diff options
Diffstat (limited to 'lib/Sema/SemaExpr.cpp')
-rw-r--r-- | lib/Sema/SemaExpr.cpp | 1065 |
1 files changed, 708 insertions, 357 deletions
diff --git a/lib/Sema/SemaExpr.cpp b/lib/Sema/SemaExpr.cpp index f653cf6..358f445 100644 --- a/lib/Sema/SemaExpr.cpp +++ b/lib/Sema/SemaExpr.cpp @@ -259,15 +259,43 @@ bool Sema::DefaultVariadicArgumentPromotion(Expr *&Expr, VariadicCallType CT) { DefaultArgumentPromotion(Expr); if (Expr->getType()->isObjCInterfaceType()) { - Diag(Expr->getLocStart(), - diag::err_cannot_pass_objc_interface_to_vararg) - << Expr->getType() << CT; - return true; + switch (ExprEvalContexts.back().Context ) { + case Unevaluated: + // The argument will never be evaluated, so don't complain. + break; + + case PotentiallyEvaluated: + Diag(Expr->getLocStart(), + diag::err_cannot_pass_objc_interface_to_vararg) + << Expr->getType() << CT; + return true; + + case PotentiallyPotentiallyEvaluated: + ExprEvalContexts.back().addDiagnostic(Expr->getLocStart(), + PDiag(diag::err_cannot_pass_objc_interface_to_vararg) + << Expr->getType() << CT); + break; + } } - if (!Expr->getType()->isPODType()) - Diag(Expr->getLocStart(), diag::warn_cannot_pass_non_pod_arg_to_vararg) - << Expr->getType() << CT; + if (!Expr->getType()->isPODType()) { + switch (ExprEvalContexts.back().Context ) { + case Unevaluated: + // The argument will never be evaluated, so don't complain. + break; + + case PotentiallyEvaluated: + Diag(Expr->getLocStart(), diag::warn_cannot_pass_non_pod_arg_to_vararg) + << Expr->getType() << CT; + break; + + case PotentiallyPotentiallyEvaluated: + ExprEvalContexts.back().addDiagnostic(Expr->getLocStart(), + PDiag(diag::warn_cannot_pass_non_pod_arg_to_vararg) + << Expr->getType() << CT); + break; + } + } return false; } @@ -415,7 +443,7 @@ static bool ShouldSnapshotBlockValueReference(BlockSemaInfo *CurBlock, /// BuildDeclRefExpr - Build a DeclRefExpr. Sema::OwningExprResult -Sema::BuildDeclRefExpr(NamedDecl *D, QualType Ty, SourceLocation Loc, +Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, SourceLocation Loc, const CXXScopeSpec *SS) { if (Context.getCanonicalType(Ty) == Context.UndeducedAutoTy) { Diag(Loc, @@ -605,6 +633,7 @@ Sema::BuildAnonymousStructUnionMemberReference(SourceLocation Loc, MemberType = Context.getQualifiedType(MemberType, NewQuals); MarkDeclarationReferenced(Loc, *FI); + PerformObjectMemberConversion(Result, *FI); // FIXME: Might this end up being a qualified name? Result = new (Context) MemberExpr(Result, BaseObjectIsPointer, *FI, OpLoc, MemberType); @@ -665,9 +694,9 @@ static void DecomposeTemplateName(LookupResult &R, const UnqualifiedId &Id) { if (TemplateDecl *TD = TName.getAsTemplateDecl()) R.addDecl(TD); - else if (OverloadedFunctionDecl *OD - = TName.getAsOverloadedFunctionDecl()) - for (OverloadIterator I(OD), E; I != E; ++I) + else if (OverloadedTemplateStorage *OT = TName.getAsOverloadedTemplate()) + for (OverloadedTemplateStorage::iterator I = OT->begin(), E = OT->end(); + I != E; ++I) R.addDecl(*I); R.resolveKind(); @@ -703,18 +732,188 @@ static bool IsDependentIdExpression(Sema &SemaRef, const CXXScopeSpec &SS) { // We can't look into record types unless they're fully-formed. if (!IsFullyFormedScope(SemaRef, cast<CXXRecordDecl>(DC))) return true; - // We can always look into fully-formed record types, but if we're - // in a dependent but not fully-formed context, we can't decide - // whether the qualifier names a base class. We shouldn't be trying - // to decide that yet anyway, but we are, so we need to delay that - // decision. - CXXRecordDecl *CurRecord; - if (CXXMethodDecl *CurMethod = dyn_cast<CXXMethodDecl>(SemaRef.CurContext)) - CurRecord = cast<CXXRecordDecl>(CurMethod->getParent()); - else - CurRecord = dyn_cast<CXXRecordDecl>(SemaRef.CurContext); + return false; +} + +/// Determines if the given class is provably not derived from all of +/// the prospective base classes. +static bool IsProvablyNotDerivedFrom(Sema &SemaRef, + CXXRecordDecl *Record, + const llvm::SmallPtrSet<CXXRecordDecl*, 4> &Bases) { + if (Bases.count(Record->getCanonicalDecl())) + return false; + + RecordDecl *RD = Record->getDefinition(SemaRef.Context); + if (!RD) return false; + Record = cast<CXXRecordDecl>(RD); + + for (CXXRecordDecl::base_class_iterator I = Record->bases_begin(), + E = Record->bases_end(); I != E; ++I) { + CanQualType BaseT = SemaRef.Context.getCanonicalType((*I).getType()); + CanQual<RecordType> BaseRT = BaseT->getAs<RecordType>(); + if (!BaseRT) return false; + + CXXRecordDecl *BaseRecord = cast<CXXRecordDecl>(BaseRT->getDecl()); + if (!IsProvablyNotDerivedFrom(SemaRef, BaseRecord, Bases)) + return false; + } + + return true; +} + +/// Determines if this a C++ class member. +static bool IsClassMember(NamedDecl *D) { + DeclContext *DC = D->getDeclContext(); + + // C++0x [class.mem]p1: + // The enumerators of an unscoped enumeration defined in + // the class are members of the class. + // FIXME: support C++0x scoped enumerations. + if (isa<EnumDecl>(DC)) + DC = DC->getParent(); + + return DC->isRecord(); +} + +/// Determines if this is an instance member of a class. +static bool IsInstanceMember(NamedDecl *D) { + assert(IsClassMember(D) && + "checking whether non-member is instance member"); + + if (isa<FieldDecl>(D)) return true; + + if (isa<CXXMethodDecl>(D)) + return !cast<CXXMethodDecl>(D)->isStatic(); + + if (isa<FunctionTemplateDecl>(D)) { + D = cast<FunctionTemplateDecl>(D)->getTemplatedDecl(); + return !cast<CXXMethodDecl>(D)->isStatic(); + } + + return false; +} + +enum IMAKind { + /// The reference is definitely not an instance member access. + IMA_Static, + + /// The reference may be an implicit instance member access. + IMA_Mixed, + + /// The reference may be to an instance member, but it is invalid if + /// so, because the context is not an instance method. + IMA_Mixed_StaticContext, + + /// The reference may be to an instance member, but it is invalid if + /// so, because the context is from an unrelated class. + IMA_Mixed_Unrelated, + + /// The reference is definitely an implicit instance member access. + IMA_Instance, + + /// The reference may be to an unresolved using declaration. + IMA_Unresolved, + + /// The reference may be to an unresolved using declaration and the + /// context is not an instance method. + IMA_Unresolved_StaticContext, + + /// The reference is to a member of an anonymous structure in a + /// non-class context. + IMA_AnonymousMember, - return CurRecord && !IsFullyFormedScope(SemaRef, CurRecord); + /// All possible referrents are instance members and the current + /// context is not an instance method. + IMA_Error_StaticContext, + + /// All possible referrents are instance members of an unrelated + /// class. + IMA_Error_Unrelated +}; + +/// The given lookup names class member(s) and is not being used for +/// an address-of-member expression. Classify the type of access +/// according to whether it's possible that this reference names an +/// instance member. This is best-effort; it