summaryrefslogtreecommitdiffstats
path: root/lib/CodeGen
diff options
context:
space:
mode:
Diffstat (limited to 'lib/CodeGen')
-rw-r--r--lib/CodeGen/AsmPrinter/DwarfDebug.cpp7
-rw-r--r--lib/CodeGen/CMakeLists.txt1
-rw-r--r--lib/CodeGen/ELF.h129
-rw-r--r--lib/CodeGen/ELFCodeEmitter.cpp33
-rw-r--r--lib/CodeGen/ELFWriter.cpp446
-rw-r--r--lib/CodeGen/ELFWriter.h61
-rw-r--r--lib/CodeGen/LLVMTargetMachine.cpp2
-rw-r--r--lib/CodeGen/LazyLiveness.cpp158
-rw-r--r--lib/CodeGen/RegisterScavenging.cpp17
9 files changed, 576 insertions, 278 deletions
diff --git a/lib/CodeGen/AsmPrinter/DwarfDebug.cpp b/lib/CodeGen/AsmPrinter/DwarfDebug.cpp
index 5a66f4b..c773378 100644
--- a/lib/CodeGen/AsmPrinter/DwarfDebug.cpp
+++ b/lib/CodeGen/AsmPrinter/DwarfDebug.cpp
@@ -1581,6 +1581,7 @@ void DwarfDebug::EndFunction(MachineFunction *MF) {
FunctionDbgScope = NULL;
LexicalScopeStack.clear();
AbstractInstanceRootList.clear();
+ AbstractInstanceRootMap.clear();
}
Lines.clear();
@@ -1669,7 +1670,11 @@ unsigned DwarfDebug::RecordRegionEnd(GlobalVariable *V) {
DbgScope *Scope = getOrCreateScope(V);
unsigned ID = MMI->NextLabelID();
Scope->setEndLabelID(ID);
- if (LexicalScopeStack.size() != 0)
+ // FIXME : region.end() may not be in the last basic block.
+ // For now, do not pop last lexical scope because next basic
+ // block may start new inlined function's body.
+ unsigned LSSize = LexicalScopeStack.size();
+ if (LSSize != 0 && LSSize != 1)
LexicalScopeStack.pop_back();
if (TimePassesIsEnabled)
diff --git a/lib/CodeGen/CMakeLists.txt b/lib/CodeGen/CMakeLists.txt
index ff917a7..5ba8b3c 100644
--- a/lib/CodeGen/CMakeLists.txt
+++ b/lib/CodeGen/CMakeLists.txt
@@ -12,6 +12,7 @@ add_llvm_library(LLVMCodeGen
IntrinsicLowering.cpp
LLVMTargetMachine.cpp
LatencyPriorityQueue.cpp
+ LazyLiveness.cpp
LiveInterval.cpp
LiveIntervalAnalysis.cpp
LiveStackAnalysis.cpp
diff --git a/lib/CodeGen/ELF.h b/lib/CodeGen/ELF.h
index c22f6ed..796bc2c 100644
--- a/lib/CodeGen/ELF.h
+++ b/lib/CodeGen/ELF.h
@@ -10,23 +10,24 @@
// This header contains common, non-processor-specific data structures and
// constants for the ELF file format.
//
-// The details of the ELF32 bits in this file are largely based on
-// the Tool Interface Standard (TIS) Executable and Linking Format
-// (ELF) Specification Version 1.2, May 1995. The ELF64 stuff is not
-// standardized, as far as I can tell. It was largely based on information
-// I found in OpenBSD header files.
+// The details of the ELF32 bits in this file are largely based on the Tool
+// Interface Standard (TIS) Executable and Linking Format (ELF) Specification
+// Version 1.2, May 1995. The ELF64 is based on HP/Intel definition of the
+// ELF-64 object file format document, Version 1.5 Draft 2 May 27, 1998
//
//===----------------------------------------------------------------------===//
#ifndef CODEGEN_ELF_H
#define CODEGEN_ELF_H
+#include "llvm/GlobalVariable.h"
+#include "llvm/CodeGen/BinaryObject.h"
#include "llvm/CodeGen/MachineRelocation.h"
#include "llvm/Support/DataTypes.h"
#include <cstring>
namespace llvm {
- class GlobalVariable;
+ class BinaryObject;
// Identification Indexes
enum {
@@ -47,71 +48,28 @@ namespace llvm {
ET_HIPROC = 0xffff // Processor-specific
};
- // Object file classes.
- enum {
- ELFCLASS32 = 1, // 32-bit object file
- ELFCLASS64 = 2 // 64-bit object file
- };
-
- // Object file byte orderings.
- enum {
- ELFDATA2LSB = 1, // Little-endian object file
- ELFDATA2MSB = 2 // Big-endian object file
- };
-
// Versioning
enum {
EV_NONE = 0,
EV_CURRENT = 1
};
- struct ELFHeader {
- // e_machine - This field is the target specific value to emit as the
- // e_machine member of the ELF header.
- unsigned short e_machine;
-
- // e_flags - The machine flags for the target. This defaults to zero.
- unsigned e_flags;
-
- // e_size - Holds the ELF header's size in bytes
- unsigned e_ehsize;
-
- // Endianess and ELF Class (64 or 32 bits)
- unsigned ByteOrder;
- unsigned ElfClass;
-
- unsigned getByteOrder() const { return ByteOrder; }
- unsigned getElfClass() const { return ElfClass; }
- unsigned getSize() const { return e_ehsize; }
- unsigned getMachine() const { return e_machine; }
- unsigned getFlags() const { return e_flags; }
-
- ELFHeader(unsigned short machine, unsigned flags,
- bool is64Bit, bool isLittleEndian)
- : e_machine(machine), e_flags(flags) {
- ElfClass = is64Bit ? ELFCLASS64 : ELFCLASS32;
- ByteOrder = isLittleEndian ? ELFDATA2LSB : ELFDATA2MSB;
- e_ehsize = is64Bit ? 64 : 52;
- }
- };
-
/// ELFSection - This struct contains information about each section that is
/// emitted to the file. This is eventually turned into the section header
/// table at the end of the file.
- struct ELFSection {
-
+ class ELFSection : public BinaryObject {
+ public:
// ELF specific fields
- std::string Name; // Name of the section.
- unsigned NameIdx; // Index in .shstrtab of name, once emitted.
- unsigned Type;
- unsigned Flags;
- uint64_t Addr;
- unsigned Offset;
- unsigned Size;
- unsigned Link;
- unsigned Info;
- unsigned Align;
- unsigned EntSize;
+ unsigned NameIdx; // sh_name - .shstrtab idx of name, once emitted.
+ unsigned Type; // sh_type - Section contents & semantics
+ unsigned Flags; // sh_flags - Section flags.
+ uint64_t Addr; // sh_addr - The mem addr this section is in.
+ unsigned Offset; // sh_offset - Offset from the file start
+ unsigned Size; // sh_size - The section size.
+ unsigned Link; // sh_link - Section header table index link.
+ unsigned Info; // sh_info - Auxillary information.
+ unsigned Align; // sh_addralign - Alignment of section.
+ unsigned EntSize; // sh_entsize - Size of entries in the section e
// Section Header Flags
enum {
@@ -141,8 +99,8 @@ namespace llvm {
SHT_REL = 9, // Relocation entries; no explicit addends.
SHT_SHLIB = 10, // Reserved.
SHT_DYNSYM = 11, // Symbol table.
