summaryrefslogtreecommitdiffstats
path: root/lib/Sema/SemaDecl.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'lib/Sema/SemaDecl.cpp')
-rw-r--r--lib/Sema/SemaDecl.cpp4415
1 files changed, 4415 insertions, 0 deletions
diff --git a/lib/Sema/SemaDecl.cpp b/lib/Sema/SemaDecl.cpp
new file mode 100644
index 0000000..959154c
--- /dev/null
+++ b/lib/Sema/SemaDecl.cpp
@@ -0,0 +1,4415 @@
+//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements semantic analysis for declarations.
+//
+//===----------------------------------------------------------------------===//
+
+#include "Sema.h"
+#include "SemaInherit.h"
+#include "clang/AST/APValue.h"
+#include "clang/AST/ASTConsumer.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/DeclObjC.h"
+#include "clang/AST/DeclTemplate.h"
+#include "clang/AST/ExprCXX.h"
+#include "clang/AST/StmtCXX.h"
+#include "clang/Parse/DeclSpec.h"
+#include "clang/Basic/TargetInfo.h"
+#include "clang/Basic/SourceManager.h"
+// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
+#include "clang/Lex/Preprocessor.h"
+#include "clang/Lex/HeaderSearch.h"
+#include "llvm/ADT/SmallSet.h"
+#include "llvm/ADT/STLExtras.h"
+#include <algorithm>
+#include <functional>
+using namespace clang;
+
+/// getDeclName - Return a pretty name for the specified decl if possible, or
+/// an empty string if not. This is used for pretty crash reporting.
+std::string Sema::getDeclName(DeclPtrTy d) {
+ Decl *D = d.getAs<Decl>();
+ if (NamedDecl *DN = dyn_cast_or_null<NamedDecl>(D))
+ return DN->getQualifiedNameAsString();
+ return "";
+}
+
+Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(DeclPtrTy Ptr) {
+ return DeclGroupPtrTy::make(DeclGroupRef(Ptr.getAs<Decl>()));
+}
+
+/// \brief If the identifier refers to a type name within this scope,
+/// return the declaration of that type.
+///
+/// This routine performs ordinary name lookup of the identifier II
+/// within the given scope, with optional C++ scope specifier SS, to
+/// determine whether the name refers to a type. If so, returns an
+/// opaque pointer (actually a QualType) corresponding to that
+/// type. Otherwise, returns NULL.
+///
+/// If name lookup results in an ambiguity, this routine will complain
+/// and then return NULL.
+Sema::TypeTy *Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
+ Scope *S, const CXXScopeSpec *SS) {
+ // C++ [temp.res]p3:
+ // A qualified-id that refers to a type and in which the
+ // nested-name-specifier depends on a template-parameter (14.6.2)
+ // shall be prefixed by the keyword typename to indicate that the
+ // qualified-id denotes a type, forming an
+ // elaborated-type-specifier (7.1.5.3).
+ //
+ // We therefore do not perform any name lookup if the result would
+ // refer to a member of an unknown specialization.
+ if (SS && isUnknownSpecialization(*SS))
+ return 0;
+
+ LookupResult Result
+ = LookupParsedName(S, SS, &II, LookupOrdinaryName, false, false);
+
+ NamedDecl *IIDecl = 0;
+ switch (Result.getKind()) {
+ case LookupResult::NotFound:
+ case LookupResult::FoundOverloaded:
+ return 0;
+
+ case LookupResult::AmbiguousBaseSubobjectTypes:
+ case LookupResult::AmbiguousBaseSubobjects:
+ case LookupResult::AmbiguousReference: {
+ // Look to see if we have a type anywhere in the list of results.
+ for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
+ Res != ResEnd; ++Res) {
+ if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
+ if (!IIDecl ||
+ (*Res)->getLocation().getRawEncoding() <
+ IIDecl->getLocation().getRawEncoding())
+ IIDecl = *Res;
+ }
+ }
+
+ if (!IIDecl) {
+ // None of the entities we found is a type, so there is no way
+ // to even assume that the result is a type. In this case, don't
+ // complain about the ambiguity. The parser will either try to
+ // perform this lookup again (e.g., as an object name), which
+ // will produce the ambiguity, or will complain that it expected
+ // a type name.
+ Result.Destroy();
+ return 0;
+ }
+
+ // We found a type within the ambiguous lookup; diagnose the
+ // ambiguity and then return that type. This might be the right
+ // answer, or it might not be, but it suppresses any attempt to
+ // perform the name lookup again.
+ DiagnoseAmbiguousLookup(Result, DeclarationName(&II), NameLoc);
+ break;
+ }
+
+ case LookupResult::Found:
+ IIDecl = Result.getAsDecl();
+ break;
+ }
+
+ if (IIDecl) {
+ QualType T;
+
+ if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
+ // Check whether we can use this type
+ (void)DiagnoseUseOfDecl(IIDecl, NameLoc);
+
+ if (getLangOptions().CPlusPlus) {
+ // C++ [temp.local]p2:
+ // Within the scope of a class template specialization or
+ // partial specialization, when the injected-class-name is
+ // not followed by a <, it is equivalent to the
+ // injected-class-name followed by the template-argument s
+ // of the class template specialization or partial
+ // specialization enclosed in <>.
+ if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(TD))
+ if (RD->isInjectedClassName())
+ if (ClassTemplateDecl *Template = RD->getDescribedClassTemplate())
+ T = Template->getInjectedClassNameType(Context);
+ }
+
+ if (T.isNull())
+ T = Context.getTypeDeclType(TD);
+ } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
+ // Check whether we can use this interface.
+ (void)DiagnoseUseOfDecl(IIDecl, NameLoc);
+
+ T = Context.getObjCInterfaceType(IDecl);
+ } else
+ return 0;
+
+ if (SS)
+ T = getQualifiedNameType(*SS, T);
+
+ return T.getAsOpaquePtr();
+ }
+
+ return 0;
+}
+
+/// isTagName() - This method is called *for error recovery purposes only*
+/// to determine if the specified name is a valid tag name ("struct foo"). If
+/// so, this returns the TST for the tag corresponding to it (TST_enum,
+/// TST_union, TST_struct, TST_class). This is used to diagnose cases in C
+/// where the user forgot to specify the tag.
+DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
+ // Do a tag name lookup in this scope.
+ LookupResult R = LookupName(S, &II, LookupTagName, false, false);
+ if (R.getKind() == LookupResult::Found)
+ if (const TagDecl *TD = dyn_cast<TagDecl>(R.getAsDecl())) {
+ switch (TD->getTagKind()) {
+ case TagDecl::TK_struct: return DeclSpec::TST_struct;
+ case TagDecl::TK_union: return DeclSpec::TST_union;
+ case TagDecl::TK_class: return DeclSpec::TST_class;
+ case TagDecl::TK_enum: return DeclSpec::TST_enum;
+ }
+ }
+
+ return DeclSpec::TST_unspecified;
+}
+
+
+
+DeclContext *Sema::getContainingDC(DeclContext *DC) {
+ if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC)) {
+ // A C++ out-of-line method will return to the file declaration context.
+ if (MD->isOutOfLineDefinition())
+ return MD->getLexicalDeclContext();
+
+ // A C++ inline method is parsed *after* the topmost class it was declared
+ // in is fully parsed (it's "complete").
+ // The parsing of a C++ inline method happens at the declaration context of
+ // the topmost (non-nested) class it is lexically declared in.
+ assert(isa<CXXRecordDecl>(MD->getParent()) && "C++ method not in Record.");
+ DC = MD->getParent();
+ while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
+ DC = RD;
+
+ // Return the declaration context of the topmost class the inline method is
+ // declared in.
+ return DC;
+ }
+
+ if (isa<ObjCMethodDecl>(DC))
+ return Context.getTranslationUnitDecl();
+
+ return DC->getLexicalParent();
+}
+
+void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
+ assert(getContainingDC(DC) == CurContext &&
+ "The next DeclContext should be lexically contained in the current one.");
+ CurContext = DC;
+ S->setEntity(DC);
+}
+
+void Sema::PopDeclContext() {
+ assert(CurContext && "DeclContext imbalance!");
+
+ CurContext = getContainingDC(CurContext);
+}
+
+/// \brief Determine whether we allow overloading of the function
+/// PrevDecl with another declaration.
+///
+/// This routine determines whether overloading is possible, not
+/// whether some new function is actually an overload. It will return
+/// true in C++ (where we can always provide overloads) or, as an
+/// extension, in C when the previous function is already an
+/// overloaded function declaration or has the "overloadable"
+/// attribute.
+static bool AllowOverloadingOfFunction(Decl *PrevDecl, ASTContext &Context) {
+ if (Context.getLangOptions().CPlusPlus)
+ return true;
+
+ if (isa<OverloadedFunctionDecl>(PrevDecl))
+ return true;
+
+ return PrevDecl->getAttr<OverloadableAttr>() != 0;
+}
+
+/// Add this decl to the scope shadowed decl chains.
+void Sema::PushOnScopeChains(NamedDecl *D, Scope *S) {
+ // Move up the scope chain until we find the nearest enclosing
+ // non-transparent context. The declaration will be introduced into this
+ // scope.
+ while (S->getEntity() &&
+ ((DeclContext *)S->getEntity())->isTransparentContext())
+ S = S->getParent();
+
+ S->AddDecl(DeclPtrTy::make(D));
+
+ // Add scoped declarations into their context, so that they can be
+ // found later. Declarations without a context won't be inserted
+ // into any context.
+ CurContext->addDecl(Context, D);
+
+ // C++ [basic.scope]p4:
+ // -- exactly one declaration shall declare a class name or
+ // enumeration name that is not a typedef name and the other
+ // declarations shall all refer to the same object or
+ // enumerator, or all refer to functions and function templates;
+ // in this case the class name or enumeration name is hidden.
+ if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
+ // We are pushing the name of a tag (enum or class).
+ if (CurContext->getLookupContext()
+ == TD->getDeclContext()->getLookupContext()) {
+ // We're pushing the tag into the current context, which might
+ // require some reshuffling in the identifier resolver.
+ IdentifierResolver::iterator
+ I = IdResolver.begin(TD->getDeclName()),
+ IEnd = IdResolver.end();
+ if (I != IEnd && isDeclInScope(*I, CurContext, S)) {
+ NamedDecl *PrevDecl = *I;
+ for (; I != IEnd && isDeclInScope(*I, CurContext, S);
+ PrevDecl = *I, ++I) {
+ if (TD->declarationReplaces(*I)) {
+ // This is a redeclaration. Remove it from the chain and
+ // break out, so that we'll add in the shadowed
+ // declaration.
+ S->RemoveDecl(DeclPtrTy::make(*I));
+ if (PrevDecl == *I) {
+ IdResolver.RemoveDecl(*I);
+ IdResolver.AddDecl(TD);
+ return;
+ } else {
+ IdResolver.RemoveDecl(*I);
+ break;
+ }
+ }
+ }
+
+ // There is already a declaration with the same name in the same
+ // scope, which is not a tag declaration. It must be found
+ // before we find the new declaration, so insert the new
+ // declaration at the end of the chain.
+ IdResolver.AddShadowedDecl(TD, PrevDecl);
+
+ return;
+ }
+ }
+ } else if (isa<FunctionDecl>(D) &&
+ AllowOverloadingOfFunction(D, Context)) {
+ // We are pushing the name of a function, which might be an
+ // overloaded name.
+ FunctionDecl *FD = cast<FunctionDecl>(D);
+ IdentifierResolver::iterator Redecl
+ = std::find_if(IdResolver.begin(FD->getDeclName()),
+ IdResolver.end(),
+ std::bind1st(std::mem_fun(&NamedDecl::declarationReplaces),
+ FD));
+ if (Redecl != IdResolver.end() &&
+ S->isDeclScope(DeclPtrTy::make(*Redecl))) {
+ // There is already a declaration of a function on our
+ // IdResolver chain. Replace it with this declaration.
+ S->RemoveDecl(DeclPtrTy::make(*Redecl));
+ IdResolver.RemoveDecl(*Redecl);
+ }
+ } else if (isa<ObjCInterfaceDecl>(D)) {
+ // We're pushing an Objective-C interface into the current
+ // context. If there is already an alias declaration, remove it first.
+ for (IdentifierResolver::iterator
+ I = IdResolver.begin(D->getDeclName()), IEnd = IdResolver.end();
+ I != IEnd; ++I) {
+ if (isa<ObjCCompatibleAliasDecl>(*I)) {
+ S->RemoveDecl(DeclPtrTy::make(*I));
+ IdResolver.RemoveDecl(*I);
+ break;
+ }
+ }
+ }
+
+ IdResolver.AddDecl(D);
+}
+
+void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
+ if (S->decl_empty()) return;
+ assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
+ "Scope shouldn't contain decls!");
+
+ for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
+ I != E; ++I) {
+ Decl *TmpD = (*I).getAs<Decl>();
+ assert(TmpD && "This decl didn't get pushed??");
+
+ assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
+ NamedDecl *D = cast<NamedDecl>(TmpD);
+
+ if (!D->getDeclName()) continue;
+
+ // Remove this name from our lexical scope.
+ IdResolver.RemoveDecl(D);
+ }
+}
+
+/// getObjCInterfaceDecl - Look up a for a class declaration in the scope.
+/// return 0 if one not found.
+ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *Id) {
+ // The third "scope" argument is 0 since we aren't enabling lazy built-in
+ // creation from this context.
+ NamedDecl *IDecl = LookupName(TUScope, Id, LookupOrdinaryName);
+
+ return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
+}
+
+/// getNonFieldDeclScope - Retrieves the innermost scope, starting
+/// from S, where a non-field would be declared. This routine copes
+/// with the difference between C and C++ scoping rules in structs and
+/// unions. For example, the following code is well-formed in C but
+/// ill-formed in C++:
+/// @code
+/// struct S6 {
+/// enum { BAR } e;
+/// };
+///
+/// void test_S6() {
+/// struct S6 a;
+/// a.e = BAR;
+/// }
+/// @endcode
+/// For the declaration of BAR, this routine will return a different
+/// scope. The scope S will be the scope of the unnamed enumeration
+/// within S6. In C++, this routine will return the scope associated
+/// with S6, because the enumeration's scope is a transparent
+/// context but structures can contain non-field names. In C, this
+/// routine will return the translation unit scope, since the
+/// enumeration's scope is a transparent context and structures cannot
+/// contain non-field names.
+Scope *Sema::getNonFieldDeclScope(Scope *S) {
+ while (((S->getFlags() & Scope::DeclScope) == 0) ||
+ (S->getEntity() &&
+ ((DeclContext *)S->getEntity())->isTransparentContext()) ||
+ (S->isClassScope() && !getLangOptions().CPlusPlus))
+ S = S->getParent();
+ return S;
+}
+
+void Sema::InitBuiltinVaListType() {
+ if (!Context.getBuiltinVaListType().isNull())
+ return;
+
+ IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
+ NamedDecl *VaDecl = LookupName(TUScope, VaIdent, LookupOrdinaryName);
+ TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
+ Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
+}
+
+/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
+/// file scope. lazily create a decl for it. ForRedeclaration is true
+/// if we're creating this built-in in anticipation of redeclaring the
+/// built-in.
+NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
+ Scope *S, bool ForRedeclaration,
+ SourceLocation Loc) {
+ Builtin::ID BID = (Builtin::ID)bid;
+
+ if (Context.BuiltinInfo.hasVAListUse(BID))
+ InitBuiltinVaListType();
+
+ Builtin::Context::GetBuiltinTypeError Error;
+ QualType R = Context.BuiltinInfo.GetBuiltinType(BID, Context, Error);
+ switch (Error) {
+ case Builtin::Context::GE_None:
+ // Okay
+ break;
+
+ case Builtin::Context::GE_Missing_FILE:
+ if (ForRedeclaration)
+ Diag(Loc, diag::err_implicit_decl_requires_stdio)
+ << Context.BuiltinInfo.GetName(BID);
+ return 0;
+ }
+
+ if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
+ Diag(Loc, diag::ext_implicit_lib_function_decl)
+ << Context.BuiltinInfo.GetName(BID)
+ << R;
+ if (Context.BuiltinInfo.getHeaderName(BID) &&
+ Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl)
+ != Diagnostic::Ignored)
+ Diag(Loc, diag::note_please_include_header)
+ << Context.BuiltinInfo.getHeaderName(BID)
+ << Context.BuiltinInfo.GetName(BID);
+ }
+
+ FunctionDecl *New = FunctionDecl::Create(Context,
+ Context.getTranslationUnitDecl(),
+ Loc, II, R,
+ FunctionDecl::Extern, false,
+ /*hasPrototype=*/true);
+ New->setImplicit();
+
+ // Create Decl objects for each parameter, adding them to the
+ // FunctionDecl.
+ if (FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
+ llvm::SmallVector<ParmVarDecl*, 16> Params;
+ for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
+ Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
+ FT->getArgType(i), VarDecl::None, 0));
+ New->setParams(Context, Params.data(), Params.size());
+ }
+
+ AddKnownFunctionAttributes(New);
+
+ // TUScope is the translation-unit scope to insert this function into.
+ // FIXME: This is hideous. We need to teach PushOnScopeChains to
+ // relate Scopes to DeclContexts, and probably eliminate CurContext
+ // entirely, but we're not there yet.
+ DeclContext *SavedContext = CurContext;
+ CurContext = Context.getTranslationUnitDecl();
+ PushOnScopeChains(New, TUScope);
+ CurContext = SavedContext;
+ return New;
+}
+
+/// GetStdNamespace - This method gets the C++ "std" namespace. This is where
+/// everything from the standard library is defined.
+NamespaceDecl *Sema::GetStdNamespace() {
+ if (!StdNamespace) {
+ IdentifierInfo *StdIdent = &PP.getIdentifierTable().get("std");
+ DeclContext *Global = Context.getTranslationUnitDecl();
+ Decl *Std = LookupQualifiedName(Global, StdIdent, LookupNamespaceName);
+ StdNamespace = dyn_cast_or_null<NamespaceDecl>(Std);
+ }
+ return StdNamespace;
+}
+
+/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the
+/// same name and scope as a previous declaration 'Old'. Figure out
+/// how to resolve this situation, merging decls or emitting
+/// diagnostics as appropriate. If there was an error, set New to be invalid.
+///
+void Sema::MergeTypeDefDecl(TypedefDecl *New, Decl *OldD) {
+ // If either decl is known invalid already, set the new one to be invalid and
+ // don't bother doing any merging checks.
+ if (New->isInvalidDecl() || OldD->isInvalidDecl())
+ return New->setInvalidDecl();
+
+ bool objc_types = false;
+
+ // Allow multiple definitions for ObjC built-in typedefs.
+ // FIXME: Verify the underlying types are equivalent!
+ if (getLangOptions().ObjC1) {
+ const IdentifierInfo *TypeID = New->getIdentifier();
+ switch (TypeID->getLength()) {
+ default: break;
+ case 2:
+ if (!TypeID->isStr("id"))
+ break;
+ Context.setObjCIdType(Context.getTypeDeclType(New));
+ objc_types = true;
+ break;
+ case 5:
+ if (!TypeID->isStr("Class"))
+ break;
+ Context.setObjCClassType(Context.getTypeDeclType(New));
+ return;
+ case 3:
+ if (!TypeID->isStr("SEL"))
+ break;
+ Context.setObjCSelType(Context.getTypeDeclType(New));
+ return;
+ case 8:
+ if (!TypeID->isStr("Protocol"))
+ break;
+ Context.setObjCProtoType(New->getUnderlyingType());
+ return;
+ }
+ // Fall through - the typedef name was not a builtin type.
+ }
+ // Verify the old decl was also a type.
+ TypeDecl *Old = dyn_cast<TypeDecl>(OldD);
+ if (!Old) {
+ Diag(New->getLocation(), diag::err_redefinition_different_kind)
+ << New->getDeclName();
+ if (OldD->getLocation().isValid())
+ Diag(OldD->getLocation(), diag::note_previous_definition);
+ return New->setInvalidDecl();
+ }
+
+ // Determine the "old" type we'll use for checking and diagnostics.
+ QualType OldType;
+ if (TypedefDecl *OldTypedef = dyn_cast<TypedefDecl>(Old))
+ OldType = OldTypedef->getUnderlyingType();
+ else
+ OldType = Context.getTypeDeclType(Old);
+
+ // If the typedef types are not identical, reject them in all languages and
+ // with any extensions enabled.
