summaryrefslogtreecommitdiffstats
path: root/lib/Sema/SemaExprCXX.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'lib/Sema/SemaExprCXX.cpp')
-rw-r--r--lib/Sema/SemaExprCXX.cpp1603
1 files changed, 1603 insertions, 0 deletions
diff --git a/lib/Sema/SemaExprCXX.cpp b/lib/Sema/SemaExprCXX.cpp
new file mode 100644
index 0000000..65018da
--- /dev/null
+++ b/lib/Sema/SemaExprCXX.cpp
@@ -0,0 +1,1603 @@
+//===--- SemaExprCXX.cpp - Semantic Analysis for Expressions --------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements semantic analysis for C++ expressions.
+//
+//===----------------------------------------------------------------------===//
+
+#include "SemaInherit.h"
+#include "Sema.h"
+#include "clang/AST/ExprCXX.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/Parse/DeclSpec.h"
+#include "clang/Lex/Preprocessor.h"
+#include "clang/Basic/TargetInfo.h"
+#include "llvm/ADT/STLExtras.h"
+using namespace clang;
+
+/// ActOnCXXConversionFunctionExpr - Parse a C++ conversion function
+/// name (e.g., operator void const *) as an expression. This is
+/// very similar to ActOnIdentifierExpr, except that instead of
+/// providing an identifier the parser provides the type of the
+/// conversion function.
+Sema::OwningExprResult
+Sema::ActOnCXXConversionFunctionExpr(Scope *S, SourceLocation OperatorLoc,
+ TypeTy *Ty, bool HasTrailingLParen,
+ const CXXScopeSpec &SS,
+ bool isAddressOfOperand) {
+ QualType ConvType = QualType::getFromOpaquePtr(Ty);
+ QualType ConvTypeCanon = Context.getCanonicalType(ConvType);
+ DeclarationName ConvName
+ = Context.DeclarationNames.getCXXConversionFunctionName(ConvTypeCanon);
+ return ActOnDeclarationNameExpr(S, OperatorLoc, ConvName, HasTrailingLParen,
+ &SS, isAddressOfOperand);
+}
+
+/// ActOnCXXOperatorFunctionIdExpr - Parse a C++ overloaded operator
+/// name (e.g., @c operator+ ) as an expression. This is very
+/// similar to ActOnIdentifierExpr, except that instead of providing
+/// an identifier the parser provides the kind of overloaded
+/// operator that was parsed.
+Sema::OwningExprResult
+Sema::ActOnCXXOperatorFunctionIdExpr(Scope *S, SourceLocation OperatorLoc,
+ OverloadedOperatorKind Op,
+ bool HasTrailingLParen,
+ const CXXScopeSpec &SS,
+ bool isAddressOfOperand) {
+ DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(Op);
+ return ActOnDeclarationNameExpr(S, OperatorLoc, Name, HasTrailingLParen, &SS,
+ isAddressOfOperand);
+}
+
+/// ActOnCXXTypeidOfType - Parse typeid( type-id ).
+Action::OwningExprResult
+Sema::ActOnCXXTypeid(SourceLocation OpLoc, SourceLocation LParenLoc,
+ bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
+ NamespaceDecl *StdNs = GetStdNamespace();
+ if (!StdNs)
+ return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
+
+ IdentifierInfo *TypeInfoII = &PP.getIdentifierTable().get("type_info");
+ Decl *TypeInfoDecl = LookupQualifiedName(StdNs, TypeInfoII, LookupTagName);
+ RecordDecl *TypeInfoRecordDecl = dyn_cast_or_null<RecordDecl>(TypeInfoDecl);
+ if (!TypeInfoRecordDecl)
+ return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
+
+ QualType TypeInfoType = Context.getTypeDeclType(TypeInfoRecordDecl);
+
+ return Owned(new (Context) CXXTypeidExpr(isType, TyOrExpr,
+ TypeInfoType.withConst(),
+ SourceRange(OpLoc, RParenLoc)));
+}
+
+/// ActOnCXXBoolLiteral - Parse {true,false} literals.
+Action::OwningExprResult
+Sema::ActOnCXXBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) {
+ assert((Kind == tok::kw_true || Kind == tok::kw_false) &&
+ "Unknown C++ Boolean value!");
+ return Owned(new (Context) CXXBoolLiteralExpr(Kind == tok::kw_true,
+ Context.BoolTy, OpLoc));
+}
+
+/// ActOnCXXNullPtrLiteral - Parse 'nullptr'.
+Action::OwningExprResult
+Sema::ActOnCXXNullPtrLiteral(SourceLocation Loc) {
+ return Owned(new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc));
+}
+
+/// ActOnCXXThrow - Parse throw expressions.
+Action::OwningExprResult
+Sema::ActOnCXXThrow(SourceLocation OpLoc, ExprArg E) {
+ Expr *Ex = E.takeAs<Expr>();
+ if (Ex && !Ex->isTypeDependent() && CheckCXXThrowOperand(OpLoc, Ex))
+ return ExprError();
+ return Owned(new (Context) CXXThrowExpr(Ex, Context.VoidTy, OpLoc));
+}
+
+/// CheckCXXThrowOperand - Validate the operand of a throw.
+bool Sema::CheckCXXThrowOperand(SourceLocation ThrowLoc, Expr *&E) {
+ // C++ [except.throw]p3:
+ // [...] adjusting the type from "array of T" or "function returning T"
+ // to "pointer to T" or "pointer to function returning T", [...]
+ DefaultFunctionArrayConversion(E);
+
+ // If the type of the exception would be an incomplete type or a pointer
+ // to an incomplete type other than (cv) void the program is ill-formed.
+ QualType Ty = E->getType();
+ int isPointer = 0;
+ if (const PointerType* Ptr = Ty->getAsPointerType()) {
+ Ty = Ptr->getPointeeType();
+ isPointer = 1;
+ }
+ if (!isPointer || !Ty->isVoidType()) {
+ if (RequireCompleteType(ThrowLoc, Ty,
+ isPointer ? diag::err_throw_incomplete_ptr
+ : diag::err_throw_incomplete,
+ E->getSourceRange(), SourceRange(), QualType()))
+ return true;
+ }
+
+ // FIXME: Construct a temporary here.
+ return false;
+}
+
+Action::OwningExprResult Sema::ActOnCXXThis(SourceLocation ThisLoc) {
+ /// C++ 9.3.2: In the body of a non-static member function, the keyword this
+ /// is a non-lvalue expression whose value is the address of the object for
+ /// which the function is called.
+
+ if (!isa<FunctionDecl>(CurContext))
+ return ExprError(Diag(ThisLoc, diag::err_invalid_this_use));
+
+ if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(CurContext))
+ if (MD->isInstance())
+ return Owned(new (Context) CXXThisExpr(ThisLoc,
+ MD->getThisType(Context)));
+
+ return ExprError(Diag(ThisLoc, diag::err_invalid_this_use));
+}
+
+/// ActOnCXXTypeConstructExpr - Parse construction of a specified type.
+/// Can be interpreted either as function-style casting ("int(x)")
+/// or class type construction ("ClassType(x,y,z)")
+/// or creation of a value-initialized type ("int()").
+Action::OwningExprResult
+Sema::ActOnCXXTypeConstructExpr(SourceRange TypeRange, TypeTy *TypeRep,
+ SourceLocation LParenLoc,
+ MultiExprArg exprs,
+ SourceLocation *CommaLocs,
+ SourceLocation RParenLoc) {
+ assert(TypeRep && "Missing type!");
+ QualType Ty = QualType::getFromOpaquePtr(TypeRep);
+ unsigned NumExprs = exprs.size();
+ Expr **Exprs = (Expr**)exprs.get();
+ SourceLocation TyBeginLoc = TypeRange.getBegin();
+ SourceRange FullRange = SourceRange(TyBeginLoc, RParenLoc);
+
+ if (Ty->isDependentType() ||
+ CallExpr::hasAnyTypeDependentArguments(Exprs, NumExprs)) {
+ exprs.release();
+
+ return Owned(CXXUnresolvedConstructExpr::Create(Context,
+ TypeRange.getBegin(), Ty,
+ LParenLoc,
+ Exprs, NumExprs,
+ RParenLoc));
+ }
+
+
+ // C++ [expr.type.conv]p1:
+ // If the expression list is a single expression, the type conversion
+ // expression is equivalent (in definedness, and if defined in meaning) to the
+ // corresponding cast expression.
+ //
+ if (NumExprs == 1) {
+ if (CheckCastTypes(TypeRange, Ty, Exprs[0]))
+ return ExprError();
+ exprs.release();
+ return Owned(new (Context) CXXFunctionalCastExpr(Ty.getNonReferenceType(),
+ Ty, TyBeginLoc, Exprs[0],
+ RParenLoc));
+ }
+
+ if (const RecordType *RT = Ty->getAsRecordType()) {
+ CXXRecordDecl *Record = cast<CXXRecordDecl>(RT->getDecl());
+
+ // FIXME: We should always create a CXXTemporaryObjectExpr here unless
+ // both the ctor and dtor are trivial.