- SHT_LOPROC = 0x70000000, // Lowest processor architecture-specific type.
- SHT_HIPROC = 0x7fffffff, // Highest processor architecture-specific type.
+ SHT_LOPROC = 0x70000000, // Lowest processor arch-specific type.
+ SHT_HIPROC = 0x7fffffff, // Highest processor arch-specific type.
SHT_LOUSER = 0x80000000, // Lowest type reserved for applications.
SHT_HIUSER = 0xffffffff // Highest type reserved for applications.
};
@@ -161,22 +119,9 @@ namespace llvm {
/// SectionIdx - The number of the section in the Section Table.
unsigned short SectionIdx;
- /// SectionData - The actual data for this section which we are building
- /// up for emission to the file.
- std::vector<unsigned char> SectionData;
-
- /// Relocations - The relocations that we have encountered so far in this
- /// section that we will need to convert to Elf relocation entries when
- /// the file is written.
- std::vector<MachineRelocation> Relocations;
-
- /// Section Header Size
- static unsigned getSectionHdrSize(bool is64Bit)
- { return is64Bit ? 64 : 40; }
-
- ELFSection(const std::string &name)
- : Name(name), Type(0), Flags(0), Addr(0), Offset(0), Size(0),
- Link(0), Info(0), Align(0), EntSize(0) {}
+ ELFSection(const std::string &name, bool isLittleEndian, bool is64Bit)
+ : BinaryObject(name, isLittleEndian, is64Bit), Type(0), Flags(0), Addr(0),
+ Offset(0), Size(0), Link(0), Info(0), Align(0), EntSize(0) {}
};
/// ELFSym - This struct contains information about each symbol that is
@@ -207,9 +152,33 @@ namespace llvm {
STT_FILE = 4
};
+ enum {
+ STV_DEFAULT = 0, // Visibility is specified by binding type
+ STV_INTERNAL = 1, // Defined by processor supplements
+ STV_HIDDEN = 2, // Not visible to other components
+ STV_PROTECTED = 3 // Visible in other components but not preemptable
+ };
+
ELFSym(const GlobalValue *gv) : GV(gv), NameIdx(0), Value(0),
Size(0), Info(0), Other(0),
- SectionIdx(ELFSection::SHN_UNDEF) {}
+ SectionIdx(ELFSection::SHN_UNDEF) {
+ if (!GV)
+ return;
+
+ switch (GV->getVisibility()) {
+ default:
+ assert(0 && "unknown visibility type");
+ case GlobalValue::DefaultVisibility:
+ Other = STV_DEFAULT;
+ break;
+ case GlobalValue::HiddenVisibility:
+ Other = STV_HIDDEN;
+ break;
+ case GlobalValue::ProtectedVisibility:
+ Other = STV_PROTECTED;
+ break;
+ }
+ }
void SetBind(unsigned X) {
assert(X == (X & 0xF) && "Bind value out of range!");
diff --git a/lib/CodeGen/ELFCodeEmitter.cpp b/lib/CodeGen/ELFCodeEmitter.cpp
index c7bd873..ca68396 100644
--- a/lib/CodeGen/ELFCodeEmitter.cpp
+++ b/lib/CodeGen/ELFCodeEmitter.cpp
@@ -13,9 +13,9 @@
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Function.h"
+#include "llvm/CodeGen/BinaryObject.h"
#include "llvm/CodeGen/MachineConstantPool.h"
#include "llvm/CodeGen/MachineJumpTableInfo.h"
-#include "llvm/Target/TargetData.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Support/Debug.h"
@@ -28,27 +28,22 @@ namespace llvm {
/// startFunction - This callback is invoked when a new machine function is
/// about to be emitted.
void ELFCodeEmitter::startFunction(MachineFunction &MF) {
- const TargetData *TD = TM.getTargetData();
- const Function *F = MF.getFunction();
-
- // Align the output buffer to the appropriate alignment, power of 2.
- unsigned FnAlign = F->getAlignment();
- unsigned TDAlign = TD->getPrefTypeAlignment(F->getType());
- unsigned Align = std::max(FnAlign, TDAlign);
- assert(!(Align & (Align-1)) && "Alignment is not a power of two!");
-
// Get the ELF Section that this function belongs in.
ES = &EW.getTextSection();
- // FIXME: better memory management, this will be replaced by BinaryObjects
- ES->SectionData.reserve(4096);
- BufferBegin = &ES->SectionData[0];
- BufferEnd = BufferBegin + ES->SectionData.capacity();
+ DOUT << "processing function: " << MF.getFunction()->getName() << "\n";
- // Upgrade the section alignment if required.
+ // FIXME: better memory management, this will be replaced by BinaryObjects
+ BinaryData &BD = ES->getData();
+ BD.reserve(4096);
+ BufferBegin = &BD[0];
+ BufferEnd = BufferBegin + BD.capacity();
+
+ // Align the output buffer with function alignment, and
+ // upgrade the section alignment if required
+ unsigned Align =
+ TM.getELFWriterInfo()->getFunctionAlignment(MF.getFunction());
if (ES->Align < Align) ES->Align = Align;
-
- // Round the size up to the correct alignment for starting the new function.
ES->Size = (ES->Size + (Align-1)) & (-Align);
// Snaity check on allocated space for text section
@@ -107,7 +102,7 @@ bool ELFCodeEmitter::finishFunction(MachineFunction &MF) {
FnSym.Value = FnStartPtr-BufferBegin;
// Finally, add it to the symtab.
- EW.SymbolTable.push_back(FnSym);
+ EW.SymbolList.push_back(FnSym);
// Relocations
// -----------
@@ -128,7 +123,7 @@ bool ELFCodeEmitter::finishFunction(MachineFunction &MF) {
} else {
assert(0 && "Unhandled relocation type");
}
- ES->Relocations.push_back(MR);
+ ES->addRelocation(MR);
}
Relocations.clear();
diff --git a/lib/CodeGen/ELFWriter.cpp b/lib/CodeGen/ELFWriter.cpp
index 3859ea3..aeccefb 100644
--- a/lib/CodeGen/ELFWriter.cpp
+++ b/lib/CodeGen/ELFWriter.cpp
@@ -26,9 +26,6 @@
// ...
// #N. ".shstrtab" entry - String table for the section names.
//
-// NOTE: This code should eventually be extended to support 64-bit ELF (this
-// won't be hard), but we haven't done so yet!
-//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "elfwriter"
@@ -36,18 +33,18 @@
#include "ELFWriter.h"
#include "ELFCodeEmitter.h"
#include "ELF.h"
+#include "llvm/Constants.h"
#include "llvm/Module.h"
#include "llvm/PassManager.h"
#include "llvm/DerivedTypes.h"
+#include "llvm/CodeGen/BinaryObject.h"
#include "llvm/CodeGen/FileWriters.h"
#include "llvm/CodeGen/MachineCodeEmitter.h"
#include "llvm/CodeGen/MachineConstantPool.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/Target/TargetData.h"
-#include "llvm/Target/TargetELFWriterInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Support/Mangler.h"
-#include "llvm/Support/OutputBuffer.h"
#include "llvm/Support/Streams.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Support/Debug.h"
@@ -70,21 +67,23 @@ MachineCodeEmitter *llvm::AddELFWriter(PassManagerBase &PM,
//===----------------------------------------------------------------------===//
ELFWriter::ELFWriter(raw_ostream &o, TargetMachine &tm)
- : MachineFunctionPass(&ID), O(o), TM(tm), ElfHdr() {
- is64Bit = TM.getTargetData()->getPointerSizeInBits() == 64;
- isLittleEndian = TM.getTargetData()->isLittleEndian();
+ : MachineFunctionPass(&ID), O(o), TM(tm),
+ is64Bit(TM.getTargetData()->getPointerSizeInBits() == 64),
+ isLittleEndian(TM.getTargetData()->isLittleEndian()),
+ ElfHdr(isLittleEndian, is64Bit) {
- ElfHdr = new ELFHeader(TM.getELFWriterInfo()->getEMachine(), 0,
- is64Bit, isLittleEndian);
+ TAI = TM.getTargetAsmInfo();
+ TEW = TM.getELFWriterInfo();
// Create the machine code emitter object for this target.