+
+ if (OldType != New->getUnderlyingType() &&
+ Context.getCanonicalType(OldType) !=
+ Context.getCanonicalType(New->getUnderlyingType())) {
+ Diag(New->getLocation(), diag::err_redefinition_different_typedef)
+ << New->getUnderlyingType() << OldType;
+ if (Old->getLocation().isValid())
+ Diag(Old->getLocation(), diag::note_previous_definition);
+ return New->setInvalidDecl();
+ }
+
+ if (objc_types || getLangOptions().Microsoft)
+ return;
+
+ // C++ [dcl.typedef]p2:
+ // In a given non-class scope, a typedef specifier can be used to
+ // redefine the name of any type declared in that scope to refer
+ // to the type to which it already refers.
+ if (getLangOptions().CPlusPlus) {
+ if (!isa<CXXRecordDecl>(CurContext))
+ return;
+ Diag(New->getLocation(), diag::err_redefinition)
+ << New->getDeclName();
+ Diag(Old->getLocation(), diag::note_previous_definition);
+ return New->setInvalidDecl();
+ }
+
+ // If we have a redefinition of a typedef in C, emit a warning. This warning
+ // is normally mapped to an error, but can be controlled with
+ // -Wtypedef-redefinition. If either the original was in a system header,
+ // don't emit this for compatibility with GCC.
+ if (PP.getDiagnostics().getSuppressSystemWarnings() &&
+ Context.getSourceManager().isInSystemHeader(Old->getLocation()))
+ return;
+
+ Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
+ << New->getDeclName();
+ Diag(Old->getLocation(), diag::note_previous_definition);
+ return;
+}
+
+/// DeclhasAttr - returns true if decl Declaration already has the target
+/// attribute.
+static bool DeclHasAttr(const Decl *decl, const Attr *target) {
+ for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext())
+ if (attr->getKind() == target->getKind())
+ return true;
+
+ return false;
+}
+
+/// MergeAttributes - append attributes from the Old decl to the New one.
+static void MergeAttributes(Decl *New, Decl *Old, ASTContext &C) {
+ for (const Attr *attr = Old->getAttrs(); attr; attr = attr->getNext()) {
+ if (!DeclHasAttr(New, attr) && attr->isMerged()) {
+ Attr *NewAttr = attr->clone(C);
+ NewAttr->setInherited(true);
+ New->addAttr(NewAttr);
+ }
+ }
+}
+
+/// Used in MergeFunctionDecl to keep track of function parameters in
+/// C.
+struct GNUCompatibleParamWarning {
+ ParmVarDecl *OldParm;
+ ParmVarDecl *NewParm;
+ QualType PromotedType;
+};
+
+/// MergeFunctionDecl - We just parsed a function 'New' from
+/// declarator D which has the same name and scope as a previous
+/// declaration 'Old'. Figure out how to resolve this situation,
+/// merging decls or emitting diagnostics as appropriate.
+///
+/// In C++, New and Old must be declarations that are not
+/// overloaded. Use IsOverload to determine whether New and Old are
+/// overloaded, and to select the Old declaration that New should be
+/// merged with.
+///
+/// Returns true if there was an error, false otherwise.
+bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
+ assert(!isa<OverloadedFunctionDecl>(OldD) &&
+ "Cannot merge with an overloaded function declaration");
+
+ // Verify the old decl was also a function.
+ FunctionDecl *Old = dyn_cast<FunctionDecl>(OldD);
+ if (!Old) {
+ Diag(New->getLocation(), diag::err_redefinition_different_kind)
+ << New->getDeclName();
+ Diag(OldD->getLocation(), diag::note_previous_definition);
+ return true;
+ }
+
+ // Determine whether the previous declaration was a definition,
+ // implicit declaration, or a declaration.
+ diag::kind PrevDiag;
+ if (Old->isThisDeclarationADefinition())
+ PrevDiag = diag::note_previous_definition;
+ else if (Old->isImplicit())
+ PrevDiag = diag::note_previous_implicit_declaration;
+ else
+ PrevDiag = diag::note_previous_declaration;
+
+ QualType OldQType = Context.getCanonicalType(Old->getType());
+ QualType NewQType = Context.getCanonicalType(New->getType());
+
+ if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
+ New->getStorageClass() == FunctionDecl::Static &&
+ Old->getStorageClass() != FunctionDecl::Static) {
+ Diag(New->getLocation(), diag::err_static_non_static)
+ << New;
+ Diag(Old->getLocation(), PrevDiag);
+ return true;
+ }
+
+ if (getLangOptions().CPlusPlus) {
+ // (C++98 13.1p2):
+ // Certain function declarations cannot be overloaded:
+ // -- Function declarations that differ only in the return type
+ // cannot be overloaded.
+ QualType OldReturnType
+ = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
+ QualType NewReturnType
+ = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
+ if (OldReturnType != NewReturnType) {
+ Diag(New->getLocation(), diag::err_ovl_diff_return_type);
+ Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
+ return true;
+ }
+
+ const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
+ const CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
+ if (OldMethod && NewMethod &&
+ OldMethod->getLexicalDeclContext() ==
+ NewMethod->getLexicalDeclContext()) {
+ // -- Member function declarations with the same name and the
+ // same parameter types cannot be overloaded if any of them
+ // is a static member function declaration.
+ if (OldMethod->isStatic() || NewMethod->isStatic()) {
+ Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
+ Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
+ return true;
+ }
+
+ // C++ [class.mem]p1:
+ // [...] A member shall not be declared twice in the
+ // member-specification, except that a nested class or member
+ // class template can be declared and then later defined.
+ unsigned NewDiag;
+ if (isa<CXXConstructorDecl>(OldMethod))
+ NewDiag = diag::err_constructor_redeclared;
+ else if (isa<CXXDestructorDecl>(NewMethod))
+ NewDiag = diag::err_destructor_redeclared;
+ else if (isa<CXXConversionDecl>(NewMethod))
+ NewDiag = diag::err_conv_function_redeclared;
+ else
+ NewDiag = diag::err_member_redeclared;
+
+ Diag(New->getLocation(), NewDiag);
+ Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
+ }
+
+ // (C++98 8.3.5p3):
+ // All declarations for a function shall agree exactly in both the
+ // return type and the parameter-type-list.
+ if (OldQType == NewQType)
+ return MergeCompatibleFunctionDecls(New, Old);
+
+ // Fall through for conflicting redeclarations and redefinitions.
+ }
+
+ // C: Function types need to be compatible, not identical. This handles
+ // duplicate function decls like "void f(int); void f(enum X);" properly.
+ if (!getLangOptions().CPlusPlus &&
+ Context.typesAreCompatible(OldQType, NewQType)) {
+ const FunctionType *OldFuncType = OldQType->getAsFunctionType();
+ const FunctionType *NewFuncType = NewQType->getAsFunctionType();
+ const FunctionProtoType *OldProto = 0;
+ if (isa<FunctionNoProtoType>(NewFuncType) &&
+ (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
+ // The old declaration provided a function prototype, but the
+ // new declaration does not. Merge in the prototype.
+ assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
+ llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
+ OldProto->arg_type_end());
+ NewQType = Context.getFunctionType(NewFuncType->getResultType(),
+ ParamTypes.data(), ParamTypes.size(),
+ OldProto->isVariadic(),
+ OldProto->getTypeQuals());
+ New->setType(NewQType);
+ New->setHasInheritedPrototype();
+
+ // Synthesize a parameter for each argument type.
+ llvm::SmallVector<ParmVarDecl*, 16> Params;
+ for (FunctionProtoType::arg_type_iterator
+ ParamType = OldProto->arg_type_begin(),
+ ParamEnd = OldProto->arg_type_end();
+ ParamType != ParamEnd; ++ParamType) {
+ ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
+ SourceLocation(), 0,
+ *ParamType, VarDecl::None,
+ 0);
+ Param->setImplicit();
+ Params.push_back(Param);
+ }
+
+ New->setParams(Context, Params.data(), Params.size());
+ }
+
+ return MergeCompatibleFunctionDecls(New, Old);
+ }
+
+ // GNU C permits a K&R definition to follow a prototype declaration
+ // if the declared types of the parameters in the K&R definition
+ // match the types in the prototype declaration, even when the
+ // promoted types of the parameters from the K&R definition differ
+ // from the types in the prototype. GCC then keeps the types from
+ // the prototype.
+ //
+ // If a variadic prototype is followed by a non-variadic K&R definition,
+ // the K&R definition becomes variadic. This is sort of an edge case, but
+ // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
+ // C99 6.9.1p8.
+ if (!getLangOptions().CPlusPlus &&
+ Old->hasPrototype() && !New->hasPrototype() &&
+ New->getType()->getAsFunctionProtoType() &&
+ Old->getNumParams() == New->getNumParams()) {
+ llvm::SmallVector<QualType, 16> ArgTypes;
+ llvm::SmallVector<GNUCompatibleParamWarning, 16> Warnings;
+ const FunctionProtoType *OldProto
+ = Old->getType()->getAsFunctionProtoType();
+ const FunctionProtoType *NewProto
+ = New->getType()->getAsFunctionProtoType();
+
+ // Determine whether this is the GNU C extension.
+ QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
+ NewProto->getResultType());
+ bool LooseCompatible = !MergedReturn.isNull();
+ for (unsigned Idx = 0, End = Old->getNumParams();
+ LooseCompatible && Idx != End; ++Idx) {
+ ParmVarDecl *OldParm = Old->getParamDecl(Idx);
+ ParmVarDecl *NewParm = New->getParamDecl(Idx);
+ if (Context.typesAreCompatible(OldParm->getType(),
+ NewProto->getArgType(Idx))) {
+ ArgTypes.push_back(NewParm->getType());
+ } else if (Context.typesAreCompatible(OldParm->getType(),
+ NewParm->getType())) {
+ GNUCompatibleParamWarning Warn
+ = { OldParm, NewParm, NewProto->getArgType(Idx) };
+ Warnings.push_back(Warn);
+ ArgTypes.push_back(NewParm->getType());
+ } else
+ LooseCompatible = false;
+ }
+
+ if (LooseCompatible) {
+ for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
+ Diag(Warnings[Warn].NewParm->getLocation(),
+ diag::ext_param_promoted_not_compatible_with_prototype)
+ << Warnings[Warn].PromotedType
+ << Warnings[Warn].OldParm->getType();
+ Diag(Warnings[Warn].OldParm->getLocation(),
+ diag::note_previous_declaration);
+ }
+
+ New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
+ ArgTypes.size(),
+ OldProto->isVariadic(), 0));
+ return MergeCompatibleFunctionDecls(New, Old);
+ }
+
+ // Fall through to diagnose conflicting types.
+ }
+
+ // A function that has already been declared has been redeclared or defined
+ // with a different type- show appropriate diagnostic
+ if (unsigned BuiltinID = Old->getBuiltinID(Context)) {
+ // The user has declared a builtin function with an incompatible
+ // signature.
+ if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
+ // The function the user is redeclaring is a library-defined
+ // function like 'malloc' or 'printf'. Warn about the
+ // redeclaration, then pretend that we don't know about this
+ // library built-in.
+ Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
+ Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
+ << Old << Old->getType();
+ New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
+ Old->setInvalidDecl();
+ return false;
+ }
+
+ PrevDiag = diag::note_previous_builtin_declaration;
+ }
+
+ Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
+ Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
+ return true;
+}
+
+/// \brief Completes the merge of two function declarations that are
+/// known to be compatible.
+///
+/// This routine handles the merging of attributes and other
+/// properties of function declarations form the old declaration to
+/// the new declaration, once we know that New is in fact a
+/// redeclaration of Old.
+///
+/// \returns false
+bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
+ // Merge the attributes
+ MergeAttributes(New, Old, Context);
+
+ // Merge the storage class.
+ if (Old->getStorageClass() != FunctionDecl::Extern)
+ New->setStorageClass(Old->getStorageClass());
+
+ // Merge "inline"
+ if (Old->isInline())
+ New->setInline(true);
+
+ // If this function declaration by itself qualifies as a C99 inline
+ // definition (C99 6.7.4p6), but the previous definition did not,
+ // then the function is not a C99 inline definition.
+ if (New->isC99InlineDefinition() && !Old->isC99InlineDefinition())
+ New->setC99InlineDefinition(false);
+ else if (Old->isC99InlineDefinition() && !New->isC99InlineDefinition()) {
+ // Mark all preceding definitions as not being C99 inline definitions.
+ for (const FunctionDecl *Prev = Old; Prev;
+ Prev = Prev->getPreviousDeclaration())
+ const_cast<FunctionDecl *>(Prev)->setC99InlineDefinition(false);
+ }
+
+ // Merge "pure" flag.
+ if (Old->isPure())
+ New->setPure();
+
+ // Merge the "deleted" flag.
+ if (Old->isDeleted())
+ New->setDeleted();
+
+ if (getLangOptions().CPlusPlus)
+ return MergeCXXFunctionDecl(New, Old);
+
+ return false;
+}
+
+/// MergeVarDecl - We just parsed a variable 'New' which has the same name
+/// and scope as a previous declaration 'Old'. Figure out how to resolve this
+/// situation, merging decls or emitting diagnostics as appropriate.
+///
+/// Tentative definition rules (C99 6.9.2p2) are checked by
+/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
+/// definitions here, since the initializer hasn't been attached.
+///
+void Sema::MergeVarDecl(VarDecl *New, Decl *OldD) {
+ // If either decl is invalid, make sure the new one is marked invalid and
+ // don't do any other checking.
+ if (New->isInvalidDecl() || OldD->isInvalidDecl())
+ return New->setInvalidDecl();
+
+ // Verify the old decl was also a variable.
+ VarDecl *Old = dyn_cast<VarDecl>(OldD);
+ if (!Old) {
+ Diag(New->getLocation(), diag::err_redefinition_different_kind)
+ << New->getDeclName();
+ Diag(OldD->getLocation(), diag::note_previous_definition);
+ return New->setInvalidDecl();
+ }
+
+ MergeAttributes(New, Old, Context);
+
+ // Merge the types
+ QualType MergedT;
+ if (getLangOptions().CPlusPlus) {
+ if (Context.hasSameType(New->getType(), Old->getType()))
+ MergedT = New->getType();
+ } else {
+ MergedT = Context.mergeTypes(New->getType(), Old->getType());
+ }
+ if (MergedT.isNull()) {
+ Diag(New->getLocation(), diag::err_redefinition_different_type)
+ << New->getDeclName();
+ Diag(Old->getLocation(), diag::note_previous_definition);
+ return New->setInvalidDecl();
+ }
+ New->setType(MergedT);
+
+ // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
+ if (New->getStorageClass() == VarDecl::Static &&
+ (Old->getStorageClass() == VarDecl::None || Old->hasExternalStorage())) {
+ Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
+ Diag(Old->getLocation(), diag::note_previous_definition);
+ return New->setInvalidDecl();
+ }
+ // C99 6.2.2p4:
+ // For an identifier declared with the storage-class specifier
+ // extern in a scope in which a prior declaration of that
+ // identifier is visible,23) if the prior declaration specifies
+ // internal or external linkage, the linkage of the identifier at
+ // the later declaration is the same as the linkage specified at
+ // the prior declaration. If no prior declaration is visible, or
+ // if the prior declaration specifies no linkage, then the
+ // identifier has external linkage.
+ if (New->hasExternalStorage() && Old->hasLinkage())
+ /* Okay */;
+ else if (New->getStorageClass() != VarDecl::Static &&
+ Old->getStorageClass() == VarDecl::Static) {
+ Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
+ Diag(Old->getLocation(), diag::note_previous_definition);
+ return New->setInvalidDecl();
+ }
+
+ // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
+
+ // FIXME: The test for external storage here seems wrong? We still
+ // need to check for mismatches.
+ if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
+ // Don't complain about out-of-line definitions of static members.
+ !(Old->getLexicalDeclContext()->isRecord() &&
+ !New->getLexicalDeclContext()->isRecord())) {
+ Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
+ Diag(Old->getLocation(), diag::note_previous_definition);
+ return New->setInvalidDecl();
+ }
+
+ if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
+ Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
+ Diag(Old->getLocation(), diag::note_previous_definition);
+ } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
+ Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
+ Diag(Old->getLocation(), diag::note_previous_definition);
+ }
+
+ // Keep a chain of previous declarations.
+ New->setPreviousDeclaration(Old);
+}
+
+/// CheckParmsForFunctionDef - Check that the parameters of the given
+/// function are appropriate for the definition of a function. This
+/// takes care of any checks that cannot be performed on the
+/// declaration itself, e.g., that the types of each of the function
+/// parameters are complete.
+bool Sema::CheckParmsForFunctionDef(FunctionDecl *FD) {
+ bool HasInvalidParm = false;
+ for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
+ ParmVarDecl *Param = FD->getParamDecl(p);
+
+ // C99 6.7.5.3p4: the parameters in a parameter type list in a
+ // function declarator that is part of a function definition of
+ // that function shall not have incomplete type.
+ //
+ // This is also C++ [dcl.fct]p6.
+ if (!Param->isInvalidDecl() &&
+ RequireCompleteType(Param->getLocation(), Param->getType(),
+ diag::err_typecheck_decl_incomplete_type)) {
+ Param->setInvalidDecl();
+ HasInvalidParm = true;
+ }
+
+ // C99 6.9.1p5: If the declarator includes a parameter type list, the
+ // declaration of each parameter shall include an identifier.
+ if (Param->getIdentifier() == 0 &&
+ !Param->isImplicit() &&
+ !getLangOptions().CPlusPlus)
+ Diag(Param->getLocation(), diag::err_parameter_name_omitted);
+ }
+
+ return HasInvalidParm;
+}
+
+/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
+/// no declarator (e.g. "struct foo;") is parsed.
+Sema::DeclPtrTy Sema::ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) {
+ // FIXME: Error on auto/register at file scope
+ // FIXME: Error on inline/virtual/explicit
+ // FIXME: Error on invalid restrict
+ // FIXME: Warn on useless __thread
+ // FIXME: Warn on useless const/volatile
+ // FIXME: Warn on useless static/extern/typedef/private_extern/mutable
+ // FIXME: Warn on useless attributes
+ TagDecl *Tag = 0;
+ if (DS.getTypeSpecType() == DeclSpec::TST_class ||
+ DS.getTypeSpecType() == DeclSpec::TST_struct ||
+ DS.getTypeSpecType() == DeclSpec::TST_union ||
+ DS.getTypeSpecType() == DeclSpec::TST_enum) {
+ if (!DS.getTypeRep()) // We probably had an error
+ return DeclPtrTy();
+
+ Tag = dyn_cast<TagDecl>(static_cast<Decl *>(DS.getTypeRep()));
+ }
+
+ if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
+ if (!Record->getDeclName() && Record->isDefinition() &&
+ DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
+ if (getLangOptions().CPlusPlus ||
+ Record->getDeclContext()->isRecord())
+ return BuildAnonymousStructOrUnion(S, DS, Record);
+
+ Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
+ << DS.getSourceRange();
+ }
+
+ // Microsoft allows unnamed struct/union fields. Don't complain
+ // about them.
+ // FIXME: Should we support Microsoft's extensions in this area?
+ if (Record->getDeclName() && getLangOptions().Microsoft)
+ return DeclPtrTy::make(Tag);
+ }
+
+ if (!DS.isMissingDeclaratorOk() &&
+ DS.getTypeSpecType() != DeclSpec::TST_error) {
+ // Warn about typedefs of enums without names, since this is an
+ // extension in both Microsoft an GNU.
+ if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
+ Tag && isa<EnumDecl>(Tag)) {
+ Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
+ << DS.getSourceRange();
+ return DeclPtrTy::make(Tag);
+ }
+
+ Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
+ << DS.getSourceRange();
+ return DeclPtrTy();
+ }
+
+ return DeclPtrTy::make(Tag);
+}
+
+/// InjectAnonymousStructOrUnionMembers - Inject the members of the
+/// anonymous struct or union AnonRecord into the owning context Owner
+/// and scope S. This routine will be invoked just after we realize
+/// that an unnamed union or struct is actually an anonymous union or
+/// struct, e.g.,
+///
+/// @code
+/// union {
+/// int i;
+/// float f;
+/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
+/// // f into the surrounding scope.x
+/// @endcode
+///
+/// This routine is recursive, injecting the names of nested anonymous
+/// structs/unions into the owning context and scope as well.
+bool Sema::InjectAnonymousStructOrUnionMembers(Scope *S, DeclContext *Owner,
+ RecordDecl *AnonRecord) {
+ bool Invalid = false;
+ for (RecordDecl::field_iterator F = AnonRecord->field_begin(Context),
+ FEnd = AnonRecord->field_end(Context);
+ F != FEnd; ++F) {
+ if ((*F)->getDeclName()) {
+ NamedDecl *PrevDecl = LookupQualifiedName(Owner, (*F)->getDeclName(),
+ LookupOrdinaryName, true);
+ if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
+ // C++ [class.union]p2:
+ // The names of the members of an anonymous union shall be
+ // distinct from the names of any other entity in the
+ // scope in which the anonymous union is declared.