+ if (NumExprs > 1 || Record->hasUserDeclaredConstructor()) {
+ CXXConstructorDecl *Constructor
+ = PerformInitializationByConstructor(Ty, Exprs, NumExprs,
+ TypeRange.getBegin(),
+ SourceRange(TypeRange.getBegin(),
+ RParenLoc),
+ DeclarationName(),
+ IK_Direct);
+
+ if (!Constructor)
+ return ExprError();
+
+ exprs.release();
+ Expr *E = new (Context) CXXTemporaryObjectExpr(Context, Constructor,
+ Ty, TyBeginLoc, Exprs,
+ NumExprs, RParenLoc);
+ return MaybeBindToTemporary(E);
+ }
+
+ // Fall through to value-initialize an object of class type that
+ // doesn't have a user-declared default constructor.
+ }
+
+ // C++ [expr.type.conv]p1:
+ // If the expression list specifies more than a single value, the type shall
+ // be a class with a suitably declared constructor.
+ //
+ if (NumExprs > 1)
+ return ExprError(Diag(CommaLocs[0],
+ diag::err_builtin_func_cast_more_than_one_arg)
+ << FullRange);
+
+ assert(NumExprs == 0 && "Expected 0 expressions");
+
+ // C++ [expr.type.conv]p2:
+ // The expression T(), where T is a simple-type-specifier for a non-array
+ // complete object type or the (possibly cv-qualified) void type, creates an
+ // rvalue of the specified type, which is value-initialized.
+ //
+ if (Ty->isArrayType())
+ return ExprError(Diag(TyBeginLoc,
+ diag::err_value_init_for_array_type) << FullRange);
+ if (!Ty->isDependentType() && !Ty->isVoidType() &&
+ RequireCompleteType(TyBeginLoc, Ty,
+ diag::err_invalid_incomplete_type_use, FullRange))
+ return ExprError();
+
+ if (RequireNonAbstractType(TyBeginLoc, Ty,
+ diag::err_allocation_of_abstract_type))
+ return ExprError();
+
+ exprs.release();
+ return Owned(new (Context) CXXZeroInitValueExpr(Ty, TyBeginLoc, RParenLoc));
+}
+
+
+/// ActOnCXXNew - Parsed a C++ 'new' expression (C++ 5.3.4), as in e.g.:
+/// @code new (memory) int[size][4] @endcode
+/// or
+/// @code ::new Foo(23, "hello") @endcode
+/// For the interpretation of this heap of arguments, consult the base version.
+Action::OwningExprResult
+Sema::ActOnCXXNew(SourceLocation StartLoc, bool UseGlobal,
+ SourceLocation PlacementLParen, MultiExprArg PlacementArgs,
+ SourceLocation PlacementRParen, bool ParenTypeId,
+ Declarator &D, SourceLocation ConstructorLParen,
+ MultiExprArg ConstructorArgs,
+ SourceLocation ConstructorRParen)
+{
+ Expr *ArraySize = 0;
+ unsigned Skip = 0;
+ // If the specified type is an array, unwrap it and save the expression.
+ if (D.getNumTypeObjects() > 0 &&
+ D.getTypeObject(0).Kind == DeclaratorChunk::Array) {
+ DeclaratorChunk &Chunk = D.getTypeObject(0);
+ if (Chunk.Arr.hasStatic)
+ return ExprError(Diag(Chunk.Loc, diag::err_static_illegal_in_new)
+ << D.getSourceRange());
+ if (!Chunk.Arr.NumElts)
+ return ExprError(Diag(Chunk.Loc, diag::err_array_new_needs_size)
+ << D.getSourceRange());
+ ArraySize = static_cast<Expr*>(Chunk.Arr.NumElts);
+ Skip = 1;
+ }
+
+ QualType AllocType = GetTypeForDeclarator(D, /*Scope=*/0, Skip);
+ if (D.isInvalidType())
+ return ExprError();
+
+ // Every dimension shall be of constant size.
+ unsigned i = 1;
+ QualType ElementType = AllocType;
+ while (const ArrayType *Array = Context.getAsArrayType(ElementType)) {
+ if (!Array->isConstantArrayType()) {
+ Diag(D.getTypeObject(i).Loc, diag::err_new_array_nonconst)
+ << static_cast<Expr*>(D.getTypeObject(i).Arr.NumElts)->getSourceRange();
+ return ExprError();
+ }
+ ElementType = Array->getElementType();
+ ++i;
+ }
+
+ return BuildCXXNew(StartLoc, UseGlobal,
+ PlacementLParen,
+ move(PlacementArgs),
+ PlacementRParen,
+ ParenTypeId,
+ AllocType,
+ D.getSourceRange().getBegin(),
+ D.getSourceRange(),
+ Owned(ArraySize),
+ ConstructorLParen,
+ move(ConstructorArgs),
+ ConstructorRParen);
+}
+
+Sema::OwningExprResult
+Sema::BuildCXXNew(SourceLocation StartLoc, bool UseGlobal,
+ SourceLocation PlacementLParen,
+ MultiExprArg PlacementArgs,
+ SourceLocation PlacementRParen,
+ bool ParenTypeId,
+ QualType AllocType,
+ SourceLocation TypeLoc,
+ SourceRange TypeRange,
+ ExprArg ArraySizeE,
+ SourceLocation ConstructorLParen,
+ MultiExprArg ConstructorArgs,
+ SourceLocation ConstructorRParen) {
+ if (CheckAllocatedType(AllocType, TypeLoc, TypeRange))
+ return ExprError();
+
+ QualType ResultType = Context.getPointerType(AllocType);
+
+ // That every array dimension except the first is constant was already
+ // checked by the type check above.
+
+ // C++ 5.3.4p6: "The expression in a direct-new-declarator shall have integral
+ // or enumeration type with a non-negative value."
+ Expr *ArraySize = (Expr *)ArraySizeE.get();
+ if (ArraySize && !ArraySize->isTypeDependent()) {
+ QualType SizeType = ArraySize->getType();
+ if (!SizeType->isIntegralType() && !SizeType->isEnumeralType())
+ return ExprError(Diag(ArraySize->getSourceRange().getBegin(),
+ diag::err_array_size_not_integral)
+ << SizeType << ArraySize->getSourceRange());
+ // Let's see if this is a constant < 0. If so, we reject it out of hand.
+ // We don't care about special rules, so we tell the machinery it's not
+ // evaluated - it gives us a result in more cases.
+ if (!ArraySize->isValueDependent()) {
+ llvm::APSInt Value;
+ if (ArraySize->isIntegerConstantExpr(Value, Context, 0, false)) {
+ if (Value < llvm::APSInt(
+ llvm::APInt::getNullValue(Value.getBitWidth()), false))
+ return ExprError(Diag(ArraySize->getSourceRange().getBegin(),
+ diag::err_typecheck_negative_array_size)
+ << ArraySize->getSourceRange());
+ }
+ }
+ }
+
+ FunctionDecl *OperatorNew = 0;
+ FunctionDecl *OperatorDelete = 0;
+ Expr **PlaceArgs = (Expr**)PlacementArgs.get();
+ unsigned NumPlaceArgs = PlacementArgs.size();
+ if (!AllocType->isDependentType() &&
+ !Expr::hasAnyTypeDependentArguments(PlaceArgs, NumPlaceArgs) &&
+ FindAllocationFunctions(StartLoc,
+ SourceRange(PlacementLParen, PlacementRParen),
+ UseGlobal, AllocType, ArraySize, PlaceArgs,
+ NumPlaceArgs, OperatorNew, OperatorDelete))
+ return ExprError();
+
+ bool Init = ConstructorLParen.isValid();
+ // --- Choosing a constructor ---
+ // C++ 5.3.4p15
+ // 1) If T is a POD and there's no initializer (ConstructorLParen is invalid)
+ // the object is not initialized. If the object, or any part of it, is
+ // const-qualified, it's an error.
+ // 2) If T is a POD and there's an empty initializer, the object is value-
+ // initialized.
+ // 3) If T is a POD and there's one initializer argument, the object is copy-
+ // constructed.
+ // 4) If T is a POD and there's more initializer arguments, it's an error.
+ // 5) If T is not a POD, the initializer arguments are used as constructor
+ // arguments.
+ //
+ // Or by the C++0x formulation:
+ // 1) If there's no initializer, the object is default-initialized according
+ // to C++0x rules.
+ // 2) Otherwise, the object is direct-initialized.
+ CXXConstructorDecl *Constructor = 0;
+ Expr **ConsArgs = (Expr**)ConstructorArgs.get();
+ const RecordType *RT;
+ unsigned NumConsArgs = ConstructorArgs.size();
+ if (AllocType->isDependentType()) {
+ // Skip all the checks.