MCE = new ELFCodeEmitter(*this);
+
+ // Inital number of sections
NumSections = 0;
}
ELFWriter::~ELFWriter() {
delete MCE;
- delete ElfHdr;
}
// doInitialization - Emit the file header and all of the global variables for
@@ -92,10 +91,6 @@ ELFWriter::~ELFWriter() {
bool ELFWriter::doInitialization(Module &M) {
Mang = new Mangler(M);
- // Local alias to shortenify coming code.
- std::vector<unsigned char> &FH = FileHeader;
- OutputBuffer FHOut(FH, is64Bit, isLittleEndian);
-
// ELF Header
// ----------
// Fields e_shnum e_shstrndx are only known after all section have
@@ -104,54 +99,58 @@ bool ELFWriter::doInitialization(Module &M) {
//
// Note
// ----
- // FHOut.outaddr method behaves differently for ELF32 and ELF64 writing
+ // emitWord method behaves differently for ELF32 and ELF64, writing
// 4 bytes in the former and 8 in the last for *_off and *_addr elf types
- FHOut.outbyte(0x7f); // e_ident[EI_MAG0]
- FHOut.outbyte('E'); // e_ident[EI_MAG1]
- FHOut.outbyte('L'); // e_ident[EI_MAG2]
- FHOut.outbyte('F'); // e_ident[EI_MAG3]
-
- FHOut.outbyte(ElfHdr->getElfClass()); // e_ident[EI_CLASS]
- FHOut.outbyte(ElfHdr->getByteOrder()); // e_ident[EI_DATA]
- FHOut.outbyte(EV_CURRENT); // e_ident[EI_VERSION]
-
- FH.resize(16); // e_ident[EI_NIDENT-EI_PAD]
-
- FHOut.outhalf(ET_REL); // e_type
- FHOut.outhalf(ElfHdr->getMachine()); // e_machine = target
- FHOut.outword(EV_CURRENT); // e_version
- FHOut.outaddr(0); // e_entry = 0, no entry point in .o file
- FHOut.outaddr(0); // e_phoff = 0, no program header for .o
- ELFHdr_e_shoff_Offset = FH.size();
- FHOut.outaddr(0); // e_shoff = sec hdr table off in bytes
- FHOut.outword(ElfHdr->getFlags()); // e_flags = whatever the target wants
- FHOut.outhalf(ElfHdr->getSize()); // e_ehsize = ELF header size
- FHOut.outhalf(0); // e_phentsize = prog header entry size
- FHOut.outhalf(0); // e_phnum = # prog header entries = 0
+ ElfHdr.emitByte(0x7f); // e_ident[EI_MAG0]
+ ElfHdr.emitByte('E'); // e_ident[EI_MAG1]
+ ElfHdr.emitByte('L'); // e_ident[EI_MAG2]
+ ElfHdr.emitByte('F'); // e_ident[EI_MAG3]
+
+ ElfHdr.emitByte(TEW->getEIClass()); // e_ident[EI_CLASS]
+ ElfHdr.emitByte(TEW->getEIData()); // e_ident[EI_DATA]
+ ElfHdr.emitByte(EV_CURRENT); // e_ident[EI_VERSION]
+ ElfHdr.emitAlignment(16); // e_ident[EI_NIDENT-EI_PAD]
+
+ ElfHdr.emitWord16(ET_REL); // e_type
+ ElfHdr.emitWord16(TEW->getEMachine()); // e_machine = target
+ ElfHdr.emitWord32(EV_CURRENT); // e_version
+ ElfHdr.emitWord(0); // e_entry, no entry point in .o file
+ ElfHdr.emitWord(0); // e_phoff, no program header for .o
+ ELFHdr_e_shoff_Offset = ElfHdr.size();
+ ElfHdr.emitWord(0); // e_shoff = sec hdr table off in bytes
+ ElfHdr.emitWord32(TEW->getEFlags()); // e_flags = whatever the target wants
+ ElfHdr.emitWord16(TEW->getHdrSize()); // e_ehsize = ELF header size
+ ElfHdr.emitWord16(0); // e_phentsize = prog header entry size
+ ElfHdr.emitWord16(0); // e_phnum = # prog header entries = 0
// e_shentsize = Section header entry size
- FHOut.outhalf(ELFSection::getSectionHdrSize(is64Bit));
+ ElfHdr.emitWord16(TEW->getSHdrSize());
// e_shnum = # of section header ents
- ELFHdr_e_shnum_Offset = FH.size();
- FHOut.outhalf(0);
+ ELFHdr_e_shnum_Offset = ElfHdr.size();
+ ElfHdr.emitWord16(0); // Placeholder
// e_shstrndx = Section # of '.shstrtab'
- ELFHdr_e_shstrndx_Offset = FH.size();
- FHOut.outhalf(0);
+ ELFHdr_e_shstrndx_Offset = ElfHdr.size();
+ ElfHdr.emitWord16(0); // Placeholder
// Add the null section, which is required to be first in the file.
getSection("", ELFSection::SHT_NULL, 0);
- // Start up the symbol table. The first entry in the symtab is the null
+ // Start up the symbol table. The first entry in the symtab is the null
// entry.
- SymbolTable.push_back(ELFSym(0));
+ SymbolList.push_back(ELFSym(0));
return false;
}
void ELFWriter::EmitGlobal(GlobalVariable *GV) {
+
+ // XXX: put local symbols *before* global ones!
+ const Section *S = TAI->SectionForGlobal(GV);
+ DOUT << "Section " << S->getName() << " for global " << GV->getName() << "\n";
+
// If this is an external global, emit it now. TODO: Note that it would be
// better to ignore the symbol here and only add it to the symbol table if
// referenced.
@@ -160,17 +159,17 @@ void ELFWriter::EmitGlobal(GlobalVariable *GV) {
ExternalSym.SetBind(ELFSym::STB_GLOBAL);
ExternalSym.SetType(ELFSym::STT_NOTYPE);
ExternalSym.SectionIdx = ELFSection::SHN_UNDEF;
- SymbolTable.push_back(ExternalSym);
+ SymbolList.push_back(ExternalSym);
return;
}
- unsigned Align = TM.getTargetData()->getPreferredAlignment(GV);
- unsigned Size =
- TM.getTargetData()->getTypeAllocSize(GV->getType()->getElementType());
+ const TargetData *TD = TM.getTargetData();
+ unsigned Align = TD->getPreferredAlignment(GV);
+ Constant *CV = GV->getInitializer();
+ unsigned Size = TD->getTypeAllocSize(CV->getType());
- // If this global has a zero initializer, it is part of the .bss or common
- // section.
- if (GV->getInitializer()->isNullValue()) {
+ // If this global has a zero initializer, go to .bss or common section.