is okay to +/// conservatively answer "yes", in which case some errors will simply +/// not be caught until template-instantiation. +static IMAKind ClassifyImplicitMemberAccess(Sema &SemaRef, + const LookupResult &R) { + assert(!R.empty() && IsClassMember(*R.begin())); + + bool isStaticContext = + (!isa<CXXMethodDecl>(SemaRef.CurContext) || + cast<CXXMethodDecl>(SemaRef.CurContext)->isStatic()); + + if (R.isUnresolvableResult()) + return isStaticContext ? IMA_Unresolved_StaticContext : IMA_Unresolved; + + // Collect all the declaring classes of instance members we find. + bool hasNonInstance = false; + llvm::SmallPtrSet<CXXRecordDecl*, 4> Classes; + for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) { + NamedDecl *D = (*I)->getUnderlyingDecl(); + if (IsInstanceMember(D)) { + CXXRecordDecl *R = cast<CXXRecordDecl>(D->getDeclContext()); + + // If this is a member of an anonymous record, move out to the + // innermost non-anonymous struct or union. If there isn't one, + // that's a special case. + while (R->isAnonymousStructOrUnion()) { + R = dyn_cast<CXXRecordDecl>(R->getParent()); + if (!R) return IMA_AnonymousMember; + } + Classes.insert(R->getCanonicalDecl()); + } + else + hasNonInstance = true; + } + + // If we didn't find any instance members, it can't be an implicit + // member reference. + if (Classes.empty()) + return IMA_Static; + + // If the current context is not an instance method, it can't be + // an implicit member reference. + if (isStaticContext) + return (hasNonInstance ? IMA_Mixed_StaticContext : IMA_Error_StaticContext); + + // If we can prove that the current context is unrelated to all the + // declaring classes, it can't be an implicit member reference (in + // which case it's an error if any of those members are selected). + if (IsProvablyNotDerivedFrom(SemaRef, + cast<CXXMethodDecl>(SemaRef.CurContext)->getParent(), + Classes)) + return (hasNonInstance ? IMA_Mixed_Unrelated : IMA_Error_Unrelated); + + return (hasNonInstance ? IMA_Mixed : IMA_Instance); +} + +/// Diagnose a reference to a field with no object available. +static void DiagnoseInstanceReference(Sema &SemaRef, + const CXXScopeSpec &SS, + const LookupResult &R) { + SourceLocation Loc = R.getNameLoc(); + SourceRange Range(Loc); + if (SS.isSet()) Range.setBegin(SS.getRange().getBegin()); + + if (R.getAsSingle<FieldDecl>()) { + if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(SemaRef.CurContext)) { + if (MD->isStatic()) { + // "invalid use of member 'x' in static member function" + SemaRef.Diag(Loc, diag::err_invalid_member_use_in_static_method) + << Range << R.getLookupName(); + return; + } + } + + SemaRef.Diag(Loc, diag::err_invalid_non_static_member_use) + << R.getLookupName() << Range; + return; + } + + SemaRef.Diag(Loc, diag::err_member_call_without_object) << Range; } Sema::OwningExprResult Sema::ActOnIdExpression(Scope *S, @@ -746,10 +945,8 @@ Sema::OwningExprResult Sema::ActOnIdExpression(Scope *S, // Determine whether this is a member of an unknown specialization; // we need to handle these differently. if (SS.isSet() && IsDependentIdExpression(*this, SS)) { - bool CheckForImplicitMember = !isAddressOfOperand; - return ActOnDependentIdExpression(SS, Name, NameLoc, - CheckForImplicitMember, + isAddressOfOperand, TemplateArgs); } @@ -847,23 +1044,41 @@ Sema::OwningExprResult Sema::ActOnIdExpression(Scope *S, } } - // &SomeClass::foo is an abstract member reference, regardless of - // the nature of foo, but &SomeClass::foo(...) is not. If this is - // *not* an abstract member reference, and any of the results is a - // class member (which necessarily means they're all class members), - // then we make an implicit member reference instead. - // - // This check considers all the same information as the "needs ADL" - // check, but there's no simple logical relationship other than the - // fact that they can never be simultaneously true. We could - // calculate them both in one pass if that proves important for - // performance. - if (!ADL) { + // Check whether this might be a C++ implicit instance member access. + // C++ [expr.prim.general]p6: + // Within the definition of a non-static member function, an + // identifier that names a non-static member is transformed to a + // class member access expression. + // But note that &SomeClass::foo is grammatically distinct, even + // though we don't parse it that way. + if (!R.empty() && IsClassMember(*R.begin())) { bool isAbstractMemberPointer = (isAddressOfOperand && !SS.isEmpty()); - if (!isAbstractMemberPointer && !R.empty() && - isa<CXXRecordDecl>((*R.begin())->getDeclContext())) { - return BuildImplicitMemberReferenceExpr(SS, R, TemplateArgs); + if (!isAbstractMemberPointer) { + switch (ClassifyImplicitMemberAccess(*this, R)) { + case IMA_Instance: + return BuildImplicitMemberExpr(SS, R, TemplateArgs, true); + + case IMA_AnonymousMember: + assert(R.isSingleResult()); + return BuildAnonymousStructUnionMemberReference(R.getNameLoc(), + R.getAsSingle<FieldDecl>()); + + case IMA_Mixed: + case IMA_Mixed_Unrelated: + case IMA_Unresolved: + return BuildImplicitMemberExpr(SS, R, TemplateArgs, false); + + case IMA_Static: + case IMA_Mixed_StaticContext: + case IMA_Unresolved_StaticContext: + break; + + case IMA_Error_StaticContext: + case IMA_Error_Unrelated: + DiagnoseInstanceReference(*this, SS, R); + return ExprError(); + } } } @@ -1027,7 +1242,7 @@ Sema::PerformObjectMemberConversion(Expr *&From, NamedDecl *Member) { /// \brief Build a MemberExpr AST node. static MemberExpr *BuildMemberExpr(ASTContext &C, Expr *Base, bool isArrow, - const CXXScopeSpec &SS, NamedDecl *Member, + const CXXScopeSpec &SS, ValueDecl *Member, SourceLocation Loc, QualType Ty, const TemplateArgumentListInfo *TemplateArgs = 0) { NestedNameSpecifier *Qualifier = 0; @@ -1041,35 +1256,15 @@ static MemberExpr *BuildMemberExpr(ASTContext &C, Expr *Base, bool isArrow, Member, Loc, TemplateArgs, Ty); } -/// Return true if all the decls in the given result are instance -/// methods. -static bool IsOnlyInstanceMethods(const LookupResult &R) { - for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) { - NamedDecl *D = (*I)->getUnderlyingDecl(); - - CXXMethodDecl *Method; - if (isa<FunctionTemplateDecl>(D)) - Method = cast<CXXMethodDecl>(cast<FunctionTemplateDecl>(D) - ->getTemplatedDecl()); - else if (isa<CXXMethodDecl>(D)) - Method = cast<CXXMethodDecl>(D); - else - return false; - - if (Method->isStatic()) - return false; - } - - return true; -} - -/// Builds an implicit member access expression from the given -/// unqualified lookup set, which is known to contain only class -/// members. +/// Builds an implicit member access expression. The current context +/// is known to be an instance method, and the given unqualified lookup +/// set is known to contain only instance members, at least one of which +/// is from an appropriate type. Sema::OwningExprResult -Sema::BuildImplicitMemberReferenceExpr(const CXXScopeSpec &SS, - LookupResult &R, - const