summaryrefslogtreecommitdiffstats
path: root/lib/CodeGen/TwoAddressInstructionPass.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'lib/CodeGen/TwoAddressInstructionPass.cpp')
-rw-r--r--lib/CodeGen/TwoAddressInstructionPass.cpp997
1 files changed, 997 insertions, 0 deletions
diff --git a/lib/CodeGen/TwoAddressInstructionPass.cpp b/lib/CodeGen/TwoAddressInstructionPass.cpp
new file mode 100644
index 0000000..3c40404
--- /dev/null
+++ b/lib/CodeGen/TwoAddressInstructionPass.cpp
@@ -0,0 +1,997 @@
+//===-- TwoAddressInstructionPass.cpp - Two-Address instruction pass ------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the TwoAddress instruction pass which is used
+// by most register allocators. Two-Address instructions are rewritten
+// from:
+//
+// A = B op C
+//
+// to:
+//
+// A = B
+// A op= C
+//
+// Note that if a register allocator chooses to use this pass, that it
+// has to be capable of handling the non-SSA nature of these rewritten
+// virtual registers.
+//
+// It is also worth noting that the duplicate operand of the two
+// address instruction is removed.
+//
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "twoaddrinstr"
+#include "llvm/CodeGen/Passes.h"
+#include "llvm/Function.h"
+#include "llvm/CodeGen/LiveVariables.h"
+#include "llvm/CodeGen/MachineFunctionPass.h"
+#include "llvm/CodeGen/MachineInstr.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/Target/TargetRegisterInfo.h"
+#include "llvm/Target/TargetInstrInfo.h"
+#include "llvm/Target/TargetMachine.h"
+#include "llvm/Target/TargetOptions.h"
+#include "llvm/Support/Compiler.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/ADT/BitVector.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/SmallSet.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/ADT/STLExtras.h"
+using namespace llvm;
+
+STATISTIC(NumTwoAddressInstrs, "Number of two-address instructions");
+STATISTIC(NumCommuted , "Number of instructions commuted to coalesce");
+STATISTIC(NumAggrCommuted , "Number of instructions aggressively commuted");
+STATISTIC(NumConvertedTo3Addr, "Number of instructions promoted to 3-address");
+STATISTIC(Num3AddrSunk, "Number of 3-address instructions sunk");
+STATISTIC(NumReMats, "Number of instructions re-materialized");
+STATISTIC(NumDeletes, "Number of dead instructions deleted");
+
+namespace {
+ class VISIBILITY_HIDDEN TwoAddressInstructionPass
+ : public MachineFunctionPass {
+ const TargetInstrInfo *TII;
+ const TargetRegisterInfo *TRI;
+ MachineRegisterInfo *MRI;
+ LiveVariables *LV;
+
+ // DistanceMap - Keep track the distance of a MI from the start of the
+ // current basic block.
+ DenseMap<MachineInstr*, unsigned> DistanceMap;
+
+ // SrcRegMap - A map from virtual registers to physical registers which
+ // are likely targets to be coalesced to due to copies from physical
+ // registers to virtual registers. e.g. v1024 = move r0.
+ DenseMap<unsigned, unsigned> SrcRegMap;
+
+ // DstRegMap - A map from virtual registers to physical registers which
+ // are likely targets to be coalesced to due to copies to physical
+ // registers from virtual registers. e.g. r1 = move v1024.
+ DenseMap<unsigned, unsigned> DstRegMap;
+
+ bool Sink3AddrInstruction(MachineBasicBlock *MBB, MachineInstr *MI,
+ unsigned Reg,
+ MachineBasicBlock::iterator OldPos);
+
+ bool isProfitableToReMat(unsigned Reg, const TargetRegisterClass *RC,
+ MachineInstr *MI, MachineInstr *DefMI,
+ MachineBasicBlock *MBB, unsigned Loc);
+
+ bool NoUseAfterLastDef(unsigned Reg, MachineBasicBlock *MBB, unsigned Dist,
+ unsigned &LastDef);
+
+ MachineInstr *FindLastUseInMBB(unsigned Reg, MachineBasicBlock *MBB,
+ unsigned Dist);
+
+ bool isProfitableToCommute(unsigned regB, unsigned regC,
+ MachineInstr *MI, MachineBasicBlock *MBB,
+ unsigned Dist);
+
+ bool CommuteInstruction(MachineBasicBlock::iterator &mi,
+ MachineFunction::iterator &mbbi,
+ unsigned RegB, unsigned RegC, unsigned Dist);
+
+ bool isProfitableToConv3Addr(unsigned RegA);
+
+ bool ConvertInstTo3Addr(MachineBasicBlock::iterator &mi,
+ MachineBasicBlock::iterator &nmi,
+ MachineFunction::iterator &mbbi,
+ unsigned RegB, unsigned Dist);
+
+ void ProcessCopy(MachineInstr *MI, MachineBasicBlock *MBB,
+ SmallPtrSet<MachineInstr*, 8> &Processed);
+ public:
+ static char ID; // Pass identification, replacement for typeid
+ TwoAddressInstructionPass() : MachineFunctionPass(&ID) {}
+
+ virtual void getAnalysisUsage(AnalysisUsage &AU) const {
+ AU.addPreserved<LiveVariables>();
+ AU.addPreservedID(MachineLoopInfoID);
+ AU.addPreservedID(MachineDominatorsID);
+ if (StrongPHIElim)
+ AU.addPreservedID(StrongPHIEliminationID);
+ else
+ AU.addPreservedID(PHIEliminationID);
+ MachineFunctionPass::getAnalysisUsage(AU);
+ }
+
+ /// runOnMachineFunction - Pass entry point.