+ if (CV->isNullValue() || isa<UndefValue>(CV)) {
// If this global is part of the common block, add it now. Variables are
// part of the common block if they are zero initialized and allowed to be
// merged with other symbols.
@@ -182,14 +181,14 @@ void ELFWriter::EmitGlobal(GlobalVariable *GV) {
CommonSym.Size = Size;
CommonSym.SetBind(ELFSym::STB_GLOBAL);
CommonSym.SetType(ELFSym::STT_OBJECT);
- // TODO SOMEDAY: add ELF visibility.
CommonSym.SectionIdx = ELFSection::SHN_COMMON;
- SymbolTable.push_back(CommonSym);
+ SymbolList.push_back(CommonSym);
+ getSection(S->getName(), ELFSection::SHT_NOBITS,
+ ELFSection::SHF_WRITE | ELFSection::SHF_ALLOC, 1);
return;
}
// Otherwise, this symbol is part of the .bss section. Emit it now.
-
// Handle alignment. Ensure section is aligned at least as much as required
// by this symbol.
ELFSection &BSSSection = getBSSSection();
@@ -220,18 +219,128 @@ void ELFWriter::EmitGlobal(GlobalVariable *GV) {
// Set the idx of the .bss section
BSSSym.SectionIdx = BSSSection.SectionIdx;
if (!GV->hasPrivateLinkage())
- SymbolTable.push_back(BSSSym);
+ SymbolList.push_back(BSSSym);
// Reserve space in the .bss section for this symbol.
BSSSection.Size += Size;
return;
}
- // FIXME: handle .rodata
- //assert(!GV->isConstant() && "unimp");
+ /// Emit the Global symbol to the right ELF section
+ ELFSym GblSym(GV);
+ GblSym.Size = Size;
+ GblSym.SetType(ELFSym::STT_OBJECT);
+ GblSym.SetBind(ELFSym::STB_GLOBAL);
+ unsigned Flags = S->getFlags();
+ unsigned SectType = ELFSection::SHT_PROGBITS;
+ unsigned SHdrFlags = ELFSection::SHF_ALLOC;
+
+ if (Flags & SectionFlags::Code)
+ SHdrFlags |= ELFSection::SHF_EXECINSTR;
+ if (Flags & SectionFlags::Writeable)
+ SHdrFlags |= ELFSection::SHF_WRITE;
+ if (Flags & SectionFlags::Mergeable)
+ SHdrFlags |= ELFSection::SHF_MERGE;
+ if (Flags & SectionFlags::TLS)
+ SHdrFlags |= ELFSection::SHF_TLS;
+ if (Flags & SectionFlags::Strings)
+ SHdrFlags |= ELFSection::SHF_STRINGS;
+
+ // Remove tab from section name prefix
+ std::string SectionName(S->getName());
+ size_t Pos = SectionName.find("\t");
+ if (Pos != std::string::npos)
+ SectionName.erase(Pos, 1);
+
+ // The section alignment should be bound to the element with
+ // the largest alignment
+ ELFSection &ElfS = getSection(SectionName, SectType, SHdrFlags);
+ GblSym.SectionIdx = ElfS.SectionIdx;
+ if (Align > ElfS.Align)
+ ElfS.Align = Align;
+
+ // S.Value should contain the symbol index inside the section,
+ // and all symbols should start on their required alignment boundary
+ GblSym.Value = (ElfS.size() + (Align-1)) & (-Align);
+ ElfS.emitAlignment(Align);
+
+ // Emit the constant symbol to its section
+ EmitGlobalConstant(CV, ElfS);
+ SymbolList.push_back(GblSym);
+}
- // FIXME: handle .data
- //assert(0 && "unimp");
+void ELFWriter::EmitGlobalConstantStruct(const ConstantStruct *CVS,
+ ELFSection &GblS) {
+
+ // Print the fields in successive locations. Pad to align if needed!
+ const TargetData *TD = TM.getTargetData();
+ unsigned Size = TD->getTypeAllocSize(CVS->getType());
+ const StructLayout *cvsLayout = TD->getStructLayout(CVS->getType());
+ uint64_t sizeSoFar = 0;
+ for (unsigned i = 0, e = CVS->getNumOperands(); i != e; ++i) {
+ const Constant* field = CVS->getOperand(i);
+
+ // Check if padding is needed and insert one or more 0s.
+ uint64_t fieldSize = TD->getTypeAllocSize(field->getType());
+ uint64_t padSize = ((i == e-1 ? Size : cvsLayout->getElementOffset(i+1))
+ - cvsLayout->getElementOffset(i)) - fieldSize;
+ sizeSoFar += fieldSize + padSize;
+
+ // Now print the actual field value.
+ EmitGlobalConstant(field, GblS);
+
+ // Insert padding - this may include padding to increase the size of the
+ // current field up to the ABI size (if the struct is not packed) as well
+ // as padding to ensure that the next field starts at the right offset.
+ for (unsigned p=0; p < padSize; p++)
+ GblS.emitByte(0);
+ }
+ assert(sizeSoFar == cvsLayout->getSizeInBytes() &&
+ "Layout of constant struct may be incorrect!");
+}
+
+void ELFWriter::EmitGlobalConstant(const Constant *CV, ELFSection &GblS) {
+ const TargetData *TD = TM.getTargetData();
+ unsigned Size = TD->getTypeAllocSize(CV->getType());
+
+ if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) {
+ if (CVA->isString()) {
+ std::string GblStr = CVA->getAsString();
+ GblS.emitString(GblStr);
+ } else { // Not a string. Print the values in successive locations
+ for (unsigned i = 0, e = CVA->getNumOperands(); i != e; ++i)
+ EmitGlobalConstant(CVA->getOperand(i), GblS);
+ }
+ return;
+ } else if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) {
+ EmitGlobalConstantStruct(CVS, GblS);
+ return;
+ } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
+ uint64_t Val = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
+ if (CFP->getType() == Type::DoubleTy)
+ GblS.emitWord64(Val);
+ else if (CFP->getType() == Type::FloatTy)
+ GblS.emitWord32(Val);
+ else if (CFP->getType() == Type::X86_FP80Ty) {
+ assert(0 && "X86_FP80Ty global emission not implemented");
+ } else if (CFP->getType() == Type::PPC_FP128Ty)
+ assert(0 && "PPC_FP128Ty global emission not implemented");
+ return;
+ } else if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
+ if (Size == 4)
+ GblS.emitWord32(CI->getZExtValue());
+ else if (Size == 8)
+ GblS.emitWord64(CI->getZExtValue());
+ else
+ assert(0 && "LargeInt global emission not implemented");
+ return;
+ } else if (const ConstantVector *CP = dyn_cast<ConstantVector>(CV)) {
+ const VectorType *PTy = CP->getType();
+ for (unsigned I = 0, E = PTy->getNumElements(); I < E; ++I)
+ EmitGlobalConstant(CP->getOperand(I), GblS);
+ return;
+ }
+ assert(0 && "unknown global constant");
}
@@ -243,22 +352,41 @@ bool ELFWriter::runOnMachineFunction(MachineFunction &MF) {
/// doFinalization - Now that the module has been completely processed, emit
/// the ELF file to 'O'.
bool ELFWriter::doFinalization(Module &M) {
- // Okay, the ELF header and .text sections have been completed, build the
- // .data, .bss, and "common" sections next.