TemplateArgumentListInfo *TemplateArgs) { +Sema::BuildImplicitMemberExpr(const CXXScopeSpec &SS, + LookupResult &R, + const TemplateArgumentListInfo *TemplateArgs, + bool IsKnownInstance) { assert(!R.empty() && !R.isAmbiguous()); SourceLocation Loc = R.getNameLoc(); @@ -1082,44 +1277,18 @@ Sema::BuildImplicitMemberReferenceExpr(const CXXScopeSpec &SS, if (cast<RecordDecl>(FD->getDeclContext())->isAnonymousStructOrUnion()) return BuildAnonymousStructUnionMemberReference(Loc, FD); - QualType ThisType; - if (isImplicitMemberReference(R, ThisType)) { - Expr *This = new (Context) CXXThisExpr(SourceLocation(), ThisType); - return BuildMemberReferenceExpr(ExprArg(*this, This), - /*OpLoc*/ SourceLocation(), - /*IsArrow*/ true, - SS, R, TemplateArgs); - } - - // Diagnose now if none of the available methods are static. - if (IsOnlyInstanceMethods(R)) - return ExprError(Diag(Loc, diag::err_member_call_without_object)); - - if (R.getAsSingle<FieldDecl>()) { - if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(CurContext)) { - if (MD->isStatic()) { - // "invalid use of member 'x' in static member function" - Diag(Loc, diag::err_invalid_member_use_in_static_method) - << R.getLookupName(); - return ExprError(); - } - } - - // Any other ways we could have found the field in a well-formed - // program would have been turned into implicit member expressions - // above. - Diag(Loc, diag::err_invalid_non_static_member_use) - << R.getLookupName(); - return ExprError(); + // If this is known to be an instance access, go ahead and build a + // 'this' expression now. + QualType ThisType = cast<CXXMethodDecl>(CurContext)->getThisType(Context); + Expr *This = 0; // null signifies implicit access + if (IsKnownInstance) { + This = new (Context) CXXThisExpr(SourceLocation(), ThisType); } - // We're not in an implicit member-reference context, but the lookup - // results might not require an instance. Try to build a non-member - // decl reference. - if (TemplateArgs) - return BuildTemplateIdExpr(SS, R, /* ADL */ false, *TemplateArgs); - - return BuildDeclarationNameExpr(SS, R, /*ADL*/ false); + return BuildMemberReferenceExpr(ExprArg(*this, This), ThisType, + /*OpLoc*/ SourceLocation(), + /*IsArrow*/ true, + SS, R, TemplateArgs); } bool Sema::UseArgumentDependentLookup(const CXXScopeSpec &SS, @@ -1146,7 +1315,7 @@ bool Sema::UseArgumentDependentLookup(const CXXScopeSpec &SS, // -- a declaration of a class member // Since using decls preserve this property, we check this on the // original decl. - if (D->getDeclContext()->isRecord()) + if (IsClassMember(D)) return false; // C++0x [basic.lookup.argdep]p3: @@ -1205,11 +1374,9 @@ Sema::OwningExprResult Sema::BuildDeclarationNameExpr(const CXXScopeSpec &SS, LookupResult &R, bool NeedsADL) { - assert(R.getResultKind() != LookupResult::FoundUnresolvedValue); - - // If this isn't an overloaded result and we don't need ADL, just - // build an ordinary singleton decl ref. - if (!NeedsADL && !R.isOverloadedResult()) + // If this is a single, fully-resolved result and we don't need ADL, + // just build an ordinary singleton decl ref. + if (!NeedsADL && R.isSingleResult()) return BuildDeclarationNameExpr(SS, R.getNameLoc(), R.getFoundDecl()); // We only need to check the declaration if there's exactly one @@ -1246,7 +1413,23 @@ Sema::BuildDeclarationNameExpr(const CXXScopeSpec &SS, if (CheckDeclInExpr(*this, Loc, D)) return ExprError(); - ValueDecl *VD = cast<ValueDecl>(D); + if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D)) { + // Specifically diagnose references to class templates that are missing + // a template argument list. + Diag(Loc, diag::err_template_decl_ref) + << Template << SS.getRange(); + Diag(Template->getLocation(), diag::note_template_decl_here); + return ExprError(); + } + + // Make sure that we're referring to a value. + ValueDecl *VD = dyn_cast<ValueDecl>(D); + if (!VD) { + Diag(Loc, diag::err_ref_non_value) + << D << SS.getRange(); + Diag(D->getLocation(), diag::note_previous_declaration); + return ExprError(); + } // Check whether this declaration can be used. Note that we suppress // this check when we're going to perform argument-dependent lookup @@ -1558,20 +1741,20 @@ bool Sema::CheckAlignOfExpr(Expr *E, SourceLocation OpLoc, /// \brief Build a sizeof or alignof expression given a type operand. Action::OwningExprResult -Sema::CreateSizeOfAlignOfExpr(DeclaratorInfo *DInfo, +Sema::CreateSizeOfAlignOfExpr(TypeSourceInfo *TInfo, SourceLocation OpLoc, bool isSizeOf, SourceRange R) { - if (!DInfo) + if (!TInfo) return ExprError(); - QualType T = DInfo->getType(); + QualType T = TInfo->getType(); if (!T->isDependentType() && CheckSizeOfAlignOfOperand(T, OpLoc, R, isSizeOf)) return ExprError(); // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t. - return Owned(new (Context) SizeOfAlignOfExpr(isSizeOf, DInfo, + return Owned(new (Context) SizeOfAlignOfExpr(isSizeOf, TInfo, Context.getSizeType(), OpLoc, R.getEnd())); } @@ -1613,9 +1796,9 @@ Sema::ActOnSizeOfAlignOfExpr(SourceLocation OpLoc, bool isSizeof, bool isType, if (TyOrEx == 0) return ExprError(); if (isType) { - DeclaratorInfo *DInfo; - (void) GetTypeFromParser(TyOrEx, &DInfo); - return CreateSizeOfAlignOfExpr(DInfo, OpLoc, isSizeof, ArgRange); + TypeSourceInfo *TInfo; + (void) GetTypeFromParser(TyOrEx, &TInfo); + return CreateSizeOfAlignOfExpr(TInfo, OpLoc, isSizeof, ArgRange); } Expr *ArgEx = (Expr *)TyOrEx; @@ -1952,7 +2135,8 @@ static Decl *FindGetterNameDecl(const ObjCObjectPointerType *QIdTy, } Sema::OwningExprResult -Sema::ActOnDependentMemberExpr(ExprArg Base, bool IsArrow, SourceLocation OpLoc, +Sema::ActOnDependentMemberExpr(ExprArg Base, QualType BaseType, + bool IsArrow, SourceLocation OpLoc, const CXXScopeSpec &SS, NamedDecl *FirstQualifierInScope, DeclarationName Name, SourceLocation NameLoc, @@ -1969,20 +2153,21 @@ Sema::ActOnDependentMemberExpr(ExprArg Base, bool IsArrow, SourceLocation OpLoc, // accessing the 'f' property if T is an Obj-C interface. The extra check // allows this, while still reporting an error if T is a struct pointer. if (!IsArrow) { - const PointerType *PT = BaseExpr->getType()->getAs<PointerType>(); + const PointerType *PT = BaseType->getAs<PointerType>(); if (PT && (!getLangOptions().ObjC1 || PT->getPointeeType()->isRecordType())) { + assert(BaseExpr && "cannot happen with implicit member accesses"); Diag(NameLoc, diag::err_typecheck_member_reference_struct_union) - << BaseExpr->getType() << BaseExpr->getSourceRange(); + << BaseType << BaseExpr->getSourceRange(); return ExprError(); } } - assert(BaseExpr->getType()->isDependentType()); + assert(BaseType->isDependentType()); // Get the type being accessed in BaseType. If this is an arrow, the BaseExpr // must have pointer type, and the accessed type is the pointee. - return Owned(CXXDependentScopeMemberExpr::Create(Context, BaseExpr, + return Owned(CXXDependentScopeMemberExpr::Create(Context, BaseExpr, BaseType, IsArrow, OpLoc, static_cast<NestedNameSpecifier*>(SS.getScopeRep()), SS.getRange(), @@ -1997,15 +2182,18 @@ Sema::ActOnDependentMemberExpr(ExprArg Base, bool IsArrow, SourceLocation OpLoc, static void DiagnoseQualifiedMemberReference(Sema &SemaRef, Expr *BaseExpr, QualType BaseType, - NestedNameSpecifier *Qualifier, - SourceRange QualifierRange, + const CXXScopeSpec &SS, const LookupResult &R) { - DeclContext *DC = R.getRepresentativeDecl()->getDeclContext(); + // If this is an implicit member access, use a different set of + // diagnostics. + if (!BaseExpr) + return DiagnoseInstanceReference(SemaRef, SS, R); // FIXME: this is an exceedingly lame diagnostic for some of the more // complicated cases here. + DeclContext *DC = R.getRepresentativeDecl()->getDeclContext(); SemaRef.Diag(R.getNameLoc(), diag::err_not_direct_base_or_virtual) - << QualifierRange << DC << BaseType; + << SS.getRange() << DC << BaseType; } // Check whether the declarations we found through a nested-name @@ -2022,37 +2210,78 @@ static void DiagnoseQualifiedMemberReference(Sema &SemaRef, // we actually pick through overload resolution is from a superclass. bool Sema::CheckQualifiedMemberReference(Expr *BaseExpr, QualType BaseType, - NestedNameSpecifier *Qualifier, - SourceRange QualifierRange, + const CXXScopeSpec &SS, const LookupResult &R) { - QualType BaseTypeCanon - = Context.getCanonicalType(BaseType).getUnqualifiedType(); - - bool FoundValid = false; + const RecordType *BaseRT = BaseType->getAs<RecordType>(); + if (!BaseRT) { + // We can't check this yet because the base type is still + // dependent. + assert(BaseType->isDependentType()); + return false; + } + CXXRecordDecl *BaseRecord = cast<CXXRecordDecl>(BaseRT->getDecl()); for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) { - TypeDecl* TyD = cast<TypeDecl>((*I)->getUnderlyingDecl()->getDeclContext()); - CanQualType MemberTypeCanon - = Context.getCanonicalType(Context.getTypeDeclType(TyD)); + // If this is an implicit member reference and we find a + // non-instance member, it's not an error. + if (!BaseExpr && !IsInstanceMember((*I)->getUnderlyingDecl())) + return false; - if (BaseTypeCanon == MemberTypeCanon || - IsDerivedFrom(BaseTypeCanon, MemberTypeCanon)) { - FoundValid = true; - break; - } + // Note that we use the DC of the decl, not the underlying decl. + CXXRecordDecl *RecordD = cast<CXXRecordDecl>((*I)->getDeclContext()); + while (RecordD->isAnonymousStructOrUnion()) + RecordD = cast<CXXRecordDecl>(RecordD->getParent()); + + llvm::SmallPtrSet<CXXRecordDecl*,4> MemberRecord; + MemberRecord.insert(RecordD->getCanonicalDecl()); + + if (!IsProvablyNotDerivedFrom(*this, BaseRecord, MemberRecord)) + return false; } - if (!FoundValid) { - DiagnoseQualifiedMemberReference(*this, BaseExpr, BaseType, - Qualifier, QualifierRange, R); + DiagnoseQualifiedMemberReference(*this, BaseExpr, BaseType, SS, R); + return true; +} + +static bool +LookupMemberExprInRecord(Sema &SemaRef, LookupResult &R, + SourceRange BaseRange, const RecordType *RTy, + SourceLocation OpLoc, const CXXScopeSpec &SS) { + RecordDecl *RDecl = RTy->getDecl(); + if (SemaRef.RequireCompleteType(OpLoc, QualType(RTy, 0), + PDiag(diag::err_typecheck_incomplete_tag) + << BaseRange)) return true; + + DeclContext *DC = RDecl; + if (SS.isSet()) { + // If the member name was a qualified-id, look into the + // nested-name-specifier. + DC = SemaRef.computeDeclContext(SS, false); + + if (SemaRef.RequireCompleteDeclContext(SS)) { + SemaRef.Diag(SS.getRange().getEnd(), diag::err_typecheck_incomplete_tag) + << SS.getRange() << DC; + return true; + } + + assert(DC && "Cannot handle non-computable dependent contexts in lookup"); + + if (!isa<TypeDecl>(DC)) { + SemaRef.Diag(R.getNameLoc(), diag::err_qualified_member_nonclass) + << DC << SS.getRange(); + return true; + } } + // The record definition is complete, now look up the member. + SemaRef.LookupQualifiedName(R, DC); + return false; } Sema::OwningExprResult -Sema::BuildMemberReferenceExpr(ExprArg BaseArg, +Sema::BuildMemberReferenceExpr(ExprArg BaseArg, QualType BaseType, SourceLocation OpLoc, bool IsArrow, const CXXScopeSpec &SS, NamedDecl *FirstQualifierInScope, @@ -2060,38 +2289,53 @@ Sema::BuildMemberReferenceExpr(ExprArg BaseArg, const TemplateArgumentListInfo *TemplateArgs) { Expr *Base = BaseArg.takeAs<Expr>(); - if (Base->getType()->isDependentType()) - return ActOnDependentMemberExpr(ExprArg(*this, Base), + if (BaseType->isDependentType() || + (SS.isSet() && isDependentScopeSpecifier(SS))) + return ActOnDependentMemberExpr(ExprArg(*this, Base), BaseType, IsArrow, OpLoc, SS, FirstQualifierInScope, Name, NameLoc, TemplateArgs); LookupResult R(*this, Name, NameLoc, LookupMemberName); - OwningExprResult Result = - LookupMemberExpr(R, Base, IsArrow, OpLoc, - SS, FirstQualifierInScope, - /*ObjCImpDecl*/ DeclPtrTy()); - if (Result.isInvalid()) { - Owned(Base); - return ExprError(); - } + // Implicit member accesses. + if (!Base) { + QualType RecordTy = BaseType; + if (IsArrow) RecordTy = RecordTy->getAs<PointerType>()->getPointeeType(); + if (LookupMemberExprInRecord(*this, R, SourceRange(), + RecordTy->getAs<RecordType>(), + OpLoc, SS)) + return ExprError(); + + // Explicit member accesses. + } else { + OwningExprResult Result = + LookupMemberExpr(R, Base, IsArrow, OpLoc, + SS, FirstQualifierInScope, + /*ObjCImpDecl*/ DeclPtrTy()); - if (Result.get()) - return move(Result); + if (Result.isInvalid()) { + Owned(Base); + return ExprError(); + } + + if (Result.get()) + return move(Result); + } - return BuildMemberReferenceExpr(ExprArg(*this, Base), OpLoc, - IsArrow, SS, R, TemplateArgs); + return BuildMemberReferenceExpr(ExprArg(*this, Base), BaseType, + OpLoc, IsArrow, SS, R, TemplateArgs); } Sema::OwningExprResult -Sema::BuildMemberReferenceExpr(ExprArg Base, SourceLocation OpLoc, - bool IsArrow, const CXXScopeSpec &SS, +Sema::BuildMemberReferenceExpr(ExprArg Base, QualType BaseExprType, + SourceLocation OpLoc, bool IsArrow, + const CXXScopeSpec &SS, LookupResult &R, const TemplateArgumentListInfo *TemplateArgs) { Expr *BaseExpr = Base.takeAs<Expr>(); - QualType BaseType = BaseExpr->getType(); + QualType BaseType = BaseExprType; if (IsArrow) { assert(BaseType->isPointerType()); BaseType = BaseType->getAs<PointerType>()->getPointeeType(); @@ -2112,29 +2356,30 @@ Sema::BuildMemberReferenceExpr(ExprArg Base, SourceLocation OpLoc, : BaseType->getAs<RecordType>()->getDecl()); Diag(R.getNameLoc(), diag::err_no_member) - << MemberName << DC << BaseExpr->getSourceRange(); + << MemberName << DC + << (BaseExpr ? BaseExpr->getSourceRange() : SourceRange()); return ExprError(); } - // We can't always diagnose the problem yet: it's permitted for - // lookup to find things from an invalid context as long as they - // don't get picked by overload resolution. - if (SS.isSet() && CheckQualifiedMemberReference(BaseExpr, BaseType, - Qualifier, SS.getRange(), R)) + // Diagnose qualified lookups that find only declarations from a + // non-base type. Note that it's okay for lookup to find + // declarations from a non-base type as