summaryrefslogtreecommitdiffstats
path: root/lib/ExecutionEngine/JIT/JIT.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'lib/ExecutionEngine/JIT/JIT.cpp')
-rw-r--r--lib/ExecutionEngine/JIT/JIT.cpp708
1 files changed, 708 insertions, 0 deletions
diff --git a/lib/ExecutionEngine/JIT/JIT.cpp b/lib/ExecutionEngine/JIT/JIT.cpp
new file mode 100644
index 0000000..f8ae884
--- /dev/null
+++ b/lib/ExecutionEngine/JIT/JIT.cpp
@@ -0,0 +1,708 @@
+//===-- JIT.cpp - LLVM Just in Time Compiler ------------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This tool implements a just-in-time compiler for LLVM, allowing direct
+// execution of LLVM bitcode in an efficient manner.
+//
+//===----------------------------------------------------------------------===//
+
+#include "JIT.h"
+#include "llvm/Constants.h"
+#include "llvm/DerivedTypes.h"
+#include "llvm/Function.h"
+#include "llvm/GlobalVariable.h"
+#include "llvm/Instructions.h"
+#include "llvm/ModuleProvider.h"
+#include "llvm/CodeGen/JITCodeEmitter.h"
+#include "llvm/ExecutionEngine/GenericValue.h"
+#include "llvm/CodeGen/MachineCodeInfo.h"
+#include "llvm/Target/TargetData.h"
+#include "llvm/Target/TargetMachine.h"
+#include "llvm/Target/TargetJITInfo.h"
+#include "llvm/Support/Dwarf.h"
+#include "llvm/Support/MutexGuard.h"
+#include "llvm/System/DynamicLibrary.h"
+#include "llvm/Config/config.h"
+
+using namespace llvm;
+
+#ifdef __APPLE__
+// Apple gcc defaults to -fuse-cxa-atexit (i.e. calls __cxa_atexit instead
+// of atexit). It passes the address of linker generated symbol __dso_handle
+// to the function.
+// This configuration change happened at version 5330.
+# include <AvailabilityMacros.h>
+# if defined(MAC_OS_X_VERSION_10_4) && \
+ ((MAC_OS_X_VERSION_MIN_REQUIRED > MAC_OS_X_VERSION_10_4) || \
+ (MAC_OS_X_VERSION_MIN_REQUIRED == MAC_OS_X_VERSION_10_4 && \
+ __APPLE_CC__ >= 5330))
+# ifndef HAVE___DSO_HANDLE
+# define HAVE___DSO_HANDLE 1
+# endif
+# endif
+#endif
+
+#if HAVE___DSO_HANDLE
+extern void *__dso_handle __attribute__ ((__visibility__ ("hidden")));
+#endif
+
+namespace {
+
+static struct RegisterJIT {
+ RegisterJIT() { JIT::Register(); }
+} JITRegistrator;
+
+}
+
+namespace llvm {
+ void LinkInJIT() {
+ }
+}
+
+
+#if defined(__GNUC__) && !defined(__ARM__EABI__)
+
+// libgcc defines the __register_frame function to dynamically register new
+// dwarf frames for exception handling. This functionality is not portable
+// across compilers and is only provided by GCC. We use the __register_frame
+// function here so that code generated by the JIT cooperates with the unwinding
+// runtime of libgcc. When JITting with exception handling enable, LLVM
+// generates dwarf frames and registers it to libgcc with __register_frame.
+//
+// The __register_frame function works with Linux.
+//
+// Unfortunately, this functionality seems to be in libgcc after the unwinding
+// library of libgcc for darwin was written. The code for darwin overwrites the
+// value updated by __register_frame with a value fetched with "keymgr".
+// "keymgr" is an obsolete functionality, which should be rewritten some day.
+// In the meantime, since "keymgr" is on all libgccs shipped with apple-gcc, we
+// need a workaround in LLVM which uses the "keymgr" to dynamically modify the
+// values of an opaque key, used by libgcc to find dwarf tables.