+ /// FIXME: This should be removed when moving to ObjectCodeEmiter. Since the
+ /// current ELFCodeEmiter uses CurrBuff, ... it doesn't update S.Data
+ /// vector size for .text sections, so this is a quick dirty fix
+ ELFSection &TS = getTextSection();
+ if (TS.Size) {
+ BinaryData &BD = TS.getData();
+ for (unsigned e=0; e<TS.Size; ++e)
+ BD.push_back(BD[e]);
+ }
+
+ // Emit .data section placeholder
+ getDataSection();
+
+ // Emit .bss section placeholder
+ getBSSSection();
+
+ // Build and emit data, bss and "common" sections.
for (Module::global_iterator I = M.global_begin(), E = M.global_end();
I != E; ++I)
EmitGlobal(I);
+ // Emit non-executable stack note
+ if (TAI->getNonexecutableStackDirective())
+ getNonExecStackSection();
+
// Emit the symbol table now, if non-empty.
EmitSymbolTable();
// Emit the relocation sections.
EmitRelocations();
- // Emit the string table for the sections in the ELF file.
+ // Emit the sections string table.
EmitSectionTableStringTable();
- // Emit the sections to the .o file, and emit the section table for the file.
+ // Dump the sections and section table to the .o file.
OutputSectionsAndSectionTable();
// We are done with the abstract symbols.
@@ -274,78 +402,97 @@ bool ELFWriter::doFinalization(Module &M) {
void ELFWriter::EmitRelocations() {
}
+/// EmitSymbol - Write symbol 'Sym' to the symbol table 'SymbolTable'
+void ELFWriter::EmitSymbol(BinaryObject &SymbolTable, ELFSym &Sym) {
+ if (is64Bit) {
+ SymbolTable.emitWord32(Sym.NameIdx);
+ SymbolTable.emitByte(Sym.Info);
+ SymbolTable.emitByte(Sym.Other);
+ SymbolTable.emitWord16(Sym.SectionIdx);
+ SymbolTable.emitWord64(Sym.Value);
+ SymbolTable.emitWord64(Sym.Size);
+ } else {
+ SymbolTable.emitWord32(Sym.NameIdx);
+ SymbolTable.emitWord32(Sym.Value);
+ SymbolTable.emitWord32(Sym.Size);
+ SymbolTable.emitByte(Sym.Info);
+ SymbolTable.emitByte(Sym.Other);
+ SymbolTable.emitWord16(Sym.SectionIdx);
+ }
+}
+
+/// EmitSectionHeader - Write section 'Section' header in 'SHdrTab'
+/// Section Header Table
+void ELFWriter::EmitSectionHeader(BinaryObject &SHdrTab,
+ const ELFSection &SHdr) {
+ SHdrTab.emitWord32(SHdr.NameIdx);
+ SHdrTab.emitWord32(SHdr.Type);
+ if (is64Bit) {
+ SHdrTab.emitWord64(SHdr.Flags);
+ SHdrTab.emitWord(SHdr.Addr);
+ SHdrTab.emitWord(SHdr.Offset);
+ SHdrTab.emitWord64(SHdr.Size);
+ SHdrTab.emitWord32(SHdr.Link);
+ SHdrTab.emitWord32(SHdr.Info);
+ SHdrTab.emitWord64(SHdr.Align);
+ SHdrTab.emitWord64(SHdr.EntSize);
+ } else {
+ SHdrTab.emitWord32(SHdr.Flags);
+ SHdrTab.emitWord(SHdr.Addr);
+ SHdrTab.emitWord(SHdr.Offset);
+ SHdrTab.emitWord32(SHdr.Size);
+ SHdrTab.emitWord32(SHdr.Link);
+ SHdrTab.emitWord32(SHdr.Info);
+ SHdrTab.emitWord32(SHdr.Align);
+ SHdrTab.emitWord32(SHdr.EntSize);
+ }
+}
+
/// EmitSymbolTable - If the current symbol table is non-empty, emit the string
/// table for it and then the symbol table itself.
void ELFWriter::EmitSymbolTable() {
- if (SymbolTable.size() == 1) return; // Only the null entry.
+ if (SymbolList.size() == 1) return; // Only the null entry.
// FIXME: compact all local symbols to the start of the symtab.
unsigned FirstNonLocalSymbol = 1;
- ELFSection &StrTab = getSection(".strtab", ELFSection::SHT_STRTAB, 0);
- StrTab.Align = 1;
-
- DataBuffer &StrTabBuf = StrTab.SectionData;
- OutputBuffer StrTabOut(StrTabBuf, is64Bit, isLittleEndian);
+ ELFSection &StrTab = getStringTableSection();
// Set the zero'th symbol to a null byte, as required.
- StrTabOut.outbyte(0);
+ StrTab.emitByte(0);
+
unsigned Index = 1;
- for (unsigned i = 1, e = SymbolTable.size(); i != e; ++i) {
+ for (unsigned i = 1, e = SymbolList.size(); i != e; ++i) {
// Use the name mangler to uniquify the LLVM symbol.
- std::string Name = Mang->getValueName(SymbolTable[i].GV);
+ std::string Name = Mang->getValueName(SymbolList[i].GV);
if (Name.empty()) {
- SymbolTable[i].NameIdx = 0;
+ SymbolList[i].NameIdx = 0;
} else {
- SymbolTable[i].NameIdx = Index;
-
- // Add the name to the output buffer, including the null terminator.
- StrTabBuf.insert(StrTabBuf.end(), Name.begin(), Name.end());
-
- // Add a null terminator.
- StrTabBuf.push_back(0);
+ SymbolList[i].NameIdx = Index;
+ StrTab.emitString(Name);
// Keep track of the number of bytes emitted to this section.
Index += Name.size()+1;
}
}
- assert(Index == StrTabBuf.size());
+ assert(Index == StrTab.size());
StrTab.Size = Index;
// Now that we have emitted the string table and know the offset into the
// string table of each symbol, emit the symbol table itself.
- ELFSection &SymTab = getSection(".symtab", ELFSection::SHT_SYMTAB, 0);
- SymTab.Align = is64Bit ? 8 : 4;
- SymTab.Link = StrTab.SectionIdx; // Section Index of .strtab.
- SymTab.Info = FirstNonLocalSymbol; // First non-STB_LOCAL symbol.
- SymTab.EntSize = is64Bit ? 24 : 16; // Size of each symtab entry.
- DataBuffer &SymTabBuf = SymTab.SectionData;
- OutputBuffer SymTabOut(SymTabBuf, is64Bit, isLittleEndian);
-
- if (!is64Bit) { // 32-bit and 64-bit formats are shuffled a bit.
- for (unsigned i = 0, e = SymbolTable.size(); i != e; ++i) {
- ELFSym &Sym = SymbolTable[i];
- SymTabOut.outword(Sym.NameIdx);
- SymTabOut.outaddr32(Sym.Value);
- SymTabOut.outword(Sym.Size);
- SymTabOut.outbyte(Sym.Info);
- SymTabOut.outbyte(Sym.Other);
- SymTabOut.outhalf(Sym.SectionIdx);
- }
- } else {
- for (unsigned i = 0, e = SymbolTable.size(); i != e; ++i) {
- ELFSym &Sym = SymbolTable[i];
- SymTabOut.outword(Sym.NameIdx);
- SymTabOut.outbyte(Sym.Info);
- SymTabOut.outbyte(Sym.Other);
- SymTabOut.outhalf(Sym.SectionIdx);
- SymTabOut.outaddr64(Sym.Value);
- SymTabOut.outxword(Sym.Size);
- }
- }
+ ELFSection &SymTab = getSymbolTableSection();
+ SymTab.Align = TEW->getSymTabAlignment();
+ SymTab.Link = StrTab.SectionIdx; // Section Index of .strtab.