+ unsigned diagKind
+ = AnonRecord->isUnion()? diag::err_anonymous_union_member_redecl
+ : diag::err_anonymous_struct_member_redecl;
+ Diag((*F)->getLocation(), diagKind)
+ << (*F)->getDeclName();
+ Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
+ Invalid = true;
+ } else {
+ // C++ [class.union]p2:
+ // For the purpose of name lookup, after the anonymous union
+ // definition, the members of the anonymous union are
+ // considered to have been defined in the scope in which the
+ // anonymous union is declared.
+ Owner->makeDeclVisibleInContext(Context, *F);
+ S->AddDecl(DeclPtrTy::make(*F));
+ IdResolver.AddDecl(*F);
+ }
+ } else if (const RecordType *InnerRecordType
+ = (*F)->getType()->getAsRecordType()) {
+ RecordDecl *InnerRecord = InnerRecordType->getDecl();
+ if (InnerRecord->isAnonymousStructOrUnion())
+ Invalid = Invalid ||
+ InjectAnonymousStructOrUnionMembers(S, Owner, InnerRecord);
+ }
+ }
+
+ return Invalid;
+}
+
+/// ActOnAnonymousStructOrUnion - Handle the declaration of an
+/// anonymous structure or union. Anonymous unions are a C++ feature
+/// (C++ [class.union]) and a GNU C extension; anonymous structures
+/// are a GNU C and GNU C++ extension.
+Sema::DeclPtrTy Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
+ RecordDecl *Record) {
+ DeclContext *Owner = Record->getDeclContext();
+
+ // Diagnose whether this anonymous struct/union is an extension.
+ if (Record->isUnion() && !getLangOptions().CPlusPlus)
+ Diag(Record->getLocation(), diag::ext_anonymous_union);
+ else if (!Record->isUnion())
+ Diag(Record->getLocation(), diag::ext_anonymous_struct);
+
+ // C and C++ require different kinds of checks for anonymous
+ // structs/unions.
+ bool Invalid = false;
+ if (getLangOptions().CPlusPlus) {
+ const char* PrevSpec = 0;
+ // C++ [class.union]p3:
+ // Anonymous unions declared in a named namespace or in the
+ // global namespace shall be declared static.
+ if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
+ (isa<TranslationUnitDecl>(Owner) ||
+ (isa<NamespaceDecl>(Owner) &&
+ cast<NamespaceDecl>(Owner)->getDeclName()))) {
+ Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
+ Invalid = true;
+
+ // Recover by adding 'static'.
+ DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(), PrevSpec);
+ }
+ // C++ [class.union]p3:
+ // A storage class is not allowed in a declaration of an
+ // anonymous union in a class scope.
+ else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
+ isa<RecordDecl>(Owner)) {
+ Diag(DS.getStorageClassSpecLoc(),
+ diag::err_anonymous_union_with_storage_spec);
+ Invalid = true;
+
+ // Recover by removing the storage specifier.
+ DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
+ PrevSpec);
+ }
+
+ // C++ [class.union]p2:
+ // The member-specification of an anonymous union shall only
+ // define non-static data members. [Note: nested types and
+ // functions cannot be declared within an anonymous union. ]
+ for (DeclContext::decl_iterator Mem = Record->decls_begin(Context),
+ MemEnd = Record->decls_end(Context);
+ Mem != MemEnd; ++Mem) {
+ if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
+ // C++ [class.union]p3:
+ // An anonymous union shall not have private or protected
+ // members (clause 11).
+ if (FD->getAccess() == AS_protected || FD->getAccess() == AS_private) {
+ Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
+ << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
+ Invalid = true;
+ }
+ } else if ((*Mem)->isImplicit()) {
+ // Any implicit members are fine.
+ } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
+ // This is a type that showed up in an
+ // elaborated-type-specifier inside the anonymous struct or
+ // union, but which actually declares a type outside of the
+ // anonymous struct or union. It's okay.
+ } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
+ if (!MemRecord->isAnonymousStructOrUnion() &&
+ MemRecord->getDeclName()) {
+ // This is a nested type declaration.
+ Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
+ << (int)Record->isUnion();
+ Invalid = true;
+ }
+ } else {
+ // We have something that isn't a non-static data
+ // member. Complain about it.
+ unsigned DK = diag::err_anonymous_record_bad_member;
+ if (isa<TypeDecl>(*Mem))
+ DK = diag::err_anonymous_record_with_type;
+ else if (isa<FunctionDecl>(*Mem))
+ DK = diag::err_anonymous_record_with_function;
+ else if (isa<VarDecl>(*Mem))
+ DK = diag::err_anonymous_record_with_static;
+ Diag((*Mem)->getLocation(), DK)
+ << (int)Record->isUnion();
+ Invalid = true;
+ }
+ }
+ }
+
+ if (!Record->isUnion() && !Owner->isRecord()) {
+ Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
+ << (int)getLangOptions().CPlusPlus;
+ Invalid = true;
+ }
+
+ // Create a declaration for this anonymous struct/union.
+ NamedDecl *Anon = 0;
+ if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
+ Anon = FieldDecl::Create(Context, OwningClass, Record->getLocation(),
+ /*IdentifierInfo=*/0,
+ Context.getTypeDeclType(Record),
+ /*BitWidth=*/0, /*Mutable=*/false);
+ Anon->setAccess(AS_public);
+ if (getLangOptions().CPlusPlus)
+ FieldCollector->Add(cast<FieldDecl>(Anon));
+ } else {
+ VarDecl::StorageClass SC;
+ switch (DS.getStorageClassSpec()) {
+ default: assert(0 && "Unknown storage class!");
+ case DeclSpec::SCS_unspecified: SC = VarDecl::None; break;
+ case DeclSpec::SCS_extern: SC = VarDecl::Extern; break;
+ case DeclSpec::SCS_static: SC = VarDecl::Static; break;
+ case DeclSpec::SCS_auto: SC = VarDecl::Auto; break;
+ case DeclSpec::SCS_register: SC = VarDecl::Register; break;
+ case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
+ case DeclSpec::SCS_mutable:
+ // mutable can only appear on non-static class members, so it's always
+ // an error here
+ Diag(Record->getLocation(), diag::err_mutable_nonmember);
+ Invalid = true;
+ SC = VarDecl::None;
+ break;
+ }
+
+ Anon = VarDecl::Create(Context, Owner, Record->getLocation(),
+ /*IdentifierInfo=*/0,
+ Context.getTypeDeclType(Record),
+ SC, DS.getSourceRange().getBegin());
+ }
+ Anon->setImplicit();
+
+ // Add the anonymous struct/union object to the current
+ // context. We'll be referencing this object when we refer to one of
+ // its members.
+ Owner->addDecl(Context, Anon);
+
+ // Inject the members of the anonymous struct/union into the owning
+ // context and into the identifier resolver chain for name lookup
+ // purposes.
+ if (InjectAnonymousStructOrUnionMembers(S, Owner, Record))
+ Invalid = true;
+
+ // Mark this as an anonymous struct/union type. Note that we do not
+ // do this until after we have already checked and injected the
+ // members of this anonymous struct/union type, because otherwise
+ // the members could be injected twice: once by DeclContext when it
+ // builds its lookup table, and once by
+ // InjectAnonymousStructOrUnionMembers.
+ Record->setAnonymousStructOrUnion(true);
+
+ if (Invalid)
+ Anon->setInvalidDecl();
+
+ return DeclPtrTy::make(Anon);
+}
+
+
+/// GetNameForDeclarator - Determine the full declaration name for the
+/// given Declarator.
+DeclarationName Sema::GetNameForDeclarator(Declarator &D) {
+ switch (D.getKind()) {
+ case Declarator::DK_Abstract:
+ assert(D.getIdentifier() == 0 && "abstract declarators have no name");
+ return DeclarationName();
+
+ case Declarator::DK_Normal:
+ assert (D.getIdentifier() != 0 && "normal declarators have an identifier");
+ return DeclarationName(D.getIdentifier());
+
+ case Declarator::DK_Constructor: {
+ QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
+ Ty = Context.getCanonicalType(Ty);
+ return Context.DeclarationNames.getCXXConstructorName(Ty);
+ }
+
+ case Declarator::DK_Destructor: {
+ QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
+ Ty = Context.getCanonicalType(Ty);
+ return Context.DeclarationNames.getCXXDestructorName(Ty);
+ }
+
+ case Declarator::DK_Conversion: {
+ // FIXME: We'd like to keep the non-canonical type for diagnostics!
+ QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
+ Ty = Context.getCanonicalType(Ty);
+ return Context.DeclarationNames.getCXXConversionFunctionName(Ty);
+ }
+
+ case Declarator::DK_Operator:
+ assert(D.getIdentifier() == 0 && "operator names have no identifier");
+ return Context.DeclarationNames.getCXXOperatorName(
+ D.getOverloadedOperator());
+ }
+
+ assert(false && "Unknown name kind");
+ return DeclarationName();
+}
+
+/// isNearlyMatchingFunction - Determine whether the C++ functions
+/// Declaration and Definition are "nearly" matching. This heuristic
+/// is used to improve diagnostics in the case where an out-of-line
+/// function definition doesn't match any declaration within
+/// the class or namespace.
+static bool isNearlyMatchingFunction(ASTContext &Context,
+ FunctionDecl *Declaration,
+ FunctionDecl *Definition) {
+ if (Declaration->param_size() != Definition->param_size())
+ return false;
+ for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
+ QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
+ QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
+
+ DeclParamTy = Context.getCanonicalType(DeclParamTy.getNonReferenceType());
+ DefParamTy = Context.getCanonicalType(DefParamTy.getNonReferenceType());
+ if (DeclParamTy.getUnqualifiedType() != DefParamTy.getUnqualifiedType())
+ return false;
+ }
+
+ return true;
+}
+
+Sema::DeclPtrTy
+Sema::ActOnDeclarator(Scope *S, Declarator &D, bool IsFunctionDefinition) {
+ DeclarationName Name = GetNameForDeclarator(D);
+
+ // All of these full declarators require an identifier. If it doesn't have
+ // one, the ParsedFreeStandingDeclSpec action should be used.
+ if (!Name) {
+ if (!D.isInvalidType()) // Reject this if we think it is valid.
+ Diag(D.getDeclSpec().getSourceRange().getBegin(),
+ diag::err_declarator_need_ident)
+ << D.getDeclSpec().getSourceRange() << D.getSourceRange();
+ return DeclPtrTy();
+ }
+
+ // The scope passed in may not be a decl scope. Zip up the scope tree until
+ // we find one that is.
+ while ((S->getFlags() & Scope::DeclScope) == 0 ||
+ (S->getFlags() & Scope::TemplateParamScope) != 0)
+ S = S->getParent();
+
+ DeclContext *DC;
+ NamedDecl *PrevDecl;
+ NamedDecl *New;
+
+ QualType R = GetTypeForDeclarator(D, S);
+
+ // See if this is a redefinition of a variable in the same scope.
+ if (D.getCXXScopeSpec().isInvalid()) {
+ DC = CurContext;
+ PrevDecl = 0;
+ D.setInvalidType();
+ } else if (!D.getCXXScopeSpec().isSet()) {
+ LookupNameKind NameKind = LookupOrdinaryName;
+
+ // If the declaration we're planning to build will be a function
+ // or object with linkage, then look for another declaration with
+ // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
+ if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
+ /* Do nothing*/;
+ else if (R->isFunctionType()) {
+ if (CurContext->isFunctionOrMethod())
+ NameKind = LookupRedeclarationWithLinkage;
+ } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
+ NameKind = LookupRedeclarationWithLinkage;
+
+ DC = CurContext;
+ PrevDecl = LookupName(S, Name, NameKind, true,
+ D.getDeclSpec().getStorageClassSpec() !=
+ DeclSpec::SCS_static,
+ D.getIdentifierLoc());
+ } else { // Something like "int foo::x;"
+ DC = computeDeclContext(D.getCXXScopeSpec());
+ // FIXME: RequireCompleteDeclContext(D.getCXXScopeSpec()); ?
+ PrevDecl = LookupQualifiedName(DC, Name, LookupOrdinaryName, true);
+
+ // C++ 7.3.1.2p2:
+ // Members (including explicit specializations of templates) of a named
+ // namespace can also be defined outside that namespace by explicit
+ // qualification of the name being defined, provided that the entity being
+ // defined was already declared in the namespace and the definition appears
+ // after the point of declaration in a namespace that encloses the
+ // declarations namespace.
+ //
+ // Note that we only check the context at this point. We don't yet
+ // have enough information to make sure that PrevDecl is actually
+ // the declaration we want to match. For example, given:
+ //
+ // class X {
+ // void f();
+ // void f(float);
+ // };
+ //
+ // void X::f(int) { } // ill-formed
+ //
+ // In this case, PrevDecl will point to the overload set
+ // containing the two f's declared in X, but neither of them
+ // matches.
+
+ // First check whether we named the global scope.
+ if (isa<TranslationUnitDecl>(DC)) {
+ Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
+ << Name << D.getCXXScopeSpec().getRange();
+ } else if (!CurContext->Encloses(DC)) {
+ // The qualifying scope doesn't enclose the original declaration.
+ // Emit diagnostic based on current scope.
+ SourceLocation L = D.getIdentifierLoc();
+ SourceRange R = D.getCXXScopeSpec().getRange();
+ if (isa<FunctionDecl>(CurContext))
+ Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
+ else
+ Diag(L, diag::err_invalid_declarator_scope)
+ << Name << cast<NamedDecl>(DC) << R;
+ D.setInvalidType();
+ }
+ }
+
+ if (PrevDecl && PrevDecl->isTemplateParameter()) {
+ // Maybe we will complain about the shadowed template parameter.
+ if (!D.isInvalidType())
+ if (DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl))
+ D.setInvalidType();
+
+ // Just pretend that we didn't see the previous declaration.
+ PrevDecl = 0;
+ }
+
+ // In C++, the previous declaration we find might be a tag type
+ // (class or enum). In this case, the new declaration will hide the
+ // tag type. Note that this does does not apply if we're declaring a
+ // typedef (C++ [dcl.typedef]p4).
+ if (PrevDecl && PrevDecl->getIdentifierNamespace() == Decl::IDNS_Tag &&
+ D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
+ PrevDecl = 0;
+
+ bool Redeclaration = false;
+ if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
+ New = ActOnTypedefDeclarator(S, D, DC, R, PrevDecl, Redeclaration);
+ } else if (R->isFunctionType()) {
+ New = ActOnFunctionDeclarator(S, D, DC, R, PrevDecl,
+ IsFunctionDefinition, Redeclaration);
+ } else {
+ New = ActOnVariableDeclarator(S, D, DC, R, PrevDecl, Redeclaration);
+ }
+
+ if (New == 0)
+ return DeclPtrTy();
+
+ // If this has an identifier and is not an invalid redeclaration,
+ // add it to the scope stack.
+ if (Name && !(Redeclaration && New->isInvalidDecl()))
+ PushOnScopeChains(New, S);
+
+ return DeclPtrTy::make(New);
+}
+
+/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
+/// types into constant array types in certain situations which would otherwise
+/// be errors (for GCC compatibility).
+static QualType TryToFixInvalidVariablyModifiedType(QualType T,
+ ASTContext &Context,
+ bool &SizeIsNegative) {
+ // This method tries to turn a variable array into a constant
+ // array even when the size isn't an ICE. This is necessary
+ // for compatibility with code that depends on gcc's buggy
+ // constant expression folding, like struct {char x[(int)(char*)2];}
+ SizeIsNegative = false;
+
+ if (const PointerType* PTy = dyn_cast<PointerType>(T)) {
+ QualType Pointee = PTy->getPointeeType();
+ QualType FixedType =
+ TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative);
+ if (FixedType.isNull()) return FixedType;
+ FixedType = Context.getPointerType(FixedType);
+ FixedType.setCVRQualifiers(T.getCVRQualifiers());
+ return FixedType;
+ }
+
+ const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
+ if (!VLATy)
+ return QualType();
+ // FIXME: We should probably handle this case
+ if (VLATy->getElementType()->isVariablyModifiedType())
+ return QualType();
+
+ Expr::EvalResult EvalResult;
+ if (!VLATy->getSizeExpr() ||
+ !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
+ !EvalResult.Val.isInt())
+ return QualType();
+
+ llvm::APSInt &Res = EvalResult.Val.getInt();
+ if (Res >= llvm::APSInt(Res.getBitWidth(), Res.isUnsigned()))
+ return Context.getConstantArrayType(VLATy->getElementType(),
+ Res, ArrayType::Normal, 0);
+
+ SizeIsNegative = true;
+ return QualType();
+}
+
+/// \brief Register the given locally-scoped external C declaration so
+/// that it can be found later for redeclarations
+void
+Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND, NamedDecl *PrevDecl,
+ Scope *S) {
+ assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
+ "Decl is not a locally-scoped decl!");
+ // Note that we have a locally-scoped external with this name.
+ LocallyScopedExternalDecls[ND->getDeclName()] = ND;
+
+ if (!PrevDecl)
+ return;
+
+ // If there was a previous declaration of this variable, it may be
+ // in our identifier chain. Update the identifier chain with the new
+ // declaration.
+ if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
+ // The previous declaration was found on the identifer resolver
+ // chain, so remove it from its scope.
+ while (S && !S->isDeclScope(DeclPtrTy::make(PrevDecl)))
+ S = S->getParent();
+
+ if (S)
+ S->RemoveDecl(DeclPtrTy::make(PrevDecl));
+ }
+}
+
+/// \brief Diagnose function specifiers on a declaration of an identifier that
+/// does not identify a function.
+void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
+ // FIXME: We should probably indicate the identifier in question to avoid
+ // confusion for constructs like "inline int a(), b;"
+ if (D.getDeclSpec().isInlineSpecified())
+ Diag(D.getDeclSpec().getInlineSpecLoc(),
+ diag::err_inline_non_function);
+
+ if (D.getDeclSpec().isVirtualSpecified())
+ Diag(D.getDeclSpec().getVirtualSpecLoc(),
+ diag::err_virtual_non_function);
+
+ if (D.getDeclSpec().isExplicitSpecified())
+ Diag(D.getDeclSpec().getExplicitSpecLoc(),
+ diag::err_explicit_non_function);
+}
+
+NamedDecl*
+Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
+ QualType R, Decl* PrevDecl, bool &Redeclaration) {
+ // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
+ if (D.getCXXScopeSpec().isSet()) {
+ Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
+ << D.getCXXScopeSpec().getRange();
+ D.setInvalidType();
+ // Pretend we didn't see the scope specifier.
+ DC = 0;
+ }
+
+ if (getLangOptions().CPlusPlus) {
+ // Check that there are no default arguments (C++ only).
+ CheckExtraCXXDefaultArguments(D);
+ }
+
+ DiagnoseFunctionSpecifiers(D);
+
+ if (D.getDeclSpec().isThreadSpecified())
+ Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
+
+ TypedefDecl *NewTD = ParseTypedefDecl(S, D, R);
+ if (!NewTD) return 0;
+
+ if (D.isInvalidType())
+ NewTD->setInvalidDecl();
+
+ // Handle attributes prior to checking for duplicates in MergeVarDecl
+ ProcessDeclAttributes(NewTD, D);
+ // Merge the decl with the existing one if appropriate. If the decl is
+ // in an outer scope, it isn't the same thing.
+ if (PrevDecl && isDeclInScope(PrevDecl, DC, S)) {
+ Redeclaration = true;
+ MergeTypeDefDecl(NewTD, PrevDecl);
+ }
+
+ // C99 6.7.7p2: If a typedef name specifies a variably modified type
+ // then it shall have block scope.
+ QualType T = NewTD->getUnderlyingType();
+ if (T->isVariablyModifiedType()) {
+ CurFunctionNeedsScopeChecking = true;
+
+ if (S->getFnParent() == 0) {
+ bool SizeIsNegative;
+ QualType FixedTy =
+ TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
+ if (!FixedTy.isNull()) {
+ Diag(D.getIdentifierLoc(), diag::warn_illegal_constant_array_size);
+ NewTD->setUnderlyingType(FixedTy);
+ } else {
+ if (SizeIsNegative)
+ Diag(D.getIdentifierLoc(), diag::err_typecheck_negative_array_size);
+ else if (T->isVariableArrayType())
+ Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
+ else
+ Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
+ NewTD->setInvalidDecl();
+ }
+ }
+ }
+ return NewTD;
+}
+
+/// \brief Determines whether the given declaration is an out-of-scope
+/// previous declaration.