+
+extern "C" void __register_frame(void*);
+
+#if defined(__APPLE__) && MAC_OS_X_VERSION_MAX_ALLOWED <= 1050
+# define USE_KEYMGR 1
+#else
+# define USE_KEYMGR 0
+#endif
+
+#if USE_KEYMGR
+
+namespace {
+
+// LibgccObject - This is the structure defined in libgcc. There is no #include
+// provided for this structure, so we also define it here. libgcc calls it
+// "struct object". The structure is undocumented in libgcc.
+struct LibgccObject {
+ void *unused1;
+ void *unused2;
+ void *unused3;
+
+ /// frame - Pointer to the exception table.
+ void *frame;
+
+ /// encoding - The encoding of the object?
+ union {
+ struct {
+ unsigned long sorted : 1;
+ unsigned long from_array : 1;
+ unsigned long mixed_encoding : 1;
+ unsigned long encoding : 8;
+ unsigned long count : 21;
+ } b;
+ size_t i;
+ } encoding;
+
+ /// fde_end - libgcc defines this field only if some macro is defined. We
+ /// include this field even if it may not there, to make libgcc happy.
+ char *fde_end;
+
+ /// next - At least we know it's a chained list!
+ struct LibgccObject *next;
+};
+
+// "kemgr" stuff. Apparently, all frame tables are stored there.
+extern "C" void _keymgr_set_and_unlock_processwide_ptr(int, void *);
+extern "C" void *_keymgr_get_and_lock_processwide_ptr(int);
+#define KEYMGR_GCC3_DW2_OBJ_LIST 302 /* Dwarf2 object list */
+
+/// LibgccObjectInfo - libgcc defines this struct as km_object_info. It
+/// probably contains all dwarf tables that are loaded.
+struct LibgccObjectInfo {
+
+ /// seenObjects - LibgccObjects already parsed by the unwinding runtime.
+ ///
+ struct LibgccObject* seenObjects;
+
+ /// unseenObjects - LibgccObjects not parsed yet by the unwinding runtime.
+ ///
+ struct LibgccObject* unseenObjects;
+
+ unsigned unused[2];
+};
+
+/// darwin_register_frame - Since __register_frame does not work with darwin's
+/// libgcc,we provide our own function, which "tricks" libgcc by modifying the
+/// "Dwarf2 object list" key.
+void DarwinRegisterFrame(void* FrameBegin) {
+ // Get the key.
+ LibgccObjectInfo* LOI = (struct LibgccObjectInfo*)
+ _keymgr_get_and_lock_processwide_ptr(KEYMGR_GCC3_DW2_OBJ_LIST);
+ assert(LOI && "This should be preallocated by the runtime");
+
+ // Allocate a new LibgccObject to represent this frame. Deallocation of this
+ // object may be impossible: since darwin code in libgcc was written after
+ // the ability to dynamically register frames, things may crash if we
+ // deallocate it.
+ struct LibgccObject* ob = (struct LibgccObject*)
+ malloc(sizeof(struct LibgccObject));
+
+ // Do like libgcc for the values of the field.
+ ob->unused1 = (void *)-1;
+ ob->unused2 = 0;
+ ob->unused3 = 0;
+ ob->frame = FrameBegin;
+ ob->encoding.i = 0;
+ ob->encoding.b.encoding = llvm::dwarf::DW_EH_PE_omit;
+
+ // Put the info on both places, as libgcc uses the first or the the second
+ // field. Note that we rely on having two pointers here. If fde_end was a
+ // char, things would get complicated.
+ ob->fde_end = (char*)LOI->unseenObjects;
+ ob->next = LOI->unseenObjects;
+
+ // Update the key's unseenObjects list.
+ LOI->unseenObjects = ob;
+
+ // Finally update the "key". Apparently, libgcc requires it.
+ _keymgr_set_and_unlock_processwide_ptr(KEYMGR_GCC3_DW2_OBJ_LIST,
+ LOI);
+
+}
+
+}
+#endif // __APPLE__
+#endif // __GNUC__
+
+/// createJIT - This is the factory method for creating a JIT for the current
+/// machine, it does not fall back to the interpreter. This takes ownership
+/// of the module provider.