+ SymTab.Info = FirstNonLocalSymbol; // First non-STB_LOCAL symbol.
+
+ // Size of each symtab entry.
+ SymTab.EntSize = TEW->getSymTabEntrySize();
+
+ for (unsigned i = 0, e = SymbolList.size(); i != e; ++i)
+ EmitSymbol(SymTab, SymbolList[i]);
- SymTab.Size = SymTabBuf.size();
+ SymTab.Size = SymTab.size();
}
/// EmitSectionTableStringTable - This method adds and emits a section for the
@@ -357,32 +504,25 @@ void ELFWriter::EmitSectionTableStringTable() {
// Now that we know which section number is the .shstrtab section, update the
// e_shstrndx entry in the ELF header.
- OutputBuffer FHOut(FileHeader, is64Bit, isLittleEndian);
- FHOut.fixhalf(SHStrTab.SectionIdx, ELFHdr_e_shstrndx_Offset);
+ ElfHdr.fixWord16(SHStrTab.SectionIdx, ELFHdr_e_shstrndx_Offset);
// Set the NameIdx of each section in the string table and emit the bytes for
// the string table.
unsigned Index = 0;
- DataBuffer &Buf = SHStrTab.SectionData;
for (std::list<ELFSection>::iterator I = SectionList.begin(),
E = SectionList.end(); I != E; ++I) {
// Set the index into the table. Note if we have lots of entries with
// common suffixes, we could memoize them here if we cared.
I->NameIdx = Index;
-
- // Add the name to the output buffer, including the null terminator.
- Buf.insert(Buf.end(), I->Name.begin(), I->Name.end());
-
- // Add a null terminator.
- Buf.push_back(0);
+ SHStrTab.emitString(I->getName());
// Keep track of the number of bytes emitted to this section.
- Index += I->Name.size()+1;
+ Index += I->getName().size()+1;
}
// Set the size of .shstrtab now that we know what it is.
- assert(Index == Buf.size());
+ assert(Index == SHStrTab.size());
SHStrTab.Size = Index;
}
@@ -391,9 +531,9 @@ void ELFWriter::EmitSectionTableStringTable() {
/// SectionTable.
void ELFWriter::OutputSectionsAndSectionTable() {
// Pass #1: Compute the file offset for each section.
- size_t FileOff = FileHeader.size(); // File header first.
+ size_t FileOff = ElfHdr.size(); // File header first.
- // Emit all of the section data in order.
+ // Adjust alignment of all section if needed.
for (std::list<ELFSection>::iterator I = SectionList.begin(),
E = SectionList.end(); I != E; ++I) {
@@ -401,9 +541,14 @@ void ELFWriter::OutputSectionsAndSectionTable() {
if (!I->SectionIdx)
continue;
+ if (!I->size()) {
+ I->Offset = FileOff;
+ continue;
+ }
+
// Update Section size
if (!I->Size)
- I->Size = I->SectionData.size();
+ I->Size = I->size();
// Align FileOff to whatever the alignment restrictions of the section are.
if (I->Align)
@@ -419,49 +564,40 @@ void ELFWriter::OutputSectionsAndSectionTable() {
// Now that we know where all of the sections will be emitted, set the e_shnum
// entry in the ELF header.
- OutputBuffer FHOut(FileHeader, is64Bit, isLittleEndian);
- FHOut.fixhalf(NumSections, ELFHdr_e_shnum_Offset);
+ ElfHdr.fixWord16(NumSections, ELFHdr_e_shnum_Offset);
// Now that we know the offset in the file of the section table, update the
// e_shoff address in the ELF header.
- FHOut.fixaddr(FileOff, ELFHdr_e_shoff_Offset);
+ ElfHdr.fixWord(FileOff, ELFHdr_e_shoff_Offset);
// Now that we know all of the data in the file header, emit it and all of the
// sections!
- O.write((char*)&FileHeader[0], FileHeader.size());
- FileOff = FileHeader.size();
- DataBuffer().swap(FileHeader);
+ O.write((char *)&ElfHdr.getData()[0], ElfHdr.size());
+ FileOff = ElfHdr.size();
- DataBuffer Table;
- OutputBuffer TableOut(Table, is64Bit, isLittleEndian);
+ // Section Header Table blob
+ BinaryObject SHdrTable(isLittleEndian, is64Bit);
- // Emit all of the section data and build the section table itself.
+ // Emit all of sections to the file and build the section header table.
while (!SectionList.empty()) {
- const ELFSection &S = *SectionList.begin();
+ ELFSection &S = *SectionList.begin();
+ DOUT << "SectionIdx: " << S.SectionIdx << ", Name: " << S.getName()
+ << ", Size: " << S.Size << ", Offset: " << S.Offset
+ << ", SectionData Size: " << S.size() << "\n";
// Align FileOff to whatever the alignment restrictions of the section are.
- if (S.Align)
+ if (S.Align) {
for (size_t NewFileOff = (FileOff+S.Align-1) & ~(S.Align-1);
- FileOff != NewFileOff; ++FileOff)
+ FileOff != NewFileOff; ++FileOff)
O << (char)0xAB;
- O.write((char*)&S.SectionData[0], S.Size);
-
- DOUT << "SectionIdx: " << S.SectionIdx << ", Name: " << S.Name
- << ", Size: " << S.Size << ", Offset: " << S.Offset << "\n";
-
- FileOff += S.Size;
+ }
- TableOut.outword(S.NameIdx); // sh_name - Symbol table name idx
- TableOut.outword(S.Type); // sh_type - Section contents & semantics
- TableOut.outaddr(S.Flags); // sh_flags - Section flags.
- TableOut.outaddr(S.Addr); // sh_addr - The mem addr this section is in.
- TableOut.outaddr(S.Offset); // sh_offset - Offset from the file start.
- TableOut.outaddr(S.Size); // sh_size - The section size.
- TableOut.outword(S.Link); // sh_link - Section header table index link.
- TableOut.outword(S.Info); // sh_info - Auxillary information.
- TableOut.outaddr(S.Align); // sh_addralign - Alignment of section.
- TableOut.outaddr(S.EntSize); // sh_entsize - Size of entries in the section
+ if (S.size()) {
+ O.write((char *)&S.getData()[0], S.Size);
+ FileOff += S.Size;
+ }
+ EmitSectionHeader(SHdrTable, S);
SectionList.pop_front();
}
@@ -471,5 +607,5 @@ void ELFWriter::OutputSectionsAndSectionTable() {
O << (char)0xAB;
// Emit the section table itself.
- O.write((char*)&Table[0], Table.size());
+ O.write((char *)&SHdrTable.getData()[0], SHdrTable.size());
}
diff --git a/lib/CodeGen/ELFWriter.h b/lib/CodeGen/ELFWriter.h
index 14a44f0..8a380f0 100644
--- a/lib/CodeGen/ELFWriter.h
+++ b/lib/CodeGen/ELFWriter.h
@@ -16,15 +16,20 @@
#include "llvm/ADT/SetVector.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
+#include "llvm/Support/OutputBuffer.h"
+#include "llvm/Target/TargetAsmInfo.h"
+#include "llvm/Target/TargetELFWriterInfo.h"
#include "ELF.h"
#include <list>
#include <map>
namespace llvm {
+ class BinaryObject;
+ class ConstantStruct;
+ class ELFCodeEmitter;
class GlobalVariable;
class Mangler;
class MachineCodeEmitter;
- class ELFCodeEmitter;
class raw_ostream;
/// ELFWriter - This class implements the common target-independent code for
@@ -52,6 +57,9 @@ namespace llvm {
/// Target machine description.
