summaryrefslogtreecommitdiffstats
path: root/lib/CodeGen/SelectionDAG/LegalizeDAG.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'lib/CodeGen/SelectionDAG/LegalizeDAG.cpp')
-rw-r--r--lib/CodeGen/SelectionDAG/LegalizeDAG.cpp3091
1 files changed, 3091 insertions, 0 deletions
diff --git a/lib/CodeGen/SelectionDAG/LegalizeDAG.cpp b/lib/CodeGen/SelectionDAG/LegalizeDAG.cpp
new file mode 100644
index 0000000..2cd67e6
--- /dev/null
+++ b/lib/CodeGen/SelectionDAG/LegalizeDAG.cpp
@@ -0,0 +1,3091 @@
+//===-- LegalizeDAG.cpp - Implement SelectionDAG::Legalize ----------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the SelectionDAG::Legalize method.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/CodeGen/SelectionDAG.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineJumpTableInfo.h"
+#include "llvm/CodeGen/MachineModuleInfo.h"
+#include "llvm/CodeGen/DwarfWriter.h"
+#include "llvm/Analysis/DebugInfo.h"
+#include "llvm/CodeGen/PseudoSourceValue.h"
+#include "llvm/Target/TargetFrameInfo.h"
+#include "llvm/Target/TargetLowering.h"
+#include "llvm/Target/TargetData.h"
+#include "llvm/Target/TargetMachine.h"
+#include "llvm/Target/TargetOptions.h"
+#include "llvm/Target/TargetSubtarget.h"
+#include "llvm/CallingConv.h"
+#include "llvm/Constants.h"
+#include "llvm/DerivedTypes.h"
+#include "llvm/Function.h"
+#include "llvm/GlobalVariable.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Compiler.h"
+#include "llvm/Support/MathExtras.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include <map>
+using namespace llvm;
+
+//===----------------------------------------------------------------------===//
+/// SelectionDAGLegalize - This takes an arbitrary SelectionDAG as input and
+/// hacks on it until the target machine can handle it. This involves
+/// eliminating value sizes the machine cannot handle (promoting small sizes to
+/// large sizes or splitting up large values into small values) as well as
+/// eliminating operations the machine cannot handle.
+///
+/// This code also does a small amount of optimization and recognition of idioms
+/// as part of its processing. For example, if a target does not support a
+/// 'setcc' instruction efficiently, but does support 'brcc' instruction, this
+/// will attempt merge setcc and brc instructions into brcc's.
+///
+namespace {
+class VISIBILITY_HIDDEN SelectionDAGLegalize {
+ TargetLowering &TLI;
+ SelectionDAG &DAG;
+ CodeGenOpt::Level OptLevel;
+
+ // Libcall insertion helpers.
+
+ /// LastCALLSEQ_END - This keeps track of the CALLSEQ_END node that has been
+ /// legalized. We use this to ensure that calls are properly serialized
+ /// against each other, including inserted libcalls.
+ SDValue LastCALLSEQ_END;
+
+ /// IsLegalizingCall - This member is used *only* for purposes of providing
+ /// helpful assertions that a libcall isn't created while another call is
+ /// being legalized (which could lead to non-serialized call sequences).
+ bool IsLegalizingCall;
+
+ enum LegalizeAction {
+ Legal, // The target natively supports this operation.
+ Promote, // This operation should be executed in a larger type.
+ Expand // Try to expand this to other ops, otherwise use a libcall.
+ };
+
+ /// ValueTypeActions - This is a bitvector that contains two bits for each
+ /// value type, where the two bits correspond to the LegalizeAction enum.
+ /// This can be queried with "getTypeAction(VT)".
+ TargetLowering::ValueTypeActionImpl ValueTypeActions;
+
+ /// LegalizedNodes - For nodes that are of legal width, and that have more
+ /// than one use, this map indicates what regularized operand to use. This
+ /// allows us to avoid legalizing the same thing more than once.
+ DenseMap<SDValue, SDValue> LegalizedNodes;
+
+ void AddLegalizedOperand(SDValue From, SDValue To) {
+ LegalizedNodes.insert(std::make_pair(From, To));
+ // If someone requests legalization of the new node, return itself.
+ if (From != To)
+ LegalizedNodes.insert(std::make_pair(To, To));
+ }
+
+public:
+ SelectionDAGLegalize(SelectionDAG &DAG, CodeGenOpt::Level ol);
+
+ /// getTypeAction - Return how we should legalize values of this type, either
+ /// it is already legal or we need to expand it into multiple registers of
+ /// smaller integer type, or we need to promote it to a larger type.
+ LegalizeAction getTypeAction(MVT VT) const {
+ return (LegalizeAction)ValueTypeActions.getTypeAction(VT);
+ }
+
+ /// isTypeLegal - Return true if this type is legal on this target.
+ ///
+ bool isTypeLegal(MVT VT) const {
+ return getTypeAction(VT) == Legal;
+ }
+
+ void LegalizeDAG();
+
+private:
+ /// LegalizeOp - We know that the specified value has a legal type.
+ /// Recursively ensure that the operands have legal types, then return the
+ /// result.
+ SDValue LegalizeOp(SDValue O);
+
+ /// PerformInsertVectorEltInMemory - Some target cannot handle a variable
+ /// insertion index for the INSERT_VECTOR_ELT instruction. In this case, it
+ /// is necessary to spill the vector being inserted into to memory, perform
+ /// the insert there, and then read the result back.
+ SDValue PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val,
+ SDValue Idx, DebugLoc dl);
+ SDValue ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val,
+ SDValue Idx, DebugLoc dl);
+
+ /// ShuffleWithNarrowerEltType - Return a vector shuffle operation which
+ /// performs the same shuffe in terms of order or result bytes, but on a type
+ /// whose vector element type is narrower than the original shuffle type.
+ /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3>
+ SDValue ShuffleWithNarrowerEltType(MVT NVT, MVT VT, DebugLoc dl,
+ SDValue N1, SDValue N2,
+ SmallVectorImpl<int> &Mask) const;
+
+ bool LegalizeAllNodesNotLeadingTo(SDNode *N, SDNode *Dest,
+ SmallPtrSet<SDNode*, 32> &NodesLeadingTo);
+
+ void LegalizeSetCCCondCode(MVT VT, SDValue &LHS, SDValue &RHS, SDValue &CC,
+ DebugLoc dl);
+
+ SDValue ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, bool isSigned);
+ SDValue ExpandFPLibCall(SDNode *Node, RTLIB::Libcall Call_F32,
+ RTLIB::Libcall Call_F64, RTLIB::Libcall Call_F80,
+ RTLIB::Libcall Call_PPCF128);
+ SDValue ExpandIntLibCall(SDNode *Node, bool isSigned, RTLIB::Libcall Call_I16,
+ RTLIB::Libcall Call_I32, RTLIB::Libcall Call_I64,
+ RTLIB::Libcall Call_I128);
+
+ SDValue EmitStackConvert(SDValue SrcOp, MVT SlotVT, MVT DestVT, DebugLoc dl);
+ SDValue ExpandBUILD_VECTOR(SDNode *Node);
+ SDValue ExpandSCALAR_TO_VECTOR(SDNode *Node);
+ SDValue ExpandDBG_STOPPOINT(SDNode *Node);
+ void ExpandDYNAMIC_STACKALLOC(SDNode *Node,
+ SmallVectorImpl<SDValue> &Results);
+ SDValue ExpandFCOPYSIGN(SDNode *Node);
+ SDValue ExpandLegalINT_TO_FP(bool isSigned, SDValue LegalOp, MVT DestVT,
+ DebugLoc dl);
+ SDValue PromoteLegalINT_TO_FP(SDValue LegalOp, MVT DestVT, bool isSigned,
+ DebugLoc dl);
+ SDValue PromoteLegalFP_TO_INT(SDValue LegalOp, MVT DestVT, bool isSigned,
+ DebugLoc dl);
+
+ SDValue ExpandBSWAP(SDValue Op, DebugLoc dl);
+ SDValue ExpandBitCount(unsigned Opc, SDValue Op, DebugLoc dl);
+
+ SDValue ExpandExtractFromVectorThroughStack(SDValue Op);
+
+ void ExpandNode(SDNode *Node, SmallVectorImpl<SDValue> &Results);
+ void PromoteNode(SDNode *Node, SmallVectorImpl<SDValue> &Results);
+};
+}
+
+/// ShuffleWithNarrowerEltType - Return a vector shuffle operation which
+/// performs the same shuffe in terms of order or result bytes, but on a type
+/// whose vector element type is narrower than the original shuffle type.
+/// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3>
+SDValue
+SelectionDAGLegalize::ShuffleWithNarrowerEltType(MVT NVT, MVT VT, DebugLoc dl,
+ SDValue N1, SDValue N2,
+ SmallVectorImpl<int> &Mask) const {
+ MVT EltVT = NVT.getVectorElementType();
+ unsigned NumMaskElts = VT.getVectorNumElements();
+ unsigned NumDestElts = NVT.getVectorNumElements();
+ unsigned NumEltsGrowth = NumDestElts / NumMaskElts;
+
+ assert(NumEltsGrowth && "Cannot promote to vector type with fewer elts!");
+
+ if (NumEltsGrowth == 1)
+ return DAG.getVectorShuffle(NVT, dl, N1, N2, &Mask[0]);
+
+ SmallVector<int, 8> NewMask;
+ for (unsigned i = 0; i != NumMaskElts; ++i) {
+ int Idx = Mask[i];
+ for (unsigned j = 0; j != NumEltsGrowth; ++j) {
+ if (Idx < 0)
+ NewMask.push_back(-1);
+ else
+ NewMask.push_back(Idx * NumEltsGrowth + j);
+ }
+ }
+ assert(NewMask.size() == NumDestElts && "Non-integer NumEltsGrowth?");
+ assert(TLI.isShuffleMaskLegal(NewMask, NVT) && "Shuffle not legal?");
+ return DAG.getVectorShuffle(NVT, dl, N1, N2, &NewMask[0]);
+}
+
+SelectionDAGLegalize::SelectionDAGLegalize(SelectionDAG &dag,
+ CodeGenOpt::Level ol)
+ : TLI(dag.getTargetLoweringInfo()), DAG(dag), OptLevel(ol),
+ ValueTypeActions(TLI.getValueTypeActions()) {
+ assert(MVT::LAST_VALUETYPE <= 32 &&
+ "Too many value types for ValueTypeActions to hold!");
+}
+
+void SelectionDAGLegalize::LegalizeDAG() {
+ LastCALLSEQ_END = DAG.getEntryNode();
+ IsLegalizingCall = false;
+
+ // The legalize process is inherently a bottom-up recursive process (users
+ // legalize their uses before themselves). Given infinite stack space, we
+ // could just start legalizing on the root and traverse the whole graph. In
+ // practice however, this causes us to run out of stack space on large basic
+ // blocks. To avoid this problem, compute an ordering of the nodes where each
+ // node is only legalized after all of its operands are legalized.
+ DAG.AssignTopologicalOrder();
+ for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
+ E = prior(DAG.allnodes_end()); I != next(E); ++I)
+ LegalizeOp(SDValue(I, 0));
+
+ // Finally, it's possible the root changed. Get the new root.
+ SDValue OldRoot = DAG.getRoot();
+ assert(LegalizedNodes.count(OldRoot) && "Root didn't get legalized?");
+ DAG.setRoot(LegalizedNodes[OldRoot]);
+
+ LegalizedNodes.clear();
+
+ // Remove dead nodes now.
+ DAG.RemoveDeadNodes();
+}
+
+
+/// FindCallEndFromCallStart - Given a chained node that is part of a call
+/// sequence, find the CALLSEQ_END node that terminates the call sequence.
+static SDNode *FindCallEndFromCallStart(SDNode *Node) {
+ if (Node->getOpcode() == ISD::CALLSEQ_END)
+ return Node;
+ if (Node->use_empty())
+ return 0; // No CallSeqEnd
+
+ // The chain is usually at the end.
+ SDValue TheChain(Node, Node->getNumValues()-1);
+ if (TheChain.getValueType() != MVT::Other) {
+ // Sometimes it's at the beginning.
+ TheChain = SDValue(Node, 0);
+ if (TheChain.getValueType() != MVT::Other) {
+ // Otherwise, hunt for it.
+ for (unsigned i = 1, e = Node->getNumValues(); i != e; ++i)
+ if (Node->getValueType(i) == MVT::Other) {
+ TheChain = SDValue(Node, i);
+ break;
+ }
+
+ // Otherwise, we walked into a node without a chain.
+ if (TheChain.getValueType() != MVT::Other)
+ return 0;
+ }
+ }
+
+ for (SDNode::use_iterator UI = Node->use_begin(),
+ E = Node->use_end(); UI != E; ++UI) {
+
+ // Make sure to only follow users of our token chain.
+ SDNode *User = *UI;
+ for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i)
+ if (User->getOperand(i) == TheChain)
+ if (SDNode *Result = FindCallEndFromCallStart(User))
+ return Result;
+ }
+ return 0;
+}
+
+/// FindCallStartFromCallEnd - Given a chained node that is part of a call
+/// sequence, find the CALLSEQ_START node that initiates the call sequence.
+static SDNode *FindCallStartFromCallEnd(SDNode *Node) {
+ assert(Node && "Didn't find callseq_start for a call??");
+ if (Node->getOpcode() == ISD::CALLSEQ_START) return Node;
+
+ assert(Node->getOperand(0).getValueType() == MVT::Other &&
+ "Node doesn't have a token chain argument!");
+ return FindCallStartFromCallEnd(Node->getOperand(0).getNode());
+}
+
+/// LegalizeAllNodesNotLeadingTo - Recursively walk the uses of N, looking to
+/// see if any uses can reach Dest. If no dest operands can get to dest,
+/// legalize them, legalize ourself, and return false, otherwise, return true.
+///
+/// Keep track of the nodes we fine that actually do lead to Dest in
+/// NodesLeadingTo. This avoids retraversing them exponential number of times.
+///
+bool SelectionDAGLegalize::LegalizeAllNodesNotLeadingTo(SDNode *N, SDNode *Dest,
+ SmallPtrSet<SDNode*, 32> &NodesLeadingTo) {
+ if (N == Dest) return true; // N certainly leads to Dest :)
+
+ // If we've already processed this node and it does lead to Dest, there is no
+ // need to reprocess it.
+ if (NodesLeadingTo.count(N)) return true;
+
+ // If the first result of this node has been already legalized, then it cannot
+ // reach N.
+ if (LegalizedNodes.count(SDValue(N, 0))) return false;
+
+ // Okay, this node has not already been legalized. Check and legalize all
+ // operands. If none lead to Dest, then we can legalize this node.
+ bool OperandsLeadToDest = false;
+ for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
+ OperandsLeadToDest |= // If an operand leads to Dest, so do we.
+ LegalizeAllNodesNotLeadingTo(N->getOperand(i).getNode(), Dest, NodesLeadingTo);
+
+ if (OperandsLeadToDest) {
+ NodesLeadingTo.insert(N);
+ return true;
+ }
+
+ // Okay, this node looks safe, legalize it and return false.
+ LegalizeOp(SDValue(N, 0));
+ return false;
+}
+
+/// ExpandConstantFP - Expands the ConstantFP node to an integer constant or
+/// a load from the constant pool.
+static SDValue ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP,
+ SelectionDAG &DAG, const TargetLowering &TLI) {
+ bool Extend = false;
+ DebugLoc dl = CFP->getDebugLoc();
+
+ // If a FP immediate is precise when represented as a float and if the
+ // target can do an extending load from float to double, we put it into
+ // the constant pool as a float, even if it's is statically typed as a
+ // double. This shrinks FP constants and canonicalizes them for targets where
+ // an FP extending load is the same cost as a normal load (such as on the x87
+ // fp stack or PPC FP unit).
+ MVT VT = CFP->getValueType(0);
+ ConstantFP *LLVMC = const_cast<ConstantFP*>(CFP->getConstantFPValue());
+ if (!UseCP) {
+ assert((VT == MVT::f64 || VT == MVT::f32) && "Invalid type expansion");
+ return DAG.getConstant(LLVMC->getValueAPF().bitcastToAPInt(),
+ (VT == MVT::f64) ? MVT::i64 : MVT::i32);
+ }
+
+ MVT OrigVT = VT;
+ MVT SVT = VT;
+ while (SVT != MVT::f32) {
+ SVT = (MVT::SimpleValueType)(SVT.getSimpleVT() - 1);
+ if (CFP->isValueValidForType(SVT, CFP->getValueAPF()) &&
+ // Only do this if the target has a native EXTLOAD instruction from
+ // smaller type.
+ TLI.isLoadExtLegal(ISD::EXTLOAD, SVT) &&
+ TLI.ShouldShrinkFPConstant(OrigVT)) {
+ const Type *SType = SVT.getTypeForMVT();
+ LLVMC = cast<ConstantFP>(ConstantExpr::getFPTrunc(LLVMC, SType));
+ VT = SVT;
+ Extend = true;
+ }
+ }
+
+ SDValue CPIdx = DAG.getConstantPool(LLVMC, TLI.getPointerTy());
+ unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
+ if (Extend)
+ return DAG.getExtLoad(ISD::EXTLOAD, dl,
+ OrigVT, DAG.getEntryNode(),
+ CPIdx, PseudoSourceValue::getConstantPool(),
+ 0, VT, false, Alignment);
+ return DAG.getLoad(OrigVT, dl, DAG.getEntryNode(), CPIdx,
+ PseudoSourceValue::getConstantPool(), 0, false, Alignment);
+}
+
+/// ExpandUnalignedStore - Expands an unaligned store to 2 half-size stores.
+static
+SDValue ExpandUnalignedStore(StoreSDNode *ST, SelectionDAG &DAG,
+ const TargetLowering &TLI) {
+ SDValue Chain = ST->getChain();
+ SDValue Ptr = ST->getBasePtr();
+ SDValue Val = ST->getValue();
+ MVT VT = Val.getValueType();
+ int Alignment = ST->getAlignment();
+ int SVOffset = ST->getSrcValueOffset();
+ DebugLoc dl = ST->getDebugLoc();
+ if (ST->getMemoryVT().isFloatingPoint() ||
+ ST->getMemoryVT().isVector()) {
+ MVT intVT = MVT::getIntegerVT(VT.getSizeInBits());
+ if (TLI.isTypeLegal(intVT)) {
+ // Expand to a bitconvert of the value to the integer type of the
+ // same size, then a (misaligned) int store.