+ }
+ else if ((RT = AllocType->getAsRecordType()) &&
+ !AllocType->isAggregateType()) {
+ Constructor = PerformInitializationByConstructor(
+ AllocType, ConsArgs, NumConsArgs,
+ TypeLoc,
+ SourceRange(TypeLoc, ConstructorRParen),
+ RT->getDecl()->getDeclName(),
+ NumConsArgs != 0 ? IK_Direct : IK_Default);
+ if (!Constructor)
+ return ExprError();
+ } else {
+ if (!Init) {
+ // FIXME: Check that no subpart is const.
+ if (AllocType.isConstQualified())
+ return ExprError(Diag(StartLoc, diag::err_new_uninitialized_const)
+ << TypeRange);
+ } else if (NumConsArgs == 0) {
+ // Object is value-initialized. Do nothing.
+ } else if (NumConsArgs == 1) {
+ // Object is direct-initialized.
+ // FIXME: What DeclarationName do we pass in here?
+ if (CheckInitializerTypes(ConsArgs[0], AllocType, StartLoc,
+ DeclarationName() /*AllocType.getAsString()*/,
+ /*DirectInit=*/true))
+ return ExprError();
+ } else {
+ return ExprError(Diag(StartLoc,
+ diag::err_builtin_direct_init_more_than_one_arg)
+ << SourceRange(ConstructorLParen, ConstructorRParen));
+ }
+ }
+
+ // FIXME: Also check that the destructor is accessible. (C++ 5.3.4p16)
+
+ PlacementArgs.release();
+ ConstructorArgs.release();
+ ArraySizeE.release();
+ return Owned(new (Context) CXXNewExpr(UseGlobal, OperatorNew, PlaceArgs,
+ NumPlaceArgs, ParenTypeId, ArraySize, Constructor, Init,
+ ConsArgs, NumConsArgs, OperatorDelete, ResultType,
+ StartLoc, Init ? ConstructorRParen : SourceLocation()));
+}
+
+/// CheckAllocatedType - Checks that a type is suitable as the allocated type
+/// in a new-expression.
+/// dimension off and stores the size expression in ArraySize.
+bool Sema::CheckAllocatedType(QualType AllocType, SourceLocation Loc,
+ SourceRange R)
+{
+ // C++ 5.3.4p1: "[The] type shall be a complete object type, but not an
+ // abstract class type or array thereof.
+ if (AllocType->isFunctionType())
+ return Diag(Loc, diag::err_bad_new_type)
+ << AllocType << 0 << R;
+ else if (AllocType->isReferenceType())
+ return Diag(Loc, diag::err_bad_new_type)
+ << AllocType << 1 << R;
+ else if (!AllocType->isDependentType() &&
+ RequireCompleteType(Loc, AllocType,
+ diag::err_new_incomplete_type,
+ R))
+ return true;
+ else if (RequireNonAbstractType(Loc, AllocType,
+ diag::err_allocation_of_abstract_type))
+ return true;
+
+ return false;
+}
+
+/// FindAllocationFunctions - Finds the overloads of operator new and delete
+/// that are appropriate for the allocation.
+bool Sema::FindAllocationFunctions(SourceLocation StartLoc, SourceRange Range,
+ bool UseGlobal, QualType AllocType,
+ bool IsArray, Expr **PlaceArgs,
+ unsigned NumPlaceArgs,
+ FunctionDecl *&OperatorNew,
+ FunctionDecl *&OperatorDelete)
+{
+ // --- Choosing an allocation function ---
+ // C++ 5.3.4p8 - 14 & 18
+ // 1) If UseGlobal is true, only look in the global scope. Else, also look
+ // in the scope of the allocated class.
+ // 2) If an array size is given, look for operator new[], else look for
+ // operator new.
+ // 3) The first argument is always size_t. Append the arguments from the
+ // placement form.
+ // FIXME: Also find the appropriate delete operator.
+
+ llvm::SmallVector<Expr*, 8> AllocArgs(1 + NumPlaceArgs);
+ // We don't care about the actual value of this argument.
+ // FIXME: Should the Sema create the expression and embed it in the syntax
+ // tree? Or should the consumer just recalculate the value?
+ AllocArgs[0] = new (Context) IntegerLiteral(llvm::APInt::getNullValue(
+ Context.Target.getPointerWidth(0)),
+ Context.getSizeType(),
+ SourceLocation());
+ std::copy(PlaceArgs, PlaceArgs + NumPlaceArgs, AllocArgs.begin() + 1);
+
+ DeclarationName NewName = Context.DeclarationNames.getCXXOperatorName(
+ IsArray ? OO_Array_New : OO_New);
+ if (AllocType->isRecordType() && !UseGlobal) {
+ CXXRecordDecl *Record
+ = cast<CXXRecordDecl>(AllocType->getAsRecordType()->getDecl());
+ // FIXME: We fail to find inherited overloads.
+ if (FindAllocationOverload(StartLoc, Range, NewName, &AllocArgs[0],
+ AllocArgs.size(), Record, /*AllowMissing=*/true,
+ OperatorNew))
+ return true;
+ }
+ if (!OperatorNew) {
+ // Didn't find a member overload. Look for a global one.
+ DeclareGlobalNewDelete();
+ DeclContext *TUDecl = Context.getTranslationUnitDecl();
+ if (FindAllocationOverload(StartLoc, Range, NewName, &AllocArgs[0],
+ AllocArgs.size(), TUDecl, /*AllowMissing=*/false,
+ OperatorNew))
+ return true;
+ }
+
+ // FindAllocationOverload can change the passed in arguments, so we need to
+ // copy them back.
+ if (NumPlaceArgs > 0)
+ std::copy(&AllocArgs[1], AllocArgs.end(), PlaceArgs);
+
+ // FIXME: This is leaked on error. But so much is currently in Sema that it's
+ // easier to clean it in one go.
+ AllocArgs[0]->Destroy(Context);
+ return false;
+}
+
+/// FindAllocationOverload - Find an fitting overload for the allocation
+/// function in the specified scope.
+bool Sema::FindAllocationOverload(SourceLocation StartLoc, SourceRange Range,
+ DeclarationName Name, Expr** Args,
+ unsigned NumArgs, DeclContext *Ctx,
+ bool AllowMissing, FunctionDecl *&Operator)
+{
+ DeclContext::lookup_iterator Alloc, AllocEnd;
+ llvm::tie(Alloc, AllocEnd) = Ctx->lookup(Context, Name);
+ if (Alloc == AllocEnd) {
+ if (AllowMissing)
+ return false;
+ return Diag(StartLoc, diag::err_ovl_no_viable_function_in_call)
+ << Name << Range;
+ }
+
+ OverloadCandidateSet Candidates;
+ for (; Alloc != AllocEnd; ++Alloc) {
+ // Even member operator new/delete are implicitly treated as
+ // static, so don't use AddMemberCandidate.
+ if (FunctionDecl *Fn = dyn_cast<FunctionDecl>(*Alloc))
+ AddOverloadCandidate(Fn, Args, NumArgs, Candidates,
+ /*SuppressUserConversions=*/false);
+ }
+
+ // Do the resolution.
+ OverloadCandidateSet::iterator Best;
+ switch(BestViableFunction(Candidates, Best)) {
+ case OR_Success: {
+ // Got one!
+ FunctionDecl *FnDecl = Best->Function;
+ // The first argument is size_t, and the first parameter must be size_t,
+ // too. This is checked on declaration and can be assumed. (It can't be
+ // asserted on, though, since invalid decls are left in there.)
+ for (unsigned i = 1; i < NumArgs; ++i) {
+ // FIXME: Passing word to diagnostic.
+ if (PerformCopyInitialization(Args[i],
+ FnDecl->getParamDecl(i)->getType(),
+ "passing"))
+ return true;
+ }
+ Operator = FnDecl;
+ return false;
+ }
+
+ case OR_No_Viable_Function:
+ Diag(StartLoc, diag::err_ovl_no_viable_function_in_call)
+ << Name << Range;
+ PrintOverloadCandidates(Candidates, /*OnlyViable=*/false);
+ return true;
+
+ case OR_Ambiguous:
+ Diag(StartLoc, diag::err_ovl_ambiguous_call)
+ << Name << Range;
+ PrintOverloadCandidates(Candidates, /*OnlyViable=*/true);
+ return true;
+
+ case OR_Deleted:
+ Diag(StartLoc, diag::err_ovl_deleted_call)
+ << Best->Function->isDeleted()
+ << Name << Range;
+ PrintOverloadCandidates(Candidates, /*OnlyViable=*/true);
+ return true;
+ }
+ assert(false && "Unreachable, bad result from BestViableFunction");
+ return true;
+}
+
+
+/// DeclareGlobalNewDelete - Declare the global forms of operator new and
+/// delete. These are:
+/// @code
+/// void* operator new(std::size_t) throw(std::bad_alloc);
+/// void* operator new[](std::size_t) throw(std::bad_alloc);
+/// void operator delete(void *) throw();
+/// void operator delete[](void *) throw();
+/// @endcode
+/// Note that the placement and nothrow forms of new are *not* implicitly
+/// declared. Their use requires including \<new\>.