+ bool runOnMachineFunction(MachineFunction&);
+ };
+}
+
+char TwoAddressInstructionPass::ID = 0;
+static RegisterPass<TwoAddressInstructionPass>
+X("twoaddressinstruction", "Two-Address instruction pass");
+
+const PassInfo *const llvm::TwoAddressInstructionPassID = &X;
+
+/// Sink3AddrInstruction - A two-address instruction has been converted to a
+/// three-address instruction to avoid clobbering a register. Try to sink it
+/// past the instruction that would kill the above mentioned register to reduce
+/// register pressure.
+bool TwoAddressInstructionPass::Sink3AddrInstruction(MachineBasicBlock *MBB,
+ MachineInstr *MI, unsigned SavedReg,
+ MachineBasicBlock::iterator OldPos) {
+ // Check if it's safe to move this instruction.
+ bool SeenStore = true; // Be conservative.
+ if (!MI->isSafeToMove(TII, SeenStore))
+ return false;
+
+ unsigned DefReg = 0;
+ SmallSet<unsigned, 4> UseRegs;
+
+ for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
+ const MachineOperand &MO = MI->getOperand(i);
+ if (!MO.isReg())
+ continue;
+ unsigned MOReg = MO.getReg();
+ if (!MOReg)
+ continue;
+ if (MO.isUse() && MOReg != SavedReg)
+ UseRegs.insert(MO.getReg());
+ if (!MO.isDef())
+ continue;
+ if (MO.isImplicit())
+ // Don't try to move it if it implicitly defines a register.
+ return false;
+ if (DefReg)
+ // For now, don't move any instructions that define multiple registers.
+ return false;
+ DefReg = MO.getReg();
+ }
+
+ // Find the instruction that kills SavedReg.
+ MachineInstr *KillMI = NULL;
+ for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(SavedReg),
+ UE = MRI->use_end(); UI != UE; ++UI) {
+ MachineOperand &UseMO = UI.getOperand();
+ if (!UseMO.isKill())
+ continue;
+ KillMI = UseMO.getParent();
+ break;
+ }
+
+ if (!KillMI || KillMI->getParent() != MBB || KillMI == MI)
+ return false;
+
+ // If any of the definitions are used by another instruction between the
+ // position and the kill use, then it's not safe to sink it.
+ //
+ // FIXME: This can be sped up if there is an easy way to query whether an
+ // instruction is before or after another instruction. Then we can use
+ // MachineRegisterInfo def / use instead.
+ MachineOperand *KillMO = NULL;
+ MachineBasicBlock::iterator KillPos = KillMI;
+ ++KillPos;
+
+ unsigned NumVisited = 0;
+ for (MachineBasicBlock::iterator I = next(OldPos); I != KillPos; ++I) {
+ MachineInstr *OtherMI = I;
+ if (NumVisited > 30) // FIXME: Arbitrary limit to reduce compile time cost.
+ return false;
+ ++NumVisited;
+ for (unsigned i = 0, e = OtherMI->getNumOperands(); i != e; ++i) {
+ MachineOperand &MO = OtherMI->getOperand(i);
+ if (!MO.isReg())
+ continue;
+ unsigned MOReg = MO.getReg();
+ if (!MOReg)
+ continue;
+ if (DefReg == MOReg)
+ return false;
+
+ if (MO.isKill()) {
+ if (OtherMI == KillMI && MOReg == SavedReg)
+ // Save the operand that kills the register. We want to unset the kill
+ // marker if we can sink MI past it.
+ KillMO = &MO;
+ else if (UseRegs.count(MOReg))
+ // One of the uses is killed before the destination.
+ return false;
+ }
+ }
+ }
+
+ // Update kill and LV information.
+ KillMO->setIsKill(false);
+ KillMO = MI->findRegisterUseOperand(SavedReg, false, TRI);
+ KillMO->setIsKill(true);
+
+ if (LV)
+ LV->replaceKillInstruction(SavedReg, KillMI, MI);
+
+ // Move instruction to its destination.
+ MBB->remove(MI);
+ MBB->insert(KillPos, MI);
+
+ ++Num3AddrSunk;
+ return true;
+}
+
+/// isTwoAddrUse - Return true if the specified MI is using the specified
+/// register as a two-address operand.
+static bool isTwoAddrUse(MachineInstr *UseMI, unsigned Reg) {
+ const TargetInstrDesc &TID = UseMI->getDesc();
+ for (unsigned i = 0, e = TID.getNumOperands(); i != e; ++i) {
+ MachineOperand &MO = UseMI->getOperand(i);
+ if (MO.isReg() && MO.getReg() == Reg &&
+ (MO.isDef() || UseMI->isRegTiedToDefOperand(i)))
+ // Earlier use is a two-address one.
+ return true;
+ }
+ return false;
+}
+
+/// isProfitableToReMat - Return true if the heuristics determines it is likely
+/// to be profitable to re-materialize the definition of Reg rather than copy
+/// the register.