+ // FIXME: Does not handle truncating floating point stores!
+ SDValue Result = DAG.getNode(ISD::BIT_CONVERT, dl, intVT, Val);
+ return DAG.getStore(Chain, dl, Result, Ptr, ST->getSrcValue(),
+ SVOffset, ST->isVolatile(), Alignment);
+ } else {
+ // Do a (aligned) store to a stack slot, then copy from the stack slot
+ // to the final destination using (unaligned) integer loads and stores.
+ MVT StoredVT = ST->getMemoryVT();
+ MVT RegVT =
+ TLI.getRegisterType(MVT::getIntegerVT(StoredVT.getSizeInBits()));
+ unsigned StoredBytes = StoredVT.getSizeInBits() / 8;
+ unsigned RegBytes = RegVT.getSizeInBits() / 8;
+ unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes;
+
+ // Make sure the stack slot is also aligned for the register type.
+ SDValue StackPtr = DAG.CreateStackTemporary(StoredVT, RegVT);
+
+ // Perform the original store, only redirected to the stack slot.
+ SDValue Store = DAG.getTruncStore(Chain, dl,
+ Val, StackPtr, NULL, 0, StoredVT);
+ SDValue Increment = DAG.getConstant(RegBytes, TLI.getPointerTy());
+ SmallVector<SDValue, 8> Stores;
+ unsigned Offset = 0;
+
+ // Do all but one copies using the full register width.
+ for (unsigned i = 1; i < NumRegs; i++) {
+ // Load one integer register's worth from the stack slot.
+ SDValue Load = DAG.getLoad(RegVT, dl, Store, StackPtr, NULL, 0);
+ // Store it to the final location. Remember the store.
+ Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr,
+ ST->getSrcValue(), SVOffset + Offset,
+ ST->isVolatile(),
+ MinAlign(ST->getAlignment(), Offset)));
+ // Increment the pointers.
+ Offset += RegBytes;
+ StackPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr,
+ Increment);
+ Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
+ }
+
+ // The last store may be partial. Do a truncating store. On big-endian
+ // machines this requires an extending load from the stack slot to ensure
+ // that the bits are in the right place.
+ MVT MemVT = MVT::getIntegerVT(8 * (StoredBytes - Offset));
+
+ // Load from the stack slot.
+ SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Store, StackPtr,
+ NULL, 0, MemVT);
+
+ Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr,
+ ST->getSrcValue(), SVOffset + Offset,
+ MemVT, ST->isVolatile(),
+ MinAlign(ST->getAlignment(), Offset)));
+ // The order of the stores doesn't matter - say it with a TokenFactor.
+ return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Stores[0],
+ Stores.size());
+ }
+ }
+ assert(ST->getMemoryVT().isInteger() &&
+ !ST->getMemoryVT().isVector() &&
+ "Unaligned store of unknown type.");
+ // Get the half-size VT
+ MVT NewStoredVT =
+ (MVT::SimpleValueType)(ST->getMemoryVT().getSimpleVT() - 1);
+ int NumBits = NewStoredVT.getSizeInBits();
+ int IncrementSize = NumBits / 8;
+
+ // Divide the stored value in two parts.
+ SDValue ShiftAmount = DAG.getConstant(NumBits, TLI.getShiftAmountTy());
+ SDValue Lo = Val;
+ SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount);
+
+ // Store the two parts
+ SDValue Store1, Store2;
+ Store1 = DAG.getTruncStore(Chain, dl, TLI.isLittleEndian()?Lo:Hi, Ptr,
+ ST->getSrcValue(), SVOffset, NewStoredVT,
+ ST->isVolatile(), Alignment);
+ Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
+ DAG.getConstant(IncrementSize, TLI.getPointerTy()));
+ Alignment = MinAlign(Alignment, IncrementSize);
+ Store2 = DAG.getTruncStore(Chain, dl, TLI.isLittleEndian()?Hi:Lo, Ptr,
+ ST->getSrcValue(), SVOffset + IncrementSize,
+ NewStoredVT, ST->isVolatile(), Alignment);
+
+ return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
+}
+
+/// ExpandUnalignedLoad - Expands an unaligned load to 2 half-size loads.
+static
+SDValue ExpandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG,
+ const TargetLowering &TLI) {
+ int SVOffset = LD->getSrcValueOffset();
+ SDValue Chain = LD->getChain();
+ SDValue Ptr = LD->getBasePtr();
+ MVT VT = LD->getValueType(0);
+ MVT LoadedVT = LD->getMemoryVT();
+ DebugLoc dl = LD->getDebugLoc();
+ if (VT.isFloatingPoint() || VT.isVector()) {
+ MVT intVT = MVT::getIntegerVT(LoadedVT.getSizeInBits());
+ if (TLI.isTypeLegal(intVT)) {
+ // Expand to a (misaligned) integer load of the same size,
+ // then bitconvert to floating point or vector.
+ SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr, LD->getSrcValue(),
+ SVOffset, LD->isVolatile(),
+ LD->getAlignment());
+ SDValue Result = DAG.getNode(ISD::BIT_CONVERT, dl, LoadedVT, newLoad);
+ if (VT.isFloatingPoint() && LoadedVT != VT)
+ Result = DAG.getNode(ISD::FP_EXTEND, dl, VT, Result);
+
+ SDValue Ops[] = { Result, Chain };
+ return DAG.getMergeValues(Ops, 2, dl);
+ } else {
+ // Copy the value to a (aligned) stack slot using (unaligned) integer
+ // loads and stores, then do a (aligned) load from the stack slot.
+ MVT RegVT = TLI.getRegisterType(intVT);
+ unsigned LoadedBytes = LoadedVT.getSizeInBits() / 8;
+ unsigned RegBytes = RegVT.getSizeInBits() / 8;
+ unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes;
+
+ // Make sure the stack slot is also aligned for the register type.
+ SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT);
+
+ SDValue Increment = DAG.getConstant(RegBytes, TLI.getPointerTy());
+ SmallVector<SDValue, 8> Stores;
+ SDValue StackPtr = StackBase;
+ unsigned Offset = 0;
+
+ // Do all but one copies using the full register width.
+ for (unsigned i = 1; i < NumRegs; i++) {
+ // Load one integer register's worth from the original location.
+ SDValue Load = DAG.getLoad(RegVT, dl, Chain, Ptr, LD->getSrcValue(),
+ SVOffset + Offset, LD->isVolatile(),
+ MinAlign(LD->getAlignment(), Offset));
+ // Follow the load with a store to the stack slot. Remember the store.
+ Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, StackPtr,
+ NULL, 0));
+ // Increment the pointers.
+ Offset += RegBytes;
+ Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
+ StackPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr,
+ Increment);
+ }
+
+ // The last copy may be partial. Do an extending load.
+ MVT MemVT = MVT::getIntegerVT(8 * (LoadedBytes - Offset));
+ SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr,
+ LD->getSrcValue(), SVOffset + Offset,
+ MemVT, LD->isVolatile(),
+ MinAlign(LD->getAlignment(), Offset));
+ // Follow the load with a store to the stack slot. Remember the store.
+ // On big-endian machines this requires a truncating store to ensure
+ // that the bits end up in the right place.
+ Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, StackPtr,
+ NULL, 0, MemVT));
+
+ // The order of the stores doesn't matter - say it with a TokenFactor.
+ SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Stores[0],
+ Stores.size());
+
+ // Finally, perform the original load only redirected to the stack slot.
+ Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase,
+ NULL, 0, LoadedVT);
+
+ // Callers expect a MERGE_VALUES node.
+ SDValue Ops[] = { Load, TF };
+ return DAG.getMergeValues(Ops, 2, dl);
+ }
+ }
+ assert(LoadedVT.isInteger() && !LoadedVT.isVector() &&
+ "Unaligned load of unsupported type.");
+
+ // Compute the new VT that is half the size of the old one. This is an
+ // integer MVT.
+ unsigned NumBits = LoadedVT.getSizeInBits();
+ MVT NewLoadedVT;
+ NewLoadedVT = MVT::getIntegerVT(NumBits/2);
+ NumBits >>= 1;
+
+ unsigned Alignment = LD->getAlignment();
+ unsigned IncrementSize = NumBits / 8;
+ ISD::LoadExtType HiExtType = LD->getExtensionType();
+
+ // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
+ if (HiExtType == ISD::NON_EXTLOAD)
+ HiExtType = ISD::ZEXTLOAD;
+
+ // Load the value in two parts
+ SDValue Lo, Hi;
+ if (TLI.isLittleEndian()) {
+ Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getSrcValue(),
+ SVOffset, NewLoadedVT, LD->isVolatile(), Alignment);
+ Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
+ DAG.getConstant(IncrementSize, TLI.getPointerTy()));
+ Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getSrcValue(),
+ SVOffset + IncrementSize, NewLoadedVT, LD->isVolatile(),
+ MinAlign(Alignment, IncrementSize));
+ } else {
+ Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getSrcValue(),
+ SVOffset, NewLoadedVT, LD->isVolatile(), Alignment);
+ Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
+ DAG.getConstant(IncrementSize, TLI.getPointerTy()));
+ Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getSrcValue(),
+ SVOffset + IncrementSize, NewLoadedVT, LD->isVolatile(),
+ MinAlign(Alignment, IncrementSize));
+ }
+
+ // aggregate the two parts
+ SDValue ShiftAmount = DAG.getConstant(NumBits, TLI.getShiftAmountTy());
+ SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount);
+ Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo);
+
+ SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
+ Hi.getValue(1));
+
+ SDValue Ops[] = { Result, TF };
+ return DAG.getMergeValues(Ops, 2, dl);
+}
+
+/// PerformInsertVectorEltInMemory - Some target cannot handle a variable
+/// insertion index for the INSERT_VECTOR_ELT instruction. In this case, it
+/// is necessary to spill the vector being inserted into to memory, perform
+/// the insert there, and then read the result back.
+SDValue SelectionDAGLegalize::
+PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val, SDValue Idx,
+ DebugLoc dl) {
+ SDValue Tmp1 = Vec;
+ SDValue Tmp2 = Val;
+ SDValue Tmp3 = Idx;
+
+ // If the target doesn't support this, we have to spill the input vector
+ // to a temporary stack slot, update the element, then reload it. This is
+ // badness. We could also load the value into a vector register (either
+ // with a "move to register" or "extload into register" instruction, then
+ // permute it into place, if the idx is a constant and if the idx is
+ // supported by the target.
+ MVT VT = Tmp1.getValueType();
+ MVT EltVT = VT.getVectorElementType();
+ MVT IdxVT = Tmp3.getValueType();
+ MVT PtrVT = TLI.getPointerTy();
+ SDValue StackPtr = DAG.CreateStackTemporary(VT);
+
+ int SPFI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
+
+ // Store the vector.
+ SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Tmp1, StackPtr,
+ PseudoSourceValue::getFixedStack(SPFI), 0);
+
+ // Truncate or zero extend offset to target pointer type.
+ unsigned CastOpc = IdxVT.bitsGT(PtrVT) ? ISD::TRUNCATE : ISD::ZERO_EXTEND;
+ Tmp3 = DAG.getNode(CastOpc, dl, PtrVT, Tmp3);
+ // Add the offset to the index.
+ unsigned EltSize = EltVT.getSizeInBits()/8;
+ Tmp3 = DAG.getNode(ISD::MUL, dl, IdxVT, Tmp3,DAG.getConstant(EltSize, IdxVT));
+ SDValue StackPtr2 = DAG.getNode(ISD::ADD, dl, IdxVT, Tmp3, StackPtr);
+ // Store the scalar value.
+ Ch = DAG.getTruncStore(Ch, dl, Tmp2, StackPtr2,
+ PseudoSourceValue::getFixedStack(SPFI), 0, EltVT);
+ // Load the updated vector.
+ return DAG.getLoad(VT, dl, Ch, StackPtr,
+ PseudoSourceValue::getFixedStack(SPFI), 0);
+}
+
+
+SDValue SelectionDAGLegalize::
+ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val, SDValue Idx, DebugLoc dl) {
+ if (ConstantSDNode *InsertPos = dyn_cast<ConstantSDNode>(Idx)) {
+ // SCALAR_TO_VECTOR requires that the type of the value being inserted
+ // match the element type of the vector being created, except for
+ // integers in which case the inserted value can be over width.
+ MVT EltVT = Vec.getValueType().getVectorElementType();
+ if (Val.getValueType() == EltVT ||
+ (EltVT.isInteger() && Val.getValueType().bitsGE(EltVT))) {
+ SDValue ScVec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
+ Vec.getValueType(), Val);
+
+ unsigned NumElts = Vec.getValueType().getVectorNumElements();
+ // We generate a shuffle of InVec and ScVec, so the shuffle mask
+ // should be 0,1,2,3,4,5... with the appropriate element replaced with
+ // elt 0 of the RHS.
+ SmallVector<int, 8> ShufOps;
+ for (unsigned i = 0; i != NumElts; ++i)
+ ShufOps.push_back(i != InsertPos->getZExtValue() ? i : NumElts);
+
+ return DAG.getVectorShuffle(Vec.getValueType(), dl, Vec, ScVec,
+ &ShufOps[0]);
+ }
+ }
+ return PerformInsertVectorEltInMemory(Vec, Val, Idx, dl);
+}
+
+/// LegalizeOp - We know that the specified value has a legal type, and
+/// that its operands are legal. Now ensure that the operation itself
+/// is legal, recursively ensuring that the operands' operations remain
+/// legal.
+SDValue SelectionDAGLegalize::LegalizeOp(SDValue Op) {
+ if (Op.getOpcode() == ISD::TargetConstant) // Allow illegal target nodes.
+ return Op;
+
+ SDNode *Node = Op.getNode();
+ DebugLoc dl = Node->getDebugLoc();
+
+ for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
+ assert(getTypeAction(Node->getValueType(i)) == Legal &&
+ "Unexpected illegal type!");
+
+ for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i)
+ assert((isTypeLegal(Node->getOperand(i).getValueType()) ||
+ Node->getOperand(i).getOpcode() == ISD::TargetConstant) &&
+ "Unexpected illegal type!");
+
+ // Note that LegalizeOp may be reentered even from single-use nodes, which
+ // means that we always must cache transformed nodes.
+ DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op);
+ if (I != LegalizedNodes.end()) return I->second;
+
+ SDValue Tmp1, Tmp2, Tmp3, Tmp4;
+ SDValue Result = Op;
+ bool isCustom = false;
+
+ // Figure out the correct action; the way to query this varies by opcode
+ TargetLowering::LegalizeAction Action;
+ bool SimpleFinishLegalizing = true;
+ switch (Node->getOpcode()) {
+ case ISD::INTRINSIC_W_CHAIN:
+ case ISD::INTRINSIC_WO_CHAIN:
+ case ISD::INTRINSIC_VOID:
+ case ISD::VAARG:
+ case ISD::STACKSAVE:
+ Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other);
+ break;
+ case ISD::SINT_TO_FP:
+ case ISD::UINT_TO_FP:
+ case ISD::EXTRACT_VECTOR_ELT:
+ Action = TLI.getOperationAction(Node->getOpcode(),
+ Node->getOperand(0).getValueType());
+ break;
+ case ISD::FP_ROUND_INREG:
+ case ISD::SIGN_EXTEND_INREG: {
+ MVT InnerType = cast<VTSDNode>(Node->getOperand(1))->getVT();
+ Action = TLI.getOperationAction(Node->getOpcode(), InnerType);
+ break;
+ }
+ case ISD::SELECT_CC:
+ case ISD::SETCC:
+ case ISD::BR_CC: {
+ unsigned CCOperand = Node->getOpcode() == ISD::SELECT_CC ? 4 :
+ Node->getOpcode() == ISD::SETCC ? 2 : 1;
+ unsigned CompareOperand = Node->getOpcode() == ISD::BR_CC ? 2 : 0;
+ MVT OpVT = Node->getOperand(CompareOperand).getValueType();
+ ISD::CondCode CCCode =
+ cast<CondCodeSDNode>(Node->getOperand(CCOperand))->get();
+ Action = TLI.getCondCodeAction(CCCode, OpVT);
+ if (Action == TargetLowering::Legal) {
+ if (Node->getOpcode() == ISD::SELECT_CC)
+ Action = TLI.getOperationAction(Node->getOpcode(),
+ Node->getValueType(0));
+ else
+ Action = TLI.getOperationAction(Node->getOpcode(), OpVT);
+ }
+ break;
+ }
+ case ISD::LOAD:
+ case ISD::STORE:
+ // FIXME: Model these properly. LOAD and STORE are complicated, and
+ // STORE expects the unlegalized operand in some cases.
+ SimpleFinishLegalizing = false;
+ break;
+ case ISD::CALLSEQ_START:
+ case ISD::CALLSEQ_END:
+ // FIXME: This shouldn't be necessary. These nodes have special properties
+ // dealing with the recursive nature of legalization. Removing this
+ // special case should be done as part of making LegalizeDAG non-recursive.
+ SimpleFinishLegalizing = false;
+ break;
+ case ISD::CALL:
+ // FIXME: Legalization for calls requires custom-lowering the call before
+ // legalizing the operands! (I haven't looked into precisely why.)
+ SimpleFinishLegalizing = false;
+ break;
+ case ISD::EXTRACT_ELEMENT:
+ case ISD::FLT_ROUNDS_:
+ case ISD::SADDO:
+ case ISD::SSUBO:
+ case ISD::UADDO:
+ case ISD::USUBO:
+ case ISD::SMULO:
+ case ISD::UMULO:
+ case ISD::FPOWI:
+ case ISD::MERGE_VALUES:
+ case ISD::EH_RETURN:
+ case ISD::FRAME_TO_ARGS_OFFSET:
+ // These operations lie about being legal: when they claim to be legal,
+ // they should actually be expanded.
+ Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
+ if (Action == TargetLowering::Legal)
+ Action = TargetLowering::Expand;
+ break;
+ case ISD::TRAMPOLINE:
+ case ISD::FRAMEADDR:
+ case ISD::RETURNADDR:
+ case ISD::FORMAL_ARGUMENTS:
+ // These operations lie about being legal: when they claim to be legal,
+ // they should actually be custom-lowered.
+ Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
+ if (Action == TargetLowering::Legal)
+ Action = TargetLowering::Custom;
+ break;
+ case ISD::BUILD_VECTOR:
+ // A weird case: legalization for BUILD_VECTOR never legalizes the
+ // operands!
+ // FIXME: This really sucks... changing it isn't semantically incorrect,
+ // but it massively pessimizes the code for floating-point BUILD_VECTORs
+ // because ConstantFP operands get legalized into constant pool loads
+ // before the BUILD_VECTOR code can see them. It doesn't usually bite,
+ // though, because BUILD_VECTORS usually get lowered into other nodes
+ // which get legalized properly.
+ SimpleFinishLegalizing = false;
+ break;
+ default:
+ if (Node->getOpcode() >= ISD::BUILTIN_OP_END) {
+ Action = TargetLowering::Legal;
+ } else {
+ Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
+ }
+ break;
+ }
+
+ if (SimpleFinishLegalizing) {
+ SmallVector<SDValue, 8> Ops, ResultVals;
+ for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i)
+ Ops.push_back(LegalizeOp(Node->getOperand(i)));
+ switch (Node->getOpcode()) {
+ default: break;
+ case ISD::BR:
+ case ISD::BRIND:
+ case ISD::BR_JT:
+ case ISD::BR_CC:
+ case ISD::BRCOND:
+ case ISD::RET:
+ // Branches tweak the chain to include LastCALLSEQ_END
+ Ops[0] = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Ops[0],
+ LastCALLSEQ_END);
+ Ops[0] = LegalizeOp(Ops[0]);
+ LastCALLSEQ_END = DAG.getEntryNode();
+ break;
+ case ISD::SHL:
+ case ISD::SRL:
+ case ISD::SRA:
+ case ISD::ROTL:
+ case ISD::ROTR:
+ // Legalizing shifts/rotates requires adjusting the shift amount
+ // to the appropriate width.
+ if (!Ops[1].getValueType().isVector())
+ Ops[1] = LegalizeOp(DAG.getShiftAmountOperand(Ops[1]));
+ break;
+ }
+
+ Result = DAG.UpdateNodeOperands(Result.getValue(0), Ops.data(),
+ Ops.size());
+ switch (Action) {
+ case TargetLowering::Legal:
+ for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
+ ResultVals.push_back(Result.getValue(i));
+ break;
+ case TargetLowering::Custom:
+ // FIXME: The handling for custom lowering with multiple results is
+ // a complete mess.
+ Tmp1 = TLI.LowerOperation(Result, DAG);
+ if (Tmp1.getNode()) {
+ for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) {
+ if (e == 1)
+ ResultVals.push_back(Tmp1);
+ else
+ ResultVals.push_back(Tmp1.getValue(i));
+ }
+ break;
+ }
+
+ // FALL THROUGH
+ case TargetLowering::Expand:
+ ExpandNode(Result.getNode(), ResultVals);
+ break;
+ case TargetLowering::Promote:
+ PromoteNode(Result.getNode(), ResultVals);
+ break;
+ }
+ if (!ResultVals.empty()) {
+ for (unsigned i = 0, e = ResultVals.size(); i != e; ++i) {
+ if (ResultVals[i] != SDValue(Node, i))
+ ResultVals[i] = LegalizeOp(ResultVals[i]);
+ AddLegalizedOperand(SDValue(Node, i), ResultVals[i]);
+ }
+ return ResultVals[Op.getResNo()];
+ }
+ }
+
+ switch (Node->getOpcode()) {
+ default:
+#ifndef NDEBUG
+ cerr << "NODE: "; Node->dump(&DAG); cerr << "\n";
+#endif
+ assert(0 && "Do not know how to legalize this operator!");
+ abort();
+ case ISD::CALL:
+ // The only option for this is to custom lower it.
+ Tmp3 = TLI.LowerOperation(Result.getValue(0), DAG);
+ assert(Tmp3.getNode() && "Target didn't custom lower this node!");
+ // A call within a calling sequence must be legalized to something
+ // other than the normal CALLSEQ_END. Violating this gets Legalize
+ // into an infinite loop.
+ assert ((!IsLegalizingCall ||
+ Node->getOpcode() != ISD::CALL ||
+ Tmp3.getNode()->getOpcode() != ISD::CALLSEQ_END) &&
+ "Nested CALLSEQ_START..CALLSEQ_END not supported.");
+
+ // The number of incoming and outgoing values should match; unless the final
+ // outgoing value is a flag.
+ assert((Tmp3.getNode()->getNumValues() == Result.getNode()->getNumValues() ||
+ (Tmp3.getNode()->getNumValues() == Result.getNode()->getNumValues() + 1 &&
+ Tmp3.getNode()->getValueType(Tmp3.getNode()->getNumValues() - 1) ==
+ MVT::Flag)) &&
+ "Lowering call/formal_arguments produced unexpected # results!");
+
+ // Since CALL/FORMAL_ARGUMENTS nodes produce multiple values, make sure to
+ // remember that we legalized all of them, so it doesn't get relegalized.
+ for (unsigned i = 0, e = Tmp3.getNode()->getNumValues(); i != e; ++i) {
+ if (Tmp3.getNode()->getValueType(i) == MVT::Flag)
+ continue;
+ Tmp1 = LegalizeOp(Tmp3.getValue(i));
+ if (Op.getResNo() == i)
+ Tmp2 = Tmp1;
+ AddLegalizedOperand(SDValue(Node, i), Tmp1);
+ }
+ return Tmp2;
+ case ISD::BUILD_VECTOR:
+ switch (TLI.getOperationAction(ISD::BUILD_VECTOR, Node->getValueType(0))) {
+ default: assert(0 && "This action is not supported yet!");
+ case TargetLowering::Custom:
+ Tmp3 = TLI.LowerOperation(Result, DAG);
+ if (Tmp3.getNode()) {
+ Result = Tmp3;
+ break;
+ }
+ // FALLTHROUGH
+ case TargetLowering::Expand:
+ Result = ExpandBUILD_VECTOR(Result.getNode());
+ break;
+ }
+ break;
+ case ISD::CALLSEQ_START: {
+ SDNode *CallEnd = FindCallEndFromCallStart(Node);
+
+ // Recursively Legalize all of the inputs of the call end that do not lead
+ // to this call start. This ensures that any libcalls that need be inserted
+ // are inserted *before* the CALLSEQ_START.
+ {SmallPtrSet<SDNode*, 32> NodesLeadingTo;
+ for (unsigned i = 0, e = CallEnd->getNumOperands(); i != e; ++i)
+ LegalizeAllNodesNotLeadingTo(CallEnd->getOperand(i).getNode(), Node,
+ NodesLeadingTo);
+ }
+
+ // Now that we legalized all of the inputs (which may have inserted
+ // libcalls) create the new CALLSEQ_START node.
+ Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain.
+
+ // Merge in the last call, to ensure that this call start after the last
+ // call ended.
+ if (LastCALLSEQ_END.getOpcode() != ISD::EntryToken) {
+ Tmp1 = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
+ Tmp1, LastCALLSEQ_END);
+ Tmp1 = LegalizeOp(Tmp1);
+ }
+
+ // Do not try to legalize the target-specific arguments (#1+).
+ if (Tmp1 != Node->getOperand(0)) {
+ SmallVector<SDValue, 8> Ops(Node->op_begin(), Node->op_end());
+ Ops[0] = Tmp1;
+ Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size());
+ }
+
+ // Remember that the CALLSEQ_START is legalized.
+ AddLegalizedOperand(Op.getValue(0), Result);
+ if (Node->getNumValues() == 2) // If this has a flag result, remember it.
+ AddLegalizedOperand(Op.getValue(1), Result.getValue(1));
+
+ // Now that the callseq_start and all of the non-call nodes above this call
+ // sequence have been legalized, legalize the call itself. During this
+ // process, no libcalls can/will be inserted, guaranteeing that no calls
+ // can overlap.
+ assert(!IsLegalizingCall && "Inconsistent sequentialization of calls!");
+ // Note that we are selecting this call!
+ LastCALLSEQ_END = SDValue(CallEnd, 0);
+ IsLegalizingCall = true;
+
+ // Legalize the call, starting from the CALLSEQ_END.
+ LegalizeOp(LastCALLSEQ_END);
+ assert(!IsLegalizingCall && "CALLSEQ_END should have cleared this!");
+ return Result;
+ }
+ case ISD::CALLSEQ_END:
+ // If the CALLSEQ_START node hasn't been legalized first, legalize it. This
+ // will cause this node to be legalized as well as handling libcalls right.
+ if (LastCALLSEQ_END.getNode() != Node) {
+ LegalizeOp(SDValue(FindCallStartFromCallEnd(Node), 0));
+ DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op);
+ assert(I != LegalizedNodes.end() &&
+ "Legalizing the call start should have legalized this node!");
+ return I->second;
+ }
+
+ // Otherwise, the call start has been legalized and everything is going
+ // according to plan. Just legalize ourselves normally here.
+ Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain.
+ // Do not try to legalize the target-specific arguments (#1+), except for
+ // an optional flag input.
+ if (Node->getOperand(Node->getNumOperands()-1).getValueType() != MVT::Flag){
+ if (Tmp1 != Node->getOperand(0)) {
+ SmallVector<SDValue, 8> Ops(Node->op_begin(), Node->op_end());
+ Ops[0] = Tmp1;
+ Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size());
+ }
+ } else {
+ Tmp2 = LegalizeOp(Node->getOperand(Node->getNumOperands()-1));
+ if (Tmp1 != Node->getOperand(0) ||
+ Tmp2 != Node->getOperand(Node->getNumOperands()-1)) {
+ SmallVector<SDValue, 8> Ops(Node->op_begin(), Node->op_end());
+ Ops[0] = Tmp1;
+ Ops.back() = Tmp2;
+ Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size());
+ }
+ }
+ assert(IsLegalizingCall && "Call sequence imbalance between start/end?");
+ // This finishes up call legalization.
+ IsLegalizingCall = false;
+
+ // If the CALLSEQ_END node has a flag, remember that we legalized it.
+ AddLegalizedOperand(SDValue(Node, 0), Result.getValue(0));
+ if (Node->getNumValues() == 2)
+ AddLegalizedOperand(SDValue(Node, 1), Result.getValue(1));
+ return Result.getValue(Op.getResNo());
+ case ISD::LOAD: {
+ LoadSDNode *LD = cast<LoadSDNode>(Node);
+ Tmp1 = LegalizeOp(LD->getChain()); // Legalize the chain.
+ Tmp2 = LegalizeOp(LD->getBasePtr()); // Legalize the base pointer.
+
+ ISD::LoadExtType ExtType = LD->getExtensionType();
+ if (ExtType == ISD::NON_EXTLOAD) {
+ MVT VT = Node->getValueType(0);
+ Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, LD->getOffset());
+ Tmp3 = Result.getValue(0);
+ Tmp4 = Result.getValue(1);
+
+ switch (TLI.getOperationAction(Node->getOpcode(), VT)) {
+ default: assert(0 && "This action is not supported yet!");
+ case TargetLowering::Legal:
+ // If this is an unaligned load and the target doesn't support it,
+ // expand it.
+ if (!TLI.allowsUnalignedMemoryAccesses()) {
+ unsigned ABIAlignment = TLI.getTargetData()->
+ getABITypeAlignment(LD->getMemoryVT().getTypeForMVT());
+ if (LD->getAlignment() < ABIAlignment){
+ Result = ExpandUnalignedLoad(cast<LoadSDNode>(Result.getNode()), DAG,
+ TLI);
+ Tmp3 = Result.getOperand(0);
+ Tmp4 = Result.getOperand(1);
+ Tmp3 = LegalizeOp(Tmp3);
+ Tmp4 = LegalizeOp(Tmp4);
+ }
+ }
+ break;
+ case TargetLowering::Custom:
+ Tmp1 = TLI.LowerOperation(Tmp3, DAG);
+ if (Tmp1.getNode()) {
+ Tmp3 = LegalizeOp(Tmp1);
+ Tmp4 = LegalizeOp(Tmp1.getValue(1));
+ }
+ break;
+ case TargetLowering::Promote: {
+ // Only promote a load of vector type to another.
+ assert(VT.isVector() && "Cannot promote this load!");
+ // Change base type to a different vector type.
+ MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT);
+
+ Tmp1 = DAG.getLoad(NVT, dl, Tmp1, Tmp2, LD->getSrcValue(),
+ LD->getSrcValueOffset(),
+ LD->isVolatile(), LD->getAlignment());
+ Tmp3 = LegalizeOp(DAG.getNode(ISD::BIT_CONVERT, dl, VT, Tmp1));
+ Tmp4 = LegalizeOp(Tmp1.getValue(1));
+ break;
+ }
+ }
+ // Since loads produce two values, make sure to remember that we
+ // legalized both of them.
+ AddLegalizedOperand(SDValue(Node, 0), Tmp3);
+ AddLegalizedOperand(SDValue(Node, 1), Tmp4);
+ return Op.getResNo() ? Tmp4 : Tmp3;
+ } else {
+ MVT SrcVT = LD->getMemoryVT();
+ unsigned SrcWidth = SrcVT.getSizeInBits();
+ int SVOffset = LD->getSrcValueOffset();
+ unsigned Alignment = LD->getAlignment();
+ bool isVolatile = LD->isVolatile();
+
+ if (SrcWidth != SrcVT.getStoreSizeInBits() &&
+ // Some targets pretend to have an i1 loading operation, and actually
+ // load an i8. This trick is correct for ZEXTLOAD because the top 7
+ // bits are guaranteed to be zero; it helps the optimizers understand
+ // that these bits are zero. It is also useful for EXTLOAD, since it
+ // tells the optimizers that those bits are undefined. It would be
+ // nice to have an effective generic way of getting these benefits...
+ // Until such a way is found, don't insist on promoting i1 here.
+ (SrcVT != MVT::i1 ||
+ TLI.getLoadExtAction(ExtType, MVT::i1) == TargetLowering::Promote)) {
+ // Promote to a byte-sized load if not loading an integral number of
+ // bytes. For example, promote EXTLOAD:i20 -> EXTLOAD:i24.
+ unsigned NewWidth = SrcVT.getStoreSizeInBits();
+ MVT NVT = MVT::getIntegerVT(NewWidth);
+ SDValue Ch;
+
+ // The extra bits are guaranteed to be zero, since we stored them that
+ // way. A zext load from NVT thus automatically gives zext from SrcVT.
+
+ ISD::LoadExtType NewExtType =
+ ExtType == ISD::ZEXTLOAD ? ISD::ZEXTLOAD : ISD::EXTLOAD;
+
+ Result = DAG.getExtLoad(NewExtType, dl, Node->getValueType(0),
+ Tmp1, Tmp2, LD->getSrcValue(), SVOffset,
+ NVT, isVolatile, Alignment);
+
+ Ch = Result.getValue(1); // The chain.
+
+ if (ExtType == ISD::SEXTLOAD)
+ // Having the top bits zero doesn't help when sign extending.
+ Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl,
+ Result.getValueType(),
+ Result, DAG.getValueType(SrcVT));
+ else if (ExtType == ISD::ZEXTLOAD || NVT == Result.getValueType())
+ // All the top bits are guaranteed to be zero - inform the optimizers.
+ Result = DAG.getNode(ISD::AssertZext, dl,
+ Result.getValueType(), Result,
+ DAG.getValueType(SrcVT));
+
+ Tmp1 = LegalizeOp(Result);
+ Tmp2 = LegalizeOp(Ch);
+ } else if (SrcWidth & (SrcWidth - 1)) {
+ // If not loading a power-of-2 number of bits, expand as two loads.
+ assert(SrcVT.isExtended() && !SrcVT.isVector() &&
+ "Unsupported extload!");
+ unsigned RoundWidth = 1 << Log2_32(SrcWidth);
+ assert(RoundWidth < SrcWidth);
+ unsigned ExtraWidth = SrcWidth - RoundWidth;
+ assert(ExtraWidth < RoundWidth);
+ assert(!(RoundWidth % 8) && !(ExtraWidth % 8) &&
+ "Load size not an integral number of bytes!");
+ MVT RoundVT = MVT::getIntegerVT(RoundWidth);
+ MVT ExtraVT = MVT::getIntegerVT(ExtraWidth);
+ SDValue Lo, Hi, Ch;
+ unsigned IncrementSize;
+
+ if (TLI.isLittleEndian()) {
+ // EXTLOAD:i24 -> ZEXTLOAD:i16 | (shl EXTLOAD@+2:i8, 16)
+ // Load the bottom RoundWidth bits.
+ Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl,
+ Node->getValueType(0), Tmp1, Tmp2,
+ LD->getSrcValue(), SVOffset, RoundVT, isVolatile,
+ Alignment);
+
+ // Load the remaining ExtraWidth bits.
+ IncrementSize = RoundWidth / 8;
+ Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
+ DAG.getIntPtrConstant(IncrementSize));
+ Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Tmp1, Tmp2,
+ LD->getSrcValue(), SVOffset + IncrementSize,
+ ExtraVT, isVolatile,
+ MinAlign(Alignment, IncrementSize));
+
+ // Build a factor node to remember that this load is independent of the
+ // other one.
+ Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
+ Hi.getValue(1));
+
+ // Move the top bits to the right place.
+ Hi = DAG.getNode(ISD::SHL, dl, Hi.getValueType(), Hi,
+ DAG.getConstant(RoundWidth, TLI.getShiftAmountTy()));
+
+ // Join the hi and lo parts.
+ Result = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi);
+ } else {
+ // Big endian - avoid unaligned loads.
+ // EXTLOAD:i24 -> (shl EXTLOAD:i16, 8) | ZEXTLOAD@+2:i8
+ // Load the top RoundWidth bits.
+ Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Tmp1, Tmp2,
+ LD->getSrcValue(), SVOffset, RoundVT, isVolatile,
+ Alignment);
+
+ // Load the remaining ExtraWidth bits.
+ IncrementSize = RoundWidth / 8;
+ Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
+ DAG.getIntPtrConstant(IncrementSize));
+ Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl,
+ Node->getValueType(0), Tmp1, Tmp2,
+ LD->getSrcValue(), SVOffset + IncrementSize,
+ ExtraVT, isVolatile,
+ MinAlign(Alignment, IncrementSize));
+
+ // Build a factor node to remember that this load is independent of the
+ // other one.
+ Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
+ Hi.getValue(1));
+
+ // Move the top bits to the right place.
+ Hi = DAG.getNode(ISD::SHL, dl, Hi.getValueType(), Hi,
+ DAG.getConstant(ExtraWidth, TLI.getShiftAmountTy()));
+
+ // Join the hi and lo parts.
+ Result = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi);
+ }
+
+ Tmp1 = LegalizeOp(Result);
+ Tmp2 = LegalizeOp(Ch);
+ } else {
+ switch (TLI.getLoadExtAction(ExtType, SrcVT)) {
+ default: assert(0 && "This action is not supported yet!");
+ case TargetLowering::Custom:
+ isCustom = true;
+ // FALLTHROUGH
+ case TargetLowering::Legal:
+ Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, LD->getOffset());
+ Tmp1 = Result.getValue(0);
+ Tmp2 = Result.getValue(1);
+
+ if (isCustom) {
+ Tmp3 = TLI.LowerOperation(Result, DAG);
+ if (Tmp3.getNode()) {
+ Tmp1 = LegalizeOp(Tmp3);
+ Tmp2 = LegalizeOp(Tmp3.getValue(1));
+ }
+ } else {
+ // If this is an unaligned load and the target doesn't support it,
+ // expand it.
+ if (!TLI.allowsUnalignedMemoryAccesses()) {
+ unsigned ABIAlignment = TLI.getTargetData()->
+ getABITypeAlignment(LD->getMemoryVT().getTypeForMVT());
+ if (LD->getAlignment() < ABIAlignment){
+ Result = ExpandUnalignedLoad(cast<LoadSDNode>(Result.getNode()), DAG,
+ TLI);
+ Tmp1 = Result.getOperand(0);
+ Tmp2 = Result.getOperand(1);
+ Tmp1 = LegalizeOp(Tmp1);
+ Tmp2 = LegalizeOp(Tmp2);
+ }
+ }
+ }
+ break;
+ case TargetLowering::Expand:
+ // f64 = EXTLOAD f32 should expand to LOAD, FP_EXTEND
+ if (SrcVT == MVT::f32 && Node->getValueType(0) == MVT::f64) {
+ SDValue Load = DAG.getLoad(SrcVT, dl, Tmp1, Tmp2, LD->getSrcValue(),
+ LD->getSrcValueOffset(),
+ LD->isVolatile(), LD->getAlignment());
+ Result = DAG.getNode(ISD::FP_EXTEND, dl,
+ Node->getValueType(0), Load);
+ Tmp1 = LegalizeOp(Result); // Relegalize new nodes.
+ Tmp2 = LegalizeOp(Load.getValue(1));
+ break;
+ }
+ assert(ExtType != ISD::EXTLOAD &&"EXTLOAD should always be supported!");
+ // Turn the unsupported load into an EXTLOAD followed by an explicit
+ // zero/sign extend inreg.
+ Result = DAG.getExtLoad(ISD::EXTLOAD, dl, Node->getValueType(0),
+ Tmp1, Tmp2, LD->getSrcValue(),
+ LD->getSrcValueOffset(), SrcVT,
+ LD->isVolatile(), LD->getAlignment());
+ SDValue ValRes;
+ if (ExtType == ISD::SEXTLOAD)
+ ValRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl,
+ Result.getValueType(),
+ Result, DAG.getValueType(SrcVT));
+ else
+ ValRes = DAG.getZeroExtendInReg(Result, dl, SrcVT);
+ Tmp1 = LegalizeOp(ValRes); // Relegalize new nodes.
+ Tmp2 = LegalizeOp(Result.getValue(1)); // Relegalize new nodes.
+ break;
+ }
+ }
+
+ // Since loads produce two values, make sure to remember that we legalized
+ // both of them.
+ AddLegalizedOperand(SDValue(Node, 0), Tmp1);
+ AddLegalizedOperand(SDValue(Node, 1), Tmp2);
+ return Op.getResNo() ? Tmp2 : Tmp1;
+ }
+ }
+ case ISD::STORE: {
+ StoreSDNode *ST = cast<StoreSDNode>(Node);
+ Tmp1 = LegalizeOp(ST->getChain()); // Legalize the chain.
+ Tmp2 = LegalizeOp(ST->getBasePtr()); // Legalize the pointer.
+ int SVOffset = ST->getSrcValueOffset();
+ unsigned Alignment = ST->getAlignment();
+ bool isVolatile = ST->isVolatile();
+
+ if (!ST->isTruncatingStore()) {
+ // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr'
+ // FIXME: We shouldn't do this for TargetConstantFP's.
+ // FIXME: move this to the DAG Combiner! Note that we can't regress due
+ // to phase ordering between legalized code and the dag combiner. This
+ // probably means that we need to integrate dag combiner and legalizer
+ // together.
+ // We generally can't do this one for long doubles.
+ if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(ST->getValue())) {
+ if (CFP->getValueType(0) == MVT::f32 &&
+ getTypeAction(MVT::i32) == Legal) {
+ Tmp3 = DAG.getConstant(CFP->getValueAPF().
+ bitcastToAPInt().zextOrTrunc(32),
+ MVT::i32);
+ Result = DAG.getStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
+ SVOffset, isVolatile, Alignment);
+ break;
+ } else if (CFP->getValueType(0) == MVT::f64) {
+ // If this target supports 64-bit registers, do a single 64-bit store.
+ if (getTypeAction(MVT::i64) == Legal) {
+ Tmp3 = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt().
+ zextOrTrunc(64), MVT::i64);
+ Result = DAG.getStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
+ SVOffset, isVolatile, Alignment);
+ break;
+ } else if (getTypeAction(MVT::i32) == Legal && !ST->isVolatile()) {
+ // Otherwise, if the target supports 32-bit registers, use 2 32-bit
+ // stores. If the target supports neither 32- nor 64-bits, this
+ // xform is certainly not worth it.
+ const APInt &IntVal =CFP->getValueAPF().bitcastToAPInt();
+ SDValue Lo = DAG.getConstant(APInt(IntVal).trunc(32), MVT::i32);
+ SDValue Hi = DAG.getConstant(IntVal.lshr(32).trunc(32), MVT::i32);
+ if (TLI.isBigEndian()) std::swap(Lo, Hi);
+
+ Lo = DAG.getStore(Tmp1, dl, Lo, Tmp2, ST->getSrcValue(),
+ SVOffset, isVolatile, Alignment);
+ Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
+ DAG.getIntPtrConstant(4));
+ Hi = DAG.getStore(Tmp1, dl, Hi, Tmp2, ST->getSrcValue(), SVOffset+4,
+ isVolatile, MinAlign(Alignment, 4U));
+
+ Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
+ break;
+ }
+ }
+ }
+
+ {
+ Tmp3 = LegalizeOp(ST->getValue());
+ Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp3, Tmp2,
+ ST->getOffset());
+
+ MVT VT = Tmp3.getValueType();
+ switch (TLI.getOperationAction(ISD::STORE, VT)) {
+ default: assert(0 && "This action is not supported yet!");
+ case TargetLowering::Legal:
+ // If this is an unaligned store and the target doesn't support it,
+ // expand it.
+ if (!TLI.allowsUnalignedMemoryAccesses()) {
+ unsigned ABIAlignment = TLI.getTargetData()->
+ getABITypeAlignment(ST->getMemoryVT().getTypeForMVT());
+ if (ST->getAlignment() < ABIAlignment)
+ Result = ExpandUnalignedStore(cast<StoreSDNode>(Result.getNode()), DAG,
+ TLI);
+ }
+ break;
+ case TargetLowering::Custom:
+ Tmp1 = TLI.LowerOperation(Result, DAG);
+ if (Tmp1.getNode()) Result = Tmp1;
+ break;
+ case TargetLowering::Promote:
+ assert(VT.isVector() && "Unknown legal promote case!");
+ Tmp3 = DAG.getNode(ISD::BIT_CONVERT, dl,
+ TLI.getTypeToPromoteTo(ISD::STORE, VT), Tmp3);
+ Result = DAG.getStore(Tmp1, dl, Tmp3, Tmp2,
+ ST->getSrcValue(), SVOffset, isVolatile,
+ Alignment);
+ break;
+ }
+ break;
+ }
+ } else {
+ Tmp3 = LegalizeOp(ST->getValue());
+
+ MVT StVT = ST->getMemoryVT();
+ unsigned StWidth = StVT.getSizeInBits();
+
+ if (StWidth != StVT.getStoreSizeInBits()) {
+ // Promote to a byte-sized store with upper bits zero if not
+ // storing an integral number of bytes. For example, promote
+ // TRUNCSTORE:i1 X -> TRUNCSTORE:i8 (and X, 1)
+ MVT NVT = MVT::getIntegerVT(StVT.getStoreSizeInBits());
+ Tmp3 = DAG.getZeroExtendInReg(Tmp3, dl, StVT);
+ Result = DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
+ SVOffset, NVT, isVolatile, Alignment);
+ } else if (StWidth & (StWidth - 1)) {
+ // If not storing a power-of-2 number of bits, expand as two stores.
+ assert(StVT.isExtended() && !StVT.isVector() &&
+ "Unsupported truncstore!");
+ unsigned RoundWidth = 1 << Log2_32(StWidth);
+ assert(RoundWidth < StWidth);
+ unsigned ExtraWidth = StWidth - RoundWidth;
+ assert(ExtraWidth < RoundWidth);
+ assert(!(RoundWidth % 8) && !(ExtraWidth % 8) &&
+ "Store size not an integral number of bytes!");
+ MVT RoundVT = MVT::getIntegerVT(RoundWidth);
+ MVT ExtraVT = MVT::getIntegerVT(ExtraWidth);
+ SDValue Lo, Hi;
+ unsigned IncrementSize;
+
+ if (TLI.isLittleEndian()) {
+ // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 X, TRUNCSTORE@+2:i8 (srl X, 16)
+ // Store the bottom RoundWidth bits.
+ Lo = DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
+ SVOffset, RoundVT,
+ isVolatile, Alignment);
+
+ // Store the remaining ExtraWidth bits.
+ IncrementSize = RoundWidth / 8;
+ Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
+ DAG.getIntPtrConstant(IncrementSize));
+ Hi = DAG.getNode(ISD::SRL, dl, Tmp3.getValueType(), Tmp3,
+ DAG.getConstant(RoundWidth, TLI.getShiftAmountTy()));
+ Hi = DAG.getTruncStore(Tmp1, dl, Hi, Tmp2, ST->getSrcValue(),
+ SVOffset + IncrementSize, ExtraVT, isVolatile,
+ MinAlign(Alignment, IncrementSize));
+ } else {
+ // Big endian - avoid unaligned stores.
+ // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 (srl X, 8), TRUNCSTORE@+2:i8 X
+ // Store the top RoundWidth bits.
+ Hi = DAG.getNode(ISD::SRL, dl, Tmp3.getValueType(), Tmp3,
+ DAG.getConstant(ExtraWidth, TLI.getShiftAmountTy()));
+ Hi = DAG.getTruncStore(Tmp1, dl, Hi, Tmp2, ST->getSrcValue(),
+ SVOffset, RoundVT, isVolatile, Alignment);
+
+ // Store the remaining ExtraWidth bits.
+ IncrementSize = RoundWidth / 8;
+ Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
+ DAG.getIntPtrConstant(IncrementSize));
+ Lo = DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
+ SVOffset + IncrementSize, ExtraVT, isVolatile,
+ MinAlign(Alignment, IncrementSize));
+ }
+
+ // The order of the stores doesn't matter.
+ Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
+ } else {
+ if (Tmp1 != ST->getChain() || Tmp3 != ST->getValue() ||
+ Tmp2 != ST->getBasePtr())
+ Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp3, Tmp2,
+ ST->getOffset());
+
+ switch (TLI.getTruncStoreAction(ST->getValue().getValueType(), StVT)) {
+ default: assert(0 && "This action is not supported yet!");
+ case TargetLowering::Legal:
+ // If this is an unaligned store and the target doesn't support it,
+ // expand it.
+ if (!TLI.allowsUnalignedMemoryAccesses()) {
+ unsigned ABIAlignment = TLI.getTargetData()->
+ getABITypeAlignment(ST->getMemoryVT().getTypeForMVT());
+ if (ST->getAlignment() < ABIAlignment)
+ Result = ExpandUnalignedStore(cast<StoreSDNode>(Result.getNode()), DAG,
+ TLI);
+ }
+ break;
+ case TargetLowering::Custom:
+ Result = TLI.LowerOperation(Result, DAG);
+ break;
+ case Expand:
+ // TRUNCSTORE:i16 i32 -> STORE i16
+ assert(isTypeLegal(StVT) && "Do not know how to expand this store!");
+ Tmp3 = DAG.getNode(ISD::TRUNCATE, dl, StVT, Tmp3);
+ Result = DAG.getStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
+ SVOffset, isVolatile, Alignment);
+ break;
+ }
+ }
+ }
+ break;
+ }
+ }
+ assert(Result.getValueType() == Op.getValueType() &&
+ "Bad legalization!");
+
+ // Make sure that the generated code is itself legal.
+ if (Result != Op)
+ Result = LegalizeOp(Result);
+
+ // Note that LegalizeOp may be reentered even from single-use nodes, which
+ // means that we always must cache transformed nodes.
+ AddLegalizedOperand(Op, Result);
+ return Result;
+}
+
+SDValue SelectionDAGLegalize::ExpandExtractFromVectorThroughStack(SDValue Op) {
+ SDValue Vec = Op.getOperand(0);
+ SDValue Idx = Op.getOperand(1);
+ DebugLoc dl = Op.getDebugLoc();
+ // Store the value to a temporary stack slot, then LOAD the returned part.
+ SDValue StackPtr = DAG.CreateStackTemporary(Vec.getValueType());
+ SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, NULL, 0);
+
+ // Add the offset to the index.
+ unsigned EltSize =
+ Vec.getValueType().getVectorElementType().getSizeInBits()/8;
+ Idx = DAG.getNode(ISD::MUL, dl, Idx.getValueType(), Idx,
+ DAG.getConstant(EltSize, Idx.getValueType()));
+
+ if (Idx.getValueType().bitsGT(TLI.getPointerTy()))
+ Idx = DAG.getNode(ISD::TRUNCATE, dl, TLI.getPointerTy(), Idx);
+ else
+ Idx = DAG.getNode(ISD::ZERO_EXTEND, dl, TLI.getPointerTy(), Idx);
+
+ StackPtr = DAG.getNode(ISD::ADD, dl, Idx.getValueType(), Idx, StackPtr);
+
+ return DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr, NULL, 0);
+}
+
+SDValue SelectionDAGLegalize::ExpandFCOPYSIGN(SDNode* Node) {
+ DebugLoc dl = Node->getDebugLoc();
+ SDValue Tmp1 = Node->getOperand(0);
+ SDValue Tmp2 = Node->getOperand(1);
+ assert((Tmp2.getValueType() == MVT::f32 ||
+ Tmp2.getValueType() == MVT::f64) &&
+ "Ugly special-cased code!");
+ // Get the sign bit of the RHS.
+ SDValue SignBit;
+ MVT IVT = Tmp2.getValueType() == MVT::f64 ? MVT::i64 : MVT::i32;
+ if (isTypeLegal(IVT)) {
+ SignBit = DAG.getNode(ISD::BIT_CONVERT, dl, IVT, Tmp2);
+ } else {
+ assert(isTypeLegal(TLI.getPointerTy()) &&
+ (TLI.getPointerTy() == MVT::i32 ||
+ TLI.getPointerTy() == MVT::i64) &&
+ "Legal type for load?!");
+ SDValue StackPtr = DAG.CreateStackTemporary(Tmp2.getValueType());
+ SDValue StorePtr = StackPtr, LoadPtr = StackPtr;
+ SDValue Ch =
+ DAG.getStore(DAG.getEntryNode(), dl, Tmp2, StorePtr, NULL, 0);
+ if (Tmp2.getValueType() == MVT::f64 && TLI.isLittleEndian())
+ LoadPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(),
+ LoadPtr, DAG.getIntPtrConstant(4));
+ SignBit = DAG.getExtLoad(ISD::SEXTLOAD, dl, TLI.getPointerTy(),
+ Ch, LoadPtr, NULL, 0, MVT::i32);
+ }
+ SignBit =
+ DAG.getSetCC(dl, TLI.getSetCCResultType(SignBit.getValueType()),
+ SignBit, DAG.getConstant(0, SignBit.getValueType()),
+ ISD::SETLT);
+ // Get the absolute value of the result.
+ SDValue AbsVal = DAG.getNode(ISD::FABS, dl, Tmp1.getValueType(), Tmp1);
+ // Select between the nabs and abs value based on the sign bit of
+ // the input.
+ return DAG.getNode(ISD::SELECT, dl, AbsVal.getValueType(), SignBit,
+ DAG.getNode(ISD::FNEG, dl, AbsVal.getValueType(), AbsVal),
+ AbsVal);
+}
+
+SDValue SelectionDAGLegalize::ExpandDBG_STOPPOINT(SDNode* Node) {
+ DebugLoc dl = Node->getDebugLoc();
+ DwarfWriter *DW = DAG.getDwarfWriter();
+ bool useDEBUG_LOC = TLI.isOperationLegalOrCustom(ISD::DEBUG_LOC,
+ MVT::Other);
+ bool useLABEL = TLI.isOperationLegalOrCustom(ISD::DBG_LABEL, MVT::Other);
+
+ const DbgStopPointSDNode *DSP = cast<DbgStopPointSDNode>(Node);
+ GlobalVariable *CU_GV = cast<GlobalVariable>(DSP->getCompileUnit());
+ if (DW && (useDEBUG_LOC || useLABEL) && !CU_GV->isDeclaration()) {
+ DICompileUnit CU(cast<GlobalVariable>(DSP->getCompileUnit()));
+
+ unsigned Line = DSP->getLine();
+ unsigned Col = DSP->getColumn();
+
+ if (OptLevel == CodeGenOpt::None) {
+ // A bit self-referential to have DebugLoc on Debug_Loc nodes, but it
+ // won't hurt anything.