+///
+/// This routine should be invoked when name lookup has found a
+/// previous declaration (PrevDecl) that is not in the scope where a
+/// new declaration by the same name is being introduced. If the new
+/// declaration occurs in a local scope, previous declarations with
+/// linkage may still be considered previous declarations (C99
+/// 6.2.2p4-5, C++ [basic.link]p6).
+///
+/// \param PrevDecl the previous declaration found by name
+/// lookup
+///
+/// \param DC the context in which the new declaration is being
+/// declared.
+///
+/// \returns true if PrevDecl is an out-of-scope previous declaration
+/// for a new delcaration with the same name.
+static bool
+isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
+ ASTContext &Context) {
+ if (!PrevDecl)
+ return 0;
+
+ // FIXME: PrevDecl could be an OverloadedFunctionDecl, in which
+ // case we need to check each of the overloaded functions.
+ if (!PrevDecl->hasLinkage())
+ return false;
+
+ if (Context.getLangOptions().CPlusPlus) {
+ // C++ [basic.link]p6:
+ // If there is a visible declaration of an entity with linkage
+ // having the same name and type, ignoring entities declared
+ // outside the innermost enclosing namespace scope, the block
+ // scope declaration declares that same entity and receives the
+ // linkage of the previous declaration.
+ DeclContext *OuterContext = DC->getLookupContext();
+ if (!OuterContext->isFunctionOrMethod())
+ // This rule only applies to block-scope declarations.
+ return false;
+ else {
+ DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
+ if (PrevOuterContext->isRecord())
+ // We found a member function: ignore it.
+ return false;
+ else {
+ // Find the innermost enclosing namespace for the new and
+ // previous declarations.
+ while (!OuterContext->isFileContext())
+ OuterContext = OuterContext->getParent();
+ while (!PrevOuterContext->isFileContext())
+ PrevOuterContext = PrevOuterContext->getParent();
+
+ // The previous declaration is in a different namespace, so it
+ // isn't the same function.
+ if (OuterContext->getPrimaryContext() !=
+ PrevOuterContext->getPrimaryContext())
+ return false;
+ }
+ }
+ }
+
+ return true;
+}
+
+NamedDecl*
+Sema::ActOnVariableDeclarator(Scope* S, Declarator& D, DeclContext* DC,
+ QualType R,NamedDecl* PrevDecl,
+ bool &Redeclaration) {
+ DeclarationName Name = GetNameForDeclarator(D);
+
+ // Check that there are no default arguments (C++ only).
+ if (getLangOptions().CPlusPlus)
+ CheckExtraCXXDefaultArguments(D);
+
+ VarDecl *NewVD;
+ VarDecl::StorageClass SC;
+ switch (D.getDeclSpec().getStorageClassSpec()) {
+ default: assert(0 && "Unknown storage class!");
+ case DeclSpec::SCS_unspecified: SC = VarDecl::None; break;
+ case DeclSpec::SCS_extern: SC = VarDecl::Extern; break;
+ case DeclSpec::SCS_static: SC = VarDecl::Static; break;
+ case DeclSpec::SCS_auto: SC = VarDecl::Auto; break;
+ case DeclSpec::SCS_register: SC = VarDecl::Register; break;
+ case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
+ case DeclSpec::SCS_mutable:
+ // mutable can only appear on non-static class members, so it's always
+ // an error here
+ Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
+ D.setInvalidType();
+ SC = VarDecl::None;
+ break;
+ }
+
+ IdentifierInfo *II = Name.getAsIdentifierInfo();
+ if (!II) {
+ Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
+ << Name.getAsString();
+ return 0;
+ }
+
+ DiagnoseFunctionSpecifiers(D);
+
+ if (!DC->isRecord() && S->getFnParent() == 0) {
+ // C99 6.9p2: The storage-class specifiers auto and register shall not
+ // appear in the declaration specifiers in an external declaration.
+ if (SC == VarDecl::Auto || SC == VarDecl::Register) {
+
+ // If this is a register variable with an asm label specified, then this
+ // is a GNU extension.
+ if (SC == VarDecl::Register && D.getAsmLabel())
+ Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
+ else
+ Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
+ D.setInvalidType();
+ }
+ }
+ if (DC->isRecord() && !CurContext->isRecord()) {
+ // This is an out-of-line definition of a static data member.
+ if (SC == VarDecl::Static) {
+ Diag(D.getDeclSpec().getStorageClassSpecLoc(),
+ diag::err_static_out_of_line)
+ << CodeModificationHint::CreateRemoval(
+ SourceRange(D.getDeclSpec().getStorageClassSpecLoc()));
+ } else if (SC == VarDecl::None)
+ SC = VarDecl::Static;
+ }
+
+ // The variable can not
+ NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
+ II, R, SC,
+ // FIXME: Move to DeclGroup...
+ D.getDeclSpec().getSourceRange().getBegin());
+
+ if (D.isInvalidType())
+ NewVD->setInvalidDecl();
+
+ if (D.getDeclSpec().isThreadSpecified()) {
+ if (NewVD->hasLocalStorage())
+ Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
+ else if (!Context.Target.isTLSSupported())
+ Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
+ else
+ NewVD->setThreadSpecified(true);
+ }
+
+ // Set the lexical context. If the declarator has a C++ scope specifier, the
+ // lexical context will be different from the semantic context.
+ NewVD->setLexicalDeclContext(CurContext);
+
+ // Handle attributes prior to checking for duplicates in MergeVarDecl
+ ProcessDeclAttributes(NewVD, D);
+
+ // Handle GNU asm-label extension (encoded as an attribute).
+ if (Expr *E = (Expr*) D.getAsmLabel()) {
+ // The parser guarantees this is a string.
+ StringLiteral *SE = cast<StringLiteral>(E);
+ NewVD->addAttr(::new (Context) AsmLabelAttr(std::string(SE->getStrData(),
+ SE->getByteLength())));
+ }
+
+ // If name lookup finds a previous declaration that is not in the
+ // same scope as the new declaration, this may still be an
+ // acceptable redeclaration.
+ if (PrevDecl && !isDeclInScope(PrevDecl, DC, S) &&
+ !(NewVD->hasLinkage() &&
+ isOutOfScopePreviousDeclaration(PrevDecl, DC, Context)))
+ PrevDecl = 0;
+
+ // Merge the decl with the existing one if appropriate.
+ if (PrevDecl) {
+ if (isa<FieldDecl>(PrevDecl) && D.getCXXScopeSpec().isSet()) {
+ // The user tried to define a non-static data member
+ // out-of-line (C++ [dcl.meaning]p1).
+ Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
+ << D.getCXXScopeSpec().getRange();
+ PrevDecl = 0;
+ NewVD->setInvalidDecl();
+ }
+ } else if (D.getCXXScopeSpec().isSet()) {
+ // No previous declaration in the qualifying scope.
+ Diag(D.getIdentifierLoc(), diag::err_typecheck_no_member)
+ << Name << D.getCXXScopeSpec().getRange();
+ NewVD->setInvalidDecl();
+ }
+
+ CheckVariableDeclaration(NewVD, PrevDecl, Redeclaration);
+
+ // If this is a locally-scoped extern C variable, update the map of
+ // such variables.
+ if (CurContext->isFunctionOrMethod() && NewVD->isExternC(Context) &&
+ !NewVD->isInvalidDecl())
+ RegisterLocallyScopedExternCDecl(NewVD, PrevDecl, S);
+
+ return NewVD;
+}
+
+/// \brief Perform semantic checking on a newly-created variable
+/// declaration.
+///
+/// This routine performs all of the type-checking required for a
+/// variable declaration once it has been built. It is used both to
+/// check variables after they have been parsed and their declarators
+/// have been translated into a declaration, and to check variables
+/// that have been instantiated from a template.
+///
+/// Sets NewVD->isInvalidDecl() if an error was encountered.
+void Sema::CheckVariableDeclaration(VarDecl *NewVD, NamedDecl *PrevDecl,
+ bool &Redeclaration) {
+ // If the decl is already known invalid, don't check it.
+ if (NewVD->isInvalidDecl())
+ return;
+
+ QualType T = NewVD->getType();
+
+ if (T->isObjCInterfaceType()) {
+ Diag(NewVD->getLocation(), diag::err_statically_allocated_object);
+ return NewVD->setInvalidDecl();
+ }
+
+ // The variable can not have an abstract class type.
+ if (RequireNonAbstractType(NewVD->getLocation(), T,
+ diag::err_abstract_type_in_decl,
+ AbstractVariableType))
+ return NewVD->setInvalidDecl();
+
+ // Emit an error if an address space was applied to decl with local storage.
+ // This includes arrays of objects with address space qualifiers, but not
+ // automatic variables that point to other address spaces.
+ // ISO/IEC TR 18037 S5.1.2
+ if (NewVD->hasLocalStorage() && (T.getAddressSpace() != 0)) {
+ Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
+ return NewVD->setInvalidDecl();
+ }
+
+ if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
+ && !NewVD->hasAttr<BlocksAttr>())
+ Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
+
+ bool isVM = T->isVariablyModifiedType();
+ if (isVM || NewVD->hasAttr<CleanupAttr>())
+ CurFunctionNeedsScopeChecking = true;
+
+ if ((isVM && NewVD->hasLinkage()) ||
+ (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
+ bool SizeIsNegative;
+ QualType FixedTy =
+ TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
+
+ if (FixedTy.isNull() && T->isVariableArrayType()) {
+ const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
+ // FIXME: This won't give the correct result for
+ // int a[10][n];
+ SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
+
+ if (NewVD->isFileVarDecl())
+ Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
+ << SizeRange;
+ else if (NewVD->getStorageClass() == VarDecl::Static)
+ Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
+ << SizeRange;
+ else
+ Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
+ << SizeRange;
+ return NewVD->setInvalidDecl();
+ }
+
+ if (FixedTy.isNull()) {
+ if (NewVD->isFileVarDecl())
+ Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
+ else
+ Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
+ return NewVD->setInvalidDecl();
+ }
+
+ Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
+ NewVD->setType(FixedTy);
+ }
+
+ if (!PrevDecl && NewVD->isExternC(Context)) {
+ // Since we did not find anything by this name and we're declaring
+ // an extern "C" variable, look for a non-visible extern "C"
+ // declaration with the same name.
+ llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
+ = LocallyScopedExternalDecls.find(NewVD->getDeclName());
+ if (Pos != LocallyScopedExternalDecls.end())
+ PrevDecl = Pos->second;
+ }
+
+ if (T->isVoidType() && !NewVD->hasExternalStorage()) {
+ Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
+ << T;
+ return NewVD->setInvalidDecl();
+ }
+
+ if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
+ Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
+ return NewVD->setInvalidDecl();
+ }
+
+ if (isVM && NewVD->hasAttr<BlocksAttr>()) {
+ Diag(NewVD->getLocation(), diag::err_block_on_vm);
+ return NewVD->setInvalidDecl();
+ }
+
+ if (PrevDecl) {
+ Redeclaration = true;
+ MergeVarDecl(NewVD, PrevDecl);
+ }
+}
+
+NamedDecl*
+Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
+ QualType R, NamedDecl* PrevDecl,
+ bool IsFunctionDefinition, bool &Redeclaration) {
+ assert(R.getTypePtr()->isFunctionType());
+
+ DeclarationName Name = GetNameForDeclarator(D);
+ FunctionDecl::StorageClass SC = FunctionDecl::None;
+ switch (D.getDeclSpec().getStorageClassSpec()) {
+ default: assert(0 && "Unknown storage class!");
+ case DeclSpec::SCS_auto:
+ case DeclSpec::SCS_register:
+ case DeclSpec::SCS_mutable:
+ Diag(D.getDeclSpec().getStorageClassSpecLoc(),
+ diag::err_typecheck_sclass_func);
+ D.setInvalidType();
+ break;
+ case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
+ case DeclSpec::SCS_extern: SC = FunctionDecl::Extern; break;
+ case DeclSpec::SCS_static: {
+ if (CurContext->getLookupContext()->isFunctionOrMethod()) {
+ // C99 6.7.1p5:
+ // The declaration of an identifier for a function that has
+ // block scope shall have no explicit storage-class specifier
+ // other than extern
+ // See also (C++ [dcl.stc]p4).
+ Diag(D.getDeclSpec().getStorageClassSpecLoc(),
+ diag::err_static_block_func);
+ SC = FunctionDecl::None;
+ } else
+ SC = FunctionDecl::Static;
+ break;
+ }
+ case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
+ }
+
+ if (D.getDeclSpec().isThreadSpecified())
+ Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
+
+ bool isInline = D.getDeclSpec().isInlineSpecified();
+ bool isVirtual = D.getDeclSpec().isVirtualSpecified();
+ bool isExplicit = D.getDeclSpec().isExplicitSpecified();
+
+ // Check that the return type is not an abstract class type.
+ // For record types, this is done by the AbstractClassUsageDiagnoser once
+ // the class has been completely parsed.
+ if (!DC->isRecord() &&
+ RequireNonAbstractType(D.getIdentifierLoc(),
+ R->getAsFunctionType()->getResultType(),
+ diag::err_abstract_type_in_decl,
+ AbstractReturnType))
+ D.setInvalidType();
+
+ // Do not allow returning a objc interface by-value.
+ if (R->getAsFunctionType()->getResultType()->isObjCInterfaceType()) {
+ Diag(D.getIdentifierLoc(),
+ diag::err_object_cannot_be_passed_returned_by_value) << 0
+ << R->getAsFunctionType()->getResultType();
+ D.setInvalidType();
+ }
+
+ bool isVirtualOkay = false;
+ FunctionDecl *NewFD;
+ if (D.getKind() == Declarator::DK_Constructor) {
+ // This is a C++ constructor declaration.
+ assert(DC->isRecord() &&
+ "Constructors can only be declared in a member context");
+
+ R = CheckConstructorDeclarator(D, R, SC);
+
+ // Create the new declaration
+ NewFD = CXXConstructorDecl::Create(Context,
+ cast<CXXRecordDecl>(DC),
+ D.getIdentifierLoc(), Name, R,
+ isExplicit, isInline,
+ /*isImplicitlyDeclared=*/false);
+ } else if (D.getKind() == Declarator::DK_Destructor) {
+ // This is a C++ destructor declaration.
+ if (DC->isRecord()) {
+ R = CheckDestructorDeclarator(D, SC);
+
+ NewFD = CXXDestructorDecl::Create(Context,
+ cast<CXXRecordDecl>(DC),
+ D.getIdentifierLoc(), Name, R,
+ isInline,
+ /*isImplicitlyDeclared=*/false);
+
+ isVirtualOkay = true;
+ } else {
+ Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
+
+ // Create a FunctionDecl to satisfy the function definition parsing
+ // code path.
+ NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
+ Name, R, SC, isInline,
+ /*hasPrototype=*/true,
+ // FIXME: Move to DeclGroup...
+ D.getDeclSpec().getSourceRange().getBegin());
+ D.setInvalidType();
+ }
+ } else if (D.getKind() == Declarator::DK_Conversion) {
+ if (!DC->isRecord()) {
+ Diag(D.getIdentifierLoc(),
+ diag::err_conv_function_not_member);
+ return 0;
+ }
+
+ CheckConversionDeclarator(D, R, SC);
+ NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
+ D.getIdentifierLoc(), Name, R,
+ isInline, isExplicit);
+
+ isVirtualOkay = true;
+ } else if (DC->isRecord()) {
+ // If the of the function is the same as the name of the record, then this
+ // must be an invalid constructor that has a return type.
+ // (The parser checks for a return type and makes the declarator a
+ // constructor if it has no return type).
+ // must have an invalid constructor that has a return type
+ if (Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
+ Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
+ << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
+ << SourceRange(D.getIdentifierLoc());
+ return 0;
+ }
+
+ // This is a C++ method declaration.
+ NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
+ D.getIdentifierLoc(), Name, R,
+ (SC == FunctionDecl::Static), isInline);
+
+ isVirtualOkay = (SC != FunctionDecl::Static);
+ } else {
+ // Determine whether the function was written with a
+ // prototype. This true when:
+ // - we're in C++ (where every function has a prototype),
+ // - there is a prototype in the declarator, or
+ // - the type R of the function is some kind of typedef or other reference
+ // to a type name (which eventually refers to a function type).
+ bool HasPrototype =
+ getLangOptions().CPlusPlus ||
+ (D.getNumTypeObjects() && D.getTypeObject(0).Fun.hasPrototype) ||
+ (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
+
+ NewFD = FunctionDecl::Create(Context, DC,
+ D.getIdentifierLoc(),
+ Name, R, SC, isInline, HasPrototype,
+ // FIXME: Move to DeclGroup...
+ D.getDeclSpec().getSourceRange().getBegin());
+ }
+
+ if (D.isInvalidType())
+ NewFD->setInvalidDecl();
+
+ // Set the lexical context. If the declarator has a C++
+ // scope specifier, the lexical context will be different
+ // from the semantic context.
+ NewFD->setLexicalDeclContext(CurContext);
+
+ // C++ [dcl.fct.spec]p5:
+ // The virtual specifier shall only be used in declarations of
+ // nonstatic class member functions that appear within a
+ // member-specification of a class declaration; see 10.3.
+ //
+ if (isVirtual && !NewFD->isInvalidDecl()) {
+ if (!isVirtualOkay) {
+ Diag(D.getDeclSpec().getVirtualSpecLoc(),
+ diag::err_virtual_non_function);
+ } else if (!CurContext->isRecord()) {
+ // 'virtual' was specified outside of the class.
+ Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_out_of_class)
+ << CodeModificationHint::CreateRemoval(
+ SourceRange(D.getDeclSpec().getVirtualSpecLoc()));
+ } else {
+ // Okay: Add virtual to the method.
+ cast<CXXMethodDecl>(NewFD)->setVirtualAsWritten(true);
+ CXXRecordDecl *CurClass = cast<CXXRecordDecl>(DC);
+ CurClass->setAggregate(false);
+ CurClass->setPOD(false);
+ CurClass->setPolymorphic(true);
+ CurClass->setHasTrivialConstructor(false);
+ }
+ }
+
+ if (CXXMethodDecl *NewMD = dyn_cast<CXXMethodDecl>(NewFD)) {
+ // Look for virtual methods in base classes that this method might override.
+
+ BasePaths Paths;
+ if (LookupInBases(cast<CXXRecordDecl>(DC),
+ MemberLookupCriteria(NewMD), Paths)) {
+ for (BasePaths::decl_iterator I = Paths.found_decls_begin(),
+ E = Paths.found_decls_end(); I != E; ++I) {
+ if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
+ if (!CheckOverridingFunctionReturnType(NewMD, OldMD))
+ NewMD->addOverriddenMethod(OldMD);
+ }
+ }
+ }
+ }
+
+ if (SC == FunctionDecl::Static && isa<CXXMethodDecl>(NewFD) &&
+ !CurContext->isRecord()) {
+ // C++ [class.static]p1:
+ // A data or function member of a class may be declared static
+ // in a class definition, in which case it is a static member of
+ // the class.
+
+ // Complain about the 'static' specifier if it's on an out-of-line
+ // member function definition.
+ Diag(D.getDeclSpec().getStorageClassSpecLoc(),
+ diag::err_static_out_of_line)
+ << CodeModificationHint::CreateRemoval(
+ SourceRange(D.getDeclSpec().getStorageClassSpecLoc()));
+ }
+
+ // Handle GNU asm-label extension (encoded as an attribute).
+ if (Expr *E = (Expr*) D.getAsmLabel()) {
+ // The parser guarantees this is a string.
+ StringLiteral *SE = cast<StringLiteral>(E);
+ NewFD->addAttr(::new (Context) AsmLabelAttr(std::string(SE->getStrData(),
+ SE->getByteLength())));
+ }
+
+ // Copy the parameter declarations from the declarator D to the function
+ // declaration NewFD, if they are available. First scavenge them into Params.
+ llvm::SmallVector<ParmVarDecl*, 16> Params;
+ if (D.getNumTypeObjects() > 0) {
+ DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
+
+ // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
+ // function that takes no arguments, not a function that takes a
+ // single void argument.
+ // We let through "const void" here because Sema::GetTypeForDeclarator
+ // already checks for that case.
+ if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
+ FTI.ArgInfo[0].Param &&
+ FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType()) {
+ // Empty arg list, don't push any params.
+ ParmVarDecl *Param = FTI.ArgInfo[0].Param.getAs<ParmVarDecl>();
+
+ // In C++, the empty parameter-type-list must be spelled "void"; a
+ // typedef of void is not permitted.
+ if (getLangOptions().CPlusPlus &&
+ Param->getType().getUnqualifiedType() != Context.VoidTy)
+ Diag(Param->getLocation(), diag::err_param_typedef_of_void);
+ // FIXME: Leaks decl?
+ } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
+ for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i)
+ Params.push_back(FTI.ArgInfo[i].Param.getAs<ParmVarDecl>());
+ }
+
+ } else if (const FunctionProtoType *FT = R->getAsFunctionProtoType()) {
+ // When we're declaring a function with a typedef, typeof, etc as in the
+ // following example, we'll need to synthesize (unnamed)
+ // parameters for use in the declaration.
+ //
+ // @code
+ // typedef void fn(int);
+ // fn f;
+ // @endcode
+
+ // Synthesize a parameter for each argument type.
+ for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
+ AE = FT->arg_type_end(); AI != AE; ++AI) {
+ ParmVarDecl *Param = ParmVarDecl::Create(Context, DC,
+ SourceLocation(), 0,
+ *AI, VarDecl::None, 0);
+ Param->setImplicit();
+ Params.push_back(Param);
+ }
+ } else {
+ assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
+ "Should not need args for typedef of non-prototype fn");
+ }
+ // Finally, we know we have the right number of parameters, install them.
+ NewFD->setParams(Context, Params.data(), Params.size());
+
+
+
+ // If name lookup finds a previous declaration that is not in the
+ // same scope as the new declaration, this may still be an
+ // acceptable redeclaration.
+ if (PrevDecl && !isDeclInScope(PrevDecl, DC, S) &&
+ !(NewFD->hasLinkage() &&
+ isOutOfScopePreviousDeclaration(PrevDecl, DC, Context)))
+ PrevDecl = 0;
+
+ // Perform semantic checking on the function declaration.
+ bool OverloadableAttrRequired = false; // FIXME: HACK!
+ CheckFunctionDeclaration(NewFD, PrevDecl, Redeclaration,
+ /*FIXME:*/OverloadableAttrRequired);
+
+ if (D.getCXXScopeSpec().isSet() && !NewFD->isInvalidDecl()) {
+ // An out-of-line member function declaration must also be a
+ // definition (C++ [dcl.meaning]p1).
+ if (!IsFunctionDefinition) {
+ Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
+ << D.getCXXScopeSpec().getRange();
+ NewFD->setInvalidDecl();
+ } else if (!Redeclaration) {
+ // The user tried to provide an out-of-line definition for a
+ // function that is a member of a class or namespace, but there
+ // was no such member function declared (C++ [class.mfct]p2,
+ // C++ [namespace.memdef]p2). For example:
+ //
+ // class X {
+ // void f() const;
+ // };
+ //
+ // void X::f() { } // ill-formed
+ //
+ // Complain about this problem, and attempt to suggest close
+ // matches (e.g., those that differ only in cv-qualifiers and
+ // whether the parameter types are references).
+ Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
+ << cast<NamedDecl>(DC) << D.getCXXScopeSpec().getRange();
+ NewFD->setInvalidDecl();
+
+ LookupResult Prev = LookupQualifiedName(DC, Name, LookupOrdinaryName,
+ true);
+ assert(!Prev.isAmbiguous() &&
+ "Cannot have an ambiguity in previous-declaration lookup");
+ for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
+ Func != FuncEnd; ++Func) {
+ if (isa<FunctionDecl>(*Func) &&
+ isNearlyMatchingFunction(Context, cast<FunctionDecl>(*Func), NewFD))
+ Diag((*Func)->getLocation(), diag::note_member_def_close_match);
+ }
+
+ PrevDecl = 0;
+ }
+ }
+
+ // Handle attributes. We need to have merged decls when handling attributes
+ // (for example to check for conflicts, etc).
+ // FIXME: This needs to happen before we merge declarations. Then,
+ // let attribute merging cope with attribute conflicts.
+ ProcessDeclAttributes(NewFD, D);
+ AddKnownFunctionAttributes(NewFD);
+
+ if (OverloadableAttrRequired && !NewFD->getAttr<OverloadableAttr>()) {
+ // If a function name is overloadable in C, then every function
+ // with that name must be marked "overloadable".
+ Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
+ << Redeclaration << NewFD;
+ if (PrevDecl)
+ Diag(PrevDecl->getLocation(),
+ diag::note_attribute_overloadable_prev_overload);
+ NewFD->addAttr(::new (Context) OverloadableAttr());
+ }
+
+ // If this is a locally-scoped extern C function, update the
+ // map of such names.
+ if (CurContext->isFunctionOrMethod() && NewFD->isExternC(Context)
+ && !NewFD->isInvalidDecl())
+ RegisterLocallyScopedExternCDecl(NewFD, PrevDecl, S);
+
+ return NewFD;
+}
+
+/// \brief Perform semantic checking of a new function declaration.
+///
+/// Performs semantic analysis of the new function declaration
+/// NewFD. This routine performs all semantic checking that does not
+/// require the actual declarator involved in the declaration, and is
+/// used both for the declaration of functions as they are parsed
+/// (called via ActOnDeclarator) and for the declaration of functions
+/// that have been instantiated via C++ template instantiation (called
+/// via InstantiateDecl).
+///
+/// This sets NewFD->isInvalidDecl() to true if there was an error.
+void Sema::CheckFunctionDeclaration(FunctionDecl *NewFD, NamedDecl *&PrevDecl,
+ bool &Redeclaration,
+ bool &OverloadableAttrRequired) {
+ // If NewFD is already known erroneous, don't do any of this checking.
+ if (NewFD->isInvalidDecl())
+ return;
+
+ if (NewFD->getResultType()->isVariablyModifiedType()) {
+ // Functions returning a variably modified type violate C99 6.7.5.2p2
+ // because all functions have linkage.
+ Diag(NewFD->getLocation(), diag::err_vm_func_decl);
+ return NewFD->setInvalidDecl();
+ }
+
+ // Semantic checking for this function declaration (in isolation).
+ if (getLangOptions().CPlusPlus) {
+ // C++-specific checks.
+ if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
+ CheckConstructor(Constructor);
+ } else if (isa<CXXDestructorDecl>(NewFD)) {
+ CXXRecordDecl *Record = cast<CXXRecordDecl>(NewFD->getParent());
+ Record->setUserDeclaredDestructor(true);
+ // C++ [class]p4: A POD-struct is an aggregate class that has [...] no
+ // user-defined destructor.
+ Record->setPOD(false);
+
+ // C++ [class.dtor]p3: A destructor is trivial if it is an implicitly-
+ // declared destructor.
+ Record->setHasTrivialDestructor(false);
+ } else if (CXXConversionDecl *Conversion
+ = dyn_cast<CXXConversionDecl>(NewFD))
+ ActOnConversionDeclarator(Conversion);
+
+ // Extra checking for C++ overloaded operators (C++ [over.oper]).
+ if (NewFD->isOverloadedOperator() &&
+ CheckOverloadedOperatorDeclaration(NewFD))
+ return NewFD->setInvalidDecl();
+ }
+
+ // C99 6.7.4p6:
+ // [... ] For a function with external linkage, the following
+ // restrictions apply: [...] If all of the file scope declarations
+ // for a function in a translation unit include the inline
+ // function specifier without extern, then the definition in that
+ // translation unit is an inline definition. An inline definition
+ // does not provide an external definition for the function, and
+ // does not forbid an external definition in another translation
+ // unit.
+ //
+ // Here we determine whether this function, in isolation, would be a
+ // C99 inline definition. MergeCompatibleFunctionDecls looks at
+ // previous declarations.
+ if (NewFD->isInline() && getLangOptions().C99 &&
+ NewFD->getStorageClass() == FunctionDecl::None &&
+ NewFD->getDeclContext()->getLookupContext()->isTranslationUnit())
+ NewFD->setC99InlineDefinition(true);
+
+ // Check for a previous declaration of this name.
+ if (!PrevDecl && NewFD->isExternC(Context)) {
+ // Since we did not find anything by this name and we're declaring
+ // an extern "C" function, look for a non-visible extern "C"
+ // declaration with the same name.
+ llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
+ = LocallyScopedExternalDecls.find(NewFD->getDeclName());
+ if (Pos != LocallyScopedExternalDecls.end())
+ PrevDecl = Pos->second;
+ }
+
+ // Merge or overload the declaration with an existing declaration of
+ // the same name, if appropriate.
+ if (PrevDecl) {
+ // Determine whether NewFD is an overload of PrevDecl or
+ // a declaration that requires merging. If it's an overload,
+ // there's no more work to do here; we'll just add the new
+ // function to the scope.
+ OverloadedFunctionDecl::function_iterator MatchedDecl;
+
+ if (!getLangOptions().CPlusPlus &&
+ AllowOverloadingOfFunction(PrevDecl, Context)) {
+ OverloadableAttrRequired = true;
+
+ // Functions marked "overloadable" must have a prototype (that
+ // we can't get through declaration merging).
+ if (!NewFD->getType()->getAsFunctionProtoType()) {
+ Diag(NewFD->getLocation(), diag::err_attribute_overloadable_no_prototype)
+ << NewFD;
+ Redeclaration = true;
+
+ // Turn this into a variadic function with no parameters.
+ QualType R = Context.getFunctionType(
+ NewFD->getType()->getAsFunctionType()->getResultType(),
+ 0, 0, true, 0);
+ NewFD->setType(R);
+ return NewFD->setInvalidDecl();
+ }
+ }
+
+ if (PrevDecl &&
+ (!AllowOverloadingOfFunction(PrevDecl, Context) ||
+ !IsOverload(NewFD, PrevDecl, MatchedDecl))) {
+ Redeclaration = true;
+ Decl *OldDecl = PrevDecl;
+
+ // If PrevDecl was an overloaded function, extract the
+ // FunctionDecl that matched.
+ if (isa<OverloadedFunctionDecl>(PrevDecl))
+ OldDecl = *MatchedDecl;
+
+ // NewFD and OldDecl represent declarations that need to be
+ // merged.
+ if (MergeFunctionDecl(NewFD, OldDecl))
+ return NewFD->setInvalidDecl();
+
+ NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
+ }
+ }
+
+ // In C++, check default arguments now that we have merged decls. Unless
+ // the lexical context is the class, because in this case this is done
+ // during delayed parsing anyway.
+ if (getLangOptions().CPlusPlus && !CurContext->isRecord())
+ CheckCXXDefaultArguments(NewFD);
+}
+
+bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
+ // FIXME: Need strict checking. In C89, we need to check for
+ // any assignment, increment, decrement, function-calls, or
+ // commas outside of a sizeof. In C99, it's the same list,
+ // except that the aforementioned are allowed in unevaluated
+ // expressions. Everything else falls under the
+ // "may accept other forms of constant expressions" exception.
+ // (We never end up here for C++, so the constant expression
+ // rules there don't matter.)
+ if (Init->isConstantInitializer(Context))
+ return false;
+ Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
+ << Init->getSourceRange();
+ return true;
+}
+
+void Sema::AddInitializerToDecl(DeclPtrTy dcl, FullExprArg init) {
+ AddInitializerToDecl(dcl, init.release(), /*DirectInit=*/false);
+}
+
+/// AddInitializerToDecl - Adds the initializer Init to the
+/// declaration dcl. If DirectInit is true, this is C++ direct
+/// initialization rather than copy initialization.
+void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init, bool DirectInit) {
+ Decl *RealDecl = dcl.getAs<Decl>();
+ // If there is no declaration, there was an error parsing it. Just ignore
+ // the initializer.
+ if (RealDecl == 0)
+ return;
+
+ if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
+ // With declarators parsed the way they are, the parser cannot
+ // distinguish between a normal initializer and a pure-specifier.
+ // Thus this grotesque test.
+ IntegerLiteral *IL;
+ Expr *Init = static_cast<Expr *>(init.get());
+ if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
+ Context.getCanonicalType(IL->getType()) == Context.IntTy) {
+ if (Method->isVirtualAsWritten()) {
+ Method->setPure();
+
+ // A class is abstract if at least one function is pure virtual.
+ cast<CXXRecordDecl>(CurContext)->setAbstract(true);
+ } else if (!Method->isInvalidDecl()) {
+ Diag(Method->getLocation(), diag::err_non_virtual_pure)
+ << Method->getDeclName() << Init->getSourceRange();
+ Method->setInvalidDecl();
+ }
+ } else {
+ Diag(Method->getLocation(), diag::err_member_function_initialization)
+ << Method->getDeclName() << Init->getSourceRange();
+ Method->setInvalidDecl();
+ }
+ return;
+ }
+
+ VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
+ if (!VDecl) {
+ if (getLangOptions().CPlusPlus &&
+ RealDecl->getLexicalDeclContext()->isRecord() &&
+ isa<NamedDecl>(RealDecl))
+ Diag(RealDecl->getLocation(), diag::err_member_initialization)
+ << cast<NamedDecl>(RealDecl)->getDeclName();
+ else
+ Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
+ RealDecl->setInvalidDecl();
+ return;
+ }
+
+ if (!VDecl->getType()->isArrayType() &&
+ RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
+ diag::err_typecheck_decl_incomplete_type)) {
+ RealDecl->setInvalidDecl();
+ return;
+ }
+
+ const VarDecl *Def = 0;
+ if (VDecl->getDefinition(Def)) {
+ Diag(VDecl->getLocation(), diag::err_redefinition)
+ << VDecl->getDeclName();
+ Diag(Def->getLocation(), diag::note_previous_definition);
+ VDecl->setInvalidDecl();
+ return;
+ }
+
+ // Take ownership of the expression, now that we're sure we have somewhere
+ // to put it.
+ Expr *Init = init.takeAs<Expr>();
+ assert(Init && "missing initializer");
+
+ // Get the decls type and save a reference for later, since
+ // CheckInitializerTypes may change it.
+ QualType DclT = VDecl->getType(), SavT = DclT;
+ if (VDecl->isBlockVarDecl()) {
+ if (VDecl->hasExternalStorage()) { // C99 6.7.8p5
+ Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
+ VDecl->setInvalidDecl();
+ } else if (!VDecl->isInvalidDecl()) {
+ if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
+ VDecl->getDeclName(), DirectInit))
+ VDecl->setInvalidDecl();
+
+ // C++ 3.6.2p2, allow dynamic initialization of static initializers.
+ // Don't check invalid declarations to avoid emitting useless diagnostics.
+ if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
+ if (VDecl->getStorageClass() == VarDecl::Static) // C99 6.7.8p4.
+ CheckForConstantInitializer(Init, DclT);
+ }
+ }
+ } else if (VDecl->isStaticDataMember() &&
+ VDecl->getLexicalDeclContext()->isRecord()) {
+ // This is an in-class initialization for a static data member, e.g.,
+ //
+ // struct S {
+ // static const int value = 17;
+ // };
+
+ // Attach the initializer
+ VDecl->setInit(Context, Init);
+
+ // C++ [class.mem]p4:
+ // A member-declarator can contain a constant-initializer only
+ // if it declares a static member (9.4) of const integral or
+ // const enumeration type, see 9.4.2.
+ QualType T = VDecl->getType();
+ if (!T->isDependentType() &&
+ (!Context.getCanonicalType(T).isConstQualified() ||
+ !T->isIntegralType())) {
+ Diag(VDecl->getLocation(), diag::err_member_initialization)
+ << VDecl->getDeclName() << Init->getSourceRange();
+ VDecl->setInvalidDecl();
+ } else {
+ // C++ [class.static.data]p4:
+ // If a static data member is of const integral or const
+ // enumeration type, its declaration in the class definition
+ // can specify a constant-initializer which shall be an
+ // integral constant expression (5.19).
+ if (!Init->isTypeDependent() &&
+ !Init->getType()->isIntegralType()) {
+ // We have a non-dependent, non-integral or enumeration type.
+ Diag(Init->getSourceRange().getBegin(),
+ diag::err_in_class_initializer_non_integral_type)
+ << Init->getType() << Init->getSourceRange();
+ VDecl->setInvalidDecl();
+ } else if (!Init->isTypeDependent() && !Init->isValueDependent()) {
+ // Check whether the expression is a constant expression.
+ llvm::APSInt Value;
+ SourceLocation Loc;
+ if (!Init->isIntegerConstantExpr(Value, Context, &Loc)) {
+ Diag(Loc, diag::err_in_class_initializer_non_constant)
+ << Init->getSourceRange();
+ VDecl->setInvalidDecl();
+ } else if (!VDecl->getType()->isDependentType())
+ ImpCastExprToType(Init, VDecl->getType());
+ }
+ }
+ } else if (VDecl->isFileVarDecl()) {
+ if (VDecl->getStorageClass() == VarDecl::Extern)
+ Diag(VDecl->getLocation(), diag::warn_extern_init);
+ if (!VDecl->isInvalidDecl())
+ if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
+ VDecl->getDeclName(), DirectInit))
+ VDecl->setInvalidDecl();
+
+ // C++ 3.6.2p2, allow dynamic initialization of static initializers.
+ // Don't check invalid declarations to avoid emitting useless diagnostics.
+ if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
+ // C99 6.7.8p4. All file scoped initializers need to be constant.
+ CheckForConstantInitializer(Init, DclT);
+ }
+ }
+ // If the type changed, it means we had an incomplete type that was
+ // completed by the initializer. For example:
+ // int ary[] = { 1, 3, 5 };
+ // "ary" transitions from a VariableArrayType to a ConstantArrayType.
+ if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
+ VDecl->setType(DclT);
+ Init->setType(DclT);
+ }
+
+ // Attach the initializer to the decl.
+ VDecl->setInit(Context, Init);
+
+ // If the previous declaration of VDecl was a tentative definition,
+ // remove it from the set of tentative definitions.
+ if (VDecl->getPreviousDeclaration() &&
+ VDecl->getPreviousDeclaration()->isTentativeDefinition(Context)) {
+ llvm::DenseMap<DeclarationName, VarDecl *>::iterator Pos
+ = TentativeDefinitions.find(VDecl->getDeclName());
+ assert(Pos != TentativeDefinitions.end() &&
+ "Unrecorded tentative definition?");
+ TentativeDefinitions.erase(Pos);
+ }
+
+ return;
+}
+
+void Sema::ActOnUninitializedDecl(DeclPtrTy dcl) {
+ Decl *RealDecl = dcl.getAs<Decl>();
+
+ // If there is no declaration, there was an error parsing it. Just ignore it.
+ if (RealDecl == 0)
+ return;
+
+ if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
+ QualType Type = Var->getType();
+
+ // Record tentative definitions.
+ if (Var->isTentativeDefinition(Context))
+ TentativeDefinitions[Var->getDeclName()] = Var;
+
+ // C++ [dcl.init.ref]p3:
+ // The initializer can be omitted for a reference only in a
+ // parameter declaration (8.3.5), in the declaration of a
+ // function return type, in the declaration of a class member
+ // within its class declaration (9.2), and where the extern
+ // specifier is explicitly used.
+ if (Type->isReferenceType() && !Var->hasExternalStorage()) {
+ Diag(Var->getLocation(), diag::err_reference_var_requires_init)
+ << Var->getDeclName()
+ << SourceRange(Var->getLocation(), Var->getLocation());
+ Var->setInvalidDecl();
+ return;
+ }
+
+ // C++ [dcl.init]p9:
+ //
+ // If no initializer is specified for an object, and the object
+ // is of (possibly cv-qualified) non-POD class type (or array
+ // thereof), the object shall be default-initialized; if the
+ // object is of const-qualified type, the underlying class type
+ // shall have a user-declared default constructor.
+ if (getLangOptions().CPlusPlus) {
+ QualType InitType = Type;
+ if (const ArrayType *Array = Context.getAsArrayType(Type))
+ InitType = Array->getElementType();
+ if ((!Var->hasExternalStorage() && !Var->isExternC(Context)) &&
+ InitType->isRecordType() && !InitType->isDependentType()) {
+ CXXRecordDecl *RD =
+ cast<CXXRecordDecl>(InitType->getAsRecordType()->getDecl());
+ CXXConstructorDecl *Constructor = 0;
+ if (!RequireCompleteType(Var->getLocation(), InitType,
+ diag::err_invalid_incomplete_type_use))
+ Constructor
+ = PerformInitializationByConstructor(InitType, 0, 0,
+ Var->getLocation(),
+ SourceRange(Var->getLocation(),
+ Var->getLocation()),
+ Var->getDeclName(),
+ IK_Default);
+ if (!Constructor)
+ Var->setInvalidDecl();
+ else if (!RD->hasTrivialConstructor())
+ InitializeVarWithConstructor(Var, Constructor, InitType, 0, 0);
+ }
+ }
+
+#if 0
+ // FIXME: Temporarily disabled because we are not properly parsing
+ // linkage specifications on declarations, e.g.,
+ //
+ // extern "C" const CGPoint CGPointerZero;
+ //
+ // C++ [dcl.init]p9:
+ //
+ // If no initializer is specified for an object, and the
+ // object is of (possibly cv-qualified) non-POD class type (or
+ // array thereof), the object shall be default-initialized; if
+ // the object is of const-qualified type, the underlying class
+ // type shall have a user-declared default
+ // constructor. Otherwise, if no initializer is specified for
+ // an object, the object and its subobjects, if any, have an
+ // indeterminate initial value; if the object or any of its
+ // subobjects are of const-qualified type, the program is
+ // ill-formed.