long as those aren't the + // ones picked by overload resolution. + if (SS.isSet() && CheckQualifiedMemberReference(BaseExpr, BaseType, SS, R)) return ExprError(); // Construct an unresolved result if we in fact got an unresolved // result. if (R.isOverloadedResult() || R.isUnresolvableResult()) { - bool Dependent = R.isUnresolvableResult(); - Dependent = Dependent || - UnresolvedLookupExpr::ComputeDependence(R.begin(), R.end(), - TemplateArgs); + bool Dependent = + R.isUnresolvableResult() || + UnresolvedLookupExpr::ComputeDependence(R.begin(), R.end(), TemplateArgs); UnresolvedMemberExpr *MemExpr = UnresolvedMemberExpr::Create(Context, Dependent, R.isUnresolvableResult(), - BaseExpr, IsArrow, OpLoc, + BaseExpr, BaseExprType, + IsArrow, OpLoc, Qualifier, SS.getRange(), MemberName, MemberLoc, TemplateArgs); @@ -2155,6 +2400,15 @@ Sema::BuildMemberReferenceExpr(ExprArg Base, SourceLocation OpLoc, if (MemberDecl->isInvalidDecl()) return ExprError(); + // Handle the implicit-member-access case. + if (!BaseExpr) { + // If this is not an instance member, convert to a non-member access. + if (!IsInstanceMember(MemberDecl)) + return BuildDeclarationNameExpr(SS, R.getNameLoc(), MemberDecl); + + BaseExpr = new (Context) CXXThisExpr(SourceLocation(), BaseExprType); + } + bool ShouldCheckUse = true; if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(MemberDecl)) { // Don't diagnose the use of a virtual member function unless it's @@ -2172,7 +2426,8 @@ Sema::BuildMemberReferenceExpr(ExprArg Base, SourceLocation OpLoc, if (FieldDecl *FD = dyn_cast<FieldDecl>(MemberDecl)) { // We may have found a field within an anonymous union or struct // (C++ [class.union]). - if (cast<RecordDecl>(FD->getDeclContext())->isAnonymousStructOrUnion()) + if (cast<RecordDecl>(FD->getDeclContext())->isAnonymousStructOrUnion() && + !BaseType->getAs<RecordType>()->getDecl()->isAnonymousStructOrUnion()) return BuildAnonymousStructUnionMemberReference(MemberLoc, FD, BaseExpr, OpLoc); @@ -2246,7 +2501,7 @@ Sema::BuildMemberReferenceExpr(ExprArg Base, SourceLocation OpLoc, /// fixed for ObjC++. Sema::OwningExprResult Sema::LookupMemberExpr(LookupResult &R, Expr *&BaseExpr, - bool IsArrow, SourceLocation OpLoc, + bool &IsArrow, SourceLocation OpLoc, const CXXScopeSpec &SS, NamedDecl *FirstQualifierInScope, DeclPtrTy ObjCImpDecl) { @@ -2295,6 +2550,16 @@ Sema::LookupMemberExpr(LookupResult &R, Expr *&BaseExpr, // If this is an Objective-C pseudo-builtin and a definition is provided then // use that. if (BaseType->isObjCIdType()) { + if (IsArrow) { + // Handle the following exceptional case PObj->isa. + if (const ObjCObjectPointerType *OPT = + BaseType->getAs<ObjCObjectPointerType>()) { + if (OPT->getPointeeType()->isSpecificBuiltinType(BuiltinType::ObjCId) && + MemberName.getAsIdentifierInfo()->isStr("isa")) + return Owned(new (Context) ObjCIsaExpr(BaseExpr, true, MemberLoc, + Context.getObjCClassType())); + } + } // We have an 'id' type. Rather than fall through, we check if this // is a reference to 'isa'. if (BaseType != Context.ObjCIdRedefinitionType) { @@ -2377,41 +2642,48 @@ Sema::LookupMemberExpr(LookupResult &R, Expr *&BaseExpr, BaseType = PT->getPointeeType(); else if (BaseType->isObjCObjectPointerType()) ; - else { + else if (BaseType->isRecordType()) { + // Recover from arrow accesses to records, e.g.: + // struct MyRecord foo; + // foo->bar + // This is actually well-formed in C++ if MyRecord has an + // overloaded operator->, but that should have been dealt with + // by now. + Diag(OpLoc, diag::err_typecheck_member_reference_suggestion) + << BaseType << int(IsArrow) << BaseExpr->getSourceRange() + << CodeModificationHint::CreateReplacement(OpLoc, "."); + IsArrow = false; + } else { Diag(MemberLoc, diag::err_typecheck_member_reference_arrow) << BaseType << BaseExpr->getSourceRange(); return ExprError(); } + } else { + // Recover from dot accesses to pointers, e.g.: + // type *foo; + // foo.bar + // This is actually well-formed in two cases: + // - 'type' is an Objective C type + // - 'bar' is a pseudo-destructor name which happens to refer to + // the appropriate pointer type + if (MemberName.getNameKind() != DeclarationName::CXXDestructorName) { + const PointerType *PT = BaseType->getAs<PointerType>(); + if (PT && PT->getPointeeType()->isRecordType()) { + Diag(OpLoc, diag::err_typecheck_member_reference_suggestion) + << BaseType << int(IsArrow) << BaseExpr->getSourceRange() + << CodeModificationHint::CreateReplacement(OpLoc, "->"); + BaseType = PT->getPointeeType(); + IsArrow = true; + } + } } - + // Handle field access to simple records. This also handles access // to fields of the ObjC 'id' struct. if (const RecordType *RTy = BaseType->getAs<RecordType>()) { - RecordDecl *RDecl = RTy->getDecl(); - if (RequireCompleteType(OpLoc, BaseType, - PDiag(diag::err_typecheck_incomplete_tag) - << BaseExpr->getSourceRange())) + if (LookupMemberExprInRecord(*this, R, BaseExpr->getSourceRange(), + RTy, OpLoc, SS)) return ExprError(); - - DeclContext *DC = RDecl; - if (SS.isSet()) { - // If the member name was a qualified-id, look into the - // nested-name-specifier. - DC = computeDeclContext(SS, false); - - if (!isa<TypeDecl>(DC)) { - Diag(MemberLoc, diag::err_qualified_member_nonclass) - << DC << SS.getRange(); - return ExprError(); - } - - // FIXME: If DC is not computable, we should build a - // CXXDependentScopeMemberExpr. - assert(DC && "Cannot handle non-computable dependent contexts in lookup"); - } - - // The record definition is complete, now make sure the member is valid. - LookupQualifiedName(R, DC); return Owned((Expr*) 0); } @@ -2644,7 +2916,7 @@ Sema::LookupMemberExpr(LookupResult &R, Expr *&BaseExpr, BaseType->isSpecificBuiltinType(BuiltinType::ObjCId) && MemberName.getAsIdentifierInfo()->isStr("isa")) return Owned(new (Context) ObjCIsaExpr(BaseExpr, false, MemberLoc, - Context.getObjCIdType())); + Context.getObjCClassType())); // Handle 'field access' to vectors, such as 'V.xx'. if (BaseType->isExtVectorType()) { @@ -2723,7 +2995,7 @@ Sema::OwningExprResult Sema::ActOnMemberAccessExpr(Scope *S, ExprArg BaseArg, Expr *Base = BaseArg.takeAs<Expr>(); OwningExprResult Result(*this); if (Base->getType()->isDependentType()) { - Result = ActOnDependentMemberExpr(ExprArg(*this, Base), + Result = ActOnDependentMemberExpr(ExprArg(*this, Base), Base->getType(), IsArrow, OpLoc, SS, FirstQualifierInScope, Name, NameLoc, @@ -2756,8 +3028,8 @@ Sema::OwningExprResult Sema::ActOnMemberAccessExpr(Scope *S, ExprArg BaseArg, } } - Result = BuildMemberReferenceExpr(ExprArg(*this, Base), OpLoc, - IsArrow, SS, R, TemplateArgs); + Result = BuildMemberReferenceExpr(ExprArg(*this, Base), Base->getType(), + OpLoc, IsArrow, SS, R, TemplateArgs); } return move(Result); @@ -3054,16 +3326,16 @@ Sema::ActOnCallExpr(Scope *S, ExprArg fn, SourceLocation LParenLoc, isa<FunctionTemplateDecl>(*MemE->decls_begin())); (void)MemE; - return Owned(BuildCallToMemberFunction(S, Fn, LParenLoc, Args, NumArgs, - CommaLocs, RParenLoc)); + return