+void Sema::DeclareGlobalNewDelete()
+{
+ if (GlobalNewDeleteDeclared)
+ return;
+ GlobalNewDeleteDeclared = true;
+
+ QualType VoidPtr = Context.getPointerType(Context.VoidTy);
+ QualType SizeT = Context.getSizeType();
+
+ // FIXME: Exception specifications are not added.
+ DeclareGlobalAllocationFunction(
+ Context.DeclarationNames.getCXXOperatorName(OO_New),
+ VoidPtr, SizeT);
+ DeclareGlobalAllocationFunction(
+ Context.DeclarationNames.getCXXOperatorName(OO_Array_New),
+ VoidPtr, SizeT);
+ DeclareGlobalAllocationFunction(
+ Context.DeclarationNames.getCXXOperatorName(OO_Delete),
+ Context.VoidTy, VoidPtr);
+ DeclareGlobalAllocationFunction(
+ Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete),
+ Context.VoidTy, VoidPtr);
+}
+
+/// DeclareGlobalAllocationFunction - Declares a single implicit global
+/// allocation function if it doesn't already exist.
+void Sema::DeclareGlobalAllocationFunction(DeclarationName Name,
+ QualType Return, QualType Argument)
+{
+ DeclContext *GlobalCtx = Context.getTranslationUnitDecl();
+
+ // Check if this function is already declared.
+ {
+ DeclContext::lookup_iterator Alloc, AllocEnd;
+ for (llvm::tie(Alloc, AllocEnd) = GlobalCtx->lookup(Context, Name);
+ Alloc != AllocEnd; ++Alloc) {
+ // FIXME: Do we need to check for default arguments here?
+ FunctionDecl *Func = cast<FunctionDecl>(*Alloc);
+ if (Func->getNumParams() == 1 &&
+ Context.getCanonicalType(Func->getParamDecl(0)->getType())==Argument)
+ return;
+ }
+ }
+
+ QualType FnType = Context.getFunctionType(Return, &Argument, 1, false, 0);
+ FunctionDecl *Alloc =
+ FunctionDecl::Create(Context, GlobalCtx, SourceLocation(), Name,
+ FnType, FunctionDecl::None, false, true,
+ SourceLocation());
+ Alloc->setImplicit();
+ ParmVarDecl *Param = ParmVarDecl::Create(Context, Alloc, SourceLocation(),
+ 0, Argument, VarDecl::None, 0);
+ Alloc->setParams(Context, &Param, 1);
+
+ // FIXME: Also add this declaration to the IdentifierResolver, but
+ // make sure it is at the end of the chain to coincide with the
+ // global scope.
+ ((DeclContext *)TUScope->getEntity())->addDecl(Context, Alloc);
+}
+
+/// ActOnCXXDelete - Parsed a C++ 'delete' expression (C++ 5.3.5), as in:
+/// @code ::delete ptr; @endcode
+/// or
+/// @code delete [] ptr; @endcode
+Action::OwningExprResult
+Sema::ActOnCXXDelete(SourceLocation StartLoc, bool UseGlobal,
+ bool ArrayForm, ExprArg Operand)
+{
+ // C++ 5.3.5p1: "The operand shall have a pointer type, or a class type
+ // having a single conversion function to a pointer type. The result has
+ // type void."
+ // DR599 amends "pointer type" to "pointer to object type" in both cases.
+
+ Expr *Ex = (Expr *)Operand.get();
+ if (!Ex->isTypeDependent()) {
+ QualType Type = Ex->getType();
+
+ if (Type->isRecordType()) {
+ // FIXME: Find that one conversion function and amend the type.
+ }
+
+ if (!Type->isPointerType())
+ return ExprError(Diag(StartLoc, diag::err_delete_operand)
+ << Type << Ex->getSourceRange());
+
+ QualType Pointee = Type->getAsPointerType()->getPointeeType();
+ if (Pointee->isFunctionType() || Pointee->isVoidType())
+ return ExprError(Diag(StartLoc, diag::err_delete_operand)
+ << Type << Ex->getSourceRange());
+ else if (!Pointee->isDependentType() &&
+ RequireCompleteType(StartLoc, Pointee,
+ diag::warn_delete_incomplete,
+ Ex->getSourceRange()))
+ return ExprError();
+
+ // FIXME: Look up the correct operator delete overload and pass a pointer
+ // along.
+ // FIXME: Check access and ambiguity of operator delete and destructor.
+ }
+
+ Operand.release();
+ return Owned(new (Context) CXXDeleteExpr(Context.VoidTy, UseGlobal, ArrayForm,
+ 0, Ex, StartLoc));
+}
+
+
+/// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a
+/// C++ if/switch/while/for statement.
+/// e.g: "if (int x = f()) {...}"
+Action::OwningExprResult
+Sema::ActOnCXXConditionDeclarationExpr(Scope *S, SourceLocation StartLoc,
+ Declarator &D,
+ SourceLocation EqualLoc,
+ ExprArg AssignExprVal) {
+ assert(AssignExprVal.get() && "Null assignment expression");
+
+ // C++ 6.4p2:
+ // The declarator shall not specify a function or an array.
+ // The type-specifier-seq shall not contain typedef and shall not declare a
+ // new class or enumeration.
+
+ assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
+ "Parser allowed 'typedef' as storage class of condition decl.");
+
+ QualType Ty = GetTypeForDeclarator(D, S);
+
+ if (Ty->isFunctionType()) { // The declarator shall not specify a function...
+ // We exit without creating a CXXConditionDeclExpr because a FunctionDecl
+ // would be created and CXXConditionDeclExpr wants a VarDecl.
+ return ExprError(Diag(StartLoc, diag::err_invalid_use_of_function_type)
+ << SourceRange(StartLoc, EqualLoc));
+ } else if (Ty->isArrayType()) { // ...or an array.
+ Diag(StartLoc, diag::err_invalid_use_of_array_type)
+ << SourceRange(StartLoc, EqualLoc);
+ } else if (const RecordType *RT = Ty->getAsRecordType()) {
+ RecordDecl *RD = RT->getDecl();
+ // The type-specifier-seq shall not declare a new class...
+ if (RD->isDefinition() &&
+ (RD->getIdentifier() == 0 || S->isDeclScope(DeclPtrTy::make(RD))))
+ Diag(RD->getLocation(), diag::err_type_defined_in_condition);
+ } else if (const EnumType *ET = Ty->getAsEnumType()) {
+ EnumDecl *ED = ET->getDecl();
+ // ...or enumeration.
+ if (ED->isDefinition() &&
+ (ED->getIdentifier() == 0 || S->isDeclScope(DeclPtrTy::make(ED))))
+ Diag(ED->getLocation(), diag::err_type_defined_in_condition);
+ }
+
+ DeclPtrTy Dcl = ActOnDeclarator(S, D, DeclPtrTy());
+ if (!Dcl)
+ return ExprError();
+ AddInitializerToDecl(Dcl, move(AssignExprVal), /*DirectInit=*/false);
+
+ // Mark this variable as one that is declared within a conditional.
+ // We know that the decl had to be a VarDecl because that is the only type of
+ // decl that can be assigned and the grammar requires an '='.
+ VarDecl *VD = cast<VarDecl>(Dcl.getAs<Decl>());
+ VD->setDeclaredInCondition(true);
+ return Owned(new (Context) CXXConditionDeclExpr(StartLoc, EqualLoc, VD));
+}
+
+/// CheckCXXBooleanCondition - Returns true if a conversion to bool is invalid.
+bool Sema::CheckCXXBooleanCondition(Expr *&CondExpr) {
+ // C++ 6.4p4:
+ // The value of a condition that is an initialized declaration in a statement
+ // other than a switch statement is the value of the declared variable
+ // implicitly converted to type bool. If that conversion is ill-formed, the
+ // program is ill-formed.
+ // The value of a condition that is an expression is the value of the
+ // expression, implicitly converted to bool.
+ //
+ return PerformContextuallyConvertToBool(CondExpr);
+}
+
+/// Helper function to determine whether this is the (deprecated) C++
+/// conversion from a string literal to a pointer to non-const char or
+/// non-const wchar_t (for narrow and wide string literals,
+/// respectively).
+bool
+Sema::IsStringLiteralToNonConstPointerConversion(Expr *From, QualType ToType) {
+ // Look inside the implicit cast, if it exists.