+bool
+TwoAddressInstructionPass::isProfitableToReMat(unsigned Reg,
+ const TargetRegisterClass *RC,
+ MachineInstr *MI, MachineInstr *DefMI,
+ MachineBasicBlock *MBB, unsigned Loc) {
+ bool OtherUse = false;
+ for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(Reg),
+ UE = MRI->use_end(); UI != UE; ++UI) {
+ MachineOperand &UseMO = UI.getOperand();
+ MachineInstr *UseMI = UseMO.getParent();
+ MachineBasicBlock *UseMBB = UseMI->getParent();
+ if (UseMBB == MBB) {
+ DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UseMI);
+ if (DI != DistanceMap.end() && DI->second == Loc)
+ continue; // Current use.
+ OtherUse = true;
+ // There is at least one other use in the MBB that will clobber the
+ // register.
+ if (isTwoAddrUse(UseMI, Reg))
+ return true;
+ }
+ }
+
+ // If other uses in MBB are not two-address uses, then don't remat.
+ if (OtherUse)
+ return false;
+
+ // No other uses in the same block, remat if it's defined in the same
+ // block so it does not unnecessarily extend the live range.
+ return MBB == DefMI->getParent();
+}
+
+/// NoUseAfterLastDef - Return true if there are no intervening uses between the
+/// last instruction in the MBB that defines the specified register and the
+/// two-address instruction which is being processed. It also returns the last
+/// def location by reference
+bool TwoAddressInstructionPass::NoUseAfterLastDef(unsigned Reg,
+ MachineBasicBlock *MBB, unsigned Dist,
+ unsigned &LastDef) {
+ LastDef = 0;
+ unsigned LastUse = Dist;
+ for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(Reg),
+ E = MRI->reg_end(); I != E; ++I) {
+ MachineOperand &MO = I.getOperand();
+ MachineInstr *MI = MO.getParent();
+ if (MI->getParent() != MBB)
+ continue;
+ DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI);
+ if (DI == DistanceMap.end())
+ continue;
+ if (MO.isUse() && DI->second < LastUse)
+ LastUse = DI->second;
+ if (MO.isDef() && DI->second > LastDef)
+ LastDef = DI->second;
+ }
+
+ return !(LastUse > LastDef && LastUse < Dist);
+}
+
+MachineInstr *TwoAddressInstructionPass::FindLastUseInMBB(unsigned Reg,
+ MachineBasicBlock *MBB,
+ unsigned Dist) {
+ unsigned LastUseDist = 0;
+ MachineInstr *LastUse = 0;
+ for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(Reg),
+ E = MRI->reg_end(); I != E; ++I) {
+ MachineOperand &MO = I.getOperand();
+ MachineInstr *MI = MO.getParent();
+ if (MI->getParent() != MBB)
+ continue;
+ DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI);
+ if (DI == DistanceMap.end())
+ continue;
+ if (DI->second >= Dist)
+ continue;
+
+ if (MO.isUse() && DI->second > LastUseDist) {
+ LastUse = DI->first;
+ LastUseDist = DI->second;
+ }
+ }
+ return LastUse;
+}
+
+/// isCopyToReg - Return true if the specified MI is a copy instruction or
+/// a extract_subreg instruction. It also returns the source and destination
+/// registers and whether they are physical registers by reference.
+static bool isCopyToReg(MachineInstr &MI, const TargetInstrInfo *TII,
+ unsigned &SrcReg, unsigned &DstReg,
+ bool &IsSrcPhys, bool &IsDstPhys) {
+ SrcReg = 0;
+ DstReg = 0;
+ unsigned SrcSubIdx, DstSubIdx;
+ if (!TII->isMoveInstr(MI, SrcReg, DstReg, SrcSubIdx, DstSubIdx)) {
+ if (MI.getOpcode() == TargetInstrInfo::EXTRACT_SUBREG) {
+ DstReg = MI.getOperand(0).getReg();
+ SrcReg = MI.getOperand(1).getReg();
+ } else if (MI.getOpcode() == TargetInstrInfo::INSERT_SUBREG) {
+ DstReg = MI.getOperand(0).getReg();
+ SrcReg = MI.getOperand(2).getReg();
+ } else if (MI.getOpcode() == TargetInstrInfo::SUBREG_TO_REG) {
+ DstReg = MI.getOperand(0).getReg();
+ SrcReg = MI.getOperand(2).getReg();
+ }
+ }
+
+ if (DstReg) {
+ IsSrcPhys = TargetRegisterInfo::isPhysicalRegister(SrcReg);
+ IsDstPhys = TargetRegisterInfo::isPhysicalRegister(DstReg);
+ return true;
+ }
+ return false;
+}
+
+/// isKilled - Test if the given register value, which is used by the given
+/// instruction, is killed by the given instruction. This looks through
+/// coalescable copies to see if the original value is potentially not killed.
+///
+/// For example, in this code:
+///
+/// %reg1034 = copy %reg1024
+/// %reg1035 = copy %reg1025<kill>
+/// %reg1036 = add %reg1034<kill>, %reg1035<kill>
+///
+/// %reg1034 is not considered to be killed, since it is copied from a
+/// register which is not killed. Treating it as not killed lets the
+/// normal heuristics commute the (two-address) add, which lets
+/// coalescing eliminate the extra copy.