+ExecutionEngine *ExecutionEngine::createJIT(ModuleProvider *MP,
+ std::string *ErrorStr,
+ JITMemoryManager *JMM,
+ CodeGenOpt::Level OptLevel) {
+ ExecutionEngine *EE = JIT::createJIT(MP, ErrorStr, JMM, OptLevel);
+ if (!EE) return 0;
+
+ // Make sure we can resolve symbols in the program as well. The zero arg
+ // to the function tells DynamicLibrary to load the program, not a library.
+ sys::DynamicLibrary::LoadLibraryPermanently(0, ErrorStr);
+ return EE;
+}
+
+JIT::JIT(ModuleProvider *MP, TargetMachine &tm, TargetJITInfo &tji,
+ JITMemoryManager *JMM, CodeGenOpt::Level OptLevel)
+ : ExecutionEngine(MP), TM(tm), TJI(tji) {
+ setTargetData(TM.getTargetData());
+
+ jitstate = new JITState(MP);
+
+ // Initialize JCE
+ JCE = createEmitter(*this, JMM);
+
+ // Add target data
+ MutexGuard locked(lock);
+ FunctionPassManager &PM = jitstate->getPM(locked);
+ PM.add(new TargetData(*TM.getTargetData()));
+
+ // Turn the machine code intermediate representation into bytes in memory that
+ // may be executed.
+ if (TM.addPassesToEmitMachineCode(PM, *JCE, OptLevel)) {
+ cerr << "Target does not support machine code emission!\n";
+ abort();
+ }
+
+ // Register routine for informing unwinding runtime about new EH frames
+#if defined(__GNUC__) && !defined(__ARM_EABI__)
+#if USE_KEYMGR
+ struct LibgccObjectInfo* LOI = (struct LibgccObjectInfo*)
+ _keymgr_get_and_lock_processwide_ptr(KEYMGR_GCC3_DW2_OBJ_LIST);
+
+ // The key is created on demand, and libgcc creates it the first time an
+ // exception occurs. Since we need the key to register frames, we create
+ // it now.
+ if (!LOI)
+ LOI = (LibgccObjectInfo*)calloc(sizeof(struct LibgccObjectInfo), 1);
+ _keymgr_set_and_unlock_processwide_ptr(KEYMGR_GCC3_DW2_OBJ_LIST, LOI);
+ InstallExceptionTableRegister(DarwinRegisterFrame);
+#else
+ InstallExceptionTableRegister(__register_frame);
+#endif // __APPLE__
+#endif // __GNUC__
+
+ // Initialize passes.
+ PM.doInitialization();
+}
+
+JIT::~JIT() {
+ delete jitstate;
+ delete JCE;
+ delete &TM;
+}
+
+/// addModuleProvider - Add a new ModuleProvider to the JIT. If we previously
+/// removed the last ModuleProvider, we need re-initialize jitstate with a valid
+/// ModuleProvider.
+void JIT::addModuleProvider(ModuleProvider *MP) {
+ MutexGuard locked(lock);
+
+ if (Modules.empty()) {
+ assert(!jitstate && "jitstate should be NULL if Modules vector is empty!");
+
+ jitstate = new JITState(MP);
+
+ FunctionPassManager &PM = jitstate->getPM(locked);
+ PM.add(new TargetData(*TM.getTargetData()));
+
+ // Turn the machine code intermediate representation into bytes in memory
+ // that may be executed.
+ if (TM.addPassesToEmitMachineCode(PM, *JCE, CodeGenOpt::Default)) {
+ cerr << "Target does not support machine code emission!\n";
+ abort();
+ }
+
+ // Initialize passes.
+ PM.doInitialization();
+ }
+
+ ExecutionEngine::addModuleProvider(MP);
+}
+
+/// removeModuleProvider - If we are removing the last ModuleProvider,
+/// invalidate the jitstate since the PassManager it contains references a
+/// released ModuleProvider.
+Module *JIT::removeModuleProvider(ModuleProvider *MP, std::string *E) {
+ Module *result = ExecutionEngine::removeModuleProvider(MP, E);
+
+ MutexGuard locked(lock);
+
+ if (jitstate->getMP() == MP) {
+ delete jitstate;
+ jitstate = 0;
+ }
+
+ if (!jitstate && !Modules.empty()) {
+ jitstate = new JITState(Modules[0]);
+
+ FunctionPassManager &PM = jitstate->getPM(locked);
+ PM.add(new TargetData(*TM.getTargetData()));
+
+ // Turn the machine code intermediate representation into bytes in memory
+ // that may be executed.