+ if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(From))
+ From = Cast->getSubExpr();
+
+ // A string literal (2.13.4) that is not a wide string literal can
+ // be converted to an rvalue of type "pointer to char"; a wide
+ // string literal can be converted to an rvalue of type "pointer
+ // to wchar_t" (C++ 4.2p2).
+ if (StringLiteral *StrLit = dyn_cast<StringLiteral>(From))
+ if (const PointerType *ToPtrType = ToType->getAsPointerType())
+ if (const BuiltinType *ToPointeeType
+ = ToPtrType->getPointeeType()->getAsBuiltinType()) {
+ // This conversion is considered only when there is an
+ // explicit appropriate pointer target type (C++ 4.2p2).
+ if (ToPtrType->getPointeeType().getCVRQualifiers() == 0 &&
+ ((StrLit->isWide() && ToPointeeType->isWideCharType()) ||
+ (!StrLit->isWide() &&
+ (ToPointeeType->getKind() == BuiltinType::Char_U ||
+ ToPointeeType->getKind() == BuiltinType::Char_S))))
+ return true;
+ }
+
+ return false;
+}
+
+/// PerformImplicitConversion - Perform an implicit conversion of the
+/// expression From to the type ToType. Returns true if there was an
+/// error, false otherwise. The expression From is replaced with the
+/// converted expression. Flavor is the kind of conversion we're
+/// performing, used in the error message. If @p AllowExplicit,
+/// explicit user-defined conversions are permitted. @p Elidable should be true
+/// when called for copies which may be elided (C++ 12.8p15). C++0x overload
+/// resolution works differently in that case.
+bool
+Sema::PerformImplicitConversion(Expr *&From, QualType ToType,
+ const char *Flavor, bool AllowExplicit,
+ bool Elidable)
+{
+ ImplicitConversionSequence ICS;
+ ICS.ConversionKind = ImplicitConversionSequence::BadConversion;
+ if (Elidable && getLangOptions().CPlusPlus0x) {
+ ICS = TryImplicitConversion(From, ToType, /*SuppressUserConversions*/false,
+ AllowExplicit, /*ForceRValue*/true);
+ }
+ if (ICS.ConversionKind == ImplicitConversionSequence::BadConversion) {
+ ICS = TryImplicitConversion(From, ToType, false, AllowExplicit);
+ }
+ return PerformImplicitConversion(From, ToType, ICS, Flavor);
+}
+
+/// PerformImplicitConversion - Perform an implicit conversion of the
+/// expression From to the type ToType using the pre-computed implicit
+/// conversion sequence ICS. Returns true if there was an error, false
+/// otherwise. The expression From is replaced with the converted
+/// expression. Flavor is the kind of conversion we're performing,
+/// used in the error message.
+bool
+Sema::PerformImplicitConversion(Expr *&From, QualType ToType,
+ const ImplicitConversionSequence &ICS,
+ const char* Flavor) {
+ switch (ICS.ConversionKind) {
+ case ImplicitConversionSequence::StandardConversion:
+ if (PerformImplicitConversion(From, ToType, ICS.Standard, Flavor))
+ return true;
+ break;
+
+ case ImplicitConversionSequence::UserDefinedConversion:
+ // FIXME: This is, of course, wrong. We'll need to actually call the
+ // constructor or conversion operator, and then cope with the standard
+ // conversions.
+ ImpCastExprToType(From, ToType.getNonReferenceType(),
+ ToType->isLValueReferenceType());
+ return false;
+
+ case ImplicitConversionSequence::EllipsisConversion:
+ assert(false && "Cannot perform an ellipsis conversion");
+ return false;
+
+ case ImplicitConversionSequence::BadConversion:
+ return true;
+ }
+
+ // Everything went well.
+ return false;
+}
+
+/// PerformImplicitConversion - Perform an implicit conversion of the
+/// expression From to the type ToType by following the standard
+/// conversion sequence SCS. Returns true if there was an error, false
+/// otherwise. The expression From is replaced with the converted
+/// expression. Flavor is the context in which we're performing this
+/// conversion, for use in error messages.
+bool
+Sema::PerformImplicitConversion(Expr *&From, QualType ToType,
+ const StandardConversionSequence& SCS,
+ const char *Flavor) {
+ // Overall FIXME: we are recomputing too many types here and doing far too
+ // much extra work. What this means is that we need to keep track of more
+ // information that is computed when we try the implicit conversion initially,
+ // so that we don't need to recompute anything here.
+ QualType FromType = From->getType();
+
+ if (SCS.CopyConstructor) {
+ // FIXME: When can ToType be a reference type?
+ assert(!ToType->isReferenceType());
+
+ // FIXME: Keep track of whether the copy constructor is elidable or not.
+ From = CXXConstructExpr::Create(Context, ToType,
+ SCS.CopyConstructor, false, &From, 1);
+ return false;
+ }
+
+ // Perform the first implicit conversion.
+ switch (SCS.First) {
+ case ICK_Identity:
+ case ICK_Lvalue_To_Rvalue:
+ // Nothing to do.
+ break;
+
+ case ICK_Array_To_Pointer:
+ FromType = Context.getArrayDecayedType(FromType);
+ ImpCastExprToType(From, FromType);
+ break;
+
+ case ICK_Function_To_Pointer:
+ if (Context.getCanonicalType(FromType) == Context.OverloadTy) {
+ FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(From, ToType, true);
+ if (!Fn)
+ return true;
+
+ if (DiagnoseUseOfDecl(Fn, From->getSourceRange().getBegin()))
+ return true;
+
+ FixOverloadedFunctionReference(From, Fn);
+ FromType = From->getType();
+ }
+ FromType = Context.getPointerType(FromType);
+ ImpCastExprToType(From, FromType);
+ break;
+
+ default:
+ assert(false && "Improper first standard conversion");
+ break;
+ }
+
+ // Perform the second implicit conversion
+ switch (SCS.Second) {
+ case ICK_Identity:
+ // Nothing to do.
+ break;
+
+ case ICK_Integral_Promotion:
+ case ICK_Floating_Promotion:
+ case ICK_Complex_Promotion:
+ case ICK_Integral_Conversion:
+ case ICK_Floating_Conversion:
+ case ICK_Complex_Conversion:
+ case ICK_Floating_Integral:
+ case ICK_Complex_Real:
+ case ICK_Compatible_Conversion:
+ // FIXME: Go deeper to get the unqualified type!
+ FromType = ToType.getUnqualifiedType();
+ ImpCastExprToType(From, FromType);
+ break;
+
+ case ICK_Pointer_Conversion:
+ if (SCS.IncompatibleObjC) {
+ // Diagnose incompatible Objective-C conversions
+ Diag(From->getSourceRange().getBegin(),
+ diag::ext_typecheck_convert_incompatible_pointer)
+ << From->getType() << ToType << Flavor
+ << From->getSourceRange();
+ }
+
+ if (CheckPointerConversion(From, ToType))
+ return true;
+ ImpCastExprToType(From, ToType);
+ break;
+
+ case ICK_Pointer_Member:
+ if (CheckMemberPointerConversion(From, ToType))
+ return true;
+ ImpCastExprToType(From, ToType);
+ break;
+
+ case ICK_Boolean_Conversion:
+ FromType = Context.BoolTy;
+ ImpCastExprToType(From, FromType);
+ break;
+
+ default:
+ assert(false && "Improper second standard conversion");
+ break;
+ }
+
+ switch (SCS.Third) {
+ case ICK_Identity:
+ // Nothing to do.
+ break;
+
+ case ICK_Qualification:
+ // FIXME: Not sure about lvalue vs rvalue here in the presence of rvalue
+ // references.
+ ImpCastExprToType(From, ToType.getNonReferenceType(),
+ ToType->isLValueReferenceType());
+ break;
+
+ default:
+ assert(false && "Improper second standard conversion");
+ break;
+ }
+
+ return false;
+}
+
+Sema::OwningExprResult Sema::ActOnUnaryTypeTrait(UnaryTypeTrait OTT,
+ SourceLocation KWLoc,
+ SourceLocation LParen,
+ TypeTy *Ty,
+ SourceLocation RParen) {
+ // FIXME: Some of the type traits have requirements. Interestingly, only the
+ // __is_base_of requirement is explicitly stated to be diagnosed. Indeed, G++
+ // accepts __is_pod(Incomplete) without complaints, and claims that the type
+ // is indeed a POD.
+
+ // There is no point in eagerly computing the value. The traits are designed
+ // to be used from type trait templates, so Ty will be a template parameter
+ // 99% of the time.
+ return Owned(new (Context) UnaryTypeTraitExpr(KWLoc, OTT,
+ QualType::getFromOpaquePtr(Ty),
+ RParen, Context.BoolTy));
+}
+
+QualType Sema::CheckPointerToMemberOperands(
+ Expr *&lex, Expr *&rex, SourceLocation Loc, bool isIndirect)
+{
+ const char *OpSpelling = isIndirect ? "->*" : ".*";
+ // C++ 5.5p2
+ // The binary operator .* [p3: ->*] binds its second operand, which shall
+ // be of type "pointer to member of T" (where T is a completely-defined
+ // class type) [...]