+ //
+ // This isn't technically an error in C, so we don't diagnose it.
+ //
+ // FIXME: Actually perform the POD/user-defined default
+ // constructor check.
+ if (getLangOptions().CPlusPlus &&
+ Context.getCanonicalType(Type).isConstQualified() &&
+ !Var->hasExternalStorage())
+ Diag(Var->getLocation(), diag::err_const_var_requires_init)
+ << Var->getName()
+ << SourceRange(Var->getLocation(), Var->getLocation());
+#endif
+ }
+}
+
+Sema::DeclGroupPtrTy Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
+ DeclPtrTy *Group,
+ unsigned NumDecls) {
+ llvm::SmallVector<Decl*, 8> Decls;
+
+ if (DS.isTypeSpecOwned())
+ Decls.push_back((Decl*)DS.getTypeRep());
+
+ for (unsigned i = 0; i != NumDecls; ++i)
+ if (Decl *D = Group[i].getAs<Decl>())
+ Decls.push_back(D);
+
+ // Perform semantic analysis that depends on having fully processed both
+ // the declarator and initializer.
+ for (unsigned i = 0, e = Decls.size(); i != e; ++i) {
+ VarDecl *IDecl = dyn_cast<VarDecl>(Decls[i]);
+ if (!IDecl)
+ continue;
+ QualType T = IDecl->getType();
+
+ // Block scope. C99 6.7p7: If an identifier for an object is declared with
+ // no linkage (C99 6.2.2p6), the type for the object shall be complete...
+ if (IDecl->isBlockVarDecl() && !IDecl->hasExternalStorage()) {
+ if (!IDecl->isInvalidDecl() &&
+ RequireCompleteType(IDecl->getLocation(), T,
+ diag::err_typecheck_decl_incomplete_type))
+ IDecl->setInvalidDecl();
+ }
+ // File scope. C99 6.9.2p2: A declaration of an identifier for and
+ // object that has file scope without an initializer, and without a
+ // storage-class specifier or with the storage-class specifier "static",
+ // constitutes a tentative definition. Note: A tentative definition with
+ // external linkage is valid (C99 6.2.2p5).
+ if (IDecl->isTentativeDefinition(Context)) {
+ QualType CheckType = T;
+ unsigned DiagID = diag::err_typecheck_decl_incomplete_type;
+
+ const IncompleteArrayType *ArrayT = Context.getAsIncompleteArrayType(T);
+ if (ArrayT) {
+ CheckType = ArrayT->getElementType();
+ DiagID = diag::err_illegal_decl_array_incomplete_type;
+ }
+
+ if (IDecl->isInvalidDecl()) {
+ // Do nothing with invalid declarations
+ } else if ((ArrayT || IDecl->getStorageClass() == VarDecl::Static) &&
+ RequireCompleteType(IDecl->getLocation(), CheckType, DiagID)) {
+ // C99 6.9.2p3: If the declaration of an identifier for an object is
+ // a tentative definition and has internal linkage (C99 6.2.2p3), the
+ // declared type shall not be an incomplete type.
+ IDecl->setInvalidDecl();
+ }
+ }
+ }
+ return DeclGroupPtrTy::make(DeclGroupRef::Create(Context,
+ Decls.data(), Decls.size()));
+}
+
+
+/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
+/// to introduce parameters into function prototype scope.
+Sema::DeclPtrTy
+Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
+ const DeclSpec &DS = D.getDeclSpec();
+
+ // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
+ VarDecl::StorageClass StorageClass = VarDecl::None;
+ if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
+ StorageClass = VarDecl::Register;
+ } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
+ Diag(DS.getStorageClassSpecLoc(),
+ diag::err_invalid_storage_class_in_func_decl);
+ D.getMutableDeclSpec().ClearStorageClassSpecs();
+ }
+
+ if (D.getDeclSpec().isThreadSpecified())
+ Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
+
+ DiagnoseFunctionSpecifiers(D);
+
+ // Check that there are no default arguments inside the type of this
+ // parameter (C++ only).
+ if (getLangOptions().CPlusPlus)
+ CheckExtraCXXDefaultArguments(D);
+
+ TagDecl *OwnedDecl = 0;
+ QualType parmDeclType = GetTypeForDeclarator(D, S, /*Skip=*/0, &OwnedDecl);
+
+ if (getLangOptions().CPlusPlus && OwnedDecl && OwnedDecl->isDefinition()) {
+ // C++ [dcl.fct]p6:
+ // Types shall not be defined in return or parameter types.
+ Diag(OwnedDecl->getLocation(), diag::err_type_defined_in_param_type)
+ << Context.getTypeDeclType(OwnedDecl);
+ }
+
+ // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
+ // Can this happen for params? We already checked that they don't conflict
+ // among each other. Here they can only shadow globals, which is ok.
+ IdentifierInfo *II = D.getIdentifier();
+ if (II) {
+ if (NamedDecl *PrevDecl = LookupName(S, II, LookupOrdinaryName)) {
+ if (PrevDecl->isTemplateParameter()) {
+ // Maybe we will complain about the shadowed template parameter.
+ DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
+ // Just pretend that we didn't see the previous declaration.
+ PrevDecl = 0;
+ } else if (S->isDeclScope(DeclPtrTy::make(PrevDecl))) {
+ Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
+
+ // Recover by removing the name
+ II = 0;
+ D.SetIdentifier(0, D.getIdentifierLoc());
+ }
+ }
+ }
+
+ // Parameters can not be abstract class types.
+ // For record types, this is done by the AbstractClassUsageDiagnoser once
+ // the class has been completely parsed.
+ if (!CurContext->isRecord() &&
+ RequireNonAbstractType(D.getIdentifierLoc(), parmDeclType,
+ diag::err_abstract_type_in_decl,
+ AbstractParamType))
+ D.setInvalidType(true);
+
+ QualType T = adjustParameterType(parmDeclType);
+
+ ParmVarDecl *New;
+ if (T == parmDeclType) // parameter type did not need adjustment
+ New = ParmVarDecl::Create(Context, CurContext,
+ D.getIdentifierLoc(), II,
+ parmDeclType, StorageClass,
+ 0);
+ else // keep track of both the adjusted and unadjusted types
+ New = OriginalParmVarDecl::Create(Context, CurContext,
+ D.getIdentifierLoc(), II, T,
+ parmDeclType, StorageClass, 0);
+
+ if (D.isInvalidType())
+ New->setInvalidDecl();
+
+ // Parameter declarators cannot be interface types. All ObjC objects are
+ // passed by reference.
+ if (T->isObjCInterfaceType()) {
+ Diag(D.getIdentifierLoc(),
+ diag::err_object_cannot_be_passed_returned_by_value) << 1 << T;
+ New->setInvalidDecl();
+ }
+
+ // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
+ if (D.getCXXScopeSpec().isSet()) {
+ Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
+ << D.getCXXScopeSpec().getRange();
+ New->setInvalidDecl();
+ }
+
+ // Add the parameter declaration into this scope.
+ S->AddDecl(DeclPtrTy::make(New));
+ if (II)
+ IdResolver.AddDecl(New);
+
+ ProcessDeclAttributes(New, D);
+
+ if (New->hasAttr<BlocksAttr>()) {
+ Diag(New->getLocation(), diag::err_block_on_nonlocal);
+ }
+ return DeclPtrTy::make(New);
+}
+
+void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
+ SourceLocation LocAfterDecls) {
+ assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
+ "Not a function declarator!");
+ DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
+
+ // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
+ // for a K&R function.
+ if (!FTI.hasPrototype) {
+ for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
+ --i;
+ if (FTI.ArgInfo[i].Param == 0) {
+ std::string Code = " int ";
+ Code += FTI.ArgInfo[i].Ident->getName();
+ Code += ";\n";
+ Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
+ << FTI.ArgInfo[i].Ident
+ << CodeModificationHint::CreateInsertion(LocAfterDecls, Code);
+
+ // Implicitly declare the argument as type 'int' for lack of a better
+ // type.
+ DeclSpec DS;
+ const char* PrevSpec; // unused
+ DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
+ PrevSpec);
+ Declarator ParamD(DS, Declarator::KNRTypeListContext);
+ ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
+ FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
+ }
+ }
+ }
+}
+
+Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
+ Declarator &D) {
+ assert(getCurFunctionDecl() == 0 && "Function parsing confused");
+ assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
+ "Not a function declarator!");
+ DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
+
+ if (FTI.hasPrototype) {
+ // FIXME: Diagnose arguments without names in C.
+ }
+
+ Scope *ParentScope = FnBodyScope->getParent();
+
+ DeclPtrTy DP = ActOnDeclarator(ParentScope, D, /*IsFunctionDefinition=*/true);
+ return ActOnStartOfFunctionDef(FnBodyScope, DP);
+}
+
+Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, DeclPtrTy D) {
+ FunctionDecl *FD = cast<FunctionDecl>(D.getAs<Decl>());
+
+ CurFunctionNeedsScopeChecking = false;
+
+ // See if this is a redefinition.
+ const FunctionDecl *Definition;
+ if (FD->getBody(Context, Definition)) {
+ Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
+ Diag(Definition->getLocation(), diag::note_previous_definition);
+ }
+
+ // Builtin functions cannot be defined.
+ if (unsigned BuiltinID = FD->getBuiltinID(Context)) {
+ if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
+ Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
+ FD->setInvalidDecl();
+ }
+ }
+
+ // The return type of a function definition must be complete
+ // (C99 6.9.1p3, C++ [dcl.fct]p6).
+ QualType ResultType = FD->getResultType();
+ if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
+ !FD->isInvalidDecl() &&
+ RequireCompleteType(FD->getLocation(), ResultType,
+ diag::err_func_def_incomplete_result))
+ FD->setInvalidDecl();
+
+ // GNU warning -Wmissing-prototypes:
+ // Warn if a global function is defined without a previous
+ // prototype declaration. This warning is issued even if the
+ // definition itself provides a prototype. The aim is to detect
+ // global functions that fail to be declared in header files.
+ if (!FD->isInvalidDecl() && FD->isGlobal() && !isa<CXXMethodDecl>(FD) &&
+ !FD->isMain()) {
+ bool MissingPrototype = true;
+ for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
+ Prev; Prev = Prev->getPreviousDeclaration()) {
+ // Ignore any declarations that occur in function or method
+ // scope, because they aren't visible from the header.
+ if (Prev->getDeclContext()->isFunctionOrMethod())
+ continue;
+
+ MissingPrototype = !Prev->getType()->isFunctionProtoType();
+ break;
+ }
+
+ if (MissingPrototype)
+ Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
+ }
+
+ if (FnBodyScope)
+ PushDeclContext(FnBodyScope, FD);
+
+ // Check the validity of our function parameters
+ CheckParmsForFunctionDef(FD);
+
+ // Introduce our parameters into the function scope
+ for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
+ ParmVarDecl *Param = FD->getParamDecl(p);
+ Param->setOwningFunction(FD);
+
+ // If this has an identifier, add it to the scope stack.
+ if (Param->getIdentifier() && FnBodyScope)
+ PushOnScopeChains(Param, FnBodyScope);
+ }
+
+ // Checking attributes of current function definition
+ // dllimport attribute.
+ if (FD->getAttr<DLLImportAttr>() && (!FD->getAttr<DLLExportAttr>())) {
+ // dllimport attribute cannot be applied to definition.
+ if (!(FD->getAttr<DLLImportAttr>())->isInherited()) {
+ Diag(FD->getLocation(),
+ diag::err_attribute_can_be_applied_only_to_symbol_declaration)
+ << "dllimport";
+ FD->setInvalidDecl();
+ return DeclPtrTy::make(FD);
+ } else {
+ // If a symbol previously declared dllimport is later defined, the
+ // attribute is ignored in subsequent references, and a warning is
+ // emitted.
+ Diag(FD->getLocation(),
+ diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
+ << FD->getNameAsCString() << "dllimport";
+ }
+ }
+ return DeclPtrTy::make(FD);
+}
+
+Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg) {
+ return ActOnFinishFunctionBody(D, move(BodyArg), false);
+}
+
+Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg,
+ bool IsInstantiation) {
+ Decl *dcl = D.getAs<Decl>();
+ Stmt *Body = BodyArg.takeAs<Stmt>();
+ if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(dcl)) {
+ FD->setBody(Body);
+ assert(FD == getCurFunctionDecl() && "Function parsing confused");
+ } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
+ assert(MD == getCurMethodDecl() && "Method parsing confused");
+ MD->setBody(Body);
+ } else {
+ Body->Destroy(Context);
+ return DeclPtrTy();
+ }
+ if (!IsInstantiation)
+ PopDeclContext();
+
+ // Verify and clean out per-function state.
+
+ assert(&getLabelMap() == &FunctionLabelMap && "Didn't pop block right?");
+
+ // Check goto/label use.
+ for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
+ I = FunctionLabelMap.begin(), E = FunctionLabelMap.end(); I != E; ++I) {
+ LabelStmt *L = I->second;
+
+ // Verify that we have no forward references left. If so, there was a goto
+ // or address of a label taken, but no definition of it. Label fwd
+ // definitions are indicated with a null substmt.
+ if (L->getSubStmt() != 0)
+ continue;
+
+ // Emit error.
+ Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
+
+ // At this point, we have gotos that use the bogus label. Stitch it into
+ // the function body so that they aren't leaked and that the AST is well
+ // formed.
+ if (Body == 0) {
+ // The whole function wasn't parsed correctly, just delete this.
+ L->Destroy(Context);
+ continue;
+ }
+
+ // Otherwise, the body is valid: we want to stitch the label decl into the
+ // function somewhere so that it is properly owned and so that the goto
+ // has a valid target. Do this by creating a new compound stmt with the
+ // label in it.
+
+ // Give the label a sub-statement.
+ L->setSubStmt(new (Context) NullStmt(L->getIdentLoc()));
+
+ CompoundStmt *Compound = isa<CXXTryStmt>(Body) ?
+ cast<CXXTryStmt>(Body)->getTryBlock() :
+ cast<CompoundStmt>(Body);
+ std::vector<Stmt*> Elements(Compound->body_begin(), Compound->body_end());
+ Elements.push_back(L);
+ Compound->setStmts(Context, &Elements[0], Elements.size());
+ }
+ FunctionLabelMap.clear();
+
+ if (!Body) return D;
+
+ // Verify that that gotos and switch cases don't jump into scopes illegally.
+ if (CurFunctionNeedsScopeChecking)
+ DiagnoseInvalidJumps(Body);
+
+ // C++ constructors that have function-try-blocks can't have return statements
+ // in the handlers of that block. (C++ [except.handle]p14) Verify this.
+ if (isa<CXXConstructorDecl>(dcl) && isa<CXXTryStmt>(Body))
+ DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
+
+ return D;
+}
+
+/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
+/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
+NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
+ IdentifierInfo &II, Scope *S) {
+ // Before we produce a declaration for an implicitly defined
+ // function, see whether there was a locally-scoped declaration of
+ // this name as a function or variable. If so, use that
+ // (non-visible) declaration, and complain about it.
+ llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
+ = LocallyScopedExternalDecls.find(&II);
+ if (Pos != LocallyScopedExternalDecls.end()) {
+ Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
+ Diag(Pos->second->getLocation(), diag::note_previous_declaration);
+ return Pos->second;
+ }
+
+ // Extension in C99. Legal in C90, but warn about it.
+ if (getLangOptions().C99)
+ Diag(Loc, diag::ext_implicit_function_decl) << &II;
+ else
+ Diag(Loc, diag::warn_implicit_function_decl) << &II;
+
+ // FIXME: handle stuff like:
+ // void foo() { extern float X(); }
+ // void bar() { X(); } <-- implicit decl for X in another scope.
+
+ // Set a Declarator for the implicit definition: int foo();
+ const char *Dummy;
+ DeclSpec DS;
+ bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy);
+ Error = Error; // Silence warning.
+ assert(!Error && "Error setting up implicit decl!");
+ Declarator D(DS, Declarator::BlockContext);
+ D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0,
+ 0, 0, false, SourceLocation(),
+ false, 0,0,0, Loc, D),
+ SourceLocation());
+ D.SetIdentifier(&II, Loc);
+
+ // Insert this function into translation-unit scope.
+
+ DeclContext *PrevDC = CurContext;
+ CurContext = Context.getTranslationUnitDecl();
+
+ FunctionDecl *FD =
+ dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D, DeclPtrTy()).getAs<Decl>());
+ FD->setImplicit();
+
+ CurContext = PrevDC;
+
+ AddKnownFunctionAttributes(FD);
+
+ return FD;
+}
+
+/// \brief Adds any function attributes that we know a priori based on
+/// the declaration of this function.
+///
+/// These attributes can apply both to implicitly-declared builtins
+/// (like __builtin___printf_chk) or to library-declared functions
+/// like NSLog or printf.
+void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
+ if (FD->isInvalidDecl())
+ return;
+
+ // If this is a built-in function, map its builtin attributes to
+ // actual attributes.
+ if (unsigned BuiltinID = FD->getBuiltinID(Context)) {
+ // Handle printf-formatting attributes.
+ unsigned FormatIdx;
+ bool HasVAListArg;
+ if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
+ if (!FD->getAttr<FormatAttr>())
+ FD->addAttr(::new (Context) FormatAttr("printf", FormatIdx + 1,
+ FormatIdx + 2));
+ }
+
+ // Mark const if we don't care about errno and that is the only
+ // thing preventing the function from being const. This allows
+ // IRgen to use LLVM intrinsics for such functions.
+ if (!getLangOptions().MathErrno &&
+ Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
+ if (!FD->getAttr<ConstAttr>())
+ FD->addAttr(::new (Context) ConstAttr());
+ }
+ }
+
+ IdentifierInfo *Name = FD->getIdentifier();
+ if (!Name)
+ return;
+ if ((!getLangOptions().CPlusPlus &&
+ FD->getDeclContext()->isTranslationUnit()) ||
+ (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
+ cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
+ LinkageSpecDecl::lang_c)) {
+ // Okay: this could be a libc/libm/Objective-C function we know
+ // about.
+ } else
+ return;
+
+ if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
+ if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
+ // FIXME: We known better than our headers.
+ const_cast<FormatAttr *>(Format)->setType("printf");
+ } else
+ FD->addAttr(::new (Context) FormatAttr("printf", 1, 2));
+ } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
+ if (!FD->getAttr<FormatAttr>())
+ FD->addAttr(::new (Context) FormatAttr("printf", 2, 3));
+ }
+}
+
+TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T) {
+ assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
+ assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
+
+ // Scope manipulation handled by caller.
+ TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
+ D.getIdentifierLoc(),
+ D.getIdentifier(),
+ T);
+
+ if (TagType *TT = dyn_cast<TagType>(T)) {
+ TagDecl *TD = TT->getDecl();
+
+ // If the TagDecl that the TypedefDecl points to is an anonymous decl
+ // keep track of the TypedefDecl.
+ if (!TD->getIdentifier() && !TD->getTypedefForAnonDecl())
+ TD->setTypedefForAnonDecl(NewTD);
+ }
+
+ if (D.isInvalidType())
+ NewTD->setInvalidDecl();
+ return NewTD;
+}
+
+
+/// \brief Determine whether a tag with a given kind is acceptable
+/// as a redeclaration of the given tag declaration.
+///
+/// \returns true if the new tag kind is acceptable, false otherwise.
+bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
+ TagDecl::TagKind NewTag,
+ SourceLocation NewTagLoc,
+ const IdentifierInfo &Name) {
+ // C++ [dcl.type.elab]p3:
+ // The class-key or enum keyword present in the
+ // elaborated-type-specifier shall agree in kind with the
+ // declaration to which the name in theelaborated-type-specifier
+ // refers. This rule also applies to the form of
+ // elaborated-type-specifier that declares a class-name or
+ // friend class since it can be construed as referring to the
+ // definition of the class. Thus, in any
+ // elaborated-type-specifier, the enum keyword shall be used to
+ // refer to an enumeration (7.2), the union class-keyshall be
+ // used to refer to a union (clause 9), and either the class or
+ // struct class-key shall be used to refer to a class (clause 9)
+ // declared using the class or struct class-key.