+///
+static bool isKilled(MachineInstr &MI, unsigned Reg,
+ const MachineRegisterInfo *MRI,
+ const TargetInstrInfo *TII) {
+ MachineInstr *DefMI = &MI;
+ for (;;) {
+ if (!DefMI->killsRegister(Reg))
+ return false;
+ if (TargetRegisterInfo::isPhysicalRegister(Reg))
+ return true;
+ MachineRegisterInfo::def_iterator Begin = MRI->def_begin(Reg);
+ // If there are multiple defs, we can't do a simple analysis, so just
+ // go with what the kill flag says.
+ if (next(Begin) != MRI->def_end())
+ return true;
+ DefMI = &*Begin;
+ bool IsSrcPhys, IsDstPhys;
+ unsigned SrcReg, DstReg;
+ // If the def is something other than a copy, then it isn't going to
+ // be coalesced, so follow the kill flag.
+ if (!isCopyToReg(*DefMI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys))
+ return true;
+ Reg = SrcReg;
+ }
+}
+
+/// isTwoAddrUse - Return true if the specified MI uses the specified register
+/// as a two-address use. If so, return the destination register by reference.
+static bool isTwoAddrUse(MachineInstr &MI, unsigned Reg, unsigned &DstReg) {
+ const TargetInstrDesc &TID = MI.getDesc();
+ unsigned NumOps = (MI.getOpcode() == TargetInstrInfo::INLINEASM)
+ ? MI.getNumOperands() : TID.getNumOperands();
+ for (unsigned i = 0; i != NumOps; ++i) {
+ const MachineOperand &MO = MI.getOperand(i);
+ if (!MO.isReg() || !MO.isUse() || MO.getReg() != Reg)
+ continue;
+ unsigned ti;
+ if (MI.isRegTiedToDefOperand(i, &ti)) {
+ DstReg = MI.getOperand(ti).getReg();
+ return true;
+ }
+ }
+ return false;
+}
+
+/// findOnlyInterestingUse - Given a register, if has a single in-basic block
+/// use, return the use instruction if it's a copy or a two-address use.
+static
+MachineInstr *findOnlyInterestingUse(unsigned Reg, MachineBasicBlock *MBB,
+ MachineRegisterInfo *MRI,
+ const TargetInstrInfo *TII,
+ bool &IsCopy,
+ unsigned &DstReg, bool &IsDstPhys) {
+ MachineRegisterInfo::use_iterator UI = MRI->use_begin(Reg);
+ if (UI == MRI->use_end())
+ return 0;
+ MachineInstr &UseMI = *UI;
+ if (++UI != MRI->use_end())
+ // More than one use.
+ return 0;
+ if (UseMI.getParent() != MBB)
+ return 0;
+ unsigned SrcReg;
+ bool IsSrcPhys;
+ if (isCopyToReg(UseMI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys)) {
+ IsCopy = true;
+ return &UseMI;
+ }
+ IsDstPhys = false;
+ if (isTwoAddrUse(UseMI, Reg, DstReg)) {
+ IsDstPhys = TargetRegisterInfo::isPhysicalRegister(DstReg);
+ return &UseMI;
+ }
+ return 0;
+}
+
+/// getMappedReg - Return the physical register the specified virtual register
+/// might be mapped to.
+static unsigned
+getMappedReg(unsigned Reg, DenseMap<unsigned, unsigned> &RegMap) {
+ while (TargetRegisterInfo::isVirtualRegister(Reg)) {
+ DenseMap<unsigned, unsigned>::iterator SI = RegMap.find(Reg);
+ if (SI == RegMap.end())
+ return 0;
+ Reg = SI->second;
+ }
+ if (TargetRegisterInfo::isPhysicalRegister(Reg))
+ return Reg;
+ return 0;
+}
+
+/// regsAreCompatible - Return true if the two registers are equal or aliased.
+///
+static bool
+regsAreCompatible(unsigned RegA, unsigned RegB, const TargetRegisterInfo *TRI) {
+ if (RegA == RegB)
+ return true;
+ if (!RegA || !RegB)
+ return false;
+ return TRI->regsOverlap(RegA, RegB);
+}
+
+
+/// isProfitableToReMat - Return true if it's potentially profitable to commute
+/// the two-address instruction that's being processed.
+bool
+TwoAddressInstructionPass::isProfitableToCommute(unsigned regB, unsigned regC,
+ MachineInstr *MI, MachineBasicBlock *MBB,
+ unsigned Dist) {
+ // Determine if it's profitable to commute this two address instruction. In
+ // general, we want no uses between this instruction and the definition of
+ // the two-address register.
+ // e.g.