TargetMachine &TM;
+ /// Target Elf Writer description.
+ const TargetELFWriterInfo *TEW;
+
/// Mang - The object used to perform name mangling for this module.
Mangler *Mang;
@@ -59,6 +67,10 @@ namespace llvm {
/// code for functions to the .o file.
ELFCodeEmitter *MCE;
+ /// TAI - Target Asm Info, provide information about section names for
+ /// globals and other target specific stuff.
+ const TargetAsmInfo *TAI;
+
//===------------------------------------------------------------------===//
// Properties inferred automatically from the target machine.
//===------------------------------------------------------------------===//
@@ -77,13 +89,8 @@ namespace llvm {
bool doFinalization(Module &M);
private:
- // The buffer we accumulate the file header into. Note that this should be
- // changed into something much more efficient later (and the bitcode writer
- // as well!).
- DataBuffer FileHeader;
-
- /// ElfHdr - Hold information about the ELF Header
- ELFHeader *ElfHdr;
+ // Blob containing the Elf header
+ BinaryObject ElfHdr;
/// SectionList - This is the list of sections that we have emitted to the
/// file. Once the file has been completely built, the section header table
@@ -97,17 +104,18 @@ namespace llvm {
/// getSection - Return the section with the specified name, creating a new
/// section if one does not already exist.
- ELFSection &getSection(const std::string &Name,
- unsigned Type, unsigned Flags = 0) {
+ ELFSection &getSection(const std::string &Name, unsigned Type,
+ unsigned Flags = 0, unsigned Align = 0) {
ELFSection *&SN = SectionLookup[Name];
if (SN) return *SN;
- SectionList.push_back(Name);
+ SectionList.push_back(ELFSection(Name, isLittleEndian, is64Bit));
SN = &SectionList.back();
SN->SectionIdx = NumSections++;
SN->Type = Type;
SN->Flags = Flags;
SN->Link = ELFSection::SHN_UNDEF;
+ SN->Align = Align;
return *SN;
}
@@ -116,23 +124,36 @@ namespace llvm {
ELFSection::SHF_EXECINSTR | ELFSection::SHF_ALLOC);
}
+ ELFSection &getNonExecStackSection() {
+ return getSection(".note.GNU-stack", ELFSection::SHT_PROGBITS, 0, 1);
+ }
+
+ ELFSection &getSymbolTableSection() {
+ return getSection(".symtab", ELFSection::SHT_SYMTAB, 0);
+ }
+
+ ELFSection &getStringTableSection() {
+ return getSection(".strtab", ELFSection::SHT_STRTAB, 0, 1);
+ }
+
ELFSection &getDataSection() {
return getSection(".data", ELFSection::SHT_PROGBITS,
ELFSection::SHF_WRITE | ELFSection::SHF_ALLOC);
}
+
ELFSection &getBSSSection() {
return getSection(".bss", ELFSection::SHT_NOBITS,
ELFSection::SHF_WRITE | ELFSection::SHF_ALLOC);
}
- /// SymbolTable - This is the list of symbols we have emitted to the file.
+ /// SymbolList - This is the list of symbols we have emitted to the file.
/// This actually gets rearranged before emission to the file (to put the
/// local symbols first in the list).
- std::vector<ELFSym> SymbolTable;
+ std::vector<ELFSym> SymbolList;
- /// PendingSyms - This is a list of externally defined symbols that we have
- /// been asked to emit, but have not seen a reference to. When a reference
- /// is seen, the symbol will move from this list to the SymbolTable.
+ /// PendingGlobals - List of externally defined symbols that we have been
+ /// asked to emit, but have not seen a reference to. When a reference
+ /// is seen, the symbol will move from this list to the SymbolList.
SetVector<GlobalValue*> PendingGlobals;
// As we complete the ELF file, we need to update fields in the ELF header
@@ -142,11 +163,17 @@ namespace llvm {
unsigned ELFHdr_e_shoff_Offset; // e_shoff in ELF header.
unsigned ELFHdr_e_shstrndx_Offset; // e_shstrndx in ELF header.
unsigned ELFHdr_e_shnum_Offset; // e_shnum in ELF header.
+
private:
void EmitGlobal(GlobalVariable *GV);
- void EmitSymbolTable();
+ void EmitGlobalConstant(const Constant *C, ELFSection &GblS);
+ void EmitGlobalConstantStruct(const ConstantStruct *CVS,
+ ELFSection &GblS);
void EmitRelocations();
+ void EmitSectionHeader(BinaryObject &SHdrTab, const ELFSection &SHdr);
void EmitSectionTableStringTable();
+ void EmitSymbol(BinaryObject &SymbolTable, ELFSym &Sym);
+ void EmitSymbolTable();
void OutputSectionsAndSectionTable();
};
}
diff --git a/lib/CodeGen/LLVMTargetMachine.cpp b/lib/CodeGen/LLVMTargetMachine.cpp
index b3c60e6..a163cac 100644
--- a/lib/CodeGen/LLVMTargetMachine.cpp
+++ b/lib/CodeGen/LLVMTargetMachine.cpp
@@ -240,7 +240,7 @@ bool LLVMTargetMachine::addCommonCodeGenPasses(PassManagerBase &PM,
if (OptLevel != CodeGenOpt::None) {
PM.add(createMachineLICMPass());
PM.add(createMachineSinkingPass());
- printAndVerify(PM, /* allowDoubleDefs= */ true);
+ printAndVerify(PM, /* allowDoubleDefs= */ false);
}
// Run pre-ra passes.
diff --git a/lib/CodeGen/LazyLiveness.cpp b/lib/CodeGen/LazyLiveness.cpp
new file mode 100644
index 0000000..6fb35d2
--- /dev/null
+++ b/lib/CodeGen/LazyLiveness.cpp
@@ -0,0 +1,158 @@
+//===- LazyLiveness.cpp - Lazy, CFG-invariant liveness information --------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This pass implements a lazy liveness analysis as per "Fast Liveness Checking
+// for SSA-form Programs," by Boissinot, et al.