+ if (TM.addPassesToEmitMachineCode(PM, *JCE, CodeGenOpt::Default)) {
+ cerr << "Target does not support machine code emission!\n";
+ abort();
+ }
+
+ // Initialize passes.
+ PM.doInitialization();
+ }
+ return result;
+}
+
+/// deleteModuleProvider - Remove a ModuleProvider from the list of modules,
+/// and deletes the ModuleProvider and owned Module. Avoids materializing
+/// the underlying module.
+void JIT::deleteModuleProvider(ModuleProvider *MP, std::string *E) {
+ ExecutionEngine::deleteModuleProvider(MP, E);
+
+ MutexGuard locked(lock);
+
+ if (jitstate->getMP() == MP) {
+ delete jitstate;
+ jitstate = 0;
+ }
+
+ if (!jitstate && !Modules.empty()) {
+ jitstate = new JITState(Modules[0]);
+
+ FunctionPassManager &PM = jitstate->getPM(locked);
+ PM.add(new TargetData(*TM.getTargetData()));
+
+ // Turn the machine code intermediate representation into bytes in memory
+ // that may be executed.
+ if (TM.addPassesToEmitMachineCode(PM, *JCE, CodeGenOpt::Default)) {
+ cerr << "Target does not support machine code emission!\n";
+ abort();
+ }
+
+ // Initialize passes.
+ PM.doInitialization();
+ }
+}
+
+/// run - Start execution with the specified function and arguments.
+///
+GenericValue JIT::runFunction(Function *F,
+ const std::vector<GenericValue> &ArgValues) {
+ assert(F && "Function *F was null at entry to run()");
+
+ void *FPtr = getPointerToFunction(F);
+ assert(FPtr && "Pointer to fn's code was null after getPointerToFunction");
+ const FunctionType *FTy = F->getFunctionType();
+ const Type *RetTy = FTy->getReturnType();
+
+ assert((FTy->getNumParams() == ArgValues.size() ||
+ (FTy->isVarArg() && FTy->getNumParams() <= ArgValues.size())) &&
+ "Wrong number of arguments passed into function!");
+ assert(FTy->getNumParams() == ArgValues.size() &&
+ "This doesn't support passing arguments through varargs (yet)!");
+
+ // Handle some common cases first. These cases correspond to common `main'
+ // prototypes.
+ if (RetTy == Type::Int32Ty || RetTy == Type::VoidTy) {
+ switch (ArgValues.size()) {
+ case 3:
+ if (FTy->getParamType(0) == Type::Int32Ty &&
+ isa<PointerType>(FTy->getParamType(1)) &&
+ isa<PointerType>(FTy->getParamType(2))) {
+ int (*PF)(int, char **, const char **) =
+ (int(*)(int, char **, const char **))(intptr_t)FPtr;
+
+ // Call the function.
+ GenericValue rv;
+ rv.IntVal = APInt(32, PF(ArgValues[0].IntVal.getZExtValue(),
+ (char **)GVTOP(ArgValues[1]),
+ (const char **)GVTOP(ArgValues[2])));
+ return rv;
+ }
+ break;
+ case 2:
+ if (FTy->getParamType(0) == Type::Int32Ty &&
+ isa<PointerType>(FTy->getParamType(1))) {
+ int (*PF)(int, char **) = (int(*)(int, char **))(intptr_t)FPtr;
+
+ // Call the function.
+ GenericValue rv;
+ rv.IntVal = APInt(32, PF(ArgValues[0].IntVal.getZExtValue(),
+ (char **)GVTOP(ArgValues[1])));
+ return rv;
+ }
+ break;
+ case 1:
+ if (FTy->getNumParams() == 1 &&
+ FTy->getParamType(0) == Type::Int32Ty) {
+ GenericValue rv;
+ int (*PF)(int) = (int(*)(int))(intptr_t)FPtr;
+ rv.IntVal = APInt(32, PF(ArgValues[0].IntVal.getZExtValue()));
+ return rv;
+ }
+ break;
+ }
+ }
+
+ // Handle cases where no arguments are passed first.