+ // %reg1028<def> = EXTRACT_SUBREG %reg1027<kill>, 1
+ // %reg1029<def> = MOV8rr %reg1028
+ // %reg1029<def> = SHR8ri %reg1029, 7, %EFLAGS<imp-def,dead>
+ // insert => %reg1030<def> = MOV8rr %reg1028
+ // %reg1030<def> = ADD8rr %reg1028<kill>, %reg1029<kill>, %EFLAGS<imp-def,dead>
+ // In this case, it might not be possible to coalesce the second MOV8rr
+ // instruction if the first one is coalesced. So it would be profitable to
+ // commute it:
+ // %reg1028<def> = EXTRACT_SUBREG %reg1027<kill>, 1
+ // %reg1029<def> = MOV8rr %reg1028
+ // %reg1029<def> = SHR8ri %reg1029, 7, %EFLAGS<imp-def,dead>
+ // insert => %reg1030<def> = MOV8rr %reg1029
+ // %reg1030<def> = ADD8rr %reg1029<kill>, %reg1028<kill>, %EFLAGS<imp-def,dead>
+
+ if (!MI->killsRegister(regC))
+ return false;
+
+ // Ok, we have something like:
+ // %reg1030<def> = ADD8rr %reg1028<kill>, %reg1029<kill>, %EFLAGS<imp-def,dead>
+ // let's see if it's worth commuting it.
+
+ // Look for situations like this:
+ // %reg1024<def> = MOV r1
+ // %reg1025<def> = MOV r0
+ // %reg1026<def> = ADD %reg1024, %reg1025
+ // r0 = MOV %reg1026
+ // Commute the ADD to hopefully eliminate an otherwise unavoidable copy.
+ unsigned FromRegB = getMappedReg(regB, SrcRegMap);
+ unsigned FromRegC = getMappedReg(regC, SrcRegMap);
+ unsigned ToRegB = getMappedReg(regB, DstRegMap);
+ unsigned ToRegC = getMappedReg(regC, DstRegMap);
+ if (!regsAreCompatible(FromRegB, ToRegB, TRI) &&
+ (regsAreCompatible(FromRegB, ToRegC, TRI) ||
+ regsAreCompatible(FromRegC, ToRegB, TRI)))
+ return true;
+
+ // If there is a use of regC between its last def (could be livein) and this
+ // instruction, then bail.
+ unsigned LastDefC = 0;
+ if (!NoUseAfterLastDef(regC, MBB, Dist, LastDefC))
+ return false;
+
+ // If there is a use of regB between its last def (could be livein) and this
+ // instruction, then go ahead and make this transformation.
+ unsigned LastDefB = 0;
+ if (!NoUseAfterLastDef(regB, MBB, Dist, LastDefB))
+ return true;
+
+ // Since there are no intervening uses for both registers, then commute
+ // if the def of regC is closer. Its live interval is shorter.
+ return LastDefB && LastDefC && LastDefC > LastDefB;
+}
+
+/// CommuteInstruction - Commute a two-address instruction and update the basic
+/// block, distance map, and live variables if needed. Return true if it is
+/// successful.
+bool
+TwoAddressInstructionPass::CommuteInstruction(MachineBasicBlock::iterator &mi,
+ MachineFunction::iterator &mbbi,
+ unsigned RegB, unsigned RegC, unsigned Dist) {
+ MachineInstr *MI = mi;
+ DOUT << "2addr: COMMUTING : " << *MI;
+ MachineInstr *NewMI = TII->commuteInstruction(MI);
+
+ if (NewMI == 0) {
+ DOUT << "2addr: COMMUTING FAILED!\n";
+ return false;
+ }
+
+ DOUT << "2addr: COMMUTED TO: " << *NewMI;
+ // If the instruction changed to commute it, update livevar.
+ if (NewMI != MI) {
+ if (LV)
+ // Update live variables
+ LV->replaceKillInstruction(RegC, MI, NewMI);
+
+ mbbi->insert(mi, NewMI); // Insert the new inst
+ mbbi->erase(mi); // Nuke the old inst.
+ mi = NewMI;
+ DistanceMap.insert(std::make_pair(NewMI, Dist));
+ }
+
+ // Update source register map.
+ unsigned FromRegC = getMappedReg(RegC, SrcRegMap);
+ if (FromRegC) {
+ unsigned RegA = MI->getOperand(0).getReg();
+ SrcRegMap[RegA] = FromRegC;
+ }
+
+ return true;
+}
+
+/// isProfitableToConv3Addr - Return true if it is profitable to convert the
+/// given 2-address instruction to a 3-address one.
+bool
+TwoAddressInstructionPass::isProfitableToConv3Addr(unsigned RegA) {
+ // Look for situations like this:
+ // %reg1024<def> = MOV r1
+ // %reg1025<def> = MOV r0
+ // %reg1026<def> = ADD %reg1024, %reg1025
+ // r2 = MOV %reg1026
+ // Turn ADD into a 3-address instruction to avoid a copy.
+ unsigned FromRegA = getMappedReg(RegA, SrcRegMap);
+ unsigned ToRegA = getMappedReg(RegA, DstRegMap);
+ return (FromRegA && ToRegA && !regsAreCompatible(FromRegA, ToRegA, TRI));
+}
+
+/// ConvertInstTo3Addr - Convert the specified two-address instruction into a
+/// three address one. Return true if this transformation was successful.
+bool
+TwoAddressInstructionPass::ConvertInstTo3Addr(MachineBasicBlock::iterator &mi,
+ MachineBasicBlock::iterator &nmi,
+ MachineFunction::iterator &mbbi,
+ unsigned RegB, unsigned Dist) {
+ MachineInstr *NewMI = TII->convertToThreeAddress(mbbi, mi, LV);
+ if (NewMI) {
+ DOUT << "2addr: CONVERTING 2-ADDR: " << *mi;
+ DOUT << "2addr: TO 3-ADDR: " << *NewMI;
+ bool Sunk = false;
+
+ if (NewMI->findRegisterUseOperand(RegB, false, TRI))
+ // FIXME: Temporary workaround. If the new instruction doesn't
+ // uses RegB, convertToThreeAddress must have created more
+ // then one instruction.