+ QualType RType = rex->getType();
+ const MemberPointerType *MemPtr = RType->getAsMemberPointerType();
+ if (!MemPtr) {
+ Diag(Loc, diag::err_bad_memptr_rhs)
+ << OpSpelling << RType << rex->getSourceRange();
+ return QualType();
+ }
+
+ QualType Class(MemPtr->getClass(), 0);
+
+ // C++ 5.5p2
+ // [...] to its first operand, which shall be of class T or of a class of
+ // which T is an unambiguous and accessible base class. [p3: a pointer to
+ // such a class]
+ QualType LType = lex->getType();
+ if (isIndirect) {
+ if (const PointerType *Ptr = LType->getAsPointerType())
+ LType = Ptr->getPointeeType().getNonReferenceType();
+ else {
+ Diag(Loc, diag::err_bad_memptr_lhs)
+ << OpSpelling << 1 << LType << lex->getSourceRange();
+ return QualType();
+ }
+ }
+
+ if (Context.getCanonicalType(Class).getUnqualifiedType() !=
+ Context.getCanonicalType(LType).getUnqualifiedType()) {
+ BasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/false,
+ /*DetectVirtual=*/false);
+ // FIXME: Would it be useful to print full ambiguity paths, or is that
+ // overkill?
+ if (!IsDerivedFrom(LType, Class, Paths) ||
+ Paths.isAmbiguous(Context.getCanonicalType(Class))) {
+ Diag(Loc, diag::err_bad_memptr_lhs) << OpSpelling
+ << (int)isIndirect << lex->getType() << lex->getSourceRange();
+ return QualType();
+ }
+ }
+
+ // C++ 5.5p2
+ // The result is an object or a function of the type specified by the
+ // second operand.
+ // The cv qualifiers are the union of those in the pointer and the left side,
+ // in accordance with 5.5p5 and 5.2.5.
+ // FIXME: This returns a dereferenced member function pointer as a normal
+ // function type. However, the only operation valid on such functions is
+ // calling them. There's also a GCC extension to get a function pointer to the
+ // thing, which is another complication, because this type - unlike the type
+ // that is the result of this expression - takes the class as the first
+ // argument.
+ // We probably need a "MemberFunctionClosureType" or something like that.
+ QualType Result = MemPtr->getPointeeType();
+ if (LType.isConstQualified())
+ Result.addConst();
+ if (LType.isVolatileQualified())
+ Result.addVolatile();
+ return Result;
+}
+
+/// \brief Get the target type of a standard or user-defined conversion.
+static QualType TargetType(const ImplicitConversionSequence &ICS) {
+ assert((ICS.ConversionKind ==
+ ImplicitConversionSequence::StandardConversion ||
+ ICS.ConversionKind ==
+ ImplicitConversionSequence::UserDefinedConversion) &&
+ "function only valid for standard or user-defined conversions");
+ if (ICS.ConversionKind == ImplicitConversionSequence::StandardConversion)
+ return QualType::getFromOpaquePtr(ICS.Standard.ToTypePtr);
+ return QualType::getFromOpaquePtr(ICS.UserDefined.After.ToTypePtr);
+}
+
+/// \brief Try to convert a type to another according to C++0x 5.16p3.
+///
+/// This is part of the parameter validation for the ? operator. If either
+/// value operand is a class type, the two operands are attempted to be
+/// converted to each other. This function does the conversion in one direction.
+/// It emits a diagnostic and returns true only if it finds an ambiguous
+/// conversion.
+static bool TryClassUnification(Sema &Self, Expr *From, Expr *To,
+ SourceLocation QuestionLoc,
+ ImplicitConversionSequence &ICS)
+{
+ // C++0x 5.16p3
+ // The process for determining whether an operand expression E1 of type T1
+ // can be converted to match an operand expression E2 of type T2 is defined
+ // as follows:
+ // -- If E2 is an lvalue:
+ if (To->isLvalue(Self.Context) == Expr::LV_Valid) {
+ // E1 can be converted to match E2 if E1 can be implicitly converted to
+ // type "lvalue reference to T2", subject to the constraint that in the
+ // conversion the reference must bind directly to E1.
+ if (!Self.CheckReferenceInit(From,
+ Self.Context.getLValueReferenceType(To->getType()),
+ &ICS))
+ {
+ assert((ICS.ConversionKind ==
+ ImplicitConversionSequence::StandardConversion ||
+ ICS.ConversionKind ==
+ ImplicitConversionSequence::UserDefinedConversion) &&
+ "expected a definite conversion");
+ bool DirectBinding =
+ ICS.ConversionKind == ImplicitConversionSequence::StandardConversion ?
+ ICS.Standard.DirectBinding : ICS.UserDefined.After.DirectBinding;
+ if (DirectBinding)
+ return false;
+ }
+ }
+ ICS.ConversionKind = ImplicitConversionSequence::BadConversion;
+ // -- If E2 is an rvalue, or if the conversion above cannot be done:
+ // -- if E1 and E2 have class type, and the underlying class types are
+ // the same or one is a base class of the other:
+ QualType FTy = From->getType();
+ QualType TTy = To->getType();
+ const RecordType *FRec = FTy->getAsRecordType();
+ const RecordType *TRec = TTy->getAsRecordType();
+ bool FDerivedFromT = FRec && TRec && Self.IsDerivedFrom(FTy, TTy);
+ if (FRec && TRec && (FRec == TRec ||
+ FDerivedFromT || Self.IsDerivedFrom(TTy, FTy))) {
+ // E1 can be converted to match E2 if the class of T2 is the
+ // same type as, or a base class of, the class of T1, and
+ // [cv2 > cv1].
+ if ((FRec == TRec || FDerivedFromT) && TTy.isAtLeastAsQualifiedAs(FTy)) {
+ // Could still fail if there's no copy constructor.
+ // FIXME: Is this a hard error then, or just a conversion failure? The
+ // standard doesn't say.
+ ICS = Self.TryCopyInitialization(From, TTy);
+ }
+ } else {
+ // -- Otherwise: E1 can be converted to match E2 if E1 can be
+ // implicitly converted to the type that expression E2 would have
+ // if E2 were converted to an rvalue.
+ // First find the decayed type.
+ if (TTy->isFunctionType())
+ TTy = Self.Context.getPointerType(TTy);
+ else if(TTy->isArrayType())
+ TTy = Self.Context.getArrayDecayedType(TTy);
+
+ // Now try the implicit conversion.
+ // FIXME: This doesn't detect ambiguities.
+ ICS = Self.TryImplicitConversion(From, TTy);
+ }
+ return false;
+}
+
+/// \brief Try to find a common type for two according to C++0x 5.16p5.
+///
+/// This is part of the parameter validation for the ? operator. If either
+/// value operand is a class type, overload resolution is used to find a
+/// conversion to a common type.
+static bool FindConditionalOverload(Sema &Self, Expr *&LHS, Expr *&RHS,
+ SourceLocation Loc) {
+ Expr *Args[2] = { LHS, RHS };
+ OverloadCandidateSet CandidateSet;
+ Self.AddBuiltinOperatorCandidates(OO_Conditional, Args, 2, CandidateSet);
+
+ OverloadCandidateSet::iterator Best;
+ switch (Self.BestViableFunction(CandidateSet, Best)) {
+ case Sema::OR_Success:
+ // We found a match. Perform the conversions on the arguments and move on.
+ if (Self.PerformImplicitConversion(LHS, Best->BuiltinTypes.ParamTypes[0],
+ Best->Conversions[0], "converting") ||
+ Self.PerformImplicitConversion(RHS, Best->BuiltinTypes.ParamTypes[1],
+ Best->Conversions[1], "converting"))
+ break;
+ return false;
+
+ case Sema::OR_No_Viable_Function:
+ Self.Diag(Loc, diag::err_typecheck_cond_incompatible_operands)
+ << LHS->getType() << RHS->getType()
+ << LHS->getSourceRange() << RHS->getSourceRange();
+ return true;
+
+ case Sema::OR_Ambiguous:
+ Self.Diag(Loc, diag::err_conditional_ambiguous_ovl)
+ << LHS->getType() << RHS->getType()
+ << LHS->getSourceRange() << RHS->getSourceRange();
+ // FIXME: Print the possible common types by printing the return types of
+ // the viable candidates.
+ break;
+
+ case Sema::OR_Deleted:
+ assert(false && "Conditional operator has only built-in overloads");
+ break;
+ }
+ return true;
+}
+
+/// \brief Perform an "extended" implicit conversion as returned by
+/// TryClassUnification.
+///
+/// TryClassUnification generates ICSs that include reference bindings.
