diff options
Diffstat (limited to 'lib/ExecutionEngine/JIT/JIT.cpp')
-rw-r--r-- | lib/ExecutionEngine/JIT/JIT.cpp | 708 |
1 files changed, 708 insertions, 0 deletions
diff --git a/lib/ExecutionEngine/JIT/JIT.cpp b/lib/ExecutionEngine/JIT/JIT.cpp new file mode 100644 index 0000000..f8ae884 --- /dev/null +++ b/lib/ExecutionEngine/JIT/JIT.cpp @@ -0,0 +1,708 @@ +//===-- JIT.cpp - LLVM Just in Time Compiler ------------------------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This tool implements a just-in-time compiler for LLVM, allowing direct +// execution of LLVM bitcode in an efficient manner. +// +//===----------------------------------------------------------------------===// + +#include "JIT.h" +#include "llvm/Constants.h" +#include "llvm/DerivedTypes.h" +#include "llvm/Function.h" +#include "llvm/GlobalVariable.h" +#include "llvm/Instructions.h" +#include "llvm/ModuleProvider.h" +#include "llvm/CodeGen/JITCodeEmitter.h" +#include "llvm/ExecutionEngine/GenericValue.h" +#include "llvm/CodeGen/MachineCodeInfo.h" +#include "llvm/Target/TargetData.h" +#include "llvm/Target/TargetMachine.h" +#include "llvm/Target/TargetJITInfo.h" +#include "llvm/Support/Dwarf.h" +#include "llvm/Support/MutexGuard.h" +#include "llvm/System/DynamicLibrary.h" +#include "llvm/Config/config.h" + +using namespace llvm; + +#ifdef __APPLE__ +// Apple gcc defaults to -fuse-cxa-atexit (i.e. calls __cxa_atexit instead +// of atexit). It passes the address of linker generated symbol __dso_handle +// to the function. +// This configuration change happened at version 5330. +# include <AvailabilityMacros.h> +# if defined(MAC_OS_X_VERSION_10_4) && \ + ((MAC_OS_X_VERSION_MIN_REQUIRED > MAC_OS_X_VERSION_10_4) || \ + (MAC_OS_X_VERSION_MIN_REQUIRED == MAC_OS_X_VERSION_10_4 && \ + __APPLE_CC__ >= 5330)) +# ifndef HAVE___DSO_HANDLE +# define HAVE___DSO_HANDLE 1 +# endif +# endif +#endif + +#if HAVE___DSO_HANDLE +extern void *__dso_handle __attribute__ ((__visibility__ ("hidden"))); +#endif + +namespace { + +static struct RegisterJIT { + RegisterJIT() { JIT::Register(); } +} JITRegistrator; + +} + +namespace llvm { + void LinkInJIT() { + } +} + + +#if defined(__GNUC__) && !defined(__ARM__EABI__) + +// libgcc defines the __register_frame function to dynamically register new +// dwarf frames for exception handling. This functionality is not portable +// across compilers and is only provided by GCC. We use the __register_frame +// function here so that code generated by the JIT cooperates with the unwinding +// runtime of libgcc. When JITting with exception handling enable, LLVM +// generates dwarf frames and registers it to libgcc with __register_frame. +// +// The __register_frame function works with Linux. +// +// Unfortunately, this functionality seems to be in libgcc after the unwinding +// library of libgcc for darwin was written. The code for darwin overwrites the +// value updated by __register_frame with a value fetched with "keymgr". +// "keymgr" is an obsolete functionality, which should be rewritten some day. +// In the meantime, since "keymgr" is on all libgccs shipped with apple-gcc, we +// need a workaround in LLVM which uses the "keymgr" to dynamically modify the +// values of an opaque key, used by libgcc to find dwarf tables. + +extern "C" void __register_frame(void*); + +#if defined(__APPLE__) && MAC_OS_X_VERSION_MAX_ALLOWED <= 1050 +# define USE_KEYMGR 1 +#else +# define USE_KEYMGR 0 +#endif + +#if USE_KEYMGR + +namespace { + +// LibgccObject - This is the structure defined in libgcc. There is no #include +// provided for this structure, so we also define it here. libgcc calls it +// "struct object". The structure is undocumented in libgcc. +struct LibgccObject { + void *unused1; + void *unused2; + void *unused3; + + /// frame - Pointer to the exception table. + void *frame; + + /// encoding - The encoding of the object? + union { + struct { + unsigned