+ Sunk = Sink3AddrInstruction(mbbi, NewMI, RegB, mi);
+
+ mbbi->erase(mi); // Nuke the old inst.
+
+ if (!Sunk) {
+ DistanceMap.insert(std::make_pair(NewMI, Dist));
+ mi = NewMI;
+ nmi = next(mi);
+ }
+ return true;
+ }
+
+ return false;
+}
+
+/// ProcessCopy - If the specified instruction is not yet processed, process it
+/// if it's a copy. For a copy instruction, we find the physical registers the
+/// source and destination registers might be mapped to. These are kept in
+/// point-to maps used to determine future optimizations. e.g.
+/// v1024 = mov r0
+/// v1025 = mov r1
+/// v1026 = add v1024, v1025
+/// r1 = mov r1026
+/// If 'add' is a two-address instruction, v1024, v1026 are both potentially
+/// coalesced to r0 (from the input side). v1025 is mapped to r1. v1026 is
+/// potentially joined with r1 on the output side. It's worthwhile to commute
+/// 'add' to eliminate a copy.
+void TwoAddressInstructionPass::ProcessCopy(MachineInstr *MI,
+ MachineBasicBlock *MBB,
+ SmallPtrSet<MachineInstr*, 8> &Processed) {
+ if (Processed.count(MI))
+ return;
+
+ bool IsSrcPhys, IsDstPhys;
+ unsigned SrcReg, DstReg;
+ if (!isCopyToReg(*MI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys))
+ return;
+
+ if (IsDstPhys && !IsSrcPhys)
+ DstRegMap.insert(std::make_pair(SrcReg, DstReg));
+ else if (!IsDstPhys && IsSrcPhys) {
+ bool isNew = SrcRegMap.insert(std::make_pair(DstReg, SrcReg)).second;
+ if (!isNew)
+ assert(SrcRegMap[DstReg] == SrcReg &&
+ "Can't map to two src physical registers!");
+
+ SmallVector<unsigned, 4> VirtRegPairs;
+ bool IsCopy = false;
+ unsigned NewReg = 0;
+ while (MachineInstr *UseMI = findOnlyInterestingUse(DstReg, MBB, MRI,TII,
+ IsCopy, NewReg, IsDstPhys)) {
+ if (IsCopy) {
+ if (!Processed.insert(UseMI))
+ break;
+ }
+
+ DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UseMI);
+ if (DI != DistanceMap.end())
+ // Earlier in the same MBB.Reached via a back edge.
+ break;
+
+ if (IsDstPhys) {
+ VirtRegPairs.push_back(NewReg);
+ break;
+ }
+ bool isNew = SrcRegMap.insert(std::make_pair(NewReg, DstReg)).second;
+ if (!isNew)
+ assert(SrcRegMap[NewReg] == DstReg &&
+ "Can't map to two src physical registers!");
+ VirtRegPairs.push_back(NewReg);
+ DstReg = NewReg;
+ }
+
+ if (!VirtRegPairs.empty()) {
+ unsigned ToReg = VirtRegPairs.back();
+ VirtRegPairs.pop_back();
+ while (!VirtRegPairs.empty()) {
+ unsigned FromReg = VirtRegPairs.back();
+ VirtRegPairs.pop_back();
+ bool isNew = DstRegMap.insert(std::make_pair(FromReg, ToReg)).second;
+ if (!isNew)
+ assert(DstRegMap[FromReg] == ToReg &&
+ "Can't map to two dst physical registers!");
+ ToReg = FromReg;
+ }
+ }
+ }
+
+ Processed.insert(MI);
+}
+
+/// isSafeToDelete - If the specified instruction does not produce any side
+/// effects and all of its defs are dead, then it's safe to delete.
+static bool isSafeToDelete(MachineInstr *MI, unsigned Reg,
+ const TargetInstrInfo *TII,
+ SmallVector<unsigned, 4> &Kills) {
+ const TargetInstrDesc &TID = MI->getDesc();
+ if (TID.mayStore() || TID.isCall())
+ return false;
+ if (TID.isTerminator() || TID.hasUnmodeledSideEffects())
+ return false;
+
+ for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
+ MachineOperand &MO = MI->getOperand(i);
+ if (!MO.isReg())
+ continue;
+ if (MO.isDef() && !MO.isDead())
+ return false;
+ if (MO.isUse() && MO.getReg() != Reg && MO.isKill())
+ Kills.push_back(MO.getReg());
+ }
+
+ return true;
+}
+
+/// runOnMachineFunction - Reduce two-address instructions to two operands.