+ if (useDEBUG_LOC) {
+ return DAG.getNode(ISD::DEBUG_LOC, dl, MVT::Other, Node->getOperand(0),
+ DAG.getConstant(Line, MVT::i32),
+ DAG.getConstant(Col, MVT::i32),
+ DAG.getSrcValue(CU.getGV()));
+ } else {
+ unsigned ID = DW->RecordSourceLine(Line, Col, CU);
+ return DAG.getLabel(ISD::DBG_LABEL, dl, Node->getOperand(0), ID);
+ }
+ }
+ }
+ return Node->getOperand(0);
+}
+
+void SelectionDAGLegalize::ExpandDYNAMIC_STACKALLOC(SDNode* Node,
+ SmallVectorImpl<SDValue> &Results) {
+ unsigned SPReg = TLI.getStackPointerRegisterToSaveRestore();
+ assert(SPReg && "Target cannot require DYNAMIC_STACKALLOC expansion and"
+ " not tell us which reg is the stack pointer!");
+ DebugLoc dl = Node->getDebugLoc();
+ MVT VT = Node->getValueType(0);
+ SDValue Tmp1 = SDValue(Node, 0);
+ SDValue Tmp2 = SDValue(Node, 1);
+ SDValue Tmp3 = Node->getOperand(2);
+ SDValue Chain = Tmp1.getOperand(0);
+
+ // Chain the dynamic stack allocation so that it doesn't modify the stack
+ // pointer when other instructions are using the stack.
+ Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(0, true));
+
+ SDValue Size = Tmp2.getOperand(1);
+ SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT);
+ Chain = SP.getValue(1);
+ unsigned Align = cast<ConstantSDNode>(Tmp3)->getZExtValue();
+ unsigned StackAlign =
+ TLI.getTargetMachine().getFrameInfo()->getStackAlignment();
+ if (Align > StackAlign)
+ SP = DAG.getNode(ISD::AND, dl, VT, SP,
+ DAG.getConstant(-(uint64_t)Align, VT));
+ Tmp1 = DAG.getNode(ISD::SUB, dl, VT, SP, Size); // Value
+ Chain = DAG.getCopyToReg(Chain, dl, SPReg, Tmp1); // Output chain
+
+ Tmp2 = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(0, true),
+ DAG.getIntPtrConstant(0, true), SDValue());
+
+ Results.push_back(Tmp1);
+ Results.push_back(Tmp2);
+}
+
+/// LegalizeSetCCCondCode - Legalize a SETCC with given LHS and RHS and
+/// condition code CC on the current target. This routine assumes LHS and rHS
+/// have already been legalized by LegalizeSetCCOperands. It expands SETCC with
+/// illegal condition code into AND / OR of multiple SETCC values.
+void SelectionDAGLegalize::LegalizeSetCCCondCode(MVT VT,
+ SDValue &LHS, SDValue &RHS,
+ SDValue &CC,
+ DebugLoc dl) {
+ MVT OpVT = LHS.getValueType();
+ ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get();
+ switch (TLI.getCondCodeAction(CCCode, OpVT)) {
+ default: assert(0 && "Unknown condition code action!");
+ case TargetLowering::Legal:
+ // Nothing to do.
+ break;
+ case TargetLowering::Expand: {
+ ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID;
+ unsigned Opc = 0;
+ switch (CCCode) {
+ default: assert(0 && "Don't know how to expand this condition!"); abort();
+ case ISD::SETOEQ: CC1 = ISD::SETEQ; CC2 = ISD::SETO; Opc = ISD::AND; break;
+ case ISD::SETOGT: CC1 = ISD::SETGT; CC2 = ISD::SETO; Opc = ISD::AND; break;
+ case ISD::SETOGE: CC1 = ISD::SETGE; CC2 = ISD::SETO; Opc = ISD::AND; break;
+ case ISD::SETOLT: CC1 = ISD::SETLT; CC2 = ISD::SETO; Opc = ISD::AND; break;
+ case ISD::SETOLE: CC1 = ISD::SETLE; CC2 = ISD::SETO; Opc = ISD::AND; break;
+ case ISD::SETONE: CC1 = ISD::SETNE; CC2 = ISD::SETO; Opc = ISD::AND; break;
+ case ISD::SETUEQ: CC1 = ISD::SETEQ; CC2 = ISD::SETUO; Opc = ISD::OR; break;
+ case ISD::SETUGT: CC1 = ISD::SETGT; CC2 = ISD::SETUO; Opc = ISD::OR; break;
+ case ISD::SETUGE: CC1 = ISD::SETGE; CC2 = ISD::SETUO; Opc = ISD::OR; break;
+ case ISD::SETULT: CC1 = ISD::SETLT; CC2 = ISD::SETUO; Opc = ISD::OR; break;
+ case ISD::SETULE: CC1 = ISD::SETLE; CC2 = ISD::SETUO; Opc = ISD::OR; break;
+ case ISD::SETUNE: CC1 = ISD::SETNE; CC2 = ISD::SETUO; Opc = ISD::OR; break;
+ // FIXME: Implement more expansions.
+ }
+
+ SDValue SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1);
+ SDValue SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2);
+ LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2);
+ RHS = SDValue();
+ CC = SDValue();
+ break;
+ }
+ }
+}
+
+/// EmitStackConvert - Emit a store/load combination to the stack. This stores
+/// SrcOp to a stack slot of type SlotVT, truncating it if needed. It then does
+/// a load from the stack slot to DestVT, extending it if needed.
+/// The resultant code need not be legal.
+SDValue SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp,
+ MVT SlotVT,
+ MVT DestVT,
+ DebugLoc dl) {
+ // Create the stack frame object.
+ unsigned SrcAlign =
+ TLI.getTargetData()->getPrefTypeAlignment(SrcOp.getValueType().
+ getTypeForMVT());
+ SDValue FIPtr = DAG.CreateStackTemporary(SlotVT, SrcAlign);
+
+ FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(FIPtr);
+ int SPFI = StackPtrFI->getIndex();
+ const Value *SV = PseudoSourceValue::getFixedStack(SPFI);
+
+ unsigned SrcSize = SrcOp.getValueType().getSizeInBits();
+ unsigned SlotSize = SlotVT.getSizeInBits();
+ unsigned DestSize = DestVT.getSizeInBits();
+ unsigned DestAlign =
+ TLI.getTargetData()->getPrefTypeAlignment(DestVT.getTypeForMVT());
+
+ // Emit a store to the stack slot. Use a truncstore if the input value is
+ // later than DestVT.
+ SDValue Store;
+
+ if (SrcSize > SlotSize)
+ Store = DAG.getTruncStore(DAG.getEntryNode(), dl, SrcOp, FIPtr,
+ SV, 0, SlotVT, false, SrcAlign);
+ else {
+ assert(SrcSize == SlotSize && "Invalid store");
+ Store = DAG.getStore(DAG.getEntryNode(), dl, SrcOp, FIPtr,
+ SV, 0, false, SrcAlign);
+ }
+
+ // Result is a load from the stack slot.
+ if (SlotSize == DestSize)
+ return DAG.getLoad(DestVT, dl, Store, FIPtr, SV, 0, false, DestAlign);
+
+ assert(SlotSize < DestSize && "Unknown extension!");
+ return DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT, Store, FIPtr, SV, 0, SlotVT,
+ false, DestAlign);
+}
+
+SDValue SelectionDAGLegalize::ExpandSCALAR_TO_VECTOR(SDNode *Node) {
+ DebugLoc dl = Node->getDebugLoc();
+ // Create a vector sized/aligned stack slot, store the value to element #0,
+ // then load the whole vector back out.
+ SDValue StackPtr = DAG.CreateStackTemporary(Node->getValueType(0));
+
+ FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(StackPtr);
+ int SPFI = StackPtrFI->getIndex();
+
+ SDValue Ch = DAG.getTruncStore(DAG.getEntryNode(), dl, Node->getOperand(0),
+ StackPtr,
+ PseudoSourceValue::getFixedStack(SPFI), 0,
+ Node->getValueType(0).getVectorElementType());
+ return DAG.getLoad(Node->getValueType(0), dl, Ch, StackPtr,
+ PseudoSourceValue::getFixedStack(SPFI), 0);
+}
+
+
+/// ExpandBUILD_VECTOR - Expand a BUILD_VECTOR node on targets that don't
+/// support the operation, but do support the resultant vector type.
+SDValue SelectionDAGLegalize::ExpandBUILD_VECTOR(SDNode *Node) {
+ unsigned NumElems = Node->getNumOperands();
+ SDValue SplatValue = Node->getOperand(0);
+ DebugLoc dl = Node->getDebugLoc();
+ MVT VT = Node->getValueType(0);
+ MVT OpVT = SplatValue.getValueType();
+ MVT EltVT = VT.getVectorElementType();
+
+ // If the only non-undef value is the low element, turn this into a
+ // SCALAR_TO_VECTOR node. If this is { X, X, X, X }, determine X.
+ bool isOnlyLowElement = true;
+
+ // FIXME: it would be far nicer to change this into map<SDValue,uint64_t>
+ // and use a bitmask instead of a list of elements.
+ // FIXME: this doesn't treat <0, u, 0, u> for example, as a splat.
+ std::map<SDValue, std::vector<unsigned> > Values;
+ Values[SplatValue].push_back(0);
+ bool isConstant = true;
+ if (!isa<ConstantFPSDNode>(SplatValue) && !isa<ConstantSDNode>(SplatValue) &&
+ SplatValue.getOpcode() != ISD::UNDEF)
+ isConstant = false;
+
+ for (unsigned i = 1; i < NumElems; ++i) {
+ SDValue V = Node->getOperand(i);
+ Values[V].push_back(i);
+ if (V.getOpcode() != ISD::UNDEF)
+ isOnlyLowElement = false;
+ if (SplatValue != V)
+ SplatValue = SDValue(0, 0);
+
+ // If this isn't a constant element or an undef, we can't use a constant
+ // pool load.
+ if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V) &&
+ V.getOpcode() != ISD::UNDEF)
+ isConstant = false;
+ }
+
+ if (isOnlyLowElement) {
+ // If the low element is an undef too, then this whole things is an undef.
+ if (Node->getOperand(0).getOpcode() == ISD::UNDEF)
+ return DAG.getUNDEF(VT);
+ // Otherwise, turn this into a scalar_to_vector node.
+ return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Node->getOperand(0));
+ }
+
+ // If all elements are constants, create a load from the constant pool.
+ if (isConstant) {
+ std::vector<Constant*> CV;
+ for (unsigned i = 0, e = NumElems; i != e; ++i) {
+ if (ConstantFPSDNode *V =
+ dyn_cast<ConstantFPSDNode>(Node->getOperand(i))) {
+ CV.push_back(const_cast<ConstantFP *>(V->getConstantFPValue()));
+ } else if (ConstantSDNode *V =
+ dyn_cast<ConstantSDNode>(Node->getOperand(i))) {
+ CV.push_back(const_cast<ConstantInt *>(V->getConstantIntValue()));
+ } else {
+ assert(Node->getOperand(i).getOpcode() == ISD::UNDEF);
+ const Type *OpNTy = OpVT.getTypeForMVT();
+ CV.push_back(UndefValue::get(OpNTy));
+ }
+ }
+ Constant *CP = ConstantVector::get(CV);
+ SDValue CPIdx = DAG.getConstantPool(CP, TLI.getPointerTy());
+ unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
+ return DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
+ PseudoSourceValue::getConstantPool(), 0,
+ false, Alignment);
+ }
+
+ if (SplatValue.getNode()) { // Splat of one value?
+ // Build the shuffle constant vector: <0, 0, 0, 0>
+ SmallVector<int, 8> ZeroVec(NumElems, 0);
+
+ // If the target supports VECTOR_SHUFFLE and this shuffle mask, use it.
+ if (TLI.isShuffleMaskLegal(ZeroVec, Node->getValueType(0))) {
+ // Get the splatted value into the low element of a vector register.
+ SDValue LowValVec =
+ DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, SplatValue);
+
+ // Return shuffle(LowValVec, undef, <0,0,0,0>)
+ return DAG.getVectorShuffle(VT, dl, LowValVec, DAG.getUNDEF(VT),
+ &ZeroVec[0]);
+ }
+ }
+
+ // If there are only two unique elements, we may be able to turn this into a
+ // vector shuffle.
+ if (Values.size() == 2) {
+ // Get the two values in deterministic order.
+ SDValue Val1 = Node->getOperand(1);
+ SDValue Val2;
+ std::map<SDValue, std::vector<unsigned> >::iterator MI = Values.begin();
+ if (MI->first != Val1)
+ Val2 = MI->first;
+ else
+ Val2 = (++MI)->first;
+
+ // If Val1 is an undef, make sure it ends up as Val2, to ensure that our
+ // vector shuffle has the undef vector on the RHS.
+ if (Val1.getOpcode() == ISD::UNDEF)
+ std::swap(Val1, Val2);
+
+ // Build the shuffle constant vector: e.g. <0, 4, 0, 4>
+ SmallVector<int, 8> ShuffleMask(NumElems, -1);
+
+ // Set elements of the shuffle mask for Val1.
+ std::vector<unsigned> &Val1Elts = Values[Val1];
+ for (unsigned i = 0, e = Val1Elts.size(); i != e; ++i)
+ ShuffleMask[Val1Elts[i]] = 0;
+
+ // Set elements of the shuffle mask for Val2.
+ std::vector<unsigned> &Val2Elts = Values[Val2];
+ for (unsigned i = 0, e = Val2Elts.size(); i != e; ++i)
+ if (Val2.getOpcode() != ISD::UNDEF)
+ ShuffleMask[Val2Elts[i]] = NumElems;
+
+ // If the target supports SCALAR_TO_VECTOR and this shuffle mask, use it.
+ if (TLI.isOperationLegalOrCustom(ISD::SCALAR_TO_VECTOR, VT) &&
+ TLI.isShuffleMaskLegal(ShuffleMask, VT)) {
+ Val1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Val1);
+ Val2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Val2);
+ return DAG.getVectorShuffle(VT, dl, Val1, Val2, &ShuffleMask[0]);
+ }
+ }
+
+ // Otherwise, we can't handle this case efficiently. Allocate a sufficiently
+ // aligned object on the stack, store each element into it, then load
+ // the result as a vector.
+ // Create the stack frame object.
+ SDValue FIPtr = DAG.CreateStackTemporary(VT);
+ int FI = cast<FrameIndexSDNode>(FIPtr.getNode())->getIndex();
+ const Value *SV = PseudoSourceValue::getFixedStack(FI);
+
+ // Emit a store of each element to the stack slot.
+ SmallVector<SDValue, 8> Stores;
+ unsigned TypeByteSize = OpVT.getSizeInBits() / 8;
+ // Store (in the right endianness) the elements to memory.
+ for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) {
+ // Ignore undef elements.
+ if (Node->getOperand(i).getOpcode() == ISD::UNDEF) continue;
+
+ unsigned Offset = TypeByteSize*i;
+
+ SDValue Idx = DAG.getConstant(Offset, FIPtr.getValueType());
+ Idx = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr, Idx);
+
+ Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl, Node->getOperand(i),
+ Idx, SV, Offset));
+ }
+
+ SDValue StoreChain;
+ if (!Stores.empty()) // Not all undef elements?
+ StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
+ &Stores[0], Stores.size());
+ else
+ StoreChain = DAG.getEntryNode();
+
+ // Result is a load from the stack slot.
+ return DAG.getLoad(VT, dl, StoreChain, FIPtr, SV, 0);
+}
+
+// ExpandLibCall - Expand a node into a call to a libcall. If the result value
+// does not fit into a register, return the lo part and set the hi part to the
+// by-reg argument. If it does fit into a single register, return the result
+// and leave the Hi part unset.
+SDValue SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, SDNode *Node,
+ bool isSigned) {
+ assert(!IsLegalizingCall && "Cannot overlap legalization of calls!");
+ // The input chain to this libcall is the entry node of the function.
+ // Legalizing the call will automatically add the previous call to the
+ // dependence.
+ SDValue InChain = DAG.getEntryNode();
+
+ TargetLowering::ArgListTy Args;
+ TargetLowering::ArgListEntry Entry;
+ for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) {
+ MVT ArgVT = Node->getOperand(i).getValueType();
+ const Type *ArgTy = ArgVT.getTypeForMVT();
+ Entry.Node = Node->getOperand(i); Entry.Ty = ArgTy;
+ Entry.isSExt = isSigned;
+ Entry.isZExt = !isSigned;
+ Args.push_back(Entry);
+ }
+ SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
+ TLI.getPointerTy());
+
+ // Splice the libcall in wherever FindInputOutputChains tells us to.
+ const Type *RetTy = Node->getValueType(0).getTypeForMVT();
+ std::pair<SDValue, SDValue> CallInfo =
+ TLI.LowerCallTo(InChain, RetTy, isSigned, !isSigned, false, false,
+ CallingConv::C, false, Callee, Args, DAG,
+ Node->getDebugLoc());
+
+ // Legalize the call sequence, starting with the chain. This will advance
+ // the LastCALLSEQ_END to the legalized version of the CALLSEQ_END node that
+ // was added by LowerCallTo (guaranteeing proper serialization of calls).
