summaryrefslogtreecommitdiffstats
path: root/lib/CodeGen/SelectionDAG/FastISel.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'lib/CodeGen/SelectionDAG/FastISel.cpp')
-rw-r--r--lib/CodeGen/SelectionDAG/FastISel.cpp1033
1 files changed, 1033 insertions, 0 deletions
diff --git a/lib/CodeGen/SelectionDAG/FastISel.cpp b/lib/CodeGen/SelectionDAG/FastISel.cpp
new file mode 100644
index 0000000..6becff3
--- /dev/null
+++ b/lib/CodeGen/SelectionDAG/FastISel.cpp
@@ -0,0 +1,1033 @@
+///===-- FastISel.cpp - Implementation of the FastISel class --------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the implementation of the FastISel class.
+//
+// "Fast" instruction selection is designed to emit very poor code quickly.
+// Also, it is not designed to be able to do much lowering, so most illegal
+// types (e.g. i64 on 32-bit targets) and operations are not supported. It is
+// also not intended to be able to do much optimization, except in a few cases
+// where doing optimizations reduces overall compile time. For example, folding
+// constants into immediate fields is often done, because it's cheap and it
+// reduces the number of instructions later phases have to examine.
+//
+// "Fast" instruction selection is able to fail gracefully and transfer
+// control to the SelectionDAG selector for operations that it doesn't
+// support. In many cases, this allows us to avoid duplicating a lot of
+// the complicated lowering logic that SelectionDAG currently has.
+//
+// The intended use for "fast" instruction selection is "-O0" mode
+// compilation, where the quality of the generated code is irrelevant when
+// weighed against the speed at which the code can be generated. Also,
+// at -O0, the LLVM optimizers are not running, and this makes the
+// compile time of codegen a much higher portion of the overall compile
+// time. Despite its limitations, "fast" instruction selection is able to
+// handle enough code on its own to provide noticeable overall speedups
+// in -O0 compiles.
+//
+// Basic operations are supported in a target-independent way, by reading
+// the same instruction descriptions that the SelectionDAG selector reads,
+// and identifying simple arithmetic operations that can be directly selected
+// from simple operators. More complicated operations currently require
+// target-specific code.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Function.h"
+#include "llvm/GlobalVariable.h"
+#include "llvm/Instructions.h"
+#include "llvm/IntrinsicInst.h"
+#include "llvm/CodeGen/FastISel.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineModuleInfo.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/DebugLoc.h"
+#include "llvm/CodeGen/DwarfWriter.h"
+#include "llvm/Analysis/DebugInfo.h"
+#include "llvm/Target/TargetData.h"
+#include "llvm/Target/TargetInstrInfo.h"
+#include "llvm/Target/TargetLowering.h"
+#include "llvm/Target/TargetMachine.h"
+#include "SelectionDAGBuild.h"
+using namespace llvm;
+
+unsigned FastISel::getRegForValue(Value *V) {
+ MVT RealVT = TLI.getValueType(V->getType(), /*AllowUnknown=*/true);
+ // Don't handle non-simple values in FastISel.
+ if (!RealVT.isSimple())
+ return 0;
+
+ // Ignore illegal types. We must do this before looking up the value
+ // in ValueMap because Arguments are given virtual registers regardless
+ // of whether FastISel can handle them.
+ MVT::SimpleValueType VT = RealVT.getSimpleVT();
+ if (!TLI.isTypeLegal(VT)) {
+ // Promote MVT::i1 to a legal type though, because it's common and easy.
+ if (VT == MVT::i1)
+ VT = TLI.getTypeToTransformTo(VT).getSimpleVT();
+ else
+ return 0;
+ }
+
+ // Look up the value to see if we already have a register for it. We
+ // cache values defined by Instructions across blocks, and other values
+ // only locally. This is because Instructions already have the SSA
+ // def-dominatess-use requirement enforced.
+ if (ValueMap.count(V))
+ return ValueMap[V];
+ unsigned Reg = LocalValueMap[V];
+ if (Reg != 0)
+ return Reg;
+
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
+ if (CI->getValue().getActiveBits() <= 64)
+ Reg = FastEmit_i(VT, VT, ISD::Constant, CI->getZExtValue());
+ } else if (isa<AllocaInst>(V)) {
+ Reg = TargetMaterializeAlloca(cast<AllocaInst>(V));
+ } else if (isa<ConstantPointerNull>(V)) {
+ // Translate this as an integer zero so that it can be
+ // local-CSE'd with actual integer zeros.
+ Reg = getRegForValue(Constant::getNullValue(TD.getIntPtrType()));
+ } else if (ConstantFP *CF = dyn_cast<ConstantFP>(V)) {
+ Reg = FastEmit_f(VT, VT, ISD::ConstantFP, CF);
+
+ if (!Reg) {
+ const APFloat &Flt = CF->getValueAPF();
+ MVT IntVT = TLI.getPointerTy();
+
+ uint64_t x[2];
+ uint32_t IntBitWidth = IntVT.getSizeInBits();
+ bool isExact;
+ (void) Flt.convertToInteger(x, IntBitWidth, /*isSigned=*/true,
+ APFloat::rmTowardZero, &isExact);
+ if (isExact) {
+ APInt IntVal(IntBitWidth, 2, x);
+
+ unsigned IntegerReg = getRegForValue(ConstantInt::get(IntVal));
+ if (IntegerReg != 0)
+ Reg = FastEmit_r(IntVT.getSimpleVT(), VT, ISD::SINT_TO_FP, IntegerReg);
+ }
+ }
+ } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
+ if (!SelectOperator(CE, CE->getOpcode())) return 0;
+ Reg = LocalValueMap[CE];
+ } else if (isa<UndefValue>(V)) {
+ Reg = createResultReg(TLI.getRegClassFor(VT));
+ BuildMI(MBB, DL, TII.get(TargetInstrInfo::IMPLICIT_DEF), Reg);
+ }
+
+ // If target-independent code couldn't handle the value, give target-specific
+ // code a try.
