor for the copy is first performed
+ // as if the object were designated by an rvalue.
+ // Note that we only compute Elidable if we're in C++0x, since we don't
+ // care otherwise.
+ bool Elidable = getLangOptions().CPlusPlus0x ?
+ IsReturnCopyElidable(Context, FnRetType, RetValExp) :
+ false;
+
+ // In C++ the return statement is handled via a copy initialization.
+ // the C version of which boils down to CheckSingleAssignmentConstraints.
+ // FIXME: Leaks RetValExp on error.
+ if (PerformCopyInitialization(RetValExp, FnRetType, "returning", Elidable))
+ return StmtError();
+
+ if (RetValExp) CheckReturnStackAddr(RetValExp, FnRetType, ReturnLoc);
+ }
+
+ return Owned(new (Context) ReturnStmt(ReturnLoc, RetValExp));
+}
+
+/// CheckAsmLValue - GNU C has an extremely ugly extension whereby they silently
+/// ignore "noop" casts in places where an lvalue is required by an inline asm.
+/// We emulate this behavior when -fheinous-gnu-extensions is specified, but
+/// provide a strong guidance to not use it.
+///
+/// This method checks to see if the argument is an acceptable l-value and
+/// returns false if it is a case we can handle.
+static bool CheckAsmLValue(const Expr *E, Sema &S) {
+ if (E->isLvalue(S.Context) == Expr::LV_Valid)
+ return false; // Cool, this is an lvalue.
+
+ // Okay, this is not an lvalue, but perhaps it is the result of a cast that we
+ // are supposed to allow.
+ const Expr *E2 = E->IgnoreParenNoopCasts(S.Context);
+ if (E != E2 && E2->isLvalue(S.Context) == Expr::LV_Valid) {
+ if (!S.getLangOptions().HeinousExtensions)
+ S.Diag(E2->getLocStart(), diag::err_invalid_asm_cast_lvalue)
+ << E->getSourceRange();
+ else
+ S.Diag(E2->getLocStart(), diag::warn_invalid_asm_cast_lvalue)
+ << E->getSourceRange();
+ // Accept, even if we emitted an error diagnostic.
+ return false;
+ }
+
+ // None of the above, just randomly invalid non-lvalue.
+ return true;
+}
+
+
+Sema::OwningStmtResult Sema::ActOnAsmStmt(SourceLocation AsmLoc,
+ bool IsSimple,
+ bool IsVolatile,
+ unsigned NumOutputs,
+ unsigned NumInputs,
+ std::string *Names,
+ MultiExprArg constraints,
+ MultiExprArg exprs,
+ ExprArg asmString,
+ MultiExprArg clobbers,
+ SourceLocation RParenLoc) {
+ unsigned NumClobbers = clobbers.size();
+ StringLiteral **Constraints =
+ reinterpret_cast<StringLiteral**>(constraints.get());
+ Expr **Exprs = reinterpret_cast<Expr **>(exprs.get());
+ StringLiteral *AsmString = cast<StringLiteral>((Expr *)asmString.get());
+ StringLiteral **Clobbers = reinterpret_cast<StringLiteral**>(clobbers.get());
+
+ llvm::SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos;
+
+ // The parser verifies that there is a string literal here.
+ if (AsmString->isWide())
+ return StmtError(Diag(AsmString->getLocStart(),diag::err_asm_wide_character)
+ << AsmString->getSourceRange());
+
+ for (unsigned i = 0; i != NumOutputs; i++) {
+ StringLiteral *Literal = Constraints[i];
+ if (Literal->isWide())
+ return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character)
+ << Literal->getSourceRange());
+
+ TargetInfo::ConstraintInfo Info(Literal->getStrData(),
+ Literal->getByteLength(),
+ Names[i]);
+ if (!Context.Target.validateOutputConstraint(Info))
+ return StmtError(Diag(Literal->getLocStart(),
+ diag::err_asm_invalid_output_constraint)
+ << Info.getConstraintStr());
+
+ // Check that the output exprs are valid lvalues.