+/// PerformImplicitConversion is not suitable for this; it chokes if the
+/// second part of a standard conversion is ICK_DerivedToBase. This function
+/// handles the reference binding specially.
+static bool ConvertForConditional(Sema &Self, Expr *&E,
+ const ImplicitConversionSequence &ICS)
+{
+ if (ICS.ConversionKind == ImplicitConversionSequence::StandardConversion &&
+ ICS.Standard.ReferenceBinding) {
+ assert(ICS.Standard.DirectBinding &&
+ "TryClassUnification should never generate indirect ref bindings");
+ // FIXME: CheckReferenceInit should be able to reuse the ICS instead of
+ // redoing all the work.
+ return Self.CheckReferenceInit(E, Self.Context.getLValueReferenceType(
+ TargetType(ICS)));
+ }
+ if (ICS.ConversionKind == ImplicitConversionSequence::UserDefinedConversion &&
+ ICS.UserDefined.After.ReferenceBinding) {
+ assert(ICS.UserDefined.After.DirectBinding &&
+ "TryClassUnification should never generate indirect ref bindings");
+ return Self.CheckReferenceInit(E, Self.Context.getLValueReferenceType(
+ TargetType(ICS)));
+ }
+ if (Self.PerformImplicitConversion(E, TargetType(ICS), ICS, "converting"))
+ return true;
+ return false;
+}
+
+/// \brief Check the operands of ?: under C++ semantics.
+///
+/// See C++ [expr.cond]. Note that LHS is never null, even for the GNU x ?: y
+/// extension. In this case, LHS == Cond. (But they're not aliases.)
+QualType Sema::CXXCheckConditionalOperands(Expr *&Cond, Expr *&LHS, Expr *&RHS,
+ SourceLocation QuestionLoc) {
+ // FIXME: Handle C99's complex types, vector types, block pointers and Obj-C++
+ // interface pointers.
+
+ // C++0x 5.16p1
+ // The first expression is contextually converted to bool.
+ if (!Cond->isTypeDependent()) {
+ if (CheckCXXBooleanCondition(Cond))
+ return QualType();
+ }
+
+ // Either of the arguments dependent?
+ if (LHS->isTypeDependent() || RHS->isTypeDependent())
+ return Context.DependentTy;
+
+ // C++0x 5.16p2
+ // If either the second or the third operand has type (cv) void, ...
+ QualType LTy = LHS->getType();
+ QualType RTy = RHS->getType();
+ bool LVoid = LTy->isVoidType();
+ bool RVoid = RTy->isVoidType();
+ if (LVoid || RVoid) {
+ // ... then the [l2r] conversions are performed on the second and third
+ // operands ...
+ DefaultFunctionArrayConversion(LHS);
+ DefaultFunctionArrayConversion(RHS);
+ LTy = LHS->getType();
+ RTy = RHS->getType();
+
+ // ... and one of the following shall hold:
+ // -- The second or the third operand (but not both) is a throw-
+ // expression; the result is of the type of the other and is an rvalue.
+ bool LThrow = isa<CXXThrowExpr>(LHS);
+ bool RThrow = isa<CXXThrowExpr>(RHS);
+ if (LThrow && !RThrow)
+ return RTy;
+ if (RThrow && !LThrow)
+ return LTy;
+
+ // -- Both the second and third operands have type void; the result is of
+ // type void and is an rvalue.
+ if (LVoid && RVoid)
+ return Context.VoidTy;
+
+ // Neither holds, error.
+ Diag(QuestionLoc, diag::err_conditional_void_nonvoid)
+ << (LVoid ? RTy : LTy) << (LVoid ? 0 : 1)
+ << LHS->getSourceRange() << RHS->getSourceRange();
+ return QualType();
+ }
+
+ // Neither is void.
+
+ // C++0x 5.16p3
+ // Otherwise, if the second and third operand have different types, and
+ // either has (cv) class type, and attempt is made to convert each of those
+ // operands to the other.
+ if (Context.getCanonicalType(LTy) != Context.getCanonicalType(RTy) &&
+ (LTy->isRecordType() || RTy->isRecordType())) {
+ ImplicitConversionSequence ICSLeftToRight, ICSRightToLeft;
+ // These return true if a single direction is already ambiguous.
+ if (TryClassUnification(*this, LHS, RHS, QuestionLoc, ICSLeftToRight))
+ return QualType();
+ if (TryClassUnification(*this, RHS, LHS, QuestionLoc, ICSRightToLeft))
+ return QualType();
+
+ bool HaveL2R = ICSLeftToRight.ConversionKind !=
+ ImplicitConversionSequence::BadConversion;
+ bool HaveR2L = ICSRightToLeft.ConversionKind !=
+ ImplicitConversionSequence::BadConversion;
+ // If both can be converted, [...] the program is ill-formed.
+ if (HaveL2R && HaveR2L) {
+ Diag(QuestionLoc, diag::err_conditional_ambiguous)
+ << LTy << RTy << LHS->getSourceRange() << RHS->getSourceRange();
+ return QualType();
+ }
+
+ // If exactly one conversion is possible, that conversion is applied to
+ // the chosen operand and the converted operands are used in place of the
+ // original operands for the remainder of this section.
+ if (HaveL2R) {
+ if (ConvertForConditional(*this, LHS, ICSLeftToRight))
+ return QualType();
+ LTy = LHS->getType();
+ } else if (HaveR2L) {
+ if (ConvertForConditional(*this, RHS, ICSRightToLeft))
+ return QualType();
+ RTy = RHS->getType();
+ }
+ }
+
+ // C++0x 5.16p4
+ // If the second and third operands are lvalues and have the same type,
+ // the result is of that type [...]
+ bool Same = Context.getCanonicalType(LTy) == Context.getCanonicalType(RTy);
+ if (Same && LHS->isLvalue(Context) == Expr::LV_Valid &&
+ RHS->isLvalue(Context) == Expr::LV_Valid)
+ return LTy;
+
+ // C++0x 5.16p5
+ // Otherwise, the result is an rvalue. If the second and third operands
+ // do not have the same type, and either has (cv) class type, ...
+ if (!Same && (LTy->isRecordType() || RTy->isRecordType())) {
+ // ... overload resolution is used to determine the conversions (if any)
+ // to be applied to the operands. If the overload resolution fails, the
+ // program is ill-formed.
+ if (FindConditionalOverload(*this, LHS, RHS, QuestionLoc))
+ return QualType();
+ }
+
+ // C++0x 5.16p6
+ // LValue-to-rvalue, array-to-pointer, and function-to-pointer standard
+ // conversions are performed on the second and third operands.
+ DefaultFunctionArrayConversion(LHS);
+ DefaultFunctionArrayConversion(RHS);
+ LTy = LHS->getType();
+ RTy = RHS->getType();
+
+ // After those conversions, one of the following shall hold:
+ // -- The second and third operands have the same type; the result
+ // is of that type.
+ if (Context.getCanonicalType(LTy) == Context.getCanonicalType(RTy))
+ return LTy;
+
+ // -- The second and third operands have arithmetic or enumeration type;
+ // the usual arithmetic conversions are performed to bring them to a
+ // common type, and the result is of that type.
+ if (LTy->isArithmeticType() && RTy->isArithmeticType()) {
+ UsualArithmeticConversions(LHS, RHS);
+ return LHS->getType();
+ }
+
+ // -- The second and third operands have pointer type, or one has pointer
+ // type and the other is a null pointer constant; pointer conversions
+ // and qualification conversions are performed to bring them to their
+ // composite pointer type. The result is of the composite pointer type.
+ QualType Composite = FindCompositePointerType(LHS, RHS);
+ if (!Composite.isNull())
+ return Composite;
+
+ // Fourth bullet is same for pointers-to-member. However, the possible
+ // conversions are far more limited: we have null-to-pointer, upcast of
+ // containing class, and second-level cv-ness.
+ // cv-ness is not a union, but must match one of the two operands. (Which,
+ // frankly, is stupid.)
+ const MemberPointerType *LMemPtr = LTy->getAsMemberPointerType();
+ const MemberPointerType *RMemPtr = RTy->getAsMemberPointerType();
+ if (LMemPtr && RHS->isNullPointerConstant(Context)) {
+ ImpCastExprToType(RHS, LTy);
+ return LTy;
+ }
+ if (RMemPtr && LHS->isNullPointerConstant(Context)) {
+ ImpCastExprToType(LHS, RTy);
+ return RTy;
+ }
+ if (LMemPtr && RMemPtr) {
+ QualType LPointee = LMemPtr->getPointeeType();
+ QualType RPointee = RMemPtr->getPointeeType();
+ // First, we check that the unqualified pointee type is the same. If it's
+ // not, there's no conversion that will unify the two pointers.