+ TagDecl::TagKind OldTag = Previous->getTagKind();
+ if (OldTag == NewTag)
+ return true;
+
+ if ((OldTag == TagDecl::TK_struct || OldTag == TagDecl::TK_class) &&
+ (NewTag == TagDecl::TK_struct || NewTag == TagDecl::TK_class)) {
+ // Warn about the struct/class tag mismatch.
+ bool isTemplate = false;
+ if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
+ isTemplate = Record->getDescribedClassTemplate();
+
+ Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
+ << (NewTag == TagDecl::TK_class)
+ << isTemplate << &Name
+ << CodeModificationHint::CreateReplacement(SourceRange(NewTagLoc),
+ OldTag == TagDecl::TK_class? "class" : "struct");
+ Diag(Previous->getLocation(), diag::note_previous_use);
+ return true;
+ }
+ return false;
+}
+
+/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'. In the
+/// former case, Name will be non-null. In the later case, Name will be null.
+/// TagSpec indicates what kind of tag this is. TK indicates whether this is a
+/// reference/declaration/definition of a tag.
+Sema::DeclPtrTy Sema::ActOnTag(Scope *S, unsigned TagSpec, TagKind TK,
+ SourceLocation KWLoc, const CXXScopeSpec &SS,
+ IdentifierInfo *Name, SourceLocation NameLoc,
+ AttributeList *Attr, AccessSpecifier AS,
+ bool &OwnedDecl) {
+ // If this is not a definition, it must have a name.
+ assert((Name != 0 || TK == TK_Definition) &&
+ "Nameless record must be a definition!");
+
+ OwnedDecl = false;
+ TagDecl::TagKind Kind;
+ switch (TagSpec) {
+ default: assert(0 && "Unknown tag type!");
+ case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break;
+ case DeclSpec::TST_union: Kind = TagDecl::TK_union; break;
+ case DeclSpec::TST_class: Kind = TagDecl::TK_class; break;
+ case DeclSpec::TST_enum: Kind = TagDecl::TK_enum; break;
+ }
+
+ DeclContext *SearchDC = CurContext;
+ DeclContext *DC = CurContext;
+ NamedDecl *PrevDecl = 0;
+
+ bool Invalid = false;
+
+ if (Name && SS.isNotEmpty()) {
+ // We have a nested-name tag ('struct foo::bar').
+
+ // Check for invalid 'foo::'.
+ if (SS.isInvalid()) {
+ Name = 0;
+ goto CreateNewDecl;
+ }
+
+ if (RequireCompleteDeclContext(SS))
+ return DeclPtrTy::make((Decl *)0);
+
+ DC = computeDeclContext(SS);
+ SearchDC = DC;
+ // Look-up name inside 'foo::'.
+ PrevDecl
+ = dyn_cast_or_null<TagDecl>(
+ LookupQualifiedName(DC, Name, LookupTagName, true).getAsDecl());
+
+ // A tag 'foo::bar' must already exist.
+ if (PrevDecl == 0) {
+ Diag(NameLoc, diag::err_not_tag_in_scope) << Name << SS.getRange();
+ Name = 0;
+ Invalid = true;
+ goto CreateNewDecl;
+ }
+ } else if (Name) {
+ // If this is a named struct, check to see if there was a previous forward
+ // declaration or definition.
+ // FIXME: We're looking into outer scopes here, even when we
+ // shouldn't be. Doing so can result in ambiguities that we
+ // shouldn't be diagnosing.
+ LookupResult R = LookupName(S, Name, LookupTagName,
+ /*RedeclarationOnly=*/(TK != TK_Reference));
+ if (R.isAmbiguous()) {
+ DiagnoseAmbiguousLookup(R, Name, NameLoc);
+ // FIXME: This is not best way to recover from case like:
+ //
+ // struct S s;
+ //
+ // causes needless "incomplete type" error later.
+ Name = 0;
+ PrevDecl = 0;
+ Invalid = true;
+ }
+ else
+ PrevDecl = R;
+
+ if (!getLangOptions().CPlusPlus && TK != TK_Reference) {
+ // FIXME: This makes sure that we ignore the contexts associated
+ // with C structs, unions, and enums when looking for a matching
+ // tag declaration or definition. See the similar lookup tweak
+ // in Sema::LookupName; is there a better way to deal with this?
+ while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
+ SearchDC = SearchDC->getParent();
+ }
+ }
+
+ if (PrevDecl && PrevDecl->isTemplateParameter()) {
+ // Maybe we will complain about the shadowed template parameter.
+ DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
+ // Just pretend that we didn't see the previous declaration.
+ PrevDecl = 0;
+ }
+
+ if (PrevDecl) {
+ // Check whether the previous declaration is usable.
+ (void)DiagnoseUseOfDecl(PrevDecl, NameLoc);
+
+ if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
+ // If this is a use of a previous tag, or if the tag is already declared
+ // in the same scope (so that the definition/declaration completes or
+ // rementions the tag), reuse the decl.
+ if (TK == TK_Reference || isDeclInScope(PrevDecl, SearchDC, S)) {
+ // Make sure that this wasn't declared as an enum and now used as a
+ // struct or something similar.
+ if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind, KWLoc, *Name)) {
+ bool SafeToContinue
+ = (PrevTagDecl->getTagKind() != TagDecl::TK_enum &&
+ Kind != TagDecl::TK_enum);
+ if (SafeToContinue)
+ Diag(KWLoc, diag::err_use_with_wrong_tag)
+ << Name
+ << CodeModificationHint::CreateReplacement(SourceRange(KWLoc),
+ PrevTagDecl->getKindName());
+ else
+ Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
+ Diag(PrevDecl->getLocation(), diag::note_previous_use);
+
+ if (SafeToContinue)
+ Kind = PrevTagDecl->getTagKind();
+ else {
+ // Recover by making this an anonymous redefinition.
+ Name = 0;
+ PrevDecl = 0;
+ Invalid = true;
+ }
+ }
+
+ if (!Invalid) {
+ // If this is a use, just return the declaration we found.
+
+ // FIXME: In the future, return a variant or some other clue
+ // for the consumer of this Decl to know it doesn't own it.
+ // For our current ASTs this shouldn't be a problem, but will
+ // need to be changed with DeclGroups.
+ if (TK == TK_Reference)
+ return DeclPtrTy::make(PrevDecl);
+
+ // Diagnose attempts to redefine a tag.
+ if (TK == TK_Definition) {
+ if (TagDecl *Def = PrevTagDecl->getDefinition(Context)) {
+ Diag(NameLoc, diag::err_redefinition) << Name;
+ Diag(Def->getLocation(), diag::note_previous_definition);
+ // If this is a redefinition, recover by making this
+ // struct be anonymous, which will make any later
+ // references get the previous definition.
+ Name = 0;
+ PrevDecl = 0;
+ Invalid = true;
+ } else {
+ // If the type is currently being defined, complain
+ // about a nested redefinition.
+ TagType *Tag = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
+ if (Tag->isBeingDefined()) {
+ Diag(NameLoc, diag::err_nested_redefinition) << Name;
+ Diag(PrevTagDecl->getLocation(),
+ diag::note_previous_definition);
+ Name = 0;
+ PrevDecl = 0;
+ Invalid = true;
+ }
+ }
+
+ // Okay, this is definition of a previously declared or referenced
+ // tag PrevDecl. We're going to create a new Decl for it.
+ }
+ }
+ // If we get here we have (another) forward declaration or we
+ // have a definition. Just create a new decl.
+ } else {
+ // If we get here, this is a definition of a new tag type in a nested
+ // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
+ // new decl/type. We set PrevDecl to NULL so that the entities
+ // have distinct types.
+ PrevDecl = 0;
+ }
+ // If we get here, we're going to create a new Decl. If PrevDecl
+ // is non-NULL, it's a definition of the tag declared by
+ // PrevDecl. If it's NULL, we have a new definition.
+ } else {
+ // PrevDecl is a namespace, template, or anything else
+ // that lives in the IDNS_Tag identifier namespace.
+ if (isDeclInScope(PrevDecl, SearchDC, S)) {
+ // The tag name clashes with a namespace name, issue an error and
+ // recover by making this tag be anonymous.
+ Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
+ Diag(PrevDecl->getLocation(), diag::note_previous_definition);
+ Name = 0;
+ PrevDecl = 0;
+ Invalid = true;
+ } else {
+ // The existing declaration isn't relevant to us; we're in a
+ // new scope, so clear out the previous declaration.
+ PrevDecl = 0;
+ }
+ }
+ } else if (TK == TK_Reference && SS.isEmpty() && Name &&
+ (Kind != TagDecl::TK_enum || !getLangOptions().CPlusPlus)) {
+ // C++ [basic.scope.pdecl]p5:
+ // -- for an elaborated-type-specifier of the form
+ //
+ // class-key identifier
+ //
+ // if the elaborated-type-specifier is used in the
+ // decl-specifier-seq or parameter-declaration-clause of a
+ // function defined in namespace scope, the identifier is
+ // declared as a class-name in the namespace that contains
+ // the declaration; otherwise, except as a friend
+ // declaration, the identifier is declared in the smallest
+ // non-class, non-function-prototype scope that contains the
+ // declaration.
+ //
+ // C99 6.7.2.3p8 has a similar (but not identical!) provision for
+ // C structs and unions.
+ //
+ // GNU C also supports this behavior as part of its incomplete
+ // enum types extension, while GNU C++ does not.
+ //
+ // Find the context where we'll be declaring the tag.
+ // FIXME: We would like to maintain the current DeclContext as the
+ // lexical context,
+ while (SearchDC->isRecord())
+ SearchDC = SearchDC->getParent();
+
+ // Find the scope where we'll be declaring the tag.
+ while (S->isClassScope() ||
+ (getLangOptions().CPlusPlus && S->isFunctionPrototypeScope()) ||
+ ((S->getFlags() & Scope::DeclScope) == 0) ||
+ (S->getEntity() &&
+ ((DeclContext *)S->getEntity())->isTransparentContext()))
+ S = S->getParent();
+ }
+
+CreateNewDecl:
+
+ // If there is an identifier, use the location of the identifier as the
+ // location of the decl, otherwise use the location of the struct/union
+ // keyword.
+ SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
+
+ // Otherwise, create a new declaration. If there is a previous
+ // declaration of the same entity, the two will be linked via
+ // PrevDecl.
+ TagDecl *New;
+
+ if (Kind == TagDecl::TK_enum) {
+ // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
+ // enum X { A, B, C } D; D should chain to X.
+ New = EnumDecl::Create(Context, SearchDC, Loc, Name,
+ cast_or_null<EnumDecl>(PrevDecl));
+ // If this is an undefined enum, warn.
+ if (TK != TK_Definition && !Invalid) {
+ unsigned DK = getLangOptions().CPlusPlus? diag::err_forward_ref_enum
+ : diag::ext_forward_ref_enum;
+ Diag(Loc, DK);
+ }
+ } else {
+ // struct/union/class
+
+ // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
+ // struct X { int A; } D; D should chain to X.
+ if (getLangOptions().CPlusPlus)
+ // FIXME: Look for a way to use RecordDecl for simple structs.
+ New = CXXRecordDecl::Create(Context, Kind, SearchDC, Loc, Name,
+ cast_or_null<CXXRecordDecl>(PrevDecl));
+ else
+ New = RecordDecl::Create(Context, Kind, SearchDC, Loc, Name,
+ cast_or_null<RecordDecl>(PrevDecl));
+ }
+
+ if (Kind != TagDecl::TK_enum) {
+ // Handle #pragma pack: if the #pragma pack stack has non-default
+ // alignment, make up a packed attribute for this decl. These
+ // attributes are checked when the ASTContext lays out the
+ // structure.
+ //
+ // It is important for implementing the correct semantics that this
+ // happen here (in act on tag decl). The #pragma pack stack is
+ // maintained as a result of parser callbacks which can occur at
+ // many points during the parsing of a struct declaration (because
+ // the #pragma tokens are effectively skipped over during the
+ // parsing of the struct).
+ if (unsigned Alignment = getPragmaPackAlignment())
+ New->addAttr(::new (Context) PackedAttr(Alignment * 8));
+ }
+
+ if (getLangOptions().CPlusPlus && SS.isEmpty() && Name && !Invalid) {
+ // C++ [dcl.typedef]p3:
+ // [...] Similarly, in a given scope, a class or enumeration
+ // shall not be declared with the same name as a typedef-name
+ // that is declared in that scope and refers to a type other
+ // than the class or enumeration itself.
+ LookupResult Lookup = LookupName(S, Name, LookupOrdinaryName, true);
+ TypedefDecl *PrevTypedef = 0;
+ if (Lookup.getKind() == LookupResult::Found)
+ PrevTypedef = dyn_cast<TypedefDecl>(Lookup.getAsDecl());
+
+ if (PrevTypedef && isDeclInScope(PrevTypedef, SearchDC, S) &&
+ Context.getCanonicalType(Context.getTypeDeclType(PrevTypedef)) !=
+ Context.getCanonicalType(Context.getTypeDeclType(New))) {
+ Diag(Loc, diag::err_tag_definition_of_typedef)
+ << Context.getTypeDeclType(New)
+ << PrevTypedef->getUnderlyingType();
+ Diag(PrevTypedef->getLocation(), diag::note_previous_definition);
+ Invalid = true;
+ }
+ }
+
+ if (Invalid)
+ New->setInvalidDecl();
+
+ if (Attr)
+ ProcessDeclAttributeList(New, Attr);
+
+ // If we're declaring or defining a tag in function prototype scope
+ // in C, note that this type can only be used within the function.
+ if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
+ Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
+
+ // Set the lexical context. If the tag has a C++ scope specifier, the
+ // lexical context will be different from the semantic context.
+ New->setLexicalDeclContext(CurContext);
+
+ // Set the access specifier.
+ if (!Invalid)
+ SetMemberAccessSpecifier(New, PrevDecl, AS);
+
+ if (TK == TK_Definition)
+ New->startDefinition();
+
+ // If this has an identifier, add it to the scope stack.
+ if (Name) {
+ S = getNonFieldDeclScope(S);
+ PushOnScopeChains(New, S);
+ } else {
+ CurContext->addDecl(Context, New);
+ }
+
+ OwnedDecl = true;
+ return DeclPtrTy::make(New);
+}
+
+void Sema::ActOnTagStartDefinition(Scope *S, DeclPtrTy TagD) {
+ AdjustDeclIfTemplate(TagD);
+ TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
+
+ // Enter the tag context.
+ PushDeclContext(S, Tag);
+
+ if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Tag)) {
+ FieldCollector->StartClass();
+
+ if (Record->getIdentifier()) {
+ // C++ [class]p2:
+ // [...] The class-name is also inserted into the scope of the
+ // class itself; this is known as the injected-class-name. For
+ // purposes of access checking, the injected-class-name is treated
+ // as if it were a public member name.
+ CXXRecordDecl *InjectedClassName
+ = CXXRecordDecl::Create(Context, Record->getTagKind(),
+ CurContext, Record->getLocation(),
+ Record->getIdentifier(), Record);
+ InjectedClassName->setImplicit();
+ InjectedClassName->setAccess(AS_public);
+ if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
+ InjectedClassName->setDescribedClassTemplate(Template);
+ PushOnScopeChains(InjectedClassName, S);
+ assert(InjectedClassName->isInjectedClassName() &&
+ "Broken injected-class-name");
+ }
+ }
+}
+
+void Sema::ActOnTagFinishDefinition(Scope *S, DeclPtrTy TagD) {
+ AdjustDeclIfTemplate(TagD);
+ TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
+
+ if (isa<CXXRecordDecl>(Tag))
+ FieldCollector->FinishClass();
+
+ // Exit this scope of this tag's definition.
+ PopDeclContext();
+
+ // Notify the consumer that we've defined a tag.
+ Consumer.HandleTagDeclDefinition(Tag);
+}
+
+// Note that FieldName may be null for anonymous bitfields.
+bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
+ QualType FieldTy, const Expr *BitWidth) {
+
+ // C99 6.7.2.1p4 - verify the field type.
+ // C++ 9.6p3: A bit-field shall have integral or enumeration type.
+ if (!FieldTy->isDependentType() && !FieldTy->isIntegralType()) {
+ // Handle incomplete types with specific error.
+ if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
+ return true;
+ if (FieldName)
+ return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
+ << FieldName << FieldTy << BitWidth->getSourceRange();
+ return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
+ << FieldTy << BitWidth->getSourceRange();
+ }
+
+ // If the bit-width is type- or value-dependent, don't try to check
+ // it now.
+ if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
+ return false;
+
+ llvm::APSInt Value;
+ if (VerifyIntegerConstantExpression(BitWidth, &Value))
+ return true;
+
+ // Zero-width bitfield is ok for anonymous field.
+ if (Value == 0 && FieldName)
+ return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
+
+ if (Value.isSigned() && Value.isNegative()) {
+ if (FieldName)
+ return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
+ << FieldName << Value.toString(10);
+ return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
+ << Value.toString(10);
+ }
+
+ if (!FieldTy->isDependentType()) {
+ uint64_t TypeSize = Context.getTypeSize(FieldTy);
+ if (Value.getZExtValue() > TypeSize) {
+ if (FieldName)
+ return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
+ << FieldName << (unsigned)TypeSize;
+ return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
+ << (unsigned)TypeSize;
+ }
+ }
+
+ return false;
+}
+
+/// ActOnField - Each field of a struct/union/class is passed into this in order
+/// to create a FieldDecl object for it.
+Sema::DeclPtrTy Sema::ActOnField(Scope *S, DeclPtrTy TagD,
+ SourceLocation DeclStart,
+ Declarator &D, ExprTy *BitfieldWidth) {
+ FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD.getAs<Decl>()),
+ DeclStart, D, static_cast<Expr*>(BitfieldWidth),
+ AS_public);
+ return DeclPtrTy::make(Res);
+}
+
+/// HandleField - Analyze a field of a C struct or a C++ data member.
+///
+FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
+ SourceLocation DeclStart,
+ Declarator &D, Expr *BitWidth,
+ AccessSpecifier AS) {
+ IdentifierInfo *II = D.getIdentifier();
+ SourceLocation Loc = DeclStart;
+ if (II) Loc = D.getIdentifierLoc();
+
+ QualType T = GetTypeForDeclarator(D, S);
+ if (getLangOptions().CPlusPlus)
+ CheckExtraCXXDefaultArguments(D);
+
+ DiagnoseFunctionSpecifiers(D);
+
+ if (D.getDeclSpec().isThreadSpecified())
+ Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
+
+ NamedDecl *PrevDecl = LookupName(S, II, LookupMemberName, true);
+ if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
+ PrevDecl = 0;
+
+ FieldDecl *NewFD
+ = CheckFieldDecl(II, T, Record, Loc,
+ D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable,
+ BitWidth, AS, PrevDecl, &D);
+ if (NewFD->isInvalidDecl() && PrevDecl) {
+ // Don't introduce NewFD into scope; there's already something
+ // with the same name in the same scope.
+ } else if (II) {
+ PushOnScopeChains(NewFD, S);
+ } else
+ Record->addDecl(Context, NewFD);
+
+ return NewFD;
+}
+
+/// \brief Build a new FieldDecl and check its well-formedness.
+///
+/// This routine builds a new FieldDecl given the fields name, type,
+/// record, etc. \p PrevDecl should refer to any previous declaration
+/// with the same name and in the same scope as the field to be
+/// created.
+///
+/// \returns a new FieldDecl.
+///
+/// \todo The Declarator argument is a hack. It will be removed once
+FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
+ RecordDecl *Record, SourceLocation Loc,
+ bool Mutable, Expr *BitWidth,
+ AccessSpecifier AS, NamedDecl *PrevDecl,
+ Declarator *D) {
+ IdentifierInfo *II = Name.getAsIdentifierInfo();
+ bool InvalidDecl = false;
+ if (D) InvalidDecl = D->isInvalidType();
+
+ // If we receive a broken type, recover by assuming 'int' and
+ // marking this declaration as invalid.
+ if (T.isNull()) {
+ InvalidDecl = true;
+ T = Context.IntTy;
+ }
+
+ // C99 6.7.2.1p8: A member of a structure or union may have any type other
+ // than a variably modified type.
+ if (T->isVariablyModifiedType()) {
+ bool SizeIsNegative;
+ QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
+ SizeIsNegative);
+ if (!FixedTy.isNull()) {
+ Diag(Loc, diag::warn_illegal_constant_array_size);
+ T = FixedTy;
+ } else {
+ if (SizeIsNegative)
+ Diag(Loc, diag::err_typecheck_negative_array_size);
+ else
+ Diag(Loc, diag::err_typecheck_field_variable_size);
+ T = Context.IntTy;
+ InvalidDecl = true;
+ }
+ }
+
+ // Fields can not have abstract class types
+ if (RequireNonAbstractType(Loc, T, diag::err_abstract_type_in_decl,
+ AbstractFieldType))
+ InvalidDecl = true;
+
+ // If this is declared as a bit-field, check the bit-field.