+ Expr *OutputExpr = Exprs[i];
+ if (CheckAsmLValue(OutputExpr, *this)) {
+ return StmtError(Diag(OutputExpr->getLocStart(),
+ diag::err_asm_invalid_lvalue_in_output)
+ << OutputExpr->getSourceRange());
+ }
+
+ OutputConstraintInfos.push_back(Info);
+ }
+
+ llvm::SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos;
+
+ for (unsigned i = NumOutputs, e = NumOutputs + NumInputs; i != e; i++) {
+ StringLiteral *Literal = Constraints[i];
+ if (Literal->isWide())
+ return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character)
+ << Literal->getSourceRange());
+
+ TargetInfo::ConstraintInfo Info(Literal->getStrData(),
+ Literal->getByteLength(),
+ Names[i]);
+ if (!Context.Target.validateInputConstraint(OutputConstraintInfos.data(),
+ NumOutputs, Info)) {
+ return StmtError(Diag(Literal->getLocStart(),
+ diag::err_asm_invalid_input_constraint)
+ << Info.getConstraintStr());
+ }
+
+ Expr *InputExpr = Exprs[i];
+
+ // Only allow void types for memory constraints.
+ if (Info.allowsMemory() && !Info.allowsRegister()) {
+ if (CheckAsmLValue(InputExpr, *this))
+ return StmtError(Diag(InputExpr->getLocStart(),
+ diag::err_asm_invalid_lvalue_in_input)
+ << Info.getConstraintStr()
+ << InputExpr->getSourceRange());
+ }
+
+ if (Info.allowsRegister()) {
+ if (InputExpr->getType()->isVoidType()) {
+ return StmtError(Diag(InputExpr->getLocStart(),
+ diag::err_asm_invalid_type_in_input)
+ << InputExpr->getType() << Info.getConstraintStr()
+ << InputExpr->getSourceRange());
+ }
+ }
+
+ DefaultFunctionArrayConversion(Exprs[i]);
+
+ InputConstraintInfos.push_back(Info);
+ }
+
+ // Check that the clobbers are valid.
+ for (unsigned i = 0; i != NumClobbers; i++) {
+ StringLiteral *Literal = Clobbers[i];
+ if (Literal->isWide())
+ return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character)
+ << Literal->getSourceRange());
+
+ llvm::SmallString<16> Clobber(Literal->getStrData(),
+ Literal->getStrData() +
+ Literal->getByteLength());
+
+ if (!Context.Target.isValidGCCRegisterName(Clobber.c_str()))
+ return StmtError(Diag(Literal->getLocStart(),
+ diag::err_asm_unknown_register_name) << Clobber.c_str());
+ }
+
+ constraints.release();
+ exprs.release();
+ asmString.release();
+ clobbers.release();
+ AsmStmt *NS =
+ new (Context) AsmStmt(AsmLoc, IsSimple, IsVolatile, NumOutputs, NumInputs,
+ Names, Constraints, Exprs, AsmString, NumClobbers,
+ Clobbers, RParenLoc);
+ // Validate the asm string, ensuring it makes sense given the operands we
+ // have.
+ llvm::SmallVector<AsmStmt::AsmStringPiece, 8> Pieces;
+ unsigned DiagOffs;
+ if (unsigned DiagID = NS->AnalyzeAsmString(Pieces, Context, DiagOffs)) {
+ Diag(getLocationOfStringLiteralByte(AsmString, DiagOffs), DiagID)
+ << AsmString->getSourceRange();
+ DeleteStmt(NS);
+ return StmtError();
+ }
+
+ // Validate tied input operands for type mismatches.
+ for (unsigned i = 0, e = InputConstraintInfos.size(); i != e; ++i) {
+ TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i];
+
+ // If this is a tied constraint, verify that the output and input have
+ // either exactly the same type, or that they are int/ptr operands with the
+ // same size (int/long, int*/long, are ok etc).
+ if (!Info.hasTiedOperand()) continue;
+
+ unsigned TiedTo = Info.getTiedOperand();
+ Expr *OutputExpr = Exprs[TiedTo];
+ Expr *InputExpr = Exprs[i+NumOutputs];
+ QualType InTy = InputExpr->getType();
+ QualType OutTy = OutputExpr->getType();
+ if (Context.hasSameType(InTy, OutTy))
+ continue; // All types can be tied to themselves.
+
+ // Int/ptr operands have some special cases that we allow.