+ LegalizeOp(CallInfo.second);
+ return CallInfo.first;
+}
+
+SDValue SelectionDAGLegalize::ExpandFPLibCall(SDNode* Node,
+ RTLIB::Libcall Call_F32,
+ RTLIB::Libcall Call_F64,
+ RTLIB::Libcall Call_F80,
+ RTLIB::Libcall Call_PPCF128) {
+ RTLIB::Libcall LC;
+ switch (Node->getValueType(0).getSimpleVT()) {
+ default: assert(0 && "Unexpected request for libcall!");
+ case MVT::f32: LC = Call_F32; break;
+ case MVT::f64: LC = Call_F64; break;
+ case MVT::f80: LC = Call_F80; break;
+ case MVT::ppcf128: LC = Call_PPCF128; break;
+ }
+ return ExpandLibCall(LC, Node, false);
+}
+
+SDValue SelectionDAGLegalize::ExpandIntLibCall(SDNode* Node, bool isSigned,
+ RTLIB::Libcall Call_I16,
+ RTLIB::Libcall Call_I32,
+ RTLIB::Libcall Call_I64,
+ RTLIB::Libcall Call_I128) {
+ RTLIB::Libcall LC;
+ switch (Node->getValueType(0).getSimpleVT()) {
+ default: assert(0 && "Unexpected request for libcall!");
+ case MVT::i16: LC = Call_I16; break;
+ case MVT::i32: LC = Call_I32; break;
+ case MVT::i64: LC = Call_I64; break;
+ case MVT::i128: LC = Call_I128; break;
+ }
+ return ExpandLibCall(LC, Node, isSigned);
+}
+
+/// ExpandLegalINT_TO_FP - This function is responsible for legalizing a
+/// INT_TO_FP operation of the specified operand when the target requests that
+/// we expand it. At this point, we know that the result and operand types are
+/// legal for the target.
+SDValue SelectionDAGLegalize::ExpandLegalINT_TO_FP(bool isSigned,
+ SDValue Op0,
+ MVT DestVT,
+ DebugLoc dl) {
+ if (Op0.getValueType() == MVT::i32) {
+ // simple 32-bit [signed|unsigned] integer to float/double expansion
+
+ // Get the stack frame index of a 8 byte buffer.
+ SDValue StackSlot = DAG.CreateStackTemporary(MVT::f64);
+
+ // word offset constant for Hi/Lo address computation
+ SDValue WordOff = DAG.getConstant(sizeof(int), TLI.getPointerTy());
+ // set up Hi and Lo (into buffer) address based on endian
+ SDValue Hi = StackSlot;
+ SDValue Lo = DAG.getNode(ISD::ADD, dl,
+ TLI.getPointerTy(), StackSlot, WordOff);
+ if (TLI.isLittleEndian())
+ std::swap(Hi, Lo);
+
+ // if signed map to unsigned space
+ SDValue Op0Mapped;
+ if (isSigned) {
+ // constant used to invert sign bit (signed to unsigned mapping)
+ SDValue SignBit = DAG.getConstant(0x80000000u, MVT::i32);
+ Op0Mapped = DAG.getNode(ISD::XOR, dl, MVT::i32, Op0, SignBit);
+ } else {
+ Op0Mapped = Op0;
+ }
+ // store the lo of the constructed double - based on integer input
+ SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl,
+ Op0Mapped, Lo, NULL, 0);
+ // initial hi portion of constructed double
+ SDValue InitialHi = DAG.getConstant(0x43300000u, MVT::i32);
+ // store the hi of the constructed double - biased exponent
+ SDValue Store2=DAG.getStore(Store1, dl, InitialHi, Hi, NULL, 0);
+ // load the constructed double
+ SDValue Load = DAG.getLoad(MVT::f64, dl, Store2, StackSlot, NULL, 0);
+ // FP constant to bias correct the final result
+ SDValue Bias = DAG.getConstantFP(isSigned ?
+ BitsToDouble(0x4330000080000000ULL) :
+ BitsToDouble(0x4330000000000000ULL),
+ MVT::f64);
+ // subtract the bias
+ SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Load, Bias);
+ // final result
+ SDValue Result;
+ // handle final rounding
+ if (DestVT == MVT::f64) {
+ // do nothing
+ Result = Sub;
+ } else if (DestVT.bitsLT(MVT::f64)) {
+ Result = DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
+ DAG.getIntPtrConstant(0));
+ } else if (DestVT.bitsGT(MVT::f64)) {
+ Result = DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
+ }
+ return Result;
+ }
+ assert(!isSigned && "Legalize cannot Expand SINT_TO_FP for i64 yet");
+ SDValue Tmp1 = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Op0);
+
+ SDValue SignSet = DAG.getSetCC(dl, TLI.getSetCCResultType(Op0.getValueType()),
+ Op0, DAG.getConstant(0, Op0.getValueType()),
+ ISD::SETLT);
+ SDValue Zero = DAG.getIntPtrConstant(0), Four = DAG.getIntPtrConstant(4);
+ SDValue CstOffset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(),
+ SignSet, Four, Zero);
+
+ // If the sign bit of the integer is set, the large number will be treated
+ // as a negative number. To counteract this, the dynamic code adds an
+ // offset depending on the data type.
+ uint64_t FF;
+ switch (Op0.getValueType().getSimpleVT()) {
+ default: assert(0 && "Unsupported integer type!");
+ case MVT::i8 : FF = 0x43800000ULL; break; // 2^8 (as a float)
+ case MVT::i16: FF = 0x47800000ULL; break; // 2^16 (as a float)
+ case MVT::i32: FF = 0x4F800000ULL; break; // 2^32 (as a float)
+ case MVT::i64: FF = 0x5F800000ULL; break; // 2^64 (as a float)
+ }
+ if (TLI.isLittleEndian()) FF <<= 32;
+ Constant *FudgeFactor = ConstantInt::get(Type::Int64Ty, FF);
+
+ SDValue CPIdx = DAG.getConstantPool(FudgeFactor, TLI.getPointerTy());
+ unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
+ CPIdx = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), CPIdx, CstOffset);
+ Alignment = std::min(Alignment, 4u);
+ SDValue FudgeInReg;
+ if (DestVT == MVT::f32)
+ FudgeInReg = DAG.getLoad(MVT::f32, dl, DAG.getEntryNode(), CPIdx,
+ PseudoSourceValue::getConstantPool(), 0,
+ false, Alignment);
+ else {
+ FudgeInReg =
+ LegalizeOp(DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT,
+ DAG.getEntryNode(), CPIdx,
+ PseudoSourceValue::getConstantPool(), 0,
+ MVT::f32, false, Alignment));
+ }
+
+ return DAG.getNode(ISD::FADD, dl, DestVT, Tmp1, FudgeInReg);
+}
+
+/// PromoteLegalINT_TO_FP - This function is responsible for legalizing a
+/// *INT_TO_FP operation of the specified operand when the target requests that
+/// we promote it. At this point, we know that the result and operand types are
+/// legal for the target, and that there is a legal UINT_TO_FP or SINT_TO_FP
+/// operation that takes a larger input.
+SDValue SelectionDAGLegalize::PromoteLegalINT_TO_FP(SDValue LegalOp,
+ MVT DestVT,
+ bool isSigned,
+ DebugLoc dl) {
+ // First step, figure out the appropriate *INT_TO_FP operation to use.
+ MVT NewInTy = LegalOp.getValueType();
+
+ unsigned OpToUse = 0;
+
+ // Scan for the appropriate larger type to use.
+ while (1) {
+ NewInTy = (MVT::SimpleValueType)(NewInTy.getSimpleVT()+1);
+ assert(NewInTy.isInteger() && "Ran out of possibilities!");
+
+ // If the target supports SINT_TO_FP of this type, use it.
+ if (TLI.isOperationLegalOrCustom(ISD::SINT_TO_FP, NewInTy)) {
+ OpToUse = ISD::SINT_TO_FP;
+ break;
+ }
+ if (isSigned) continue;
+
+ // If the target supports UINT_TO_FP of this type, use it.
+ if (TLI.isOperationLegalOrCustom(ISD::UINT_TO_FP, NewInTy)) {
+ OpToUse = ISD::UINT_TO_FP;
+ break;
+ }
+
+ // Otherwise, try a larger type.
+ }
+
+ // Okay, we found the operation and type to use. Zero extend our input to the
+ // desired type then run the operation on it.
+ return DAG.getNode(OpToUse, dl, DestVT,
+ DAG.getNode(isSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
+ dl, NewInTy, LegalOp));
+}
+
+/// PromoteLegalFP_TO_INT - This function is responsible for legalizing a
+/// FP_TO_*INT operation of the specified operand when the target requests that
+/// we promote it. At this point, we know that the result and operand types are
+/// legal for the target, and that there is a legal FP_TO_UINT or FP_TO_SINT
+/// operation that returns a larger result.
+SDValue SelectionDAGLegalize::PromoteLegalFP_TO_INT(SDValue LegalOp,
+ MVT DestVT,
+ bool isSigned,
+ DebugLoc dl) {
+ // First step, figure out the appropriate FP_TO*INT operation to use.
+ MVT NewOutTy = DestVT;
+
+ unsigned OpToUse = 0;
+
+ // Scan for the appropriate larger type to use.
+ while (1) {
+ NewOutTy = (MVT::SimpleValueType)(NewOutTy.getSimpleVT()+1);
+ assert(NewOutTy.isInteger() && "Ran out of possibilities!");
+
+ if (TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NewOutTy)) {
+ OpToUse = ISD::FP_TO_SINT;
+ break;
+ }
+
+ if (TLI.isOperationLegalOrCustom(ISD::FP_TO_UINT, NewOutTy)) {
+ OpToUse = ISD::FP_TO_UINT;
+ break;
+ }
+
+ // Otherwise, try a larger type.
+ }
+
+
+ // Okay, we found the operation and type to use.
+ SDValue Operation = DAG.getNode(OpToUse, dl, NewOutTy, LegalOp);
+
+ // Truncate the result of the extended FP_TO_*INT operation to the desired
+ // size.
+ return DAG.getNode(ISD::TRUNCATE, dl, DestVT, Operation);
+}
+
+/// ExpandBSWAP - Open code the operations for BSWAP of the specified operation.
+///
+SDValue SelectionDAGLegalize::ExpandBSWAP(SDValue Op, DebugLoc dl) {
+ MVT VT = Op.getValueType();
+ MVT SHVT = TLI.getShiftAmountTy();
+ SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8;
+ switch (VT.getSimpleVT()) {
+ default: assert(0 && "Unhandled Expand type in BSWAP!"); abort();
+ case MVT::i16:
+ Tmp2 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT));
+ Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT));
+ return DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
+ case MVT::i32:
+ Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, SHVT));
+ Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT));
+ Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT));
+ Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, SHVT));
+ Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, DAG.getConstant(0xFF0000, VT));
+ Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, VT));
+ Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
+ Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
+ return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
+ case MVT::i64:
+ Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, SHVT));
+ Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, SHVT));
+ Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, SHVT));
+ Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT));
+ Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT));
+ Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, SHVT));
+ Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, SHVT));
+ Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, SHVT));
+ Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7, DAG.getConstant(255ULL<<48, VT));
+ Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6, DAG.getConstant(255ULL<<40, VT));
+ Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5, DAG.getConstant(255ULL<<32, VT));
+ Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4, DAG.getConstant(255ULL<<24, VT));
+ Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, DAG.getConstant(255ULL<<16, VT));
+ Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(255ULL<<8 , VT));
+ Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7);
+ Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5);
+ Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
+ Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
+ Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6);
+ Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
+ return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4);
+ }
+}
+
+/// ExpandBitCount - Expand the specified bitcount instruction into operations.
+///
+SDValue SelectionDAGLegalize::ExpandBitCount(unsigned Opc, SDValue Op,
+ DebugLoc dl) {
+ switch (Opc) {
+ default: assert(0 && "Cannot expand this yet!");
+ case ISD::CTPOP: {
+ static const uint64_t mask[6] = {
+ 0x5555555555555555ULL, 0x3333333333333333ULL,
+ 0x0F0F0F0F0F0F0F0FULL, 0x00FF00FF00FF00FFULL,
+ 0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL
+ };
+ MVT VT = Op.getValueType();
+ MVT ShVT = TLI.getShiftAmountTy();
+ unsigned len = VT.getSizeInBits();
+ for (unsigned i = 0; (1U << i) <= (len / 2); ++i) {
+ //x = (x & mask[i][len/8]) + (x >> (1 << i) & mask[i][len/8])
+ unsigned EltSize = VT.isVector() ?
+ VT.getVectorElementType().getSizeInBits() : len;
+ SDValue Tmp2 = DAG.getConstant(APInt(EltSize, mask[i]), VT);
+ SDValue Tmp3 = DAG.getConstant(1ULL << i, ShVT);
+ Op = DAG.getNode(ISD::ADD, dl, VT,
+ DAG.getNode(ISD::AND, dl, VT, Op, Tmp2),
+ DAG.getNode(ISD::AND, dl, VT,
+ DAG.getNode(ISD::SRL, dl, VT, Op, Tmp3),
+ Tmp2));
+ }
+ return Op;
+ }
+ case ISD::CTLZ: {
+ // for now, we do this:
+ // x = x | (x >> 1);
+ // x = x | (x >> 2);
+ // ...
+ // x = x | (x >>16);
+ // x = x | (x >>32); // for 64-bit input
+ // return popcount(~x);
+ //
+ // but see also: http://www.hackersdelight.org/HDcode/nlz.cc
+ MVT VT = Op.getValueType();
+ MVT ShVT = TLI.getShiftAmountTy();
+ unsigned len = VT.getSizeInBits();
+ for (unsigned i = 0; (1U << i) <= (len / 2); ++i) {
+ SDValue Tmp3 = DAG.getConstant(1ULL << i, ShVT);
+ Op = DAG.getNode(ISD::OR, dl, VT, Op,
+ DAG.getNode(ISD::SRL, dl, VT, Op, Tmp3));
+ }
+ Op = DAG.getNOT(dl, Op, VT);
+ return DAG.getNode(ISD::CTPOP, dl, VT, Op);
+ }
+ case ISD::CTTZ: {
+ // for now, we use: { return popcount(~x & (x - 1)); }
+ // unless the target has ctlz but not ctpop, in which case we use:
+ // { return 32 - nlz(~x & (x-1)); }
+ // see also http://www.hackersdelight.org/HDcode/ntz.cc
+ MVT VT = Op.getValueType();
+ SDValue Tmp3 = DAG.getNode(ISD::AND, dl, VT,
+ DAG.getNOT(dl, Op, VT),
+ DAG.getNode(ISD::SUB, dl, VT, Op,
+ DAG.getConstant(1, VT)));
+ // If ISD::CTLZ is legal and CTPOP isn't, then do that instead.
+ if (!TLI.isOperationLegalOrCustom(ISD::CTPOP, VT) &&
+ TLI.isOperationLegalOrCustom(ISD::CTLZ, VT))
+ return DAG.getNode(ISD::SUB, dl, VT,
+ DAG.getConstant(VT.getSizeInBits(), VT),
+ DAG.getNode(ISD::CTLZ, dl, VT, Tmp3));
+ return DAG.getNode(ISD::CTPOP, dl, VT, Tmp3);
+ }
+ }
+}
+
+void SelectionDAGLegalize::ExpandNode(SDNode *Node,
+ SmallVectorImpl<SDValue> &Results) {
+ DebugLoc dl = Node->getDebugLoc();
+ SDValue Tmp1, Tmp2, Tmp3, Tmp4;
+ switch (Node->getOpcode()) {
+ case ISD::CTPOP:
+ case ISD::CTLZ:
+ case ISD::CTTZ:
+ Tmp1 = ExpandBitCount(Node->getOpcode(), Node->getOperand(0), dl);
+ Results.push_back(Tmp1);
+ break;
+ case ISD::BSWAP:
+ Results.push_back(ExpandBSWAP(Node->getOperand(0), dl));
+ break;
+ case ISD::FRAMEADDR:
+ case ISD::RETURNADDR:
+ case ISD::FRAME_TO_ARGS_OFFSET:
+ Results.push_back(DAG.getConstant(0, Node->getValueType(0)));
+ break;
+ case ISD::FLT_ROUNDS_:
+ Results.push_back(DAG.getConstant(1, Node->getValueType(0)));
+ break;
+ case ISD::EH_RETURN:
+ case ISD::DECLARE:
+ case ISD::DBG_LABEL:
+ case ISD::EH_LABEL:
+ case ISD::PREFETCH:
+ case ISD::MEMBARRIER:
+ case ISD::VAEND:
+ Results.push_back(Node->getOperand(0));
+ break;
+ case ISD::DBG_STOPPOINT:
+ Results.push_back(ExpandDBG_STOPPOINT(Node));
+ break;
+ case ISD::DYNAMIC_STACKALLOC:
+ ExpandDYNAMIC_STACKALLOC(Node, Results);
+ break;
+ case ISD::MERGE_VALUES:
+ for (unsigned i = 0; i < Node->getNumValues(); i++)
+ Results.push_back(Node->getOperand(i));
+ break;
+ case ISD::UNDEF: {
+ MVT VT = Node->getValueType(0);
+ if (VT.isInteger())
+ Results.push_back(DAG.getConstant(0, VT));
+ else if (VT.isFloatingPoint())
+ Results.push_back(DAG.getConstantFP(0, VT));
+ else
+ assert(0 && "Unknown value type!");
+ break;
+ }
+ case ISD::TRAP: {
+ // If this operation is not supported, lower it to 'abort()' call
+ TargetLowering::ArgListTy Args;
+ std::pair<SDValue, SDValue> CallResult =
+ TLI.LowerCallTo(Node->getOperand(0), Type::VoidTy,
+ false, false, false, false, CallingConv::C, false,
+ DAG.getExternalSymbol("abort", TLI.getPointerTy()),
+ Args, DAG, dl);
+ Results.push_back(CallResult.second);
+ break;
+ }
+ case ISD::FP_ROUND:
+ case ISD::BIT_CONVERT:
+ Tmp1 = EmitStackConvert(Node->getOperand(0), Node->getValueType(0),
+ Node->getValueType(0), dl);
+ Results.push_back(Tmp1);
+ break;
+ case ISD::FP_EXTEND:
+ Tmp1 = EmitStackConvert(Node->getOperand(0),
+ Node->getOperand(0).getValueType(),
+ Node->getValueType(0), dl);
+ Results.push_back(Tmp1);
+ break;
+ case ISD::SIGN_EXTEND_INREG: {
+ // NOTE: we could fall back on load/store here too for targets without
+ // SAR. However, it is doubtful that any exist.
+ MVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
+ unsigned BitsDiff = Node->getValueType(0).getSizeInBits() -
+ ExtraVT.getSizeInBits();
+ SDValue ShiftCst = DAG.getConstant(BitsDiff, TLI.getShiftAmountTy());
+ Tmp1 = DAG.getNode(ISD::SHL, dl, Node->getValueType(0),
+ Node->getOperand(0), ShiftCst);
+ Tmp1 = DAG.getNode(ISD::SRA, dl, Node->getValueType(0), Tmp1, ShiftCst);
+ Results.push_back(Tmp1);
+ break;
+ }
+ case ISD::FP_ROUND_INREG: {
+ // The only way we can lower this is to turn it into a TRUNCSTORE,
+ // EXTLOAD pair, targetting a temporary location (a stack slot).
+
+ // NOTE: there is a choice here between constantly creating new stack
+ // slots and always reusing the same one. We currently always create
+ // new ones, as reuse may inhibit scheduling.
+ MVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
+ Tmp1 = EmitStackConvert(Node->getOperand(0), ExtraVT,
+ Node->getValueType(0), dl);
+ Results.push_back(Tmp1);
+ break;
+ }
+ case ISD::SINT_TO_FP:
+ case ISD::UINT_TO_FP:
+ Tmp1 = ExpandLegalINT_TO_FP(Node->getOpcode() == ISD::SINT_TO_FP,
+ Node->getOperand(0), Node->getValueType(0), dl);
+ Results.push_back(Tmp1);
+ break;
+ case ISD::FP_TO_UINT: {
+ SDValue True, False;
+ MVT VT = Node->getOperand(0).getValueType();
+ MVT NVT = Node->getValueType(0);
+ const uint64_t zero[] = {0, 0};
+ APFloat apf = APFloat(APInt(VT.getSizeInBits(), 2, zero));
+ APInt x = APInt::getSignBit(NVT.getSizeInBits());
+ (void)apf.convertFromAPInt(x, false, APFloat::rmNearestTiesToEven);
+ Tmp1 = DAG.getConstantFP(apf, VT);
+ Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(VT),
+ Node->getOperand(0),
+ Tmp1, ISD::SETLT);
+ True = DAG.getNode(ISD::FP_TO_SINT, dl, NVT, Node->getOperand(0));
+ False = DAG.getNode(ISD::FP_TO_SINT, dl, NVT,
+ DAG.getNode(ISD::FSUB, dl, VT,
+ Node->getOperand(0), Tmp1));
+ False = DAG.getNode(ISD::XOR, dl, NVT, False,
+ DAG.getConstant(x, NVT));
+ Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp2, True, False);
+ Results.push_back(Tmp1);
+ break;
+ }
+ case ISD::VAARG: {
+ const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
+ MVT VT = Node->getValueType(0);
+ Tmp1 = Node->getOperand(0);
+ Tmp2 = Node->getOperand(1);
+ SDValue VAList = DAG.getLoad(TLI.getPointerTy(), dl, Tmp1, Tmp2, V, 0);
+ // Increment the pointer, VAList, to the next vaarg
+ Tmp3 = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), VAList,
+ DAG.getConstant(TLI.getTargetData()->
+ getTypeAllocSize(VT.getTypeForMVT()),
+ TLI.getPointerTy()));
+ // Store the incremented VAList to the legalized pointer
+ Tmp3 = DAG.getStore(VAList.getValue(1), dl, Tmp3, Tmp2, V, 0);
+ // Load the actual argument out of the pointer VAList
+ Results.push_back(DAG.getLoad(VT, dl, Tmp3, VAList, NULL, 0));
+ Results.push_back(Results[0].getValue(1));
+ break;
+ }
+ case ISD::VACOPY: {
+ // This defaults to loading a pointer from the input and storing it to the
+ // output, returning the chain.
+ const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue();
+ const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue();
+ Tmp1 = DAG.getLoad(TLI.getPointerTy(), dl, Node->getOperand(0),
+ Node->getOperand(2), VS, 0);
+ Tmp1 = DAG.getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1), VD, 0);
+ Results.push_back(Tmp1);
+ break;
+ }
+ case ISD::EXTRACT_VECTOR_ELT:
+ if (Node->getOperand(0).getValueType().getVectorNumElements() == 1)
+ // This must be an access of the only element. Return it.
+ Tmp1 = DAG.getNode(ISD::BIT_CONVERT, dl, Node->getValueType(0),
+ Node->getOperand(0));
+ else
+ Tmp1 = ExpandExtractFromVectorThroughStack(SDValue(Node, 0));
+ Results.push_back(Tmp1);
+ break;
+ case ISD::EXTRACT_SUBVECTOR:
+ Results.push_back(ExpandExtractFromVectorThroughStack(SDValue(Node, 0)));
+ break;
+ case ISD::CONCAT_VECTORS: {
+ // Use extract/insert/build vector for now. We might try to be
+ // more clever later.
+ SmallVector<SDValue, 8> Ops;
+ unsigned NumOperands = Node->getNumOperands();
+ for (unsigned i=0; i < NumOperands; ++i) {
+ SDValue SubOp = Node->getOperand(i);
+ MVT VVT = SubOp.getNode()->getValueType(0);
+ MVT EltVT = VVT.getVectorElementType();
+ unsigned NumSubElem = VVT.getVectorNumElements();
+ for (unsigned j=0; j < NumSubElem; ++j) {
+ Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, SubOp,
+ DAG.getIntPtrConstant(j)));
+ }
+ }
+ Tmp1 = DAG.getNode(ISD::BUILD_VECTOR, dl, Node->getValueType(0),
+ &Ops[0], Ops.size());
+ Results.push_back(Tmp1);
+ break;
+ }
+ case ISD::SCALAR_TO_VECTOR:
+ Results.push_back(ExpandSCALAR_TO_VECTOR(Node));
+ break;
+ case ISD::INSERT_VECTOR_ELT:
+ Results.push_back(ExpandINSERT_VECTOR_ELT(Node->getOperand(0),
+ Node->getOperand(1),
+ Node->getOperand(2), dl));
+ break;
+ case ISD::VECTOR_SHUFFLE: {
+ SmallVector<int, 8> Mask;
+ cast<ShuffleVectorSDNode>(Node)->getMask(Mask);
+
+ MVT VT = Node->getValueType(0);
+ MVT EltVT = VT.getVectorElementType();
+ unsigned NumElems = VT.getVectorNumElements();
+ SmallVector<SDValue, 8> Ops;
+ for (unsigned i = 0; i != NumElems; ++i) {
+ if (Mask[i] < 0) {
+ Ops.push_back(DAG.getUNDEF(EltVT));
+ continue;
+ }
+ unsigned Idx = Mask[i];
+ if (Idx < NumElems)
+ Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
+ Node->getOperand(0),
+ DAG.getIntPtrConstant(Idx)));
+ else
+ Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
+ Node->getOperand(1),
+ DAG.getIntPtrConstant(Idx - NumElems)));
+ }
+ Tmp1 = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &Ops[0], Ops.size());
+ Results.push_back(Tmp1);
+ break;
+ }
+ case ISD::EXTRACT_ELEMENT: {
+ MVT OpTy = Node->getOperand(0).getValueType();
+ if (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) {
+ // 1 -> Hi
+ Tmp1 = DAG.getNode(ISD::SRL, dl, OpTy, Node->getOperand(0),
+ DAG.getConstant(OpTy.getSizeInBits()/2,
+ TLI.getShiftAmountTy()));
+ Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), Tmp1);
+ } else {
+ // 0 -> Lo
+ Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0),
+ Node->getOperand(0));
+ }
+ Results.push_back(Tmp1);
+ break;
+ }
+ case ISD::STACKSAVE:
+ // Expand to CopyFromReg if the target set
+ // StackPointerRegisterToSaveRestore.
+ if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) {
+ Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, SP,
+ Node->getValueType(0)));
+ Results.push_back(Results[0].getValue(1));
+ } else {
+ Results.push_back(DAG.getUNDEF(Node->getValueType(0)));
+ Results.push_back(Node->getOperand(0));
+ }
+ break;
+ case ISD::STACKRESTORE:
+ // Expand to CopyToReg if the target set
+ // StackPointerRegisterToSaveRestore.
+ if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) {
+ Results.push_back(DAG.getCopyToReg(Node->getOperand(0), dl, SP,
+ Node->getOperand(1)));
+ } else {
+ Results.push_back(Node->getOperand(0));
+ }
+ break;
+ case ISD::FCOPYSIGN:
+ Results.push_back(ExpandFCOPYSIGN(Node));
+ break;
+ case ISD::FNEG:
+ // Expand Y = FNEG(X) -> Y = SUB -0.0, X
+ Tmp1 = DAG.getConstantFP(-0.0, Node->getValueType(0));
+ Tmp1 = DAG.getNode(ISD::FSUB, dl, Node->getValueType(0), Tmp1,
+ Node->getOperand(0));
+ Results.push_back(Tmp1);
+ break;
+ case ISD::FABS: {
+ // Expand Y = FABS(X) -> Y = (X >u 0.0) ? X : fneg(X).
+ MVT VT = Node->getValueType(0);
+ Tmp1 = Node->getOperand(0);
+ Tmp2 = DAG.getConstantFP(0.0, VT);
+ Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(Tmp1.getValueType()),
+ Tmp1, Tmp2, ISD::SETUGT);
+ Tmp3 = DAG.getNode(ISD::FNEG, dl, VT, Tmp1);
+ Tmp1 = DAG.getNode(ISD::SELECT, dl, VT, Tmp2, Tmp1, Tmp3);
+ Results.push_back(Tmp1);
+ break;
+ }
+ case ISD::FSQRT:
+ Results.push_back(ExpandFPLibCall(Node, RTLIB::SQRT_F32, RTLIB::SQRT_F64,
+ RTLIB::SQRT_F80, RTLIB::SQRT_PPCF128));
+ break;
+ case ISD::FSIN:
+ Results.push_back(ExpandFPLibCall(Node, RTLIB::SIN_F32, RTLIB::SIN_F64,
+ RTLIB::SIN_F80, RTLIB::SIN_PPCF128));
+ break;
+ case ISD::FCOS:
+ Results.push_back(ExpandFPLibCall(Node, RTLIB::COS_F32, RTLIB::COS_F64,
+ RTLIB::COS_F80, RTLIB::COS_PPCF128));
+ break;
+ case ISD::FLOG:
+ Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG_F32, RTLIB::LOG_F64,
+ RTLIB::LOG_F80, RTLIB::LOG_PPCF128));
+ break;
+ case ISD::FLOG2:
+ Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG2_F32, RTLIB::LOG2_F64,
+ RTLIB::LOG2_F80, RTLIB::LOG2_PPCF128));
+ break;
+ case ISD::FLOG10:
+ Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG10_F32, RTLIB::LOG10_F64,
+ RTLIB::LOG10_F80, RTLIB::LOG10_PPCF128));
+ break;
+ case ISD::FEXP:
+ Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP_F32, RTLIB::EXP_F64,
+ RTLIB::EXP_F80, RTLIB::EXP_PPCF128));
+ break;
+ case ISD::FEXP2:
+ Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP2_F32, RTLIB::EXP2_F64,
+ RTLIB::EXP2_F80, RTLIB::EXP2_PPCF128));
+ break;
+ case ISD::FTRUNC:
+ Results.push_back(ExpandFPLibCall(Node, RTLIB::TRUNC_F32, RTLIB::TRUNC_F64,
+ RTLIB::TRUNC_F80, RTLIB::TRUNC_PPCF128));
+ break;
+ case ISD::FFLOOR:
+ Results.push_back(ExpandFPLibCall(Node, RTLIB::FLOOR_F32, RTLIB::FLOOR_F64,
+ RTLIB::FLOOR_F80, RTLIB::FLOOR_PPCF128));
+ break;
+ case ISD::FCEIL:
+ Results.push_back(ExpandFPLibCall(Node, RTLIB::CEIL_F32, RTLIB::CEIL_F64,
+ RTLIB::CEIL_F80, RTLIB::CEIL_PPCF128));
+ break;
+ case ISD::FRINT:
+ Results.push_back(ExpandFPLibCall(Node, RTLIB::RINT_F32, RTLIB::RINT_F64,
+ RTLIB::RINT_F80, RTLIB::RINT_PPCF128));
+ break;
+ case ISD::FNEARBYINT:
+ Results.push_back(ExpandFPLibCall(Node, RTLIB::NEARBYINT_F32,
+ RTLIB::NEARBYINT_F64,
+ RTLIB::NEARBYINT_F80,
+ RTLIB::NEARBYINT_PPCF128));
+ break;
+ case ISD::FPOWI:
+ Results.push_back(ExpandFPLibCall(Node, RTLIB::POWI_F32, RTLIB::POWI_F64,
+ RTLIB::POWI_F80, RTLIB::POWI_PPCF128));
+ break;
+ case ISD::FPOW:
+ Results.push_back(ExpandFPLibCall(Node, RTLIB::POW_F32, RTLIB::POW_F64,
+ RTLIB::POW_F80, RTLIB::POW_PPCF128));
+ break;
+ case ISD::FDIV:
+ Results.push_back(ExpandFPLibCall(Node, RTLIB::DIV_F32, RTLIB::DIV_F64,
+ RTLIB::DIV_F80, RTLIB::DIV_PPCF128));
+ break;
+ case ISD::FREM:
+ Results.push_back(ExpandFPLibCall(Node, RTLIB::REM_F32, RTLIB::REM_F64,
+ RTLIB::REM_F80, RTLIB::REM_PPCF128));
+ break;
+ case ISD::ConstantFP: {
+ ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Node);
+ // Check to see if this FP immediate is already legal.
+ bool isLegal = false;
+ for (TargetLowering::legal_fpimm_iterator I = TLI.legal_fpimm_begin(),
+ E = TLI.legal_fpimm_end(); I != E; ++I) {
+ if (CFP->isExactlyValue(*I)) {
+ isLegal = true;
+ break;
+ }
+ }
+ // If this is a legal constant, turn it into a TargetConstantFP node.
+ if (isLegal)
+ Results.push_back(SDValue(Node, 0));
+ else
+ Results.push_back(ExpandConstantFP(CFP, true, DAG, TLI));
+ break;
+ }
+ case ISD::EHSELECTION: {
+ unsigned Reg = TLI.getExceptionSelectorRegister();
+ assert(Reg && "Can't expand to unknown register!");
+ Results.push_back(DAG.getCopyFromReg(Node->getOperand(1), dl, Reg,
+ Node->getValueType(0)));
+ Results.push_back(Results[0].getValue(1));
+ break;
+ }
+ case ISD::EXCEPTIONADDR: {
+ unsigned Reg = TLI.getExceptionAddressRegister();
+ assert(Reg && "Can't expand to unknown register!");
+ Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, Reg,
+ Node->getValueType(0)));
+ Results.push_back(Results[0].getValue(1));
+ break;
+ }
+ case ISD::SUB: {
+ MVT VT = Node->getValueType(0);
+ assert(TLI.isOperationLegalOrCustom(ISD::ADD, VT) &&
+ TLI.isOperationLegalOrCustom(ISD::XOR, VT) &&
+ "Don't know how to expand this subtraction!");
+ Tmp1 = DAG.getNode(ISD::XOR, dl, VT, Node->getOperand(1),
+ DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT));
+ Tmp1 = DAG.getNode(ISD::ADD, dl, VT, Tmp2, DAG.getConstant(1, VT));
+ Results.push_back(DAG.getNode(ISD::ADD, dl, VT, Node->getOperand(0), Tmp1));
+ break;
+ }
+ case ISD::UREM:
+ case ISD::SREM: {
+ MVT VT = Node->getValueType(0);
+ SDVTList VTs = DAG.getVTList(VT, VT);
+ bool isSigned = Node->getOpcode() == ISD::SREM;
+ unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV;
+ unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
+ Tmp2 = Node->getOperand(0);
+ Tmp3 = Node->getOperand(1);
+ if (TLI.isOperationLegalOrCustom(DivRemOpc, VT)) {
+ Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Tmp2, Tmp3).getValue(1);
+ } else if (TLI.isOperationLegalOrCustom(DivOpc, VT)) {
+ // X % Y -> X-X/Y*Y
+ Tmp1 = DAG.getNode(DivOpc, dl, VT, Tmp2, Tmp3);
+ Tmp1 = DAG.getNode(ISD::MUL, dl, VT, Tmp1, Tmp3);
+ Tmp1 = DAG.getNode(ISD::SUB, dl, VT, Tmp2, Tmp1);
+ } else if (isSigned) {
+ Tmp1 = ExpandIntLibCall(Node, true, RTLIB::SREM_I16, RTLIB::SREM_I32,
+ RTLIB::SREM_I64, RTLIB::SREM_I128);
+ } else {
+ Tmp1 = ExpandIntLibCall(Node, false, RTLIB::UREM_I16, RTLIB::UREM_I32,
+ RTLIB::UREM_I64, RTLIB::UREM_I128);
+ }
+ Results.push_back(Tmp1);
+ break;
+ }
+ case ISD::UDIV:
+ case ISD::SDIV: {
+ bool isSigned = Node->getOpcode() == ISD::SDIV;
+ unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
+ MVT VT = Node->getValueType(0);
+ SDVTList VTs = DAG.getVTList(VT, VT);
+ if (TLI.isOperationLegalOrCustom(DivRemOpc, VT))
+ Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Node->getOperand(0),
+ Node->getOperand(1));
+ else if (isSigned)
+ Tmp1 = ExpandIntLibCall(Node, true, RTLIB::SDIV_I16, RTLIB::SDIV_I32,
+ RTLIB::SDIV_I64, RTLIB::SDIV_I128);
+ else
+ Tmp1 = ExpandIntLibCall(Node, false, RTLIB::UDIV_I16, RTLIB::UDIV_I32,
+ RTLIB::UDIV_I64, RTLIB::UDIV_I128);
+ Results.push_back(Tmp1);
+ break;
+ }
+ case ISD::MULHU:
+ case ISD::MULHS: {
+ unsigned ExpandOpcode = Node->getOpcode() == ISD::MULHU ? ISD::UMUL_LOHI :
+ ISD::SMUL_LOHI;
+ MVT VT = Node->getValueType(0);
+ SDVTList VTs = DAG.getVTList(VT, VT);
+ assert(TLI.isOperationLegalOrCustom(ExpandOpcode, VT) &&
+ "If this wasn't legal, it shouldn't have been created!");
+ Tmp1 = DAG.getNode(ExpandOpcode, dl, VTs, Node->getOperand(0),
+ Node->getOperand(1));
+ Results.push_back(Tmp1.getValue(1));
+ break;
+ }
+ case ISD::MUL: {
+ MVT VT = Node->getValueType(0);
+ SDVTList VTs = DAG.getVTList(VT, VT);
+ // See if multiply or divide can be lowered using two-result operations.