BuildCallToMemberFunction(S, Fn, LParenLoc, Args, NumArgs, + CommaLocs, RParenLoc); } // Determine whether this is a call to a member function. if (MemberExpr *MemExpr = dyn_cast<MemberExpr>(NakedFn)) { NamedDecl *MemDecl = MemExpr->getMemberDecl(); if (isa<CXXMethodDecl>(MemDecl)) - return Owned(BuildCallToMemberFunction(S, Fn, LParenLoc, Args, NumArgs, - CommaLocs, RParenLoc)); + return BuildCallToMemberFunction(S, Fn, LParenLoc, Args, NumArgs, + CommaLocs, RParenLoc); } // Determine whether this is a call to a pointer-to-member function. @@ -3155,13 +3427,28 @@ Sema::ActOnCallExpr(Scope *S, ExprArg fn, SourceLocation LParenLoc, } else { assert(Fns.size() <= 1 && "overloaded without Overloaded flag"); if (Fns.empty()) - NDecl = FDecl = 0; + NDecl = 0; else { NDecl = Fns[0]; - FDecl = dyn_cast<FunctionDecl>(NDecl); } } + return BuildResolvedCallExpr(Fn, NDecl, LParenLoc, Args, NumArgs, RParenLoc); +} + +/// BuildCallExpr - Build a call to a resolved expression, i.e. an +/// expression not of \p OverloadTy. The expression should +/// unary-convert to an expression of function-pointer or +/// block-pointer type. +/// +/// \param NDecl the declaration being called, if available +Sema::OwningExprResult +Sema::BuildResolvedCallExpr(Expr *Fn, NamedDecl *NDecl, + SourceLocation LParenLoc, + Expr **Args, unsigned NumArgs, + SourceLocation RParenLoc) { + FunctionDecl *FDecl = dyn_cast_or_null<FunctionDecl>(NDecl); + // Promote the function operand. UsualUnaryConversions(Fn); @@ -3661,41 +3948,14 @@ QualType Sema::CheckConditionalOperands(Expr *&Cond, Expr *&LHS, Expr *&RHS, ImpCastExprToType(LHS, RHSTy, CastExpr::CK_Unknown); return RHSTy; } - // Handle things like Class and struct objc_class*. Here we case the result - // to the pseudo-builtin, because that will be implicitly cast back to the - // redefinition type if an attempt is made to access its fields. - if (LHSTy->isObjCClassType() && - (RHSTy.getDesugaredType() == Context.ObjCClassRedefinitionType)) { - ImpCastExprToType(RHS, LHSTy, CastExpr::CK_BitCast); - return LHSTy; - } - if (RHSTy->isObjCClassType() && - (LHSTy.getDesugaredType() == Context.ObjCClassRedefinitionType)) { - ImpCastExprToType(LHS, RHSTy, CastExpr::CK_BitCast); - return RHSTy; - } - // And the same for struct objc_object* / id - if (LHSTy->isObjCIdType() && - (RHSTy.getDesugaredType() == Context.ObjCIdRedefinitionType)) { - ImpCastExprToType(RHS, LHSTy, CastExpr::CK_BitCast); - return LHSTy; - } - if (RHSTy->isObjCIdType() && - (LHSTy.getDesugaredType() == Context.ObjCIdRedefinitionType)) { - ImpCastExprToType(LHS, RHSTy, CastExpr::CK_BitCast); - return RHSTy; - } - // And the same for struct objc_selector* / SEL - if (Context.isObjCSelType(LHSTy) && - (RHSTy.getDesugaredType() == Context.ObjCSelRedefinitionType)) { - ImpCastExprToType(RHS, LHSTy, CastExpr::CK_BitCast); - return LHSTy; - } - if (Context.isObjCSelType(RHSTy) && - (LHSTy.getDesugaredType() == Context.ObjCSelRedefinitionType)) { - ImpCastExprToType(LHS, RHSTy, CastExpr::CK_BitCast); - return RHSTy; - } + + // All objective-c pointer type analysis is done here. + QualType compositeType = FindCompositeObjCPointerType(LHS, RHS, + QuestionLoc); + if (!compositeType.isNull()) + return compositeType; + + // Handle block pointer types. if (LHSTy->isBlockPointerType() || RHSTy->isBlockPointerType()) { if (!LHSTy->isBlockPointerType() || !RHSTy->isBlockPointerType()) { @@ -3706,7 +3966,7 @@ QualType Sema::CheckConditionalOperands(Expr *&Cond, Expr *&LHS, Expr *&RHS, return destType; } Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands) - << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange(); + << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange(); return QualType(); } // We have 2 block pointer types. @@ -3717,11 +3977,11 @@ QualType Sema::CheckConditionalOperands(Expr *&Cond, Expr *&LHS, Expr *&RHS, // The block pointer types aren't identical, continue checking. QualType lhptee = LHSTy->getAs<BlockPointerType>()->getPointeeType(); QualType rhptee = RHSTy->getAs<BlockPointerType>()->getPointeeType(); - + if (!Context.typesAreCompatible(lhptee.getUnqualifiedType(), rhptee.getUnqualifiedType())) { Diag(QuestionLoc, diag::warn_typecheck_cond_incompatible_pointers) - << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange(); + << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange(); // In this situation, we assume void* type. No especially good // reason, but this is what gcc does, and we do have to pick // to get a consistent AST. @@ -3735,86 +3995,7 @@ QualType Sema::CheckConditionalOperands(Expr *&Cond, Expr *&LHS, Expr *&RHS, ImpCastExprToType(RHS, LHSTy, CastExpr::CK_BitCast); return LHSTy; } - // Check constraints for Objective-C object pointers types. - if (LHSTy->isObjCObjectPointerType() && RHSTy->isObjCObjectPointerType()) { - - if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) { - // Two identical object pointer types are always compatible. - return LHSTy; - } - const ObjCObjectPointerType *LHSOPT = LHSTy->getAs<ObjCObjectPointerType>(); - const ObjCObjectPointerType *RHSOPT = RHSTy->getAs<ObjCObjectPointerType>(); - QualType compositeType = LHSTy; - - // If both operands are interfaces and either operand can be - // assigned to the other, use that type as the composite - // type. This allows - // xxx ? (A*) a : (B*) b - // where B is a subclass of A. - // - // Additionally, as for assignment, if either type is 'id' - // allow silent coercion. Finally, if the types are - // incompatible then make sure to use 'id' as the composite - // type so the result is acceptable for sending messages to. - - // FIXME: Consider unifying with 'areComparableObjCPointerTypes'. - // It could return the composite type. - if (Context.canAssignObjCInterfaces(LHSOPT, RHSOPT)) { - compositeType = RHSOPT->isObjCBuiltinType() ? RHSTy : LHSTy; - } else if (Context.canAssignObjCInterfaces(RHSOPT, LHSOPT)) { - compositeType = LHSOPT->isObjCBuiltinType() ? LHSTy : RHSTy; - } else if ((LHSTy->isObjCQualifiedIdType() || - RHSTy->isObjCQualifiedIdType()) && - Context.ObjCQualifiedIdTypesAreCompatible(LHSTy, RHSTy, true)) { - // Need to handle "id<xx>" explicitly. - // GCC allows qualified id and any Objective-C type to devolve to - // id. Currently localizing to here until clear this should be - // part of ObjCQualifiedIdTypesAreCompatible. - compositeType = Context.getObjCIdType(); - } else if (LHSTy->isObjCIdType() || RHSTy->isObjCIdType()) { - compositeType = Context.getObjCIdType(); - } else if (!