+ if (ArgValues.empty()) {
+ GenericValue rv;
+ switch (RetTy->getTypeID()) {
+ default: assert(0 && "Unknown return type for function call!");
+ case Type::IntegerTyID: {
+ unsigned BitWidth = cast<IntegerType>(RetTy)->getBitWidth();
+ if (BitWidth == 1)
+ rv.IntVal = APInt(BitWidth, ((bool(*)())(intptr_t)FPtr)());
+ else if (BitWidth <= 8)
+ rv.IntVal = APInt(BitWidth, ((char(*)())(intptr_t)FPtr)());
+ else if (BitWidth <= 16)
+ rv.IntVal = APInt(BitWidth, ((short(*)())(intptr_t)FPtr)());
+ else if (BitWidth <= 32)
+ rv.IntVal = APInt(BitWidth, ((int(*)())(intptr_t)FPtr)());
+ else if (BitWidth <= 64)
+ rv.IntVal = APInt(BitWidth, ((int64_t(*)())(intptr_t)FPtr)());
+ else
+ assert(0 && "Integer types > 64 bits not supported");
+ return rv;
+ }
+ case Type::VoidTyID:
+ rv.IntVal = APInt(32, ((int(*)())(intptr_t)FPtr)());
+ return rv;
+ case Type::FloatTyID:
+ rv.FloatVal = ((float(*)())(intptr_t)FPtr)();
+ return rv;
+ case Type::DoubleTyID:
+ rv.DoubleVal = ((double(*)())(intptr_t)FPtr)();
+ return rv;
+ case Type::X86_FP80TyID:
+ case Type::FP128TyID:
+ case Type::PPC_FP128TyID:
+ assert(0 && "long double not supported yet");
+ return rv;
+ case Type::PointerTyID:
+ return PTOGV(((void*(*)())(intptr_t)FPtr)());
+ }
+ }
+
+ // Okay, this is not one of our quick and easy cases. Because we don't have a
+ // full FFI, we have to codegen a nullary stub function that just calls the
+ // function we are interested in, passing in constants for all of the
+ // arguments. Make this function and return.
+
+ // First, create the function.
+ FunctionType *STy=FunctionType::get(RetTy, std::vector<const Type*>(), false);
+ Function *Stub = Function::Create(STy, Function::InternalLinkage, "",
+ F->getParent());
+
+ // Insert a basic block.
+ BasicBlock *StubBB = BasicBlock::Create("", Stub);
+
+ // Convert all of the GenericValue arguments over to constants. Note that we
+ // currently don't support varargs.
+ SmallVector<Value*, 8> Args;
+ for (unsigned i = 0, e = ArgValues.size(); i != e; ++i) {
+ Constant *C = 0;
+ const Type *ArgTy = FTy->getParamType(i);
+ const GenericValue &AV = ArgValues[i];
+ switch (ArgTy->getTypeID()) {
+ default: assert(0 && "Unknown argument type for function call!");
+ case Type::IntegerTyID:
+ C = ConstantInt::get(AV.IntVal);
+ break;
+ case Type::FloatTyID:
+ C = ConstantFP::get(APFloat(AV.FloatVal));
+ break;
+ case Type::DoubleTyID:
+ C = ConstantFP::get(APFloat(AV.DoubleVal));
+ break;
+ case Type::PPC_FP128TyID:
+ case Type::X86_FP80TyID:
+ case Type::FP128TyID:
+ C = ConstantFP::get(APFloat(AV.IntVal));
+ break;
+ case Type::PointerTyID:
+ void *ArgPtr = GVTOP(AV);
+ if (sizeof(void*) == 4)
+ C = ConstantInt::get(Type::Int32Ty, (int)(intptr_t)ArgPtr);
+ else
+ C = ConstantInt::get(Type::Int64Ty, (intptr_t)ArgPtr);
+ C = ConstantExpr::getIntToPtr(C, ArgTy); // Cast the integer to pointer
+ break;
+ }
+ Args.push_back(C);
+ }
+
+ CallInst *TheCall = CallInst::Create(F, Args.begin(), Args.end(),
+ "", StubBB);
+ TheCall->setCallingConv(F->getCallingConv());
+ TheCall->setTailCall();
+ if (TheCall->getType() != Type::VoidTy)
+ ReturnInst::Create(TheCall, StubBB); // Return result of the call.