+ if (!Reg && isa<Constant>(V))
+ Reg = TargetMaterializeConstant(cast<Constant>(V));
+
+ // Don't cache constant materializations in the general ValueMap.
+ // To do so would require tracking what uses they dominate.
+ if (Reg != 0)
+ LocalValueMap[V] = Reg;
+ return Reg;
+}
+
+unsigned FastISel::lookUpRegForValue(Value *V) {
+ // Look up the value to see if we already have a register for it. We
+ // cache values defined by Instructions across blocks, and other values
+ // only locally. This is because Instructions already have the SSA
+ // def-dominatess-use requirement enforced.
+ if (ValueMap.count(V))
+ return ValueMap[V];
+ return LocalValueMap[V];
+}
+
+/// UpdateValueMap - Update the value map to include the new mapping for this
+/// instruction, or insert an extra copy to get the result in a previous
+/// determined register.
+/// NOTE: This is only necessary because we might select a block that uses
+/// a value before we select the block that defines the value. It might be
+/// possible to fix this by selecting blocks in reverse postorder.
+unsigned FastISel::UpdateValueMap(Value* I, unsigned Reg) {
+ if (!isa<Instruction>(I)) {
+ LocalValueMap[I] = Reg;
+ return Reg;
+ }
+
+ unsigned &AssignedReg = ValueMap[I];
+ if (AssignedReg == 0)
+ AssignedReg = Reg;
+ else if (Reg != AssignedReg) {
+ const TargetRegisterClass *RegClass = MRI.getRegClass(Reg);
+ TII.copyRegToReg(*MBB, MBB->end(), AssignedReg,
+ Reg, RegClass, RegClass);
+ }
+ return AssignedReg;
+}
+
+unsigned FastISel::getRegForGEPIndex(Value *Idx) {
+ unsigned IdxN = getRegForValue(Idx);
+ if (IdxN == 0)
+ // Unhandled operand. Halt "fast" selection and bail.
+ return 0;
+
+ // If the index is smaller or larger than intptr_t, truncate or extend it.
+ MVT PtrVT = TLI.getPointerTy();
+ MVT IdxVT = MVT::getMVT(Idx->getType(), /*HandleUnknown=*/false);
+ if (IdxVT.bitsLT(PtrVT))
+ IdxN = FastEmit_r(IdxVT.getSimpleVT(), PtrVT.getSimpleVT(),
+ ISD::SIGN_EXTEND, IdxN);
+ else if (IdxVT.bitsGT(PtrVT))
+ IdxN = FastEmit_r(IdxVT.getSimpleVT(), PtrVT.getSimpleVT(),
+ ISD::TRUNCATE, IdxN);
+ return IdxN;
+}
+
+/// SelectBinaryOp - Select and emit code for a binary operator instruction,
+/// which has an opcode which directly corresponds to the given ISD opcode.
+///
+bool FastISel::SelectBinaryOp(User *I, ISD::NodeType ISDOpcode) {
+ MVT VT = MVT::getMVT(I->getType(), /*HandleUnknown=*/true);
+ if (VT == MVT::Other || !VT.isSimple())
+ // Unhandled type. Halt "fast" selection and bail.
+ return false;
+
+ // We only handle legal types. For example, on x86-32 the instruction
+ // selector contains all of the 64-bit instructions from x86-64,
+ // under the assumption that i64 won't be used if the target doesn't
+ // support it.
+ if (!TLI.isTypeLegal(VT)) {
+ // MVT::i1 is special. Allow AND, OR, or XOR because they
+ // don't require additional zeroing, which makes them easy.
+ if (VT == MVT::i1 &&
+ (ISDOpcode == ISD::AND || ISDOpcode == ISD::OR ||
+ ISDOpcode == ISD::XOR))
+ VT = TLI.getTypeToTransformTo(VT);
+ else
+ return false;
+ }
+
+ unsigned Op0 = getRegForValue(I->getOperand(0));
+ if (Op0 == 0)
+ // Unhandled operand. Halt "fast" selection and bail.
+ return false;
+
+ // Check if the second operand is a constant and handle it appropriately.
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
+ unsigned ResultReg = FastEmit_ri(VT.getSimpleVT(), VT.getSimpleVT(),
+ ISDOpcode, Op0, CI->getZExtValue());
+ if (ResultReg != 0) {
+ // We successfully emitted code for the given LLVM Instruction.
+ UpdateValueMap(I, ResultReg);
+ return true;
+ }
+ }
+
+ // Check if the second operand is a constant float.
+ if (ConstantFP *CF = dyn_cast<ConstantFP>(I->getOperand(1))) {
+ unsigned ResultReg = FastEmit_rf(VT.getSimpleVT(), VT.getSimpleVT(),
+ ISDOpcode, Op0, CF);
+ if (ResultReg != 0) {
+ // We successfully emitted code for the given LLVM Instruction.
+ UpdateValueMap(I, ResultReg);
+ return true;
+ }
+ }
+
+ unsigned Op1 = getRegForValue(I->getOperand(1));
+ if (Op1 == 0)
+ // Unhandled operand. Halt "fast" selection and bail.
+ return false;
+
+ // Now we have both operands in registers. Emit the instruction.
+ unsigned ResultReg = FastEmit_rr(VT.getSimpleVT(), VT.getSimpleVT(),