+ if (BitWidth && VerifyBitField(Loc, II, T, BitWidth)) {
+ InvalidDecl = true;
+ DeleteExpr(BitWidth);
+ BitWidth = 0;
+ }
+
+ FieldDecl *NewFD = FieldDecl::Create(Context, Record, Loc, II, T, BitWidth,
+ Mutable);
+ if (InvalidDecl)
+ NewFD->setInvalidDecl();
+
+ if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
+ Diag(Loc, diag::err_duplicate_member) << II;
+ Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
+ NewFD->setInvalidDecl();
+ }
+
+ if (getLangOptions().CPlusPlus && !T->isPODType())
+ cast<CXXRecordDecl>(Record)->setPOD(false);
+
+ // FIXME: We need to pass in the attributes given an AST
+ // representation, not a parser representation.
+ if (D)
+ ProcessDeclAttributes(NewFD, *D);
+
+ if (T.isObjCGCWeak())
+ Diag(Loc, diag::warn_attribute_weak_on_field);
+
+ NewFD->setAccess(AS);
+
+ // C++ [dcl.init.aggr]p1:
+ // An aggregate is an array or a class (clause 9) with [...] no
+ // private or protected non-static data members (clause 11).
+ // A POD must be an aggregate.
+ if (getLangOptions().CPlusPlus &&
+ (AS == AS_private || AS == AS_protected)) {
+ CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record);
+ CXXRecord->setAggregate(false);
+ CXXRecord->setPOD(false);
+ }
+
+ return NewFD;
+}
+
+/// TranslateIvarVisibility - Translate visibility from a token ID to an
+/// AST enum value.
+static ObjCIvarDecl::AccessControl
+TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
+ switch (ivarVisibility) {
+ default: assert(0 && "Unknown visitibility kind");
+ case tok::objc_private: return ObjCIvarDecl::Private;
+ case tok::objc_public: return ObjCIvarDecl::Public;
+ case tok::objc_protected: return ObjCIvarDecl::Protected;
+ case tok::objc_package: return ObjCIvarDecl::Package;
+ }
+}
+
+/// ActOnIvar - Each ivar field of an objective-c class is passed into this
+/// in order to create an IvarDecl object for it.
+Sema::DeclPtrTy Sema::ActOnIvar(Scope *S,
+ SourceLocation DeclStart,
+ Declarator &D, ExprTy *BitfieldWidth,
+ tok::ObjCKeywordKind Visibility) {
+
+ IdentifierInfo *II = D.getIdentifier();
+ Expr *BitWidth = (Expr*)BitfieldWidth;
+ SourceLocation Loc = DeclStart;
+ if (II) Loc = D.getIdentifierLoc();
+
+ // FIXME: Unnamed fields can be handled in various different ways, for
+ // example, unnamed unions inject all members into the struct namespace!
+
+ QualType T = GetTypeForDeclarator(D, S);
+
+ if (BitWidth) {
+ // 6.7.2.1p3, 6.7.2.1p4
+ if (VerifyBitField(Loc, II, T, BitWidth)) {
+ D.setInvalidType();
+ DeleteExpr(BitWidth);
+ BitWidth = 0;
+ }
+ } else {
+ // Not a bitfield.
+
+ // validate II.
+
+ }
+
+ // C99 6.7.2.1p8: A member of a structure or union may have any type other
+ // than a variably modified type.
+ if (T->isVariablyModifiedType()) {
+ Diag(Loc, diag::err_typecheck_ivar_variable_size);
+ D.setInvalidType();
+ }
+
+ // Get the visibility (access control) for this ivar.
+ ObjCIvarDecl::AccessControl ac =
+ Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
+ : ObjCIvarDecl::None;
+
+ // Construct the decl.
+ ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, CurContext, Loc, II, T,ac,
+ (Expr *)BitfieldWidth);
+
+ if (II) {
+ NamedDecl *PrevDecl = LookupName(S, II, LookupMemberName, true);
+ if (PrevDecl && isDeclInScope(PrevDecl, CurContext, S)
+ && !isa<TagDecl>(PrevDecl)) {
+ Diag(Loc, diag::err_duplicate_member) << II;
+ Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
+ NewID->setInvalidDecl();
+ }
+ }
+
+ // Process attributes attached to the ivar.
+ ProcessDeclAttributes(NewID, D);
+
+ if (D.isInvalidType())
+ NewID->setInvalidDecl();
+
+ if (II) {
+ // FIXME: When interfaces are DeclContexts, we'll need to add
+ // these to the interface.
+ S->AddDecl(DeclPtrTy::make(NewID));
+ IdResolver.AddDecl(NewID);
+ }
+
+ return DeclPtrTy::make(NewID);
+}
+
+void Sema::ActOnFields(Scope* S,
+ SourceLocation RecLoc, DeclPtrTy RecDecl,
+ DeclPtrTy *Fields, unsigned NumFields,
+ SourceLocation LBrac, SourceLocation RBrac,
+ AttributeList *Attr) {
+ Decl *EnclosingDecl = RecDecl.getAs<Decl>();
+ assert(EnclosingDecl && "missing record or interface decl");
+
+ // If the decl this is being inserted into is invalid, then it may be a
+ // redeclaration or some other bogus case. Don't try to add fields to it.
+ if (EnclosingDecl->isInvalidDecl()) {
+ // FIXME: Deallocate fields?
+ return;
+ }
+
+
+ // Verify that all the fields are okay.
+ unsigned NumNamedMembers = 0;
+ llvm::SmallVector<FieldDecl*, 32> RecFields;
+
+ RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
+ for (unsigned i = 0; i != NumFields; ++i) {
+ FieldDecl *FD = cast<FieldDecl>(Fields[i].getAs<Decl>());
+
+ // Get the type for the field.
+ Type *FDTy = FD->getType().getTypePtr();
+
+ if (!FD->isAnonymousStructOrUnion()) {
+ // Remember all fields written by the user.
+ RecFields.push_back(FD);
+ }
+
+ // If the field is already invalid for some reason, don't emit more
+ // diagnostics about it.
+ if (FD->isInvalidDecl())
+ continue;
+
+ // C99 6.7.2.1p2:
+ // A structure or union shall not contain a member with
+ // incomplete or function type (hence, a structure shall not
+ // contain an instance of itself, but may contain a pointer to
+ // an instance of itself), except that the last member of a
+ // structure with more than one named member may have incomplete
+ // array type; such a structure (and any union containing,
+ // possibly recursively, a member that is such a structure)
+ // shall not be a member of a structure or an element of an
+ // array.
+ if (FDTy->isFunctionType()) {
+ // Field declared as a function.
+ Diag(FD->getLocation(), diag::err_field_declared_as_function)
+ << FD->getDeclName();
+ FD->setInvalidDecl();
+ EnclosingDecl->setInvalidDecl();
+ continue;
+ } else if (FDTy->isIncompleteArrayType() && i == NumFields - 1 &&
+ Record && Record->isStruct()) {
+ // Flexible array member.
+ if (NumNamedMembers < 1) {
+ Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
+ << FD->getDeclName();
+ FD->setInvalidDecl();
+ EnclosingDecl->setInvalidDecl();
+ continue;
+ }
+ // Okay, we have a legal flexible array member at the end of the struct.
+ if (Record)
+ Record->setHasFlexibleArrayMember(true);
+ } else if (!FDTy->isDependentType() &&
+ RequireCompleteType(FD->getLocation(), FD->getType(),
+ diag::err_field_incomplete)) {
+ // Incomplete type
+ FD->setInvalidDecl();
+ EnclosingDecl->setInvalidDecl();
+ continue;
+ } else if (const RecordType *FDTTy = FDTy->getAsRecordType()) {
+ if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
+ // If this is a member of a union, then entire union becomes "flexible".
+ if (Record && Record->isUnion()) {
+ Record->setHasFlexibleArrayMember(true);
+ } else {
+ // If this is a struct/class and this is not the last element, reject
+ // it. Note that GCC supports variable sized arrays in the middle of
+ // structures.
+ if (i != NumFields-1)
+ Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
+ << FD->getDeclName() << FD->getType();
+ else {
+ // We support flexible arrays at the end of structs in
+ // other structs as an extension.
+ Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
+ << FD->getDeclName();
+ if (Record)
+ Record->setHasFlexibleArrayMember(true);
+ }
+ }
+ }
+ } else if (FDTy->isObjCInterfaceType()) {
+ /// A field cannot be an Objective-c object
+ Diag(FD->getLocation(), diag::err_statically_allocated_object);
+ FD->setInvalidDecl();
+ EnclosingDecl->setInvalidDecl();
+ continue;
+ }
+ // Keep track of the number of named members.
+ if (FD->getIdentifier())
+ ++NumNamedMembers;
+ }
+
+ // Okay, we successfully defined 'Record'.
+ if (Record) {
+ Record->completeDefinition(Context);
+ } else {
+ ObjCIvarDecl **ClsFields =
+ reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
+ if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
+ ID->setIVarList(ClsFields, RecFields.size(), Context);
+ ID->setLocEnd(RBrac);
+
+ // Must enforce the rule that ivars in the base classes may not be
+ // duplicates.
+ if (ID->getSuperClass()) {
+ for (ObjCInterfaceDecl::ivar_iterator IVI = ID->ivar_begin(),
+ IVE = ID->ivar_end(); IVI != IVE; ++IVI) {
+ ObjCIvarDecl* Ivar = (*IVI);
+
+ if (IdentifierInfo *II = Ivar->getIdentifier()) {
+ ObjCIvarDecl* prevIvar =
+ ID->getSuperClass()->lookupInstanceVariable(Context, II);
+ if (prevIvar) {
+ Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
+ Diag(prevIvar->getLocation(), diag::note_previous_declaration);
+ }
+ }
+ }
+ }
+ } else if (ObjCImplementationDecl *IMPDecl =
+ dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
+ assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
+ for (unsigned I = 0, N = RecFields.size(); I != N; ++I) {
+ // FIXME: Set the DeclContext correctly when we build the
+ // declarations.
+ ClsFields[I]->setLexicalDeclContext(IMPDecl);
+ IMPDecl->addDecl(Context, ClsFields[I]);
+ }
+ CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
+ }
+ }
+
+ if (Attr)
+ ProcessDeclAttributeList(Record, Attr);
+}
+
+EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
+ EnumConstantDecl *LastEnumConst,
+ SourceLocation IdLoc,
+ IdentifierInfo *Id,
+ ExprArg val) {
+ Expr *Val = (Expr *)val.get();
+
+ llvm::APSInt EnumVal(32);
+ QualType EltTy;
+ if (Val && !Val->isTypeDependent()) {
+ // Make sure to promote the operand type to int.
+ UsualUnaryConversions(Val);
+ if (Val != val.get()) {
+ val.release();
+ val = Val;
+ }
+
+ // C99 6.7.2.2p2: Make sure we have an integer constant expression.
+ SourceLocation ExpLoc;
+ if (!Val->isValueDependent() &&
+ VerifyIntegerConstantExpression(Val, &EnumVal)) {
+ Val = 0;
+ } else {
+ EltTy = Val->getType();
+ }
+ }
+
+ if (!Val) {
+ if (LastEnumConst) {
+ // Assign the last value + 1.
+ EnumVal = LastEnumConst->getInitVal();
+ ++EnumVal;
+
+ // Check for overflow on increment.
+ if (EnumVal < LastEnumConst->getInitVal())
+ Diag(IdLoc, diag::warn_enum_value_overflow);
+
+ EltTy = LastEnumConst->getType();
+ } else {
+ // First value, set to zero.
+ EltTy = Context.IntTy;
+ EnumVal.zextOrTrunc(static_cast<uint32_t>(Context.getTypeSize(EltTy)));
+ }
+ }
+
+ val.release();
+ return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
+ Val, EnumVal);
+}
+
+
+Sema::DeclPtrTy Sema::ActOnEnumConstant(Scope *S, DeclPtrTy theEnumDecl,
+ DeclPtrTy lastEnumConst,
+ SourceLocation IdLoc,
+ IdentifierInfo *Id,
+ SourceLocation EqualLoc, ExprTy *val) {
+ EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl.getAs<Decl>());
+ EnumConstantDecl *LastEnumConst =
+ cast_or_null<EnumConstantDecl>(lastEnumConst.getAs<Decl>());
+ Expr *Val = static_cast<Expr*>(val);
+
+ // The scope passed in may not be a decl scope. Zip up the scope tree until
+ // we find one that is.
+ S = getNonFieldDeclScope(S);
+
+ // Verify that there isn't already something declared with this name in this
+ // scope.
+ NamedDecl *PrevDecl = LookupName(S, Id, LookupOrdinaryName);
+ if (PrevDecl && PrevDecl->isTemplateParameter()) {
+ // Maybe we will complain about the shadowed template parameter.
+ DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
+ // Just pretend that we didn't see the previous declaration.
+ PrevDecl = 0;
+ }
+
+ if (PrevDecl) {
+ // When in C++, we may get a TagDecl with the same name; in this case the
+ // enum constant will 'hide' the tag.
+ assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
+ "Received TagDecl when not in C++!");
+ if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
+ if (isa<EnumConstantDecl>(PrevDecl))
+ Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
+ else
+ Diag(IdLoc, diag::err_redefinition) << Id;
+ Diag(PrevDecl->getLocation(), diag::note_previous_definition);
+ if (Val) Val->Destroy(Context);
+ return DeclPtrTy();
+ }
+ }
+
+ EnumConstantDecl *New = CheckEnumConstant(TheEnumDecl, LastEnumConst,
+ IdLoc, Id, Owned(Val));
+
+ // Register this decl in the current scope stack.
+ if (New)
+ PushOnScopeChains(New, S);
+
+ return DeclPtrTy::make(New);
+}
+
+void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
+ SourceLocation RBraceLoc, DeclPtrTy EnumDeclX,
+ DeclPtrTy *Elements, unsigned NumElements) {
+ EnumDecl *Enum = cast<EnumDecl>(EnumDeclX.getAs<Decl>());
+ QualType EnumType = Context.getTypeDeclType(Enum);
+
+ // TODO: If the result value doesn't fit in an int, it must be a long or long
+ // long value. ISO C does not support this, but GCC does as an extension,
+ // emit a warning.
+ unsigned IntWidth = Context.Target.getIntWidth();
+
+ // Verify that all the values are okay, compute the size of the values, and
+ // reverse the list.
+ unsigned NumNegativeBits = 0;
+ unsigned NumPositiveBits = 0;
+
+ // Keep track of whether all elements have type int.
+ bool AllElementsInt = true;
+
+ for (unsigned i = 0; i != NumElements; ++i) {
+ EnumConstantDecl *ECD =
+ cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
+ if (!ECD) continue; // Already issued a diagnostic.
+
+ // If the enum value doesn't fit in an int, emit an extension warning.
+ const llvm::APSInt &InitVal = ECD->getInitVal();
+ assert(InitVal.getBitWidth() >= IntWidth &&
+ "Should have promoted value to int");
+ if (InitVal.getBitWidth() > IntWidth) {
+ llvm::APSInt V(InitVal);
+ V.trunc(IntWidth);
+ V.extend(InitVal.getBitWidth());
+ if (V != InitVal)
+ Diag(ECD->getLocation(), diag::ext_enum_value_not_int)
+ << InitVal.toString(10);
+ }
+
+ // Keep track of the size of positive and negative values.
+ if (InitVal.isUnsigned() || InitVal.isNonNegative())
+ NumPositiveBits = std::max(NumPositiveBits,
+ (unsigned)InitVal.getActiveBits());
+ else
+ NumNegativeBits = std::max(NumNegativeBits,
+ (unsigned)InitVal.getMinSignedBits());
+
+ // Keep track of whether every enum element has type int (very commmon).
+ if (AllElementsInt)
+ AllElementsInt = ECD->getType() == Context.IntTy;
+ }
+
+ // Figure out the type that should be used for this enum.
+ // FIXME: Support attribute(packed) on enums and -fshort-enums.
+ QualType BestType;
+ unsigned BestWidth;
+
+ if (NumNegativeBits) {
+ // If there is a negative value, figure out the smallest integer type (of
+ // int/long/longlong) that fits.
+ if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
+ BestType = Context.IntTy;
+ BestWidth = IntWidth;
+ } else {
+ BestWidth = Context.Target.getLongWidth();
+
+ if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth)
+ BestType = Context.LongTy;
+ else {
+ BestWidth = Context.Target.getLongLongWidth();
+
+ if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
+ Diag(Enum->getLocation(), diag::warn_enum_too_large);
+ BestType = Context.LongLongTy;
+ }
+ }
+ } else {
+ // If there is no negative value, figure out which of uint, ulong, ulonglong
+ // fits.
+ if (NumPositiveBits <= IntWidth) {
+ BestType = Context.UnsignedIntTy;
+ BestWidth = IntWidth;
+ } else if (NumPositiveBits <=
+ (BestWidth = Context.Target.getLongWidth())) {
+ BestType = Context.UnsignedLongTy;
+ } else {
+ BestWidth = Context.Target.getLongLongWidth();
+ assert(NumPositiveBits <= BestWidth &&
+ "How could an initializer get larger than ULL?");
+ BestType = Context.UnsignedLongLongTy;
+ }
+ }
+
+ // Loop over all of the enumerator constants, changing their types to match
+ // the type of the enum if needed.
+ for (unsigned i = 0; i != NumElements; ++i) {
+ EnumConstantDecl *ECD =
+ cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
+ if (!ECD) continue; // Already issued a diagnostic.
+
+ // Standard C says the enumerators have int type, but we allow, as an
+ // extension, the enumerators to be larger than int size. If each
+ // enumerator value fits in an int, type it as an int, otherwise type it the
+ // same as the enumerator decl itself. This means that in "enum { X = 1U }"
+ // that X has type 'int', not 'unsigned'.
+ if (ECD->getType() == Context.IntTy) {
+ // Make sure the init value is signed.
+ llvm::APSInt IV = ECD->getInitVal();
+ IV.setIsSigned(true);
+ ECD->setInitVal(IV);
+
+ if (getLangOptions().CPlusPlus)
+ // C++ [dcl.enum]p4: Following the closing brace of an
+ // enum-specifier, each enumerator has the type of its
+ // enumeration.
+ ECD->setType(EnumType);
+ continue; // Already int type.
+ }
+
+ // Determine whether the value fits into an int.
+ llvm::APSInt InitVal = ECD->getInitVal();
+ bool FitsInInt;
+ if (InitVal.isUnsigned() || !InitVal.isNegative())
+ FitsInInt = InitVal.getActiveBits() < IntWidth;
+ else
+ FitsInInt = InitVal.getMinSignedBits() <= IntWidth;
+
+ // If it fits into an integer type, force it. Otherwise force it to match
+ // the enum decl type.
+ QualType NewTy;
+ unsigned NewWidth;
+ bool NewSign;
+ if (FitsInInt) {
+ NewTy = Context.IntTy;
+ NewWidth = IntWidth;
+ NewSign = true;
+ } else if (ECD->getType() == BestType) {
+ // Already the right type!
+ if (getLangOptions().CPlusPlus)
+ // C++ [dcl.enum]p4: Following the closing brace of an
+ // enum-specifier, each enumerator has the type of its
+ // enumeration.
+ ECD->setType(EnumType);
+ continue;
+ } else {
+ NewTy = BestType;
+ NewWidth = BestWidth;
+ NewSign = BestType->isSignedIntegerType();
+ }
+
+ // Adjust the APSInt value.
+ InitVal.extOrTrunc(NewWidth);
+ InitVal.setIsSigned(NewSign);
+ ECD->setInitVal(InitVal);
+
+ // Adjust the Expr initializer and type.
+ if (ECD->getInitExpr())
+ ECD->setInitExpr(new (Context) ImplicitCastExpr(NewTy, ECD->getInitExpr(),
+ /*isLvalue=*/false));
+ if (getLangOptions().CPlusPlus)
+ // C++ [dcl.enum]p4: Following the closing brace of an
+ // enum-specifier, each enumerator has the type of its
+ // enumeration.
+ ECD->setType(EnumType);
+ else
+ ECD->setType(NewTy);
+ }
+
+ Enum->completeDefinition(Context, BestType);
+}
+
+Sema::DeclPtrTy Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
+ ExprArg expr) {
+ StringLiteral *AsmString = cast<StringLiteral>(expr.takeAs<Expr>());
+
+ FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
+ Loc, AsmString);
+ CurContext->addDecl(Context, New);
+ return DeclPtrTy::make(New);
+}
OpenPOWER on IntegriCloud