(compositeType = - Context.areCommonBaseCompatible(LHSOPT, RHSOPT)).isNull()) - ; - else { - Diag(QuestionLoc, diag::ext_typecheck_cond_incompatible_operands) - << LHSTy << RHSTy - << LHS->getSourceRange() << RHS->getSourceRange(); - QualType incompatTy = Context.getObjCIdType(); - ImpCastExprToType(LHS, incompatTy, CastExpr::CK_BitCast); - ImpCastExprToType(RHS, incompatTy, CastExpr::CK_BitCast); - return incompatTy; - } - // The object pointer types are compatible. - ImpCastExprToType(LHS, compositeType, CastExpr::CK_BitCast); - ImpCastExprToType(RHS, compositeType, CastExpr::CK_BitCast); - return compositeType; - } - // Check Objective-C object pointer types and 'void *' - if (LHSTy->isVoidPointerType() && RHSTy->isObjCObjectPointerType()) { - QualType lhptee = LHSTy->getAs<PointerType>()->getPointeeType(); - QualType rhptee = RHSTy->getAs<ObjCObjectPointerType>()->getPointeeType(); - QualType destPointee - = Context.getQualifiedType(lhptee, rhptee.getQualifiers()); - QualType destType = Context.getPointerType(destPointee); - // Add qualifiers if necessary. - ImpCastExprToType(LHS, destType, CastExpr::CK_NoOp); - // Promote to void*. - ImpCastExprToType(RHS, destType, CastExpr::CK_BitCast); - return destType; - } - if (LHSTy->isObjCObjectPointerType() && RHSTy->isVoidPointerType()) { - QualType lhptee = LHSTy->getAs<ObjCObjectPointerType>()->getPointeeType(); - QualType rhptee = RHSTy->getAs<PointerType>()->getPointeeType(); - QualType destPointee - = Context.getQualifiedType(rhptee, lhptee.getQualifiers()); - QualType destType = Context.getPointerType(destPointee); - // Add qualifiers if necessary. - ImpCastExprToType(RHS, destType, CastExpr::CK_NoOp); - // Promote to void*. - ImpCastExprToType(LHS, destType, CastExpr::CK_BitCast); - return destType; - } + // Check constraints for C object pointers types (C99 6.5.15p3,6). if (LHSTy->isPointerType() && RHSTy->isPointerType()) { // get the "pointed to" types @@ -3892,6 +4073,131 @@ QualType Sema::CheckConditionalOperands(Expr *&Cond, Expr *&LHS, Expr *&RHS, return QualType(); } +/// FindCompositeObjCPointerType - Helper method to find composite type of +/// two objective-c pointer types of the two input expressions. +QualType Sema::FindCompositeObjCPointerType(Expr *&LHS, Expr *&RHS, + SourceLocation QuestionLoc) { + QualType LHSTy = LHS->getType(); + QualType RHSTy = RHS->getType(); + + // Handle things like Class and struct objc_class*. Here we case the result + // to the pseudo-builtin, because that will be implicitly cast back to the + // redefinition type if an attempt is made to access its fields. + if (LHSTy->isObjCClassType() && + (RHSTy.getDesugaredType() == Context.ObjCClassRedefinitionType)) { + ImpCastExprToType(RHS, LHSTy, CastExpr::CK_BitCast); + return LHSTy; + } + if (RHSTy->isObjCClassType() && + (LHSTy.getDesugaredType() == Context.ObjCClassRedefinitionType)) { + ImpCastExprToType(LHS, RHSTy, CastExpr::CK_BitCast); + return RHSTy; + } + // And the same for struct objc_object* / id + if (LHSTy->isObjCIdType() && + (RHSTy.getDesugaredType() == Context.ObjCIdRedefinitionType)) { + ImpCastExprToType(RHS, LHSTy, CastExpr::CK_BitCast); + return LHSTy; + } + if (RHSTy->isObjCIdType() && + (LHSTy.getDesugaredType() == Context.ObjCIdRedefinitionType)) { + ImpCastExprToType(LHS, RHSTy, CastExpr::CK_BitCast); + return RHSTy; + } + // And the same for struct objc_selector* / SEL + if (Context.isObjCSelType(LHSTy) && + (RHSTy.getDesugaredType() == Context.ObjCSelRedefinitionType)) { + ImpCastExprToType(RHS, LHSTy, CastExpr::CK_BitCast); + return LHSTy; + } + if (Context.isObjCSelType(RHSTy) && + (LHSTy.getDesugaredType() == Context.ObjCSelRedefinitionType)) { + ImpCastExprToType(LHS, RHSTy, CastExpr::CK_BitCast); + return RHSTy; + } + // Check constraints for Objective-C object pointers types. + if (LHSTy->isObjCObjectPointerType() && RHSTy->isObjCObjectPointerType()) { + + if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) { + // Two identical object pointer types are always compatible. + return LHSTy; + } + const ObjCObjectPointerType *LHSOPT = LHSTy->getAs<ObjCObjectPointerType>(); + const ObjCObjectPointerType *RHSOPT = RHSTy->getAs<ObjCObjectPointerType>(); + QualType compositeType = LHSTy; + + // If both operands are interfaces and either operand can be + // assigned to the other, use that type as the composite + // type. This allows + // xxx ? (A*) a : (B*) b + // where B is a subclass of A. + // + // Additionally, as for assignment, if either type is 'id' + // allow silent coercion. Finally, if the types are + // incompatible then make sure to use 'id' as the composite + // type so the result is acceptable for sending messages to. + + // FIXME: Consider unifying with 'areComparableObjCPointerTypes'. + // It could return the composite type. + if (Context.canAssignObjCInterfaces(LHSOPT, RHSOPT)) { + compositeType = RHSOPT->isObjCBuiltinType() ? RHSTy : LHSTy; + } else if (Context.canAssignObjCInterfaces(RHSOPT, LHSOPT)) { + compositeType = LHSOPT->isObjCBuiltinType() ? LHSTy : RHSTy; + } else if ((LHSTy->isObjCQualifiedIdType() || + RHSTy->isObjCQualifiedIdType()) && + Context.ObjCQualifiedIdTypesAreCompatible(LHSTy, RHSTy, true)) { + // Need to handle "id<xx>" explicitly. + // GCC allows qualified id and any Objective-C type to devolve to + // id. Currently localizing to here until clear this should be + // part of ObjCQualifiedIdTypesAreCompatible. + compositeType = Context.getObjCIdType(); + } else if (LHSTy->isObjCIdType() || RHSTy->isObjCIdType()) { + compositeType = Context.getObjCIdType(); + } else if (!(compositeType = + Context.areCommonBaseCompatible(LHSOPT, RHSOPT)).isNull()) + ; + else { + Diag(QuestionLoc, diag::ext_typecheck_cond_incompatible_operands) + << LHSTy << RHSTy + << LHS->getSourceRange() << RHS->getSourceRange(); + QualType incompatTy = Context.getObjCIdType(); + ImpCastExprToType(LHS, incompatTy, CastExpr::CK_BitCast); + ImpCastExprToType(RHS, incompatTy, CastExpr::CK_BitCast); + return incompatTy; + } + // The object pointer types are compatible. + ImpCastExprToType(LHS, compositeType, CastExpr::CK_BitCast); + ImpCastExprToType(RHS, compositeType, CastExpr::CK_BitCast); + return compositeType; + } + // Check Objective-C object pointer types and 'void *' + if (LHSTy->isVoidPointerType() && RHSTy->isObjCObjectPointerType()) { + QualType lhptee = LHSTy->getAs<PointerType>()->getPointeeType(); + QualType rhptee = RHSTy->getAs<ObjCObjectPointerType>()->getPointeeType(); + QualType destPointee + = Context.getQualifiedType(lhptee, rhptee.getQualifiers()); + QualType destType = Context.getPointerType(destPointee); + // Add qualifiers if necessary. + ImpCastExprToType(LHS, destType, CastExpr::CK_NoOp); + // Promote to void*. + ImpCastExprToType(RHS, destType, CastExpr::CK_BitCast); + return destType; + } + if (LHSTy->isObjCObjectPointerType() && RHSTy->isVoidPointerType()) { + QualType lhptee = LHSTy->getAs<ObjCObjectPointerType>()->getPointeeType(); + QualType rhptee = RHSTy->getAs<PointerType>()->getPointeeType(); + QualType destPointee + = Context.getQualifiedType(rhptee, lhptee.getQualifiers()); + QualType destType = Context.getPointerType(destPointee); + // Add qualifiers if necessary. + ImpCastExprToType(RHS, destType, CastExpr::CK_NoOp); + // Promote to void*. + ImpCastExprToType(LHS, destType, CastExpr::CK_BitCast); + return destType; + } + return QualType(); +} + /// ActOnConditionalOp - Parse a ?: operation. Note that 'LHS' may be null /// in the