+ if ((OutTy->isIntegerType() || OutTy->isPointerType()) &&
+ (InTy->isIntegerType() || InTy->isPointerType())) {
+
+ // They are ok if they are the same size. Tying void* to int is ok if
+ // they are the same size, for example. This also allows tying void* to
+ // int*.
+ uint64_t OutSize = Context.getTypeSize(OutTy);
+ uint64_t InSize = Context.getTypeSize(InTy);
+ if (OutSize == InSize)
+ continue;
+
+ // If the smaller input/output operand is not mentioned in the asm string,
+ // then we can promote it and the asm string won't notice. Check this
+ // case now.
+ bool SmallerValueMentioned = false;
+ for (unsigned p = 0, e = Pieces.size(); p != e; ++p) {
+ AsmStmt::AsmStringPiece &Piece = Pieces[p];
+ if (!Piece.isOperand()) continue;
+
+ // If this is a reference to the input and if the input was the smaller
+ // one, then we have to reject this asm.
+ if (Piece.getOperandNo() == i+NumOutputs) {
+ if (InSize < OutSize) {
+ SmallerValueMentioned = true;
+ break;
+ }
+ }
+
+ // If this is a reference to the input and if the input was the smaller
+ // one, then we have to reject this asm.
+ if (Piece.getOperandNo() == TiedTo) {
+ if (InSize > OutSize) {
+ SmallerValueMentioned = true;
+ break;
+ }
+ }
+ }
+
+ // If the smaller value wasn't mentioned in the asm string, and if the
+ // output was a register, just extend the shorter one to the size of the
+ // larger one.
+ if (!SmallerValueMentioned &&
+ OutputConstraintInfos[TiedTo].allowsRegister())
+ continue;
+ }
+
+ Diag(InputExpr->getLocStart(),
+ diag::err_asm_tying_incompatible_types)
+ << InTy << OutTy << OutputExpr->getSourceRange()
+ << InputExpr->getSourceRange();
+ DeleteStmt(NS);
+ return StmtError();
+ }
+
+ return Owned(NS);
+}
+
+Action::OwningStmtResult
+Sema::ActOnObjCAtCatchStmt(SourceLocation AtLoc,
+ SourceLocation RParen, DeclPtrTy Parm,
+ StmtArg Body, StmtArg catchList) {
+ Stmt *CatchList = catchList.takeAs<Stmt>();
+ ParmVarDecl *PVD = cast_or_null<ParmVarDecl>(Parm.getAs<Decl>());
+
+ // PVD == 0 implies @catch(...).
+ if (PVD) {
+ // If we already know the decl is invalid, reject it.
+ if (PVD->isInvalidDecl())
+ return StmtError();
+
+ if (!Context.isObjCObjectPointerType(PVD->getType()))
+ return StmtError(Diag(PVD->getLocation(),
+ diag::err_catch_param_not_objc_type));
+ if (PVD->getType()->isObjCQualifiedIdType())
+ return StmtError(Diag(PVD->getLocation(),
+ diag::err_illegal_qualifiers_on_catch_parm));
+ }
+
+ ObjCAtCatchStmt *CS = new (Context) ObjCAtCatchStmt(AtLoc, RParen,
+ PVD, Body.takeAs<Stmt>(), CatchList);
+ return Owned(CatchList ? CatchList : CS);
+}
+
+Action::OwningStmtResult
+Sema::ActOnObjCAtFinallyStmt(SourceLocation AtLoc, StmtArg Body) {
+ return Owned(new (Context) ObjCAtFinallyStmt(AtLoc,
+ static_cast<Stmt*>(Body.release())));
+}
+
+Action::OwningStmtResult
+Sema::ActOnObjCAtTryStmt(SourceLocation AtLoc,
+ StmtArg Try, StmtArg Catch, StmtArg Finally) {
+ CurFunctionNeedsScopeChecking = true;
+ return Owned(new (Context) ObjCAtTryStmt(AtLoc, Try.takeAs<Stmt>(),
+ Catch.takeAs<Stmt>(),
+ Finally.takeAs<Stmt>()));
+}
+
+Action::OwningStmtResult
+Sema::ActOnObjCAtThrowStmt(SourceLocation AtLoc, ExprArg expr,Scope *CurScope) {
+ Expr *ThrowExpr = expr.takeAs<Expr>();
+ if (!ThrowExpr) {
+ // @throw without an expression designates a rethrow (which much occur
+ // in the context of an @catch clause).