long sorted : 1; + unsigned long from_array : 1; + unsigned long mixed_encoding : 1; + unsigned long encoding : 8; + unsigned long count : 21; + } b; + size_t i; + } encoding; + + /// fde_end - libgcc defines this field only if some macro is defined. We + /// include this field even if it may not there, to make libgcc happy. + char *fde_end; + + /// next - At least we know it's a chained list! + struct LibgccObject *next; +}; + +// "kemgr" stuff. Apparently, all frame tables are stored there. +extern "C" void _keymgr_set_and_unlock_processwide_ptr(int, void *); +extern "C" void *_keymgr_get_and_lock_processwide_ptr(int); +#define KEYMGR_GCC3_DW2_OBJ_LIST 302 /* Dwarf2 object list */ + +/// LibgccObjectInfo - libgcc defines this struct as km_object_info. It +/// probably contains all dwarf tables that are loaded. +struct LibgccObjectInfo { + + /// seenObjects - LibgccObjects already parsed by the unwinding runtime. + /// + struct LibgccObject* seenObjects; + + /// unseenObjects - LibgccObjects not parsed yet by the unwinding runtime. + /// + struct LibgccObject* unseenObjects; + + unsigned unused[2]; +}; + +/// darwin_register_frame - Since __register_frame does not work with darwin's +/// libgcc,we provide our own function, which "tricks" libgcc by modifying the +/// "Dwarf2 object list" key. +void DarwinRegisterFrame(void* FrameBegin) { + // Get the key. + LibgccObjectInfo* LOI = (struct LibgccObjectInfo*) + _keymgr_get_and_lock_processwide_ptr(KEYMGR_GCC3_DW2_OBJ_LIST); + assert(LOI && "This should be preallocated by the runtime"); + + // Allocate a new LibgccObject to represent this frame. Deallocation of this + // object may be impossible: since darwin code in libgcc was written after + // the ability to dynamically register frames, things may crash if we + // deallocate it. + struct LibgccObject* ob = (struct LibgccObject*) + malloc(sizeof(struct LibgccObject)); + + // Do like libgcc for the values of the field. + ob->unused1 = (void *)-1; + ob->unused2 = 0; + ob->unused3 = 0; + ob->frame = FrameBegin; + ob->encoding.i = 0; + ob->encoding.b.encoding = llvm::dwarf::DW_EH_PE_omit; + + // Put the info on both places, as libgcc uses the first or the the second + // field. Note that we rely on having two pointers here. If fde_end was a + // char, things would get complicated. + ob->fde_end = (char*)LOI->unseenObjects; + ob->next = LOI->unseenObjects; + + // Update the key's unseenObjects list. + LOI->unseenObjects = ob; + + // Finally update the "key". Apparently, libgcc requires it. + _keymgr_set_and_unlock_processwide_ptr(KEYMGR_GCC3_DW2_OBJ_LIST, + LOI); + +} + +} +#endif // __APPLE__ +#endif // __GNUC__ + +/// createJIT - This is the factory method for creating a JIT for the current +/// machine, it does not fall back to the interpreter. This takes ownership +/// of the module provider. +ExecutionEngine *ExecutionEngine::createJIT(ModuleProvider *MP, + std::string *ErrorStr, + JITMemoryManager *JMM, + CodeGenOpt::Level OptLevel) { + ExecutionEngine *EE = JIT::createJIT(MP, ErrorStr, JMM, OptLevel); + if (!EE) return 0; + + // Make sure we can resolve symbols in the program as well. The zero arg + // to the function tells DynamicLibrary to load the program, not a library. + sys::DynamicLibrary::LoadLibraryPermanently(0, ErrorStr); + return EE; +} + +JIT::JIT(ModuleProvider *MP, TargetMachine &tm, TargetJITInfo &tji, + JITMemoryManager *JMM, CodeGenOpt::Level OptLevel) + : ExecutionEngine(MP), TM(tm), TJI(tji) { + setTargetData(TM.getTargetData()); + + jitstate = new JITState(MP); + + // Initialize JCE + JCE = createEmitter(*this, JMM); + + // Add target data + MutexGuard locked(lock); + FunctionPassManager &PM = jitstate->getPM(locked); + PM.add(new TargetData(*TM.getTargetData())); + + // Turn the machine code intermediate representation into bytes in memory that + // may be executed. + if (TM.addPassesToEmitMachineCode(PM, *JCE, OptLevel)) { + cerr << "Target does not support machine code emission!