case of a the GNU conditional expr extension. Action::OwningExprResult Sema::ActOnConditionalOp(SourceLocation QuestionLoc, @@ -4051,6 +4357,29 @@ Sema::CheckBlockPointerTypesForAssignment(QualType lhsType, return ConvTy; } +/// CheckObjCPointerTypesForAssignment - Compares two objective-c pointer types +/// for assignment compatibility. +Sema::AssignConvertType +Sema::CheckObjCPointerTypesForAssignment(QualType lhsType, QualType rhsType) { + if (lhsType->isObjCBuiltinType() || rhsType->isObjCBuiltinType()) + return Compatible; + QualType lhptee = + lhsType->getAs<ObjCObjectPointerType>()->getPointeeType(); + QualType rhptee = + rhsType->getAs<ObjCObjectPointerType>()->getPointeeType(); + // make sure we operate on the canonical type + lhptee = Context.getCanonicalType(lhptee); + rhptee = Context.getCanonicalType(rhptee); + if (!lhptee.isAtLeastAsQualifiedAs(rhptee)) + return CompatiblePointerDiscardsQualifiers; + + if (Context.typesAreCompatible(lhsType, rhsType)) + return Compatible; + if (lhsType->isObjCQualifiedIdType() || rhsType->isObjCQualifiedIdType()) + return IncompatibleObjCQualifiedId; + return IncompatiblePointer; +} + /// CheckAssignmentConstraints (C99 6.5.16) - This routine currently /// has code to accommodate several GCC extensions when type checking /// pointers. Here are some objectionable examples that GCC considers warnings: @@ -4173,13 +4502,7 @@ Sema::CheckAssignmentConstraints(QualType lhsType, QualType rhsType) { return IncompatiblePointer; } if (rhsType->isObjCObjectPointerType()) { - if (lhsType->isObjCBuiltinType() || rhsType->isObjCBuiltinType()) - return Compatible; - if (Context.typesAreCompatible(lhsType, rhsType)) - return Compatible; - if (lhsType->isObjCQualifiedIdType() || rhsType->isObjCQualifiedIdType()) - return IncompatibleObjCQualifiedId; - return IncompatiblePointer; + return CheckObjCPointerTypesForAssignment(lhsType, rhsType); } if (const PointerType *RHSPT = rhsType->getAs<PointerType>()) { if (RHSPT->getPointeeType()->isVoidType()) @@ -4794,6 +5117,7 @@ QualType Sema::CheckCompareOperands(Expr *&lex, Expr *&rex, SourceLocation Loc, unsigned OpaqueOpc, bool isRelational) { BinaryOperator::Opcode Opc = (BinaryOperator::Opcode)OpaqueOpc; + // Handle vector comparisons separately. if (lex->getType()->isVectorType() || rex->getType()->isVectorType()) return CheckVectorCompareOperands(lex, rex, Loc, isRelational); @@ -4871,17 +5195,15 @@ QualType Sema::CheckCompareOperands(Expr *&lex, Expr *&rex, SourceLocation Loc, } // The result of comparisons is 'bool' in C++, 'int' in C. - QualType ResultTy = getLangOptions().CPlusPlus? Context.BoolTy :Context.IntTy; + QualType ResultTy = getLangOptions().CPlusPlus ? Context.BoolTy:Context.IntTy; if (isRelational) { if (lType->isRealType() && rType->isRealType()) return ResultTy; } else { // Check for comparisons of floating point operands using != and ==. - if (lType->isFloatingType()) { - assert(rType->isFloatingType()); + if (lType->isFloatingType() && rType->isFloatingType()) CheckFloatComparison(Loc,lex,rex); - } if (lType->isArithmeticType() && rType->isArithmeticType()) return ResultTy; @@ -6157,18 +6479,33 @@ Sema::OwningExprResult Sema::ActOnBuiltinOffsetOf(Scope *S, RecordDecl *RD = RC->getDecl(); if (CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) { if (!CRD->isPOD() && !DidWarnAboutNonPOD) { - ExprError(Diag(BuiltinLoc, diag::warn_offsetof_non_pod_type) - << SourceRange(CompPtr[0].LocStart, OC.LocEnd) - << Res->getType()); - DidWarnAboutNonPOD = true; + switch (ExprEvalContexts.back().Context ) { + case Unevaluated: + // The argument will never be evaluated, so don't complain. + break; + + case PotentiallyEvaluated: + ExprError(Diag(BuiltinLoc, diag::warn_offsetof_non_pod_type) + << SourceRange(CompPtr[0].LocStart, OC.LocEnd) + << Res->getType()); + DidWarnAboutNonPOD = true; + break; + + case PotentiallyPotentiallyEvaluated: + ExprEvalContexts.back().addDiagnostic(BuiltinLoc, + PDiag(diag::warn_offsetof_non_pod_type) + << SourceRange(CompPtr[0].LocStart, OC.LocEnd) + << Res->getType()); + DidWarnAboutNonPOD = true; + break; + } } } LookupResult R(*this, OC.U.IdentInfo, OC.LocStart, LookupMemberName); LookupQualifiedName(R, RD); - FieldDecl *MemberDecl - = dyn_cast_or_null<FieldDecl>(R.getAsSingleDecl(Context)); + FieldDecl *MemberDecl = R.getAsSingle<FieldDecl>(); // FIXME: Leaks Res if (!MemberDecl) return ExprError(Diag(BuiltinLoc, diag::err_no_member) @@ -6180,6 +6517,7 @@ Sema::OwningExprResult Sema::ActOnBuiltinOffsetOf(Scope *S, Res = BuildAnonymousStructUnionMemberReference( OC.LocEnd, MemberDecl, Res, OC.LocEnd).takeAs<Expr>(); } else { + PerformObjectMemberConversion(Res, MemberDecl); // MemberDecl->getType() doesn't get the right qualifiers, but it // doesn't matter here. Res = new (Context) MemberExpr(Res, false, MemberDecl, OC.LocEnd, @@ -6270,6 +6608,7 @@ void Sema::ActOnBlockStart(SourceLocation CaretLoc, Scope *BlockScope) { CurFunctionNeedsScopeChecking = false; BSI->TheDecl = BlockDecl::Create(Context, CurContext, CaretLoc); + CurContext->addDecl(BSI->TheDecl); PushDeclContext(BlockScope, BSI->TheDecl); } @@ -6625,16 +6964,26 @@ Sema::PopExpressionEvaluationContext() { ExpressionEvaluationContextRecord Rec = ExprEvalContexts.back(); ExprEvalContexts.pop_back(); - if (Rec.Context == PotentiallyPotentiallyEvaluated && - Rec.PotentiallyReferenced) { - // Mark any remaining declarations in the current position of the stack - // as "referenced". If they were not meant to be referenced, semantic - // analysis would have eliminated them (e.g., in ActOnCXXTypeId). - for (PotentiallyReferencedDecls::iterator - I = Rec.PotentiallyReferenced->begin(), - IEnd = Rec.PotentiallyReferenced->end(); - I != IEnd; ++I) - MarkDeclarationReferenced(I->first, I->second); + if (Rec.Context == PotentiallyPotentiallyEvaluated) { + if (Rec.PotentiallyReferenced) { + // Mark any remaining declarations in the current position of the stack + // as "referenced". If they were not meant to be referenced, semantic + // analysis would have eliminated them (e.g., in ActOnCXXTypeId). + for (PotentiallyReferencedDecls::iterator + I = Rec.PotentiallyReferenced->begin(), + IEnd = Rec.PotentiallyReferenced->end(); + I != IEnd; ++I) + MarkDeclarationReferenced(I->first, I->second); + } + + if (Rec.PotentiallyDiagnosed) { + // Emit any pending diagnostics. + for (PotentiallyEmittedDiagnostics::iterator + I = Rec.PotentiallyDiagnosed->begin(), + IEnd = Rec.PotentiallyDiagnosed->end(); + I != IEnd; ++I) + Diag(I->first, I->second); + } } // When are coming out of an unevaluated context, clear out any @@ -6708,6 +7057,8 @@ void Sema::MarkDeclarationReferenced(SourceLocation Loc, Decl *D) { if (!Constructor->isUsed()) DefineImplicitCopyConstructor(Loc, Constructor, TypeQuals); } + + MaybeMarkVirtualMembersReferenced(Loc, Constructor); } else if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(D)) { if (Destructor->isImplicit() && !Destructor->isUsed()) DefineImplicitDestructor(Loc, Destructor); |