+ Scope *AtCatchParent = CurScope;
+ while (AtCatchParent && !AtCatchParent->isAtCatchScope())
+ AtCatchParent = AtCatchParent->getParent();
+ if (!AtCatchParent)
+ return StmtError(Diag(AtLoc, diag::error_rethrow_used_outside_catch));
+ } else {
+ QualType ThrowType = ThrowExpr->getType();
+ // Make sure the expression type is an ObjC pointer or "void *".
+ if (!Context.isObjCObjectPointerType(ThrowType)) {
+ const PointerType *PT = ThrowType->getAsPointerType();
+ if (!PT || !PT->getPointeeType()->isVoidType())
+ return StmtError(Diag(AtLoc, diag::error_objc_throw_expects_object)
+ << ThrowExpr->getType() << ThrowExpr->getSourceRange());
+ }
+ }
+ return Owned(new (Context) ObjCAtThrowStmt(AtLoc, ThrowExpr));
+}
+
+Action::OwningStmtResult
+Sema::ActOnObjCAtSynchronizedStmt(SourceLocation AtLoc, ExprArg SynchExpr,
+ StmtArg SynchBody) {
+ CurFunctionNeedsScopeChecking = true;
+
+ // Make sure the expression type is an ObjC pointer or "void *".
+ Expr *SyncExpr = static_cast<Expr*>(SynchExpr.get());
+ if (!Context.isObjCObjectPointerType(SyncExpr->getType())) {
+ const PointerType *PT = SyncExpr->getType()->getAsPointerType();
+ if (!PT || !PT->getPointeeType()->isVoidType())
+ return StmtError(Diag(AtLoc, diag::error_objc_synchronized_expects_object)
+ << SyncExpr->getType() << SyncExpr->getSourceRange());
+ }
+
+ return Owned(new (Context) ObjCAtSynchronizedStmt(AtLoc,
+ SynchExpr.takeAs<Stmt>(),
+ SynchBody.takeAs<Stmt>()));
+}
+
+/// ActOnCXXCatchBlock - Takes an exception declaration and a handler block
+/// and creates a proper catch handler from them.
+Action::OwningStmtResult
+Sema::ActOnCXXCatchBlock(SourceLocation CatchLoc, DeclPtrTy ExDecl,
+ StmtArg HandlerBlock) {
+ // There's nothing to test that ActOnExceptionDecl didn't already test.
+ return Owned(new (Context) CXXCatchStmt(CatchLoc,
+ cast_or_null<VarDecl>(ExDecl.getAs<Decl>()),
+ HandlerBlock.takeAs<Stmt>()));
+}
+
+/// ActOnCXXTryBlock - Takes a try compound-statement and a number of
+/// handlers and creates a try statement from them.
+Action::OwningStmtResult
+Sema::ActOnCXXTryBlock(SourceLocation TryLoc, StmtArg TryBlock,
+ MultiStmtArg RawHandlers) {
+ unsigned NumHandlers = RawHandlers.size();
+ assert(NumHandlers > 0 &&
+ "The parser shouldn't call this if there are no handlers.");
+ Stmt **Handlers = reinterpret_cast<Stmt**>(RawHandlers.get());
+
+ for(unsigned i = 0; i < NumHandlers - 1; ++i) {
+ CXXCatchStmt *Handler = llvm::cast<CXXCatchStmt>(Handlers[i]);
+ if (!Handler->getExceptionDecl())
+ return StmtError(Diag(Handler->getLocStart(), diag::err_early_catch_all));
+ }
+ // FIXME: We should detect handlers for the same type as an earlier one.
+ // This one is rather easy.
+ // FIXME: We should detect handlers that cannot catch anything because an
+ // earlier handler catches a superclass. Need to find a method that is not
+ // quadratic for this.
+ // Neither of these are explicitly forbidden, but every compiler detects them
+ // and warns.
+
+ CurFunctionNeedsScopeChecking = true;
+ RawHandlers.release();
+ return Owned(new (Context) CXXTryStmt(TryLoc,
+ static_cast<Stmt*>(TryBlock.release()),
+ Handlers, NumHandlers));
+}
OpenPOWER on IntegriCloud