+///
+bool TwoAddressInstructionPass::runOnMachineFunction(MachineFunction &MF) {
+ DOUT << "Machine Function\n";
+ const TargetMachine &TM = MF.getTarget();
+ MRI = &MF.getRegInfo();
+ TII = TM.getInstrInfo();
+ TRI = TM.getRegisterInfo();
+ LV = getAnalysisIfAvailable<LiveVariables>();
+
+ bool MadeChange = false;
+
+ DOUT << "********** REWRITING TWO-ADDR INSTRS **********\n";
+ DOUT << "********** Function: " << MF.getFunction()->getName() << '\n';
+
+ // ReMatRegs - Keep track of the registers whose def's are remat'ed.
+ BitVector ReMatRegs;
+ ReMatRegs.resize(MRI->getLastVirtReg()+1);
+
+ SmallPtrSet<MachineInstr*, 8> Processed;
+ for (MachineFunction::iterator mbbi = MF.begin(), mbbe = MF.end();
+ mbbi != mbbe; ++mbbi) {
+ unsigned Dist = 0;
+ DistanceMap.clear();
+ SrcRegMap.clear();
+ DstRegMap.clear();
+ Processed.clear();
+ for (MachineBasicBlock::iterator mi = mbbi->begin(), me = mbbi->end();
+ mi != me; ) {
+ MachineBasicBlock::iterator nmi = next(mi);
+ const TargetInstrDesc &TID = mi->getDesc();
+ bool FirstTied = true;
+
+ DistanceMap.insert(std::make_pair(mi, ++Dist));
+
+ ProcessCopy(&*mi, &*mbbi, Processed);
+
+ unsigned NumOps = (mi->getOpcode() == TargetInstrInfo::INLINEASM)
+ ? mi->getNumOperands() : TID.getNumOperands();
+ for (unsigned si = 0; si < NumOps; ++si) {
+ unsigned ti = 0;
+ if (!mi->isRegTiedToDefOperand(si, &ti))
+ continue;
+
+ if (FirstTied) {
+ ++NumTwoAddressInstrs;
+ DOUT << '\t'; DEBUG(mi->print(*cerr.stream(), &TM));
+ }
+
+ FirstTied = false;
+
+ assert(mi->getOperand(si).isReg() && mi->getOperand(si).getReg() &&
+ mi->getOperand(si).isUse() && "two address instruction invalid");
+
+ // If the two operands are the same we just remove the use
+ // and mark the def as def&use, otherwise we have to insert a copy.
+ if (mi->getOperand(ti).getReg() != mi->getOperand(si).getReg()) {
+ // Rewrite:
+ // a = b op c
+ // to:
+ // a = b
+ // a = a op c
+ unsigned regA = mi->getOperand(ti).getReg();
+ unsigned regB = mi->getOperand(si).getReg();
+
+ assert(TargetRegisterInfo::isVirtualRegister(regB) &&
+ "cannot update physical register live information");
+
+#ifndef NDEBUG
+ // First, verify that we don't have a use of a in the instruction (a =
+ // b + a for example) because our transformation will not work. This
+ // should never occur because we are in SSA form.
+ for (unsigned i = 0; i != mi->getNumOperands(); ++i)
+ assert(i == ti ||
+ !mi->getOperand(i).isReg() ||
+ mi->getOperand(i).getReg() != regA);
+#endif
+
+ // If this instruction is not the killing user of B, see if we can
+ // rearrange the code to make it so. Making it the killing user will
+ // allow us to coalesce A and B together, eliminating the copy we are
+ // about to insert.
+ if (!isKilled(*mi, regB, MRI, TII)) {
+ // If regA is dead and the instruction can be deleted, just delete
+ // it so it doesn't clobber regB.
+ SmallVector<unsigned, 4> Kills;
+ if (mi->getOperand(ti).isDead() &&
+ isSafeToDelete(mi, regB, TII, Kills)) {
+ SmallVector<std::pair<std::pair<unsigned, bool>
+ ,MachineInstr*>, 4> NewKills;
+ bool ReallySafe = true;
+ // If this instruction kills some virtual registers, we need
+ // update the kill information. If it's not possible to do so,
+ // then bail out.
+ while (!Kills.empty()) {
+ unsigned Kill = Kills.back();
+ Kills.pop_back();
+ if (TargetRegisterInfo::isPhysicalRegister(Kill)) {
+ ReallySafe = false;
+ break;
+ }
+ MachineInstr *LastKill = FindLastUseInMBB(Kill, &*mbbi, Dist);
+ if (LastKill) {
+ bool isModRef = LastKill->modifiesRegister(Kill);
+ NewKills.push_back(std::make_pair(std::make_pair(Kill,isModRef),
+ LastKill));
+ } else {
+ ReallySafe = false;
+ break;
+ }
+ }
+
+ if (ReallySafe) {
+ if (LV) {
+ while (!NewKills.empty()) {
+ MachineInstr *NewKill = NewKills.back().second;
+ unsigned Kill = NewKills.back().first.first;
+ bool isDead = NewKills.back().first.second;
+ NewKills.pop_back();
+ if (LV->removeVirtualRegisterKilled(Kill, mi)) {
+ if (isDead)
+ LV->addVirtualRegisterDead(Kill, NewKill);
+ else
+ LV->addVirtualRegisterKilled(Kill, NewKill);
+ }
+ }
+ }
+
+ // We're really going to nuke the old inst. If regB was marked
+ // as a kill we need to update its Kills list.
+ if (mi->getOperand(si).isKill())
+ LV->removeVirtualRegisterKilled(regB, mi);
+
+ mbbi->erase(mi); // Nuke the old inst.