+//
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "lazyliveness"
+#include "llvm/CodeGen/LazyLiveness.h"
+#include "llvm/CodeGen/MachineDominators.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/Passes.h"
+#include "llvm/ADT/DepthFirstIterator.h"
+#include "llvm/ADT/PostOrderIterator.h"
+using namespace llvm;
+
+char LazyLiveness::ID = 0;
+static RegisterPass<LazyLiveness> X("lazy-liveness", "Lazy Liveness Analysis");
+
+void LazyLiveness::computeBackedgeChain(MachineFunction& mf,
+ MachineBasicBlock* MBB) {
+ SparseBitVector<128> tmp = rv[MBB];
+ tmp.set(preorder[MBB]);
+ tmp &= backedge_source;
+ calculated.set(preorder[MBB]);
+
+ for (SparseBitVector<128>::iterator I = tmp.begin(); I != tmp.end(); ++I) {
+ MachineBasicBlock* SrcMBB = rev_preorder[*I];
+
+ for (MachineBasicBlock::succ_iterator SI = SrcMBB->succ_begin();
+ SI != SrcMBB->succ_end(); ++SI) {
+ MachineBasicBlock* TgtMBB = *SI;
+
+ if (backedges.count(std::make_pair(SrcMBB, TgtMBB)) &&
+ !rv[MBB].test(preorder[TgtMBB])) {
+ if (!calculated.test(preorder[TgtMBB]))
+ computeBackedgeChain(mf, TgtMBB);
+
+ tv[MBB].set(preorder[TgtMBB]);
+ tv[MBB] |= tv[TgtMBB];
+ }
+ }
+
+ tv[MBB].reset(preorder[MBB]);
+ }
+}
+
+bool LazyLiveness::runOnMachineFunction(MachineFunction &mf) {
+ rv.clear();
+ tv.clear();
+ backedges.clear();
+ backedge_source.clear();
+ backedge_target.clear();
+ calculated.clear();
+ preorder.clear();
+
+ MRI = &mf.getRegInfo();
+ MachineDominatorTree& MDT = getAnalysis<MachineDominatorTree>();
+
+ // Step 0: Compute preorder numbering for all MBBs.
+ unsigned num = 0;
+ for (df_iterator<MachineDomTreeNode*> DI = df_begin(MDT.getRootNode()),
+ DE = df_end(MDT.getRootNode()); DI != DE; ++DI) {
+ preorder[(*DI)->getBlock()] = num++;
+ rev_preorder.push_back((*DI)->getBlock());
+ }
+
+ // Step 1: Compute the transitive closure of the CFG, ignoring backedges.
+ for (po_iterator<MachineBasicBlock*> POI = po_begin(&*mf.begin()),
+ POE = po_end(&*mf.begin()); POI != POE; ++POI) {
+ MachineBasicBlock* MBB = *POI;
+ SparseBitVector<128>& entry = rv[MBB];
+ entry.set(preorder[MBB]);
+
+ for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
+ SE = MBB->succ_end(); SI != SE; ++SI) {
+ DenseMap<MachineBasicBlock*, SparseBitVector<128> >::iterator SII =
+ rv.find(*SI);
+
+ // Because we're iterating in postorder, any successor that does not yet
+ // have an rv entry must be on a backedge.
+ if (SII != rv.end()) {
+ entry |= SII->second;
+ } else {
+ backedges.insert(std::make_pair(MBB, *SI));
+ backedge_source.set(preorder[MBB]);
+ backedge_target.set(preorder[*SI]);
+ }
+ }
+ }
+
+ for (SparseBitVector<128>::iterator I = backedge_source.begin();
+ I != backedge_source.end(); ++I)
+ computeBackedgeChain(mf, rev_preorder[*I]);
+
+ for (po_iterator<MachineBasicBlock*> POI = po_begin(&*mf.begin()),
+ POE = po_end(&*mf.begin()); POI != POE; ++POI)
+ if (!backedge_target.test(preorder[*POI]))
+ for (MachineBasicBlock::succ_iterator SI = (*POI)->succ_begin(),
+ SE = (*POI)->succ_end(); SI != SE; ++SI)
+ if (!backedges.count(std::make_pair(*POI, *SI)) && tv.count(*SI)) {
+ SparseBitVector<128>& PBV = tv[*POI];
+ PBV = tv[*SI];
+ }
+
+ for (po_iterator<MachineBasicBlock*> POI = po_begin(&*mf.begin()),
+ POE = po_end(&*mf.begin()); POI != POE; ++POI)
+ tv[*POI].set(preorder[*POI]);
+
+ return false;
+}
+
+bool LazyLiveness::vregLiveIntoMBB(unsigned vreg, MachineBasicBlock* MBB) {
+ MachineDominatorTree& MDT = getAnalysis<MachineDominatorTree>();
+
+ MachineBasicBlock* DefMBB = MRI->def_begin(vreg)->getParent();
+ unsigned def = preorder[DefMBB];
+ unsigned max_dom = 0;
+ for (df_iterator<MachineDomTreeNode*> DI = df_begin(MDT[DefMBB]),
+ DE = df_end(MDT[DefMBB]); DI != DE; ++DI) {
+ if (preorder[DI->getBlock()] > max_dom) {
+ max_dom = preorder[(*DI)->getBlock()];
+ }
+ }
+
+ if (preorder[MBB] <= def || max_dom < preorder[MBB])
+ return false;
+
+ SparseBitVector<128>::iterator I = tv[MBB].begin();
+ while (I != tv[MBB].end() && *I <= def) ++I;
+ while (I != tv[MBB].end() && *I < max_dom) {
+ for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(vreg),
+ UE = MachineRegisterInfo::use_end(); UI != UE; ++UI) {
+ MachineBasicBlock* UseMBB = UI->getParent();
+ if (rv[rev_preorder[*I]].test(preorder[UseMBB]))
+ return true;
+
+ unsigned t_dom = 0;
+ for (df_iterator<MachineDomTreeNode*> DI =
+ df_begin(MDT[rev_preorder[*I]]), DE = df_end(MDT[rev_preorder[*I]]);
+ DI != DE; ++DI)
+ if (preorder[DI->getBlock()] > t_dom) {
+ max_dom = preorder[(*DI)->getBlock()];
+ }
+ I = tv[MBB].begin();
+ while (I != tv[MBB].end() && *I < t_dom) ++I;
+ }
+ }
+
+ return false;
+}
diff --git a/lib/CodeGen/RegisterScavenging.cpp b/lib/CodeGen/RegisterScavenging.cpp
index 944468e..3feb92f 100644
--- a/lib/CodeGen/RegisterScavenging.cpp
+++ b/lib/CodeGen/RegisterScavenging.cpp
@@ -214,26 +214,33 @@ void RegScavenger::forward() {
}
// Process uses first.
- BitVector UseRegs(NumPhysRegs);
+ BitVector KillRegs(NumPhysRegs);
for (unsigned i = 0, e = UseMOs.size(); i != e; ++i) {
const MachineOperand MO = *UseMOs[i].first;
unsigned Reg = MO.getReg();
assert(isUsed(Reg) && "Using an undefined register!");
- if (MO.isKill() && !isReserved(Reg)) {
- UseRegs.set(Reg);
+ // Kill of implicit_def defined registers are ignored. e.g.
+ // entry: 0x2029ab8, LLVM BB @0x1b06080, ID#0:
+ // Live Ins: %R0
+ // %R0<def> = IMPLICIT_DEF
+ // %R0<def> = IMPLICIT_DEF
+ // STR %R0<kill>, %R0, %reg0, 0, 14, %reg0, Mem:ST(4,4) [0x1b06510 + 0]
+ // %R1<def> = LDR %R0, %reg0, 24, 14, %reg0, Mem:LD(4,4) [0x1b065bc + 0]
+ if (MO.isKill() && !isReserved(Reg) && !isImplicitlyDefined(Reg)) {
+ KillRegs.set(Reg);
// Mark sub-registers as used.
for (const unsigned *SubRegs = TRI->getSubRegisters(Reg);
unsigned SubReg = *SubRegs; ++SubRegs)
- UseRegs.set(SubReg);
+ KillRegs.set(SubReg);
}
}
// Change states of all registers after all the uses are processed to guard
// against multiple uses.
- setUnused(UseRegs);
+ setUnused(KillRegs);
// Process early clobber defs then process defs. We can have a early clobber
// that is dead, it should not conflict with a def that happens one "slot"
OpenPOWER on IntegriCloud