+ else
+ ReturnInst::Create(StubBB); // Just return void.
+
+ // Finally, return the value returned by our nullary stub function.
+ return runFunction(Stub, std::vector<GenericValue>());
+}
+
+/// runJITOnFunction - Run the FunctionPassManager full of
+/// just-in-time compilation passes on F, hopefully filling in
+/// GlobalAddress[F] with the address of F's machine code.
+///
+void JIT::runJITOnFunction(Function *F, MachineCodeInfo *MCI) {
+ MutexGuard locked(lock);
+
+ registerMachineCodeInfo(MCI);
+
+ runJITOnFunctionUnlocked(F, locked);
+
+ registerMachineCodeInfo(0);
+}
+
+void JIT::runJITOnFunctionUnlocked(Function *F, const MutexGuard &locked) {
+ static bool isAlreadyCodeGenerating = false;
+ assert(!isAlreadyCodeGenerating && "Error: Recursive compilation detected!");
+
+ // JIT the function
+ isAlreadyCodeGenerating = true;
+ jitstate->getPM(locked).run(*F);
+ isAlreadyCodeGenerating = false;
+
+ // If the function referred to another function that had not yet been
+ // read from bitcode, but we are jitting non-lazily, emit it now.
+ while (!jitstate->getPendingFunctions(locked).empty()) {
+ Function *PF = jitstate->getPendingFunctions(locked).back();
+ jitstate->getPendingFunctions(locked).pop_back();
+
+ // JIT the function
+ isAlreadyCodeGenerating = true;
+ jitstate->getPM(locked).run(*PF);
+ isAlreadyCodeGenerating = false;
+
+ // Now that the function has been jitted, ask the JITEmitter to rewrite
+ // the stub with real address of the function.
+ updateFunctionStub(PF);
+ }
+
+ // If the JIT is configured to emit info so that dlsym can be used to
+ // rewrite stubs to external globals, do so now.
+ if (areDlsymStubsEnabled() && isLazyCompilationDisabled())
+ updateDlsymStubTable();
+}
+
+/// getPointerToFunction - This method is used to get the address of the
+/// specified function, compiling it if neccesary.
+///
+void *JIT::getPointerToFunction(Function *F) {
+
+ if (void *Addr = getPointerToGlobalIfAvailable(F))
+ return Addr; // Check if function already code gen'd
+
+ MutexGuard locked(lock);
+
+ // Make sure we read in the function if it exists in this Module.
+ if (F->hasNotBeenReadFromBitcode()) {
+ // Determine the module provider this function is provided by.
+ Module *M = F->getParent();
+ ModuleProvider *MP = 0;
+ for (unsigned i = 0, e = Modules.size(); i != e; ++i) {
+ if (Modules[i]->getModule() == M) {
+ MP = Modules[i];
+ break;
+ }
+ }
+ assert(MP && "Function isn't in a module we know about!");
+
+ std::string ErrorMsg;
+ if (MP->materializeFunction(F, &ErrorMsg)) {
+ cerr << "Error reading function '" << F->getName()
+ << "' from bitcode file: " << ErrorMsg << "\n";
+ abort();
+ }
+
+ // Now retry to get the address.
+ if (void *Addr = getPointerToGlobalIfAvailable(F))
+ return Addr;
+ }
+
+ if (F->isDeclaration()) {
+ bool AbortOnFailure =
+ !areDlsymStubsEnabled() && !F->hasExternalWeakLinkage();
+ void *Addr = getPointerToNamedFunction(F->getName(), AbortOnFailure);
+ addGlobalMapping(F, Addr);
+ return Addr;
+ }
+
+ runJITOnFunctionUnlocked(F, locked);
+
+ void *Addr = getPointerToGlobalIfAvailable(F);
+ assert(Addr && "Code generation didn't add function to GlobalAddress table!");
+ return Addr;
+}
+
+/// getOrEmitGlobalVariable - Return the address of the specified global
+/// variable, possibly emitting it to memory if needed. This is used by the
+/// Emitter.