+ // We just need the low half of the multiply; try both the signed
+ // and unsigned forms. If the target supports both SMUL_LOHI and
+ // UMUL_LOHI, form a preference by checking which forms of plain
+ // MULH it supports.
+ bool HasSMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::SMUL_LOHI, VT);
+ bool HasUMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::UMUL_LOHI, VT);
+ bool HasMULHS = TLI.isOperationLegalOrCustom(ISD::MULHS, VT);
+ bool HasMULHU = TLI.isOperationLegalOrCustom(ISD::MULHU, VT);
+ unsigned OpToUse = 0;
+ if (HasSMUL_LOHI && !HasMULHS) {
+ OpToUse = ISD::SMUL_LOHI;
+ } else if (HasUMUL_LOHI && !HasMULHU) {
+ OpToUse = ISD::UMUL_LOHI;
+ } else if (HasSMUL_LOHI) {
+ OpToUse = ISD::SMUL_LOHI;
+ } else if (HasUMUL_LOHI) {
+ OpToUse = ISD::UMUL_LOHI;
+ }
+ if (OpToUse) {
+ Results.push_back(DAG.getNode(OpToUse, dl, VTs, Node->getOperand(0),
+ Node->getOperand(1)));
+ break;
+ }
+ Tmp1 = ExpandIntLibCall(Node, false, RTLIB::MUL_I16, RTLIB::MUL_I32,
+ RTLIB::MUL_I64, RTLIB::MUL_I128);
+ Results.push_back(Tmp1);
+ break;
+ }
+ case ISD::SADDO:
+ case ISD::SSUBO: {
+ SDValue LHS = Node->getOperand(0);
+ SDValue RHS = Node->getOperand(1);
+ SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::SADDO ?
+ ISD::ADD : ISD::SUB, dl, LHS.getValueType(),
+ LHS, RHS);
+ Results.push_back(Sum);
+ MVT OType = Node->getValueType(1);
+
+ SDValue Zero = DAG.getConstant(0, LHS.getValueType());
+
+ // LHSSign -> LHS >= 0
+ // RHSSign -> RHS >= 0
+ // SumSign -> Sum >= 0
+ //
+ // Add:
+ // Overflow -> (LHSSign == RHSSign) && (LHSSign != SumSign)
+ // Sub:
+ // Overflow -> (LHSSign != RHSSign) && (LHSSign != SumSign)
+ //
+ SDValue LHSSign = DAG.getSetCC(dl, OType, LHS, Zero, ISD::SETGE);
+ SDValue RHSSign = DAG.getSetCC(dl, OType, RHS, Zero, ISD::SETGE);
+ SDValue SignsMatch = DAG.getSetCC(dl, OType, LHSSign, RHSSign,
+ Node->getOpcode() == ISD::SADDO ?
+ ISD::SETEQ : ISD::SETNE);
+
+ SDValue SumSign = DAG.getSetCC(dl, OType, Sum, Zero, ISD::SETGE);
+ SDValue SumSignNE = DAG.getSetCC(dl, OType, LHSSign, SumSign, ISD::SETNE);
+
+ SDValue Cmp = DAG.getNode(ISD::AND, dl, OType, SignsMatch, SumSignNE);
+ Results.push_back(Cmp);
+ break;
+ }
+ case ISD::UADDO:
+ case ISD::USUBO: {
+ SDValue LHS = Node->getOperand(0);
+ SDValue RHS = Node->getOperand(1);
+ SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::UADDO ?
+ ISD::ADD : ISD::SUB, dl, LHS.getValueType(),
+ LHS, RHS);
+ Results.push_back(Sum);
+ Results.push_back(DAG.getSetCC(dl, Node->getValueType(1), Sum, LHS,
+ Node->getOpcode () == ISD::UADDO ?
+ ISD::SETULT : ISD::SETUGT));
+ break;
+ }
+ case ISD::BUILD_PAIR: {
+ MVT PairTy = Node->getValueType(0);
+ Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, PairTy, Node->getOperand(0));
+ Tmp2 = DAG.getNode(ISD::ANY_EXTEND, dl, PairTy, Node->getOperand(1));
+ Tmp2 = DAG.getNode(ISD::SHL, dl, PairTy, Tmp2,
+ DAG.getConstant(PairTy.getSizeInBits()/2,
+ TLI.getShiftAmountTy()));
+ Results.push_back(DAG.getNode(ISD::OR, dl, PairTy, Tmp1, Tmp2));
+ break;
+ }
+ case ISD::SELECT:
+ Tmp1 = Node->getOperand(0);
+ Tmp2 = Node->getOperand(1);
+ Tmp3 = Node->getOperand(2);
+ if (Tmp1.getOpcode() == ISD::SETCC) {
+ Tmp1 = DAG.getSelectCC(dl, Tmp1.getOperand(0), Tmp1.getOperand(1),
+ Tmp2, Tmp3,
+ cast<CondCodeSDNode>(Tmp1.getOperand(2))->get());
+ } else {
+ Tmp1 = DAG.getSelectCC(dl, Tmp1,
+ DAG.getConstant(0, Tmp1.getValueType()),
+ Tmp2, Tmp3, ISD::SETNE);
+ }
+ Results.push_back(Tmp1);
+ break;
+ case ISD::BR_JT: {
+ SDValue Chain = Node->getOperand(0);
+ SDValue Table = Node->getOperand(1);
+ SDValue Index = Node->getOperand(2);
+
+ MVT PTy = TLI.getPointerTy();
+ MachineFunction &MF = DAG.getMachineFunction();
+ unsigned EntrySize = MF.getJumpTableInfo()->getEntrySize();
+ Index= DAG.getNode(ISD::MUL, dl, PTy,
+ Index, DAG.getConstant(EntrySize, PTy));
+ SDValue Addr = DAG.getNode(ISD::ADD, dl, PTy, Index, Table);
+
+ MVT MemVT = MVT::getIntegerVT(EntrySize * 8);
+ SDValue LD = DAG.getExtLoad(ISD::SEXTLOAD, dl, PTy, Chain, Addr,
+ PseudoSourceValue::getJumpTable(), 0, MemVT);
+ Addr = LD;
+ if (TLI.getTargetMachine().getRelocationModel() == Reloc::PIC_) {
+ // For PIC, the sequence is:
+ // BRIND(load(Jumptable + index) + RelocBase)
+ // RelocBase can be JumpTable, GOT or some sort of global base.
+ Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr,
+ TLI.getPICJumpTableRelocBase(Table, DAG));
+ }
+ Tmp1 = DAG.getNode(ISD::BRIND, dl, MVT::Other, LD.getValue(1), Addr);
+ Results.push_back(Tmp1);
+ break;
+ }
+ case ISD::BRCOND:
+ // Expand brcond's setcc into its constituent parts and create a BR_CC
+ // Node.
+ Tmp1 = Node->getOperand(0);
+ Tmp2 = Node->getOperand(1);
+ if (Tmp2.getOpcode() == ISD::SETCC) {
+ Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other,
+ Tmp1, Tmp2.getOperand(2),
+ Tmp2.getOperand(0), Tmp2.getOperand(1),
+ Node->getOperand(2));
+ } else {
+ Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other, Tmp1,
+ DAG.getCondCode(ISD::SETNE), Tmp2,
+ DAG.getConstant(0, Tmp2.getValueType()),
+ Node->getOperand(2));
+ }
+ Results.push_back(Tmp1);
+ break;
+ case ISD::SETCC: {
+ Tmp1 = Node->getOperand(0);
+ Tmp2 = Node->getOperand(1);
+ Tmp3 = Node->getOperand(2);
+ LegalizeSetCCCondCode(Node->getValueType(0), Tmp1, Tmp2, Tmp3, dl);
+
+ // If we expanded the SETCC into an AND/OR, return the new node
+ if (Tmp2.getNode() == 0) {
+ Results.push_back(Tmp1);
+ break;
+ }
+
+ // Otherwise, SETCC for the given comparison type must be completely
+ // illegal; expand it into a SELECT_CC.
+ MVT VT = Node->getValueType(0);
+ Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, VT, Tmp1, Tmp2,
+ DAG.getConstant(1, VT), DAG.getConstant(0, VT), Tmp3);
+ Results.push_back(Tmp1);
+ break;
+ }
+ case ISD::SELECT_CC: {
+ Tmp1 = Node->getOperand(0); // LHS
+ Tmp2 = Node->getOperand(1); // RHS
+ Tmp3 = Node->getOperand(2); // True
+ Tmp4 = Node->getOperand(3); // False
+ SDValue CC = Node->getOperand(4);
+
+ LegalizeSetCCCondCode(TLI.getSetCCResultType(Tmp1.getValueType()),
+ Tmp1, Tmp2, CC, dl);
+
+ assert(!Tmp2.getNode() && "Can't legalize SELECT_CC with legal condition!");
+ Tmp2 = DAG.getConstant(0, Tmp1.getValueType());
+ CC = DAG.getCondCode(ISD::SETNE);
+ Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0), Tmp1, Tmp2,
+ Tmp3, Tmp4, CC);
+ Results.push_back(Tmp1);
+ break;
+ }
+ case ISD::BR_CC: {
+ Tmp1 = Node->getOperand(0); // Chain
+ Tmp2 = Node->getOperand(2); // LHS
+ Tmp3 = Node->getOperand(3); // RHS
+ Tmp4 = Node->getOperand(1); // CC
+
+ LegalizeSetCCCondCode(TLI.getSetCCResultType(Tmp2.getValueType()),
+ Tmp2, Tmp3, Tmp4, dl);
+ LastCALLSEQ_END = DAG.getEntryNode();
+
+ assert(!Tmp3.getNode() && "Can't legalize BR_CC with legal condition!");
+ Tmp3 = DAG.getConstant(0, Tmp2.getValueType());
+ Tmp4 = DAG.getCondCode(ISD::SETNE);
+ Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1, Tmp4, Tmp2,
+ Tmp3, Node->getOperand(4));
+ Results.push_back(Tmp1);
+ break;
+ }
+ case ISD::GLOBAL_OFFSET_TABLE:
+ case ISD::GlobalAddress:
+ case ISD::GlobalTLSAddress:
+ case ISD::ExternalSymbol:
+ case ISD::ConstantPool:
+ case ISD::JumpTable:
+ case ISD::INTRINSIC_W_CHAIN:
+ case ISD::INTRINSIC_WO_CHAIN:
+ case ISD::INTRINSIC_VOID:
+ // FIXME: Custom lowering for these operations shouldn't return null!
+ for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
+ Results.push_back(SDValue(Node, i));
+ break;
+ }
+}
+void SelectionDAGLegalize::PromoteNode(SDNode *Node,
+ SmallVectorImpl<SDValue> &Results) {
+ MVT OVT = Node->getValueType(0);
+ if (Node->getOpcode() == ISD::UINT_TO_FP ||
+ Node->getOpcode() == ISD::SINT_TO_FP) {
+ OVT = Node->getOperand(0).getValueType();
+ }
+ MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT);
+ DebugLoc dl = Node->getDebugLoc();
+ SDValue Tmp1, Tmp2, Tmp3;
+ switch (Node->getOpcode()) {
+ case ISD::CTTZ:
+ case ISD::CTLZ:
+ case ISD::CTPOP:
+ // Zero extend the argument.
+ Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0));
+ // Perform the larger operation.
+ Tmp1 = DAG.getNode(Node->getOpcode(), dl, Node->getValueType(0), Tmp1);
+ if (Node->getOpcode() == ISD::CTTZ) {
+ //if Tmp1 == sizeinbits(NVT) then Tmp1 = sizeinbits(Old VT)
+ Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(Tmp1.getValueType()),
+ Tmp1, DAG.getConstant(NVT.getSizeInBits(), NVT),
+ ISD::SETEQ);
+ Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp2,
+ DAG.getConstant(OVT.getSizeInBits(), NVT), Tmp1);
+ } else if (Node->getOpcode() == ISD::CTLZ) {
+ // Tmp1 = Tmp1 - (sizeinbits(NVT) - sizeinbits(Old VT))
+ Tmp1 = DAG.getNode(ISD::SUB, dl, NVT, Tmp1,
+ DAG.getConstant(NVT.getSizeInBits() -
+ OVT.getSizeInBits(), NVT));
+ }
+ Results.push_back(Tmp1);
+ break;
+ case ISD::BSWAP: {
+ unsigned DiffBits = NVT.getSizeInBits() - OVT.getSizeInBits();
+ Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Tmp1);
+ Tmp1 = DAG.getNode(ISD::BSWAP, dl, NVT, Tmp1);
+ Tmp1 = DAG.getNode(ISD::SRL, dl, NVT, Tmp1,
+ DAG.getConstant(DiffBits, TLI.getShiftAmountTy()));
+ Results.push_back(Tmp1);
+ break;
+ }
+ case ISD::FP_TO_UINT:
+ case ISD::FP_TO_SINT:
+ Tmp1 = PromoteLegalFP_TO_INT(Node->getOperand(0), Node->getValueType(0),
+ Node->getOpcode() == ISD::FP_TO_SINT, dl);
+ Results.push_back(Tmp1);
+ break;
+ case ISD::UINT_TO_FP:
+ case ISD::SINT_TO_FP:
+ Tmp1 = PromoteLegalINT_TO_FP(Node->getOperand(0), Node->getValueType(0),
+ Node->getOpcode() == ISD::SINT_TO_FP, dl);
+ Results.push_back(Tmp1);
+ break;
+ case ISD::AND:
+ case ISD::OR:
+ case ISD::XOR:
+ assert(OVT.isVector() && "Don't know how to promote scalar logic ops");
+ // Bit convert each of the values to the new type.
+ Tmp1 = DAG.getNode(ISD::BIT_CONVERT, dl, NVT, Node->getOperand(0));
+ Tmp2 = DAG.getNode(ISD::BIT_CONVERT, dl, NVT, Node->getOperand(1));
+ Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2);
+ // Bit convert the result back the original type.
+ Results.push_back(DAG.getNode(ISD::BIT_CONVERT, dl, OVT, Tmp1));
+ break;
+ case ISD::SELECT:
+ unsigned ExtOp, TruncOp;
+ if (Node->getValueType(0).isVector()) {
+ ExtOp = ISD::BIT_CONVERT;
+ TruncOp = ISD::BIT_CONVERT;
+ } else if (Node->getValueType(0).isInteger()) {
+ ExtOp = ISD::ANY_EXTEND;
+ TruncOp = ISD::TRUNCATE;
+ } else {
+ ExtOp = ISD::FP_EXTEND;
+ TruncOp = ISD::FP_ROUND;
+ }
+ Tmp1 = Node->getOperand(0);
+ // Promote each of the values to the new type.
+ Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
+ Tmp3 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2));
+ // Perform the larger operation, then round down.
+ Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp1, Tmp2, Tmp3);
+ if (TruncOp != ISD::FP_ROUND)
+ Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1);
+ else
+ Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1,
+ DAG.getIntPtrConstant(0));
+ Results.push_back(Tmp1);
+ break;
+ case ISD::VECTOR_SHUFFLE: {
+ SmallVector<int, 8> Mask;
+ cast<ShuffleVectorSDNode>(Node)->getMask(Mask);
+
+ // Cast the two input vectors.
+ Tmp1 = DAG.getNode(ISD::BIT_CONVERT, dl, NVT, Node->getOperand(0));
+ Tmp2 = DAG.getNode(ISD::BIT_CONVERT, dl, NVT, Node->getOperand(1));
+
+ // Convert the shuffle mask to the right # elements.
+ Tmp1 = ShuffleWithNarrowerEltType(NVT, OVT, dl, Tmp1, Tmp2, Mask);
+ Tmp1 = DAG.getNode(ISD::BIT_CONVERT, dl, OVT, Tmp1);
+ Results.push_back(Tmp1);
+ break;
+ }
+ case ISD::SETCC: {
+ // First step, figure out the appropriate operation to use.
+ // Allow SETCC to not be supported for all legal data types
+ // Mostly this targets FP
+ MVT NewInTy = Node->getOperand(0).getValueType();
+ MVT OldVT = NewInTy; OldVT = OldVT;
+
+ // Scan for the appropriate larger type to use.
+ while (1) {
+ NewInTy = (MVT::SimpleValueType)(NewInTy.getSimpleVT()+1);
+
+ assert(NewInTy.isInteger() == OldVT.isInteger() &&
+ "Fell off of the edge of the integer world");
+ assert(NewInTy.isFloatingPoint() == OldVT.isFloatingPoint() &&
+ "Fell off of the edge of the floating point world");
+
+ // If the target supports SETCC of this type, use it.
+ if (TLI.isOperationLegalOrCustom(ISD::SETCC, NewInTy))
+ break;
+ }
+ if (NewInTy.isInteger())
+ assert(0 && "Cannot promote Legal Integer SETCC yet");
+ else {
+ Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NewInTy, Tmp1);
+ Tmp2 = DAG.getNode(ISD::FP_EXTEND, dl, NewInTy, Tmp2);
+ }
+ Results.push_back(DAG.getNode(ISD::SETCC, dl, Node->getValueType(0),
+ Tmp1, Tmp2, Node->getOperand(2)));
+ break;
+ }
+ }
+}
+
+// SelectionDAG::Legalize - This is the entry point for the file.
+//
+void SelectionDAG::Legalize(bool TypesNeedLegalizing,
+ CodeGenOpt::Level OptLevel) {
+ /// run - This is the main entry point to this class.
+ ///
+ SelectionDAGLegalize(*this, OptLevel).LegalizeDAG();
+}
+
OpenPOWER on IntegriCloud