+ mi = nmi;
+ ++NumDeletes;
+ break; // Done with this instruction.
+ }
+ }
+
+ // If this instruction is commutative, check to see if C dies. If
+ // so, swap the B and C operands. This makes the live ranges of A
+ // and C joinable.
+ // FIXME: This code also works for A := B op C instructions.
+ if (TID.isCommutable() && mi->getNumOperands() >= 3) {
+ assert(mi->getOperand(3-si).isReg() &&
+ "Not a proper commutative instruction!");
+ unsigned regC = mi->getOperand(3-si).getReg();
+ if (isKilled(*mi, regC, MRI, TII)) {
+ if (CommuteInstruction(mi, mbbi, regB, regC, Dist)) {
+ ++NumCommuted;
+ regB = regC;
+ goto InstructionRearranged;
+ }
+ }
+ }
+
+ // If this instruction is potentially convertible to a true
+ // three-address instruction,
+ if (TID.isConvertibleTo3Addr()) {
+ // FIXME: This assumes there are no more operands which are tied
+ // to another register.
+#ifndef NDEBUG
+ for (unsigned i = si + 1, e = TID.getNumOperands(); i < e; ++i)
+ assert(TID.getOperandConstraint(i, TOI::TIED_TO) == -1);
+#endif
+
+ if (ConvertInstTo3Addr(mi, nmi, mbbi, regB, Dist)) {
+ ++NumConvertedTo3Addr;
+ break; // Done with this instruction.
+ }
+ }
+ }
+
+ // If it's profitable to commute the instruction, do so.
+ if (TID.isCommutable() && mi->getNumOperands() >= 3) {
+ unsigned regC = mi->getOperand(3-si).getReg();
+ if (isProfitableToCommute(regB, regC, mi, mbbi, Dist))
+ if (CommuteInstruction(mi, mbbi, regB, regC, Dist)) {
+ ++NumAggrCommuted;
+ ++NumCommuted;
+ regB = regC;
+ goto InstructionRearranged;
+ }
+ }
+
+ // If it's profitable to convert the 2-address instruction to a
+ // 3-address one, do so.
+ if (TID.isConvertibleTo3Addr() && isProfitableToConv3Addr(regA)) {
+ if (ConvertInstTo3Addr(mi, nmi, mbbi, regB, Dist)) {
+ ++NumConvertedTo3Addr;
+ break; // Done with this instruction.
+ }
+ }
+
+ InstructionRearranged:
+ const TargetRegisterClass* rc = MRI->getRegClass(regB);
+ MachineInstr *DefMI = MRI->getVRegDef(regB);
+ // If it's safe and profitable, remat the definition instead of
+ // copying it.
+ if (DefMI &&
+ DefMI->getDesc().isAsCheapAsAMove() &&
+ DefMI->isSafeToReMat(TII, regB) &&
+ isProfitableToReMat(regB, rc, mi, DefMI, mbbi, Dist)){
+ DEBUG(cerr << "2addr: REMATTING : " << *DefMI << "\n");
+ TII->reMaterialize(*mbbi, mi, regA, DefMI);
+ ReMatRegs.set(regB);
+ ++NumReMats;
+ } else {
+ bool Emitted = TII->copyRegToReg(*mbbi, mi, regA, regB, rc, rc);
+ (void)Emitted;
+ assert(Emitted && "Unable to issue a copy instruction!\n");
+ }
+
+ MachineBasicBlock::iterator prevMI = prior(mi);
+ // Update DistanceMap.
+ DistanceMap.insert(std::make_pair(prevMI, Dist));
+ DistanceMap[mi] = ++Dist;
+
+ // Update live variables for regB.
+ if (LV) {
+ if (LV->removeVirtualRegisterKilled(regB, mi))
+ LV->addVirtualRegisterKilled(regB, prevMI);
+
+ if (LV->removeVirtualRegisterDead(regB, mi))
+ LV->addVirtualRegisterDead(regB, prevMI);
+ }
+
+ DOUT << "\t\tprepend:\t"; DEBUG(prevMI->print(*cerr.stream(), &TM));
+
+ // Replace all occurences of regB with regA.
+ for (unsigned i = 0, e = mi->getNumOperands(); i != e; ++i) {
+ if (mi->getOperand(i).isReg() &&
+ mi->getOperand(i).getReg() == regB)
+ mi->getOperand(i).setReg(regA);
+ }
+ }
+
+ assert(mi->getOperand(ti).isDef() && mi->getOperand(si).isUse());
+ mi->getOperand(ti).setReg(mi->getOperand(si).getReg());
+ MadeChange = true;
+
+ DOUT << "\t\trewrite to:\t"; DEBUG(mi->print(*cerr.stream(), &TM));
+ }
+
+ mi = nmi;
+ }
+ }
+
+ // Some remat'ed instructions are dead.
+ int VReg = ReMatRegs.find_first();
+ while (VReg != -1) {
+ if (MRI->use_empty(VReg)) {
+ MachineInstr *DefMI = MRI->getVRegDef(VReg);
+ DefMI->eraseFromParent();
+ }
+ VReg = ReMatRegs.find_next(VReg);
+ }
+
+ return MadeChange;
+}
OpenPOWER on IntegriCloud