+ if (Context.getCanonicalType(LPointee).getUnqualifiedType() ==
+ Context.getCanonicalType(RPointee).getUnqualifiedType()) {
+ // Second, we take the greater of the two cv qualifications. If neither
+ // is greater than the other, the conversion is not possible.
+ unsigned Q = LPointee.getCVRQualifiers() | RPointee.getCVRQualifiers();
+ if (Q == LPointee.getCVRQualifiers() || Q == RPointee.getCVRQualifiers()){
+ // Third, we check if either of the container classes is derived from
+ // the other.
+ QualType LContainer(LMemPtr->getClass(), 0);
+ QualType RContainer(RMemPtr->getClass(), 0);
+ QualType MoreDerived;
+ if (Context.getCanonicalType(LContainer) ==
+ Context.getCanonicalType(RContainer))
+ MoreDerived = LContainer;
+ else if (IsDerivedFrom(LContainer, RContainer))
+ MoreDerived = LContainer;
+ else if (IsDerivedFrom(RContainer, LContainer))
+ MoreDerived = RContainer;
+
+ if (!MoreDerived.isNull()) {
+ // The type 'Q Pointee (MoreDerived::*)' is the common type.
+ // We don't use ImpCastExprToType here because this could still fail
+ // for ambiguous or inaccessible conversions.
+ QualType Common = Context.getMemberPointerType(
+ LPointee.getQualifiedType(Q), MoreDerived.getTypePtr());
+ if (PerformImplicitConversion(LHS, Common, "converting"))
+ return QualType();
+ if (PerformImplicitConversion(RHS, Common, "converting"))
+ return QualType();
+ return Common;
+ }
+ }
+ }
+ }
+
+ Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
+ << LHS->getType() << RHS->getType()
+ << LHS->getSourceRange() << RHS->getSourceRange();
+ return QualType();
+}
+
+/// \brief Find a merged pointer type and convert the two expressions to it.
+///
+/// This finds the composite pointer type for @p E1 and @p E2 according to
+/// C++0x 5.9p2. It converts both expressions to this type and returns it.
+/// It does not emit diagnostics.
+QualType Sema::FindCompositePointerType(Expr *&E1, Expr *&E2) {
+ assert(getLangOptions().CPlusPlus && "This function assumes C++");
+ QualType T1 = E1->getType(), T2 = E2->getType();
+ if(!T1->isPointerType() && !T2->isPointerType())
+ return QualType();
+
+ // C++0x 5.9p2
+ // Pointer conversions and qualification conversions are performed on
+ // pointer operands to bring them to their composite pointer type. If
+ // one operand is a null pointer constant, the composite pointer type is
+ // the type of the other operand.
+ if (E1->isNullPointerConstant(Context)) {
+ ImpCastExprToType(E1, T2);
+ return T2;
+ }
+ if (E2->isNullPointerConstant(Context)) {
+ ImpCastExprToType(E2, T1);
+ return T1;
+ }
+ // Now both have to be pointers.
+ if(!T1->isPointerType() || !T2->isPointerType())
+ return QualType();
+
+ // Otherwise, of one of the operands has type "pointer to cv1 void," then
+ // the other has type "pointer to cv2 T" and the composite pointer type is
+ // "pointer to cv12 void," where cv12 is the union of cv1 and cv2.
+ // Otherwise, the composite pointer type is a pointer type similar to the
+ // type of one of the operands, with a cv-qualification signature that is
+ // the union of the cv-qualification signatures of the operand types.
+ // In practice, the first part here is redundant; it's subsumed by the second.
+ // What we do here is, we build the two possible composite types, and try the
+ // conversions in both directions. If only one works, or if the two composite
+ // types are the same, we have succeeded.
+ llvm::SmallVector<unsigned, 4> QualifierUnion;
+ QualType Composite1 = T1, Composite2 = T2;
+ const PointerType *Ptr1, *Ptr2;
+ while ((Ptr1 = Composite1->getAsPointerType()) &&
+ (Ptr2 = Composite2->getAsPointerType())) {
+ Composite1 = Ptr1->getPointeeType();
+ Composite2 = Ptr2->getPointeeType();
+ QualifierUnion.push_back(
+ Composite1.getCVRQualifiers() | Composite2.getCVRQualifiers());
+ }
+ // Rewrap the composites as pointers with the union CVRs.
+ for (llvm::SmallVector<unsigned, 4>::iterator I = QualifierUnion.begin(),
+ E = QualifierUnion.end(); I != E; ++I) {
+ Composite1 = Context.getPointerType(Composite1.getQualifiedType(*I));
+ Composite2 = Context.getPointerType(Composite2.getQualifiedType(*I));
+ }
+
+ ImplicitConversionSequence E1ToC1 = TryImplicitConversion(E1, Composite1);
+ ImplicitConversionSequence E2ToC1 = TryImplicitConversion(E2, Composite1);
+ ImplicitConversionSequence E1ToC2, E2ToC2;
+ E1ToC2.ConversionKind = ImplicitConversionSequence::BadConversion;
+ E2ToC2.ConversionKind = ImplicitConversionSequence::BadConversion;
+ if (Context.getCanonicalType(Composite1) !=
+ Context.getCanonicalType(Composite2)) {
+ E1ToC2 = TryImplicitConversion(E1, Composite2);
+ E2ToC2 = TryImplicitConversion(E2, Composite2);
+ }
+
+ bool ToC1Viable = E1ToC1.ConversionKind !=
+ ImplicitConversionSequence::BadConversion
+ && E2ToC1.ConversionKind !=
+ ImplicitConversionSequence::BadConversion;
+ bool ToC2Viable = E1ToC2.ConversionKind !=
+ ImplicitConversionSequence::BadConversion
+ && E2ToC2.ConversionKind !=
+ ImplicitConversionSequence::BadConversion;
+ if (ToC1Viable && !ToC2Viable) {
+ if (!PerformImplicitConversion(E1, Composite1, E1ToC1, "converting") &&
+ !PerformImplicitConversion(E2, Composite1, E2ToC1, "converting"))
+ return Composite1;
+ }
+ if (ToC2Viable && !ToC1Viable) {
+ if (!PerformImplicitConversion(E1, Composite2, E1ToC2, "converting") &&
+ !PerformImplicitConversion(E2, Composite2, E2ToC2, "converting"))
+ return Composite2;
+ }
+ return QualType();
+}
+
+Sema::OwningExprResult Sema::MaybeBindToTemporary(Expr *E) {
+ const RecordType *RT = E->getType()->getAsRecordType();
+ if (!RT)
+ return Owned(E);
+
+ CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
+ if (RD->hasTrivialDestructor())
+ return Owned(E);
+
+ CXXTemporary *Temp = CXXTemporary::Create(Context,
+ RD->getDestructor(Context));
+ ExprTemporaries.push_back(Temp);
+
+ // FIXME: Add the temporary to the temporaries vector.
+ return Owned(CXXBindTemporaryExpr::Create(Context, Temp, E));
+}
+
+// FIXME: This doesn't handle casts yet.
+Expr *Sema::RemoveOutermostTemporaryBinding(Expr *E) {
+ const RecordType *RT = E->getType()->getAsRecordType();
+ if (!RT)
+ return E;
+
+ CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
+ if (RD->hasTrivialDestructor())
+ return E;
+
+ /// The expr passed in must be a CXXExprWithTemporaries.
+ CXXExprWithTemporaries *TempExpr = dyn_cast<CXXExprWithTemporaries>(E);
+ if (!TempExpr)
+ return E;
+
+ Expr *SubExpr = TempExpr->getSubExpr();
+ if (CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(SubExpr)) {
+ assert(BE->getTemporary() ==
+ TempExpr->getTemporary(TempExpr->getNumTemporaries() - 1) &&
+ "Found temporary is not last in list!");
+
+ Expr *BindSubExpr = BE->getSubExpr();
+ BE->setSubExpr(0);
+
+ if (TempExpr->getNumTemporaries() == 1) {
+ // There's just one temporary left, so we don't need the TempExpr node.
+ TempExpr->Destroy(Context);
+ return BindSubExpr;
+ } else {
+ TempExpr->removeLastTemporary();
+ TempExpr->setSubExpr(BindSubExpr);
+ BE->Destroy(Context);
+ }
+
+ return E;
+ }
+
+ // FIXME: We might need to handle other expressions here.
+ return E;
+}
+
+Sema::OwningExprResult Sema::ActOnFinishFullExpr(ExprArg Arg) {
+ Expr *FullExpr = Arg.takeAs<Expr>();
+
+ if (FullExpr && !ExprTemporaries.empty()) {
+ // Create a cleanup expr.
+ FullExpr = CXXExprWithTemporaries::Create(Context, FullExpr,
+ &ExprTemporaries[0],
+ ExprTemporaries.size());
+ ExprTemporaries.clear();
+ }
+
+ return Owned(FullExpr);
+}
OpenPOWER on IntegriCloud