\n"; + abort(); + } + + // Register routine for informing unwinding runtime about new EH frames +#if defined(__GNUC__) && !defined(__ARM_EABI__) +#if USE_KEYMGR + struct LibgccObjectInfo* LOI = (struct LibgccObjectInfo*) + _keymgr_get_and_lock_processwide_ptr(KEYMGR_GCC3_DW2_OBJ_LIST); + + // The key is created on demand, and libgcc creates it the first time an + // exception occurs. Since we need the key to register frames, we create + // it now. + if (!LOI) + LOI = (LibgccObjectInfo*)calloc(sizeof(struct LibgccObjectInfo), 1); + _keymgr_set_and_unlock_processwide_ptr(KEYMGR_GCC3_DW2_OBJ_LIST, LOI); + InstallExceptionTableRegister(DarwinRegisterFrame); +#else + InstallExceptionTableRegister(__register_frame); +#endif // __APPLE__ +#endif // __GNUC__ + + // Initialize passes. + PM.doInitialization(); +} + +JIT::~JIT() { + delete jitstate; + delete JCE; + delete &TM; +} + +/// addModuleProvider - Add a new ModuleProvider to the JIT. If we previously +/// removed the last ModuleProvider, we need re-initialize jitstate with a valid +/// ModuleProvider. +void JIT::addModuleProvider(ModuleProvider *MP) { + MutexGuard locked(lock); + + if (Modules.empty()) { + assert(!jitstate && "jitstate should be NULL if Modules vector is empty!"); + + jitstate = new JITState(MP); + + FunctionPassManager &PM = jitstate->getPM(locked); + PM.add(new TargetData(*TM.getTargetData())); + + // Turn the machine code intermediate representation into bytes in memory + // that may be executed. + if (TM.addPassesToEmitMachineCode(PM, *JCE, CodeGenOpt::Default)) { + cerr << "Target does not support machine code emission!\n"; + abort(); + } + + // Initialize passes. + PM.doInitialization(); + } + + ExecutionEngine::addModuleProvider(MP); +} + +/// removeModuleProvider - If we are removing the last ModuleProvider, +/// invalidate the jitstate since the PassManager it contains references a +/// released ModuleProvider. +Module *JIT::removeModuleProvider(ModuleProvider *MP, std::string *E) { + Module *result = ExecutionEngine::removeModuleProvider(MP, E); + + MutexGuard locked(lock); + + if (jitstate->getMP() == MP) { + delete jitstate; + jitstate = 0; + } + + if (!jitstate && !Modules.empty()) { + jitstate = new JITState(Modules[0]); + + FunctionPassManager &PM = jitstate->getPM(locked); + PM.add(new TargetData(*TM.getTargetData())); + + // Turn the machine code intermediate representation into bytes in memory + // that may be executed. + if (TM.addPassesToEmitMachineCode(PM, *JCE, CodeGenOpt::Default)) { + cerr << "Target does not support machine code emission!\n"; + abort(); + } + + // Initialize passes. + PM.doInitialization(); + } + return result; +} + +/// deleteModuleProvider - Remove a ModuleProvider from the list of modules, +/// and deletes the ModuleProvider and owned Module. Avoids materializing +/// the underlying module. +void JIT::deleteModuleProvider(ModuleProvider *MP, std::string *E) { + ExecutionEngine::deleteModuleProvider(MP, E); + + MutexGuard locked(lock); + + if (jitstate->getMP() == MP) { + delete jitstate; + jitstate = 0; + } + + if (!jitstate && !Modules.empty()) { + jitstate = new JITState(Modules[0]); + + FunctionPassManager &PM = jitstate->getPM(locked); + PM.add(new TargetData(*TM.getTargetData())); + + // Turn the machine code intermediate representation into bytes in memory + // that may be executed. + if (TM.addPassesToEmitMachineCode(PM, *JCE, CodeGenOpt::Default)) { + cerr << "Target does not support machine code emission!