diff options
Diffstat (limited to 'lib/CodeGen/SelectionDAG/FunctionLoweringInfo.cpp')
-rw-r--r-- | lib/CodeGen/SelectionDAG/FunctionLoweringInfo.cpp | 355 |
1 files changed, 355 insertions, 0 deletions
diff --git a/lib/CodeGen/SelectionDAG/FunctionLoweringInfo.cpp b/lib/CodeGen/SelectionDAG/FunctionLoweringInfo.cpp new file mode 100644 index 0000000..e3b25c2 --- /dev/null +++ b/lib/CodeGen/SelectionDAG/FunctionLoweringInfo.cpp @@ -0,0 +1,355 @@ +//===-- FunctionLoweringInfo.cpp ------------------------------------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This implements routines for translating functions from LLVM IR into +// Machine IR. +// +//===----------------------------------------------------------------------===// + +#define DEBUG_TYPE "function-lowering-info" +#include "FunctionLoweringInfo.h" +#include "llvm/CallingConv.h" +#include "llvm/DerivedTypes.h" +#include "llvm/Function.h" +#include "llvm/Instructions.h" +#include "llvm/IntrinsicInst.h" +#include "llvm/LLVMContext.h" +#include "llvm/Module.h" +#include "llvm/CodeGen/MachineFunction.h" +#include "llvm/CodeGen/MachineFrameInfo.h" +#include "llvm/CodeGen/MachineInstrBuilder.h" +#include "llvm/CodeGen/MachineModuleInfo.h" +#include "llvm/CodeGen/MachineRegisterInfo.h" +#include "llvm/Analysis/DebugInfo.h" +#include "llvm/Target/TargetRegisterInfo.h" +#include "llvm/Target/TargetData.h" +#include "llvm/Target/TargetFrameInfo.h" +#include "llvm/Target/TargetInstrInfo.h" +#include "llvm/Target/TargetIntrinsicInfo.h" +#include "llvm/Target/TargetLowering.h" +#include "llvm/Target/TargetOptions.h" +#include "llvm/Support/Compiler.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/MathExtras.h" +#include "llvm/Support/raw_ostream.h" +#include <algorithm> +using namespace llvm; + +/// ComputeLinearIndex - Given an LLVM IR aggregate type and a sequence +/// of insertvalue or extractvalue indices that identify a member, return +/// the linearized index of the start of the member. +/// +unsigned llvm::ComputeLinearIndex(const TargetLowering &TLI, const Type *Ty, + const unsigned *Indices, + const unsigned *IndicesEnd, + unsigned CurIndex) { + // Base case: We're done. + if (Indices && Indices == IndicesEnd) + return CurIndex; + + // Given a struct type, recursively traverse the elements. + if (const StructType *STy = dyn_cast<StructType>(Ty)) { + for (StructType::element_iterator EB = STy->element_begin(), + EI = EB, + EE = STy->element_end(); + EI != EE; ++EI) { + if (Indices && *Indices == unsigned(EI - EB)) + return ComputeLinearIndex(TLI, *EI, Indices+1, IndicesEnd, CurIndex); + CurIndex = ComputeLinearIndex(TLI, *EI, 0, 0, CurIndex); + } + return CurIndex; + } + // Given an array type, recursively traverse the elements. + else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { + const Type *EltTy = ATy->getElementType(); + for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i) { + if (Indices && *Indices == i) + return ComputeLinearIndex(TLI, EltTy, Indices+1, IndicesEnd, CurIndex); + CurIndex = ComputeLinearIndex(TLI, EltTy, 0, 0, CurIndex); + } + return CurIndex; + } + // We haven't found the type we're looking for, so keep searching. + return CurIndex + 1; +} + +/// ComputeValueVTs - Given an LLVM IR type, compute a sequence of +/// EVTs that represent all the individual underlying +/// non-aggregate types that comprise it. +/// +/// If Offsets is non-null, it points to a vector to be filled in +/// with the in-memory offsets of each of the individual values. +/// +void llvm::ComputeValueVTs(const TargetLowering &TLI, const Type *Ty, + SmallVectorImpl<EVT> &ValueVTs, + SmallVectorImpl<uint64_t> *Offsets, + uint64_t StartingOffset) { + // Given a struct type, recursively traverse the elements. + if (const StructType *STy = dyn_cast<StructType>(Ty)) { + const StructLayout *SL = TLI.getTargetData()->getStructLayout(STy); + for (StructType::element_iterator EB = STy->element_begin(), + EI = EB, + EE = STy->element_end(); + EI != EE; ++EI) + ComputeValueVTs(TLI, *EI, ValueVTs, Offsets, + StartingOffset + SL->getElementOffset(EI - EB)); + return; + } + // Given an array type, recursively traverse the elements. + if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { + const Type *EltTy = ATy->getElementType(); + uint64_t EltSize = TLI.getTargetData()->getTypeAllocSize(EltTy); + for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i) + ComputeValueVTs(TLI, EltTy, ValueVTs, Offsets, + StartingOffset + i * EltSize); + return; + } + // Interpret void as zero return values. + if (Ty == Type::getVoidTy(Ty->getContext())) + return; + // Base case: we can get an EVT for this LLVM IR type. + ValueVTs.push_back(TLI.getValueType(Ty)); + if (Offsets) + Offsets->push_back(StartingOffset); +} + +/// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by +/// PHI nodes or outside of the basic block that defines it, or used by a +/// switch or atomic instruction, which may expand to multiple basic blocks. +static bool isUsedOutsideOfDefiningBlock(Instruction *I) { + if (isa<PHINode>(I)) return true; + BasicBlock *BB = I->getParent(); + for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; ++UI) + if (cast<Instruction>(*UI)->getParent() != BB || isa<PHINode>(*UI)) + return true; + return false; +} + +/// isOnlyUsedInEntryBlock - If the specified argument is only used in the +/// entry block, return true. This includes arguments used by switches, since +/// the switch may expand into multiple basic blocks. +static bool isOnlyUsedInEntryBlock(Argument *A, bool EnableFastISel) { + // With FastISel active, we may be splitting blocks, so force creation + // of virtual registers for all non-dead arguments. + // Don't force virtual registers for byval arguments though, because + // fast-isel can't handle those in all cases. + if (EnableFastISel && !A->hasByValAttr()) + return A->use_empty(); + + BasicBlock *Entry = A->getParent()->begin(); + for (Value::use_iterator UI = A->use_begin(), E = A->use_end(); UI != E; ++UI) + if (cast<Instruction>(*UI)->getParent() != Entry || isa<SwitchInst>(*UI)) + return false; // Use not in entry block. + return true; +} + +FunctionLoweringInfo::FunctionLoweringInfo(TargetLowering &tli) + : TLI(tli) { +} + +void FunctionLoweringInfo::set(Function &fn, MachineFunction &mf, + bool EnableFastISel) { + Fn = &fn; + MF = &mf; + RegInfo = &MF->getRegInfo(); + + // Create a vreg for each argument register that is not dead and is used + // outside of the entry block for the function. + for (Function::arg_iterator AI = Fn->arg_begin(), E = Fn->arg_end(); + AI != E; ++AI) + if (!isOnlyUsedInEntryBlock(AI, EnableFastISel)) + InitializeRegForValue(AI); + + // Initialize the mapping of values to registers. This is only set up for + // instruction values that are used outside of the block that defines + // them. + Function::iterator BB = Fn->begin(), EB = Fn->end(); + for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) + if (AllocaInst *AI = dyn_cast<AllocaInst>(I)) + if (ConstantInt *CUI = dyn_cast<ConstantInt>(AI->getArraySize())) { + const Type *Ty = AI->getAllocatedType(); + uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty); + unsigned Align = + std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), + AI->getAlignment()); + + TySize *= CUI->getZExtValue(); // Get total allocated size. + if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects. + StaticAllocaMap[AI] = + MF->getFrameInfo()->CreateStackObject(TySize, Align, false); + } + + for (; BB != EB; ++BB) + for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) + if (!I->use_empty() && isUsedOutsideOfDefiningBlock(I)) + if (!isa<AllocaInst>(I) || + !StaticAllocaMap.count(cast<AllocaInst>(I))) + InitializeRegForValue(I); + + // Create an initial MachineBasicBlock for each LLVM BasicBlock in F. This + // also creates the initial PHI MachineInstrs, though none of the input + // operands are populated. + for (BB = Fn->begin(), EB = Fn->end(); BB != EB; ++BB) { + MachineBasicBlock *MBB = mf.CreateMachineBasicBlock(BB); + MBBMap[BB] = MBB; + MF->push_back(MBB); + + // Transfer the address-taken flag. This is necessary because there could + // be multiple MachineBasicBlocks corresponding to one BasicBlock, and only + // the first one should be marked. + if (BB->hasAddressTaken()) + MBB->setHasAddressTaken(); + + // Create Machine PHI nodes for LLVM PHI nodes, lowering them as + // appropriate. + PHINode *PN; + DebugLoc DL; + for (BasicBlock::iterator + I = BB->begin(), E = BB->end(); I != E; ++I) { + + PN = dyn_cast<PHINode>(I); + if (!PN || PN->use_empty()) continue; + + unsigned PHIReg = ValueMap[PN]; + assert(PHIReg && "PHI node does not have an assigned virtual