+void *JIT::getOrEmitGlobalVariable(const GlobalVariable *GV) {
+ MutexGuard locked(lock);
+
+ void *Ptr = getPointerToGlobalIfAvailable(GV);
+ if (Ptr) return Ptr;
+
+ // If the global is external, just remember the address.
+ if (GV->isDeclaration()) {
+#if HAVE___DSO_HANDLE
+ if (GV->getName() == "__dso_handle")
+ return (void*)&__dso_handle;
+#endif
+ Ptr = sys::DynamicLibrary::SearchForAddressOfSymbol(GV->getName().c_str());
+ if (Ptr == 0 && !areDlsymStubsEnabled()) {
+ cerr << "Could not resolve external global address: "
+ << GV->getName() << "\n";
+ abort();
+ }
+ addGlobalMapping(GV, Ptr);
+ } else {
+ // GlobalVariable's which are not "constant" will cause trouble in a server
+ // situation. It's returned in the same block of memory as code which may
+ // not be writable.
+ if (isGVCompilationDisabled() && !GV->isConstant()) {
+ cerr << "Compilation of non-internal GlobalValue is disabled!\n";
+ abort();
+ }
+ // If the global hasn't been emitted to memory yet, allocate space and
+ // emit it into memory. It goes in the same array as the generated
+ // code, jump tables, etc.
+ const Type *GlobalType = GV->getType()->getElementType();
+ size_t S = getTargetData()->getTypeAllocSize(GlobalType);
+ size_t A = getTargetData()->getPreferredAlignment(GV);
+ if (GV->isThreadLocal()) {
+ MutexGuard locked(lock);
+ Ptr = TJI.allocateThreadLocalMemory(S);
+ } else if (TJI.allocateSeparateGVMemory()) {
+ if (A <= 8) {
+ Ptr = malloc(S);
+ } else {
+ // Allocate S+A bytes of memory, then use an aligned pointer within that
+ // space.
+ Ptr = malloc(S+A);
+ unsigned MisAligned = ((intptr_t)Ptr & (A-1));
+ Ptr = (char*)Ptr + (MisAligned ? (A-MisAligned) : 0);
+ }
+ } else {
+ Ptr = JCE->allocateSpace(S, A);
+ }
+ addGlobalMapping(GV, Ptr);
+ EmitGlobalVariable(GV);
+ }
+ return Ptr;
+}
+
+/// recompileAndRelinkFunction - This method is used to force a function
+/// which has already been compiled, to be compiled again, possibly
+/// after it has been modified. Then the entry to the old copy is overwritten
+/// with a branch to the new copy. If there was no old copy, this acts
+/// just like JIT::getPointerToFunction().
+///
+void *JIT::recompileAndRelinkFunction(Function *F) {
+ void *OldAddr = getPointerToGlobalIfAvailable(F);
+
+ // If it's not already compiled there is no reason to patch it up.
+ if (OldAddr == 0) { return getPointerToFunction(F); }
+
+ // Delete the old function mapping.
+ addGlobalMapping(F, 0);
+
+ // Recodegen the function
+ runJITOnFunction(F);
+
+ // Update state, forward the old function to the new function.
+ void *Addr = getPointerToGlobalIfAvailable(F);
+ assert(Addr && "Code generation didn't add function to GlobalAddress table!");
+ TJI.replaceMachineCodeForFunction(OldAddr, Addr);
+ return Addr;
+}
+
+/// getMemoryForGV - This method abstracts memory allocation of global
+/// variable so that the JIT can allocate thread local variables depending
+/// on the target.
+///
+char* JIT::getMemoryForGV(const GlobalVariable* GV) {
+ const Type *ElTy = GV->getType()->getElementType();
+ size_t GVSize = (size_t)getTargetData()->getTypeAllocSize(ElTy);
+ if (GV->isThreadLocal()) {
+ MutexGuard locked(lock);
+ return TJI.allocateThreadLocalMemory(GVSize);
+ } else {
+ return new char[GVSize];
+ }
+}
+
+void JIT::addPendingFunction(Function *F) {
+ MutexGuard locked(lock);
+ jitstate->getPendingFunctions(locked).push_back(F);
+}
OpenPOWER on IntegriCloud