\n"; + abort(); + } + + // Initialize passes. + PM.doInitialization(); + } +} + +/// run - Start execution with the specified function and arguments. +/// +GenericValue JIT::runFunction(Function *F, + const std::vector<GenericValue> &ArgValues) { + assert(F && "Function *F was null at entry to run()"); + + void *FPtr = getPointerToFunction(F); + assert(FPtr && "Pointer to fn's code was null after getPointerToFunction"); + const FunctionType *FTy = F->getFunctionType(); + const Type *RetTy = FTy->getReturnType(); + + assert((FTy->getNumParams() == ArgValues.size() || + (FTy->isVarArg() && FTy->getNumParams() <= ArgValues.size())) && + "Wrong number of arguments passed into function!"); + assert(FTy->getNumParams() == ArgValues.size() && + "This doesn't support passing arguments through varargs (yet)!"); + + // Handle some common cases first. These cases correspond to common `main' + // prototypes. + if (RetTy == Type::Int32Ty || RetTy == Type::VoidTy) { + switch (ArgValues.size()) { + case 3: + if (FTy->getParamType(0) == Type::Int32Ty && + isa<PointerType>(FTy->getParamType(1)) && + isa<PointerType>(FTy->getParamType(2))) { + int (*PF)(int, char **, const char **) = + (int(*)(int, char **, const char **))(intptr_t)FPtr; + + // Call the function. + GenericValue rv; + rv.IntVal = APInt(32, PF(ArgValues[0].IntVal.getZExtValue(), + (char **)GVTOP(ArgValues[1]), + (const char **)GVTOP(ArgValues[2]))); + return rv; + } + break; + case 2: + if (FTy->getParamType(0) == Type::Int32Ty && + isa<PointerType>(FTy->getParamType(1))) { + int (*PF)(int, char **) = (int(*)(int, char **))(intptr_t)FPtr; + + // Call the function. + GenericValue rv; + rv.IntVal = APInt(32, PF(ArgValues[0].IntVal.getZExtValue(), + (char **)GVTOP(ArgValues[1]))); + return rv; + } + break; + case 1: + if (FTy->getNumParams() == 1 && + FTy->getParamType(0) == Type::Int32Ty) { + GenericValue rv; + int (*PF)(int) = (int(*)(int))(intptr_t)FPtr; + rv.IntVal = APInt(32, PF(ArgValues[0].IntVal.getZExtValue())); + return rv; + } + break; + } + } + + // Handle cases where no arguments are passed first. + if (ArgValues.empty()) { + GenericValue rv; + switch (RetTy->getTypeID()) { + default: assert(0 && "Unknown return type for function call!"); + case Type::IntegerTyID: { + unsigned BitWidth = cast<IntegerType>(RetTy)->getBitWidth(); + if (BitWidth == 1) + rv.IntVal = APInt(BitWidth, ((bool(*)())(intptr_t)FPtr)()); + else if (BitWidth <= 8) + rv.IntVal = APInt(BitWidth, ((char(*)())(intptr_t)FPtr)()); + else if (BitWidth <= 16) + rv.IntVal = APInt(BitWidth, ((short(*)())(intptr_t)FPtr)()); + else if (BitWidth <= 32) + rv.IntVal = APInt(BitWidth, ((int(*)())(intptr_t)FPtr)()); + else if (BitWidth <= 64) + rv.IntVal = APInt(BitWidth, ((int64_t(*)())(intptr_t)FPtr)()); + else + assert(0 && "Integer types > 64 bits not supported"); + return rv; + } + case Type::VoidTyID: + rv.IntVal = APInt(32, ((int(*)())(intptr_t)FPtr)()); + return rv; + case Type::FloatTyID: + rv.FloatVal = ((float(*)())(intptr_t)FPtr)(); + return rv; + case Type::DoubleTyID: + rv.DoubleVal = ((double(*)())(intptr_t)FPtr)(); + return rv; + case Type::X86_FP80TyID: + case Type::FP128TyID: + case Type::PPC_FP128TyID: + assert(0 && "long double not supported yet"); + return rv; + case Type::PointerTyID: + return PTOGV(((void*(*)())(intptr_t)FPtr)()); + } + } + + // Okay, this is not one of our quick and easy cases. Because we don't have a + // full FFI, we have to codegen a nullary stub function that just calls the + // function we are interested in, passing in constants for all of the + // arguments. Make this function and return. + + // First, create the function. + FunctionType *STy=FunctionType::get(RetTy, std::vector<const Type*>(), false); + Function *Stub = Function::Create(STy, Function::InternalLinkage, "", + F->getParent()); + + // Insert a basic block. + BasicBlock *StubBB = BasicBlock::Create("", Stub); + + // Convert all of the GenericValue arguments over to constants. Note that we + // currently don't support varargs. + SmallVector<Value*, 8> Args; + for (unsigned i = 0, e = ArgValues.size(); i != e; ++i) { + Constant *C = 0; + const Type *ArgTy = FTy->getParamType(i); + const GenericValue &AV = ArgValues[i]; + switch (ArgTy->getTypeID()) { + default: assert(0 && "Unknown argument type for function call!"); + case Type::IntegerTyID: + C = ConstantInt::get(AV.IntVal); + break; + case Type::FloatTyID: + C = ConstantFP::get(APFloat(AV.FloatVal)); + break; + case Type::DoubleTyID: + C = ConstantFP::get(APFloat(AV.DoubleVal)); + break; + case Type::PPC_FP128TyID: + case Type::X86_FP80TyID: + case Type::FP128TyID: + C = ConstantFP::get(APFloat(AV.IntVal)); + break; + case Type::PointerTyID: + void *ArgPtr = GVTOP(AV); + if (sizeof(void*) == 4) + C = ConstantInt::get(Type::Int32Ty, (int)(intptr_t)ArgPtr); + else + C = ConstantInt::get(Type::Int64Ty, (intptr_t)ArgPtr); + C = ConstantExpr::getIntToPtr(C, ArgTy); // Cast the integer to pointer + break; + } + Args.push_back(C); + } + + CallInst *TheCall = CallInst::Create(F, Args.begin(), Args.end(), + "", StubBB); + TheCall->setCallingConv(F->getCallingConv()); + TheCall->setTailCall(); + if (TheCall->getType() != Type::VoidTy) + ReturnInst::Create(TheCall, StubBB); // Return result of the call. + else + ReturnInst::Create(StubBB); // Just return void. + + // Finally, return the value returned by our nullary stub function. + return runFunction(Stub, std::vector<GenericValue>()); +} + +/// runJITOnFunction - Run the FunctionPassManager full of +/// just-in-time compilation passes on F, hopefully filling in +/// GlobalAddress[F] with the address of F's machine code. +/// +void JIT::runJITOnFunction(Function *F, MachineCodeInfo *MCI) { + MutexGuard locked(lock); + + registerMachineCodeInfo(MCI); + + runJITOnFunctionUnlocked(F, locked); + + registerMachineCodeInfo(0); +} + +void JIT::runJITOnFunctionUnlocked(Function *F, const MutexGuard &locked) { + static bool isAlreadyCodeGenerating = false; + assert(!isAlreadyCodeGenerating && "Error: Recursive compilation detected!"); + + // JIT the function + isAlreadyCodeGenerating = true; + jitstate->getPM(locked).run(*F); + isAlreadyCodeGenerating = false; + + // If the function referred to another function that had not yet been + // read from bitcode, but we are jitting non-lazily, emit it now. + while (!jitstate->getPendingFunctions(locked).empty()) { + Function *PF = jitstate->getPendingFunctions(locked).back(); + jitstate->getPendingFunctions(locked).pop_back(); + + // JIT the function + isAlreadyCodeGenerating = true; + jitstate->getPM(locked).run(*PF); + isAlreadyCodeGenerating = false; + + // Now that the function has been jitted, ask the JITEmitter to rewrite + // the stub with real address of the function. + updateFunctionStub(PF); + } + + // If the JIT is configured to emit info so that dlsym can be used to + // rewrite stubs to external globals, do so now. + if (areDlsymStubsEnabled() && isLazyCompilationDisabled()) + updateDlsymStubTable(); +} + +/// getPointerToFunction - This method is used to get the address of the +/// specified function, compiling it if neccesary. +/// +void *JIT::getPointerToFunction(Function *F) { + + if (void *Addr = getPointerToGlobalIfAvailable(F)) + return Addr; // Check if function already code gen'd + + MutexGuard locked(lock); + + // Make sure we read in the function if it exists in this Module. + if (F->hasNotBeenReadFromBitcode()) { + // Determine the module provider this function is provided by. + Module *M = F->getParent(); + ModuleProvider *MP = 0; + for (unsigned i = 0, e = Modules.size(); i != e; ++i) { + if (Modules[i]->getModule() == M) { + MP = Modules[i]; + break; + } + } + assert(MP && "Function isn't in a module we know about!"); + + std::string ErrorMsg; + if (MP->materializeFunction(F, &ErrorMsg)) { + cerr << "Error reading function '" << F->getName() + << "' from bitcode file: " << ErrorMsg << "\n"; + abort(); + } + + // Now retry to get the address. + if (void *Addr = getPointerToGlobalIfAvailable(F)) + return Addr; + } + + if (F->isDeclaration()) { + bool AbortOnFailure = + !areDlsymStubsEnabled() && !F->hasExternalWeakLinkage(); + void *Addr = getPointerToNamedFunction(F->getName(), AbortOnFailure); + addGlobalMapping(F, Addr); + return Addr; + } + + runJITOnFunctionUnlocked(F, locked); + + void *Addr = getPointerToGlobalIfAvailable(F); + assert(Addr && "Code generation didn't add function to GlobalAddress table!"); + return Addr; +} + +/// getOrEmitGlobalVariable - Return the address of the specified global +/// variable, possibly emitting it to memory if needed. This is used by the +/// Emitter. +void *JIT::getOrEmitGlobalVariable(const GlobalVariable *GV) { + MutexGuard locked(lock); + + void *Ptr = getPointerToGlobalIfAvailable(GV); + if (Ptr) return Ptr; + + // If the global is external, just remember the address. + if (GV->isDeclaration()) { +#if HAVE___DSO_HANDLE + if (GV->getName() == "__dso_handle") + return (void*)&__dso_handle; +#endif + Ptr = sys::DynamicLibrary::SearchForAddressOfSymbol(GV->getName().c_str()); + if (Ptr == 0 && !areDlsymStubsEnabled()) { + cerr << "Could not resolve external global address: " + << GV->getName() << "\n"; + abort(); + } + addGlobalMapping(GV, Ptr); + } else { + // GlobalVariable's which are not "constant" will cause trouble in a server + // situation. It's returned in the same block of memory as code which may + // not be writable. + if (isGVCompilationDisabled() && !GV->isConstant()) { + cerr << "Compilation of non-internal GlobalValue is disabled!\n"; + abort(); + } + // If the global hasn't been emitted to memory yet, allocate space and + // emit it into memory. It goes in the same array as the generated + // code, jump tables, etc. + const Type *GlobalType = GV->getType()->getElementType(); + size_t S = getTargetData()->getTypeAllocSize(GlobalType); + size_t A = getTargetData()->getPreferredAlignment(GV); + if (GV->isThreadLocal()) { + MutexGuard locked(lock); + Ptr = TJI.allocateThreadLocalMemory(S); + } else if (TJI.allocateSeparateGVMemory()) { + if (A <= 8) { + Ptr = malloc(S); + } else { + // Allocate S+A bytes of memory, then use an aligned pointer within that + // space. + Ptr = malloc(S+A); + unsigned MisAligned = ((intptr_t)Ptr & (A-1)); + Ptr = (char*)Ptr + (MisAligned ? (A-MisAligned) : 0); + } + } else { + Ptr = JCE->allocateSpace(S, A); + } + addGlobalMapping(GV, Ptr); + EmitGlobalVariable(GV); + } + return Ptr; +} + +/// recompileAndRelinkFunction - This method is used to force a function +/// which has already been compiled, to be compiled again, possibly +/// after it has been modified. Then the entry to the old copy is overwritten +/// with a branch to the new copy. If there was no old copy, this acts +/// just like JIT::getPointerToFunction(). +/// +void *JIT::recompileAndRelinkFunction(Function *F) { + void *OldAddr = getPointerToGlobalIfAvailable(F); + + // If it's not already compiled there is no reason to patch it up. + if (OldAddr == 0) { return getPointerToFunction(F); } + + // Delete the old function mapping. + addGlobalMapping(F, 0); + + // Recodegen the function + runJITOnFunction(F); + + // Update state, forward the old function to the new function. + void *Addr = getPointerToGlobalIfAvailable(F); + assert(Addr && "Code generation didn't add function to GlobalAddress table!"); + TJI.replaceMachineCodeForFunction(OldAddr, Addr); + return Addr; +} + +/// getMemoryForGV - This method abstracts memory allocation of global +/// variable so that the JIT can allocate thread local variables depending +/// on the target. +/// +char* JIT::getMemoryForGV(const GlobalVariable* GV) { + const Type *ElTy = GV->getType()->getElementType(); + size_t GVSize = (size_t)getTargetData()->getTypeAllocSize(ElTy); + if (GV->isThreadLocal()) { + MutexGuard locked(lock); + return TJI.allocateThreadLocalMemory(GVSize); + } else { + return new char[GVSize]; + } +} + +void JIT::addPendingFunction(Function *F) { + MutexGuard locked(lock); + jitstate->getPendingFunctions(locked).push_back(F); +} |