register!"); + + SmallVector<EVT, 4> ValueVTs; + ComputeValueVTs(TLI, PN->getType(), ValueVTs); + for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { + EVT VT = ValueVTs[vti]; + unsigned NumRegisters = TLI.getNumRegisters(Fn->getContext(), VT); + const TargetInstrInfo *TII = MF->getTarget().getInstrInfo(); + for (unsigned i = 0; i != NumRegisters; ++i) + BuildMI(MBB, DL, TII->get(TargetInstrInfo::PHI), PHIReg + i); + PHIReg += NumRegisters; + } + } + } +} + +/// clear - Clear out all the function-specific state. This returns this +/// FunctionLoweringInfo to an empty state, ready to be used for a +/// different function. +void FunctionLoweringInfo::clear() { + MBBMap.clear(); + ValueMap.clear(); + StaticAllocaMap.clear(); +#ifndef NDEBUG + CatchInfoLost.clear(); + CatchInfoFound.clear(); +#endif + LiveOutRegInfo.clear(); +} + +unsigned FunctionLoweringInfo::MakeReg(EVT VT) { + return RegInfo->createVirtualRegister(TLI.getRegClassFor(VT)); +} + +/// CreateRegForValue - Allocate the appropriate number of virtual registers of +/// the correctly promoted or expanded types. Assign these registers +/// consecutive vreg numbers and return the first assigned number. +/// +/// In the case that the given value has struct or array type, this function +/// will assign registers for each member or element. +/// +unsigned FunctionLoweringInfo::CreateRegForValue(const Value *V) { + SmallVector<EVT, 4> ValueVTs; + ComputeValueVTs(TLI, V->getType(), ValueVTs); + + unsigned FirstReg = 0; + for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { + EVT ValueVT = ValueVTs[Value]; + EVT RegisterVT = TLI.getRegisterType(V->getContext(), ValueVT); + + unsigned NumRegs = TLI.getNumRegisters(V->getContext(), ValueVT); + for (unsigned i = 0; i != NumRegs; ++i) { + unsigned R = MakeReg(RegisterVT); + if (!FirstReg) FirstReg = R; + } + } + return FirstReg; +} + +/// ExtractTypeInfo - Returns the type info, possibly bitcast, encoded in V. +GlobalVariable *llvm::ExtractTypeInfo(Value *V) { + V = V->stripPointerCasts(); + GlobalVariable *GV = dyn_cast<GlobalVariable>(V); + assert ((GV || isa<ConstantPointerNull>(V)) && + "TypeInfo must be a global variable or NULL"); + return GV; +} + +/// AddCatchInfo - Extract the personality and type infos from an eh.selector +/// call, and add them to the specified machine basic block. +void llvm::AddCatchInfo(CallInst &I, MachineModuleInfo *MMI, + MachineBasicBlock *MBB) { + // Inform the MachineModuleInfo of the personality for this landing pad. + ConstantExpr *CE = cast<ConstantExpr>(I.getOperand(2)); + assert(CE->getOpcode() == Instruction::BitCast && + isa<Function>(CE->getOperand(0)) && + "Personality should be a function"); + MMI->addPersonality(MBB, cast<Function>(CE->getOperand(0))); + + // Gather all the type infos for this landing pad and pass them along to + // MachineModuleInfo. + std::vector<GlobalVariable *> TyInfo; + unsigned N = I.getNumOperands(); + + for (unsigned i = N - 1; i > 2; --i) { + if (ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(i))) { + unsigned FilterLength = CI->getZExtValue(); + unsigned FirstCatch = i + FilterLength + !FilterLength; + assert (FirstCatch <= N && "Invalid filter length"); + + if (FirstCatch < N) { + TyInfo.reserve(N - FirstCatch); + for (unsigned j = FirstCatch; j < N; ++j) + TyInfo.push_back(ExtractTypeInfo(I.getOperand(j))); + MMI->addCatchTypeInfo(MBB, TyInfo); + TyInfo.clear(); + } + + if (!FilterLength) { + // Cleanup. + MMI->addCleanup(MBB); + } else { + // Filter. + TyInfo.reserve(FilterLength - 1); + for (unsigned j = i + 1; j < FirstCatch; ++j) + TyInfo.push_back(ExtractTypeInfo(I.getOperand(j))); + MMI->addFilterTypeInfo(MBB, TyInfo); + TyInfo.clear(); + } + + N = i; + } + } + + if (N > 3) { + TyInfo.reserve(N - 3); + for (unsigned j = 3; j < N; ++j) + TyInfo.push_back(ExtractTypeInfo(I.getOperand(j))); + MMI->addCatchTypeInfo(MBB, TyInfo); + } +} + +void llvm::CopyCatchInfo(BasicBlock *SrcBB, BasicBlock *DestBB, + MachineModuleInfo *MMI, FunctionLoweringInfo &FLI) { + for (BasicBlock::iterator I = SrcBB->begin(), E = --SrcBB->end(); I != E; ++I) + if (EHSelectorInst *EHSel = dyn_cast<EHSelectorInst>(I)) { + // Apply the catch info to DestBB. + AddCatchInfo(*EHSel, MMI, FLI.MBBMap[DestBB]); +#ifndef NDEBUG + if (!FLI.MBBMap[SrcBB]->isLandingPad()) + FLI.CatchInfoFound.insert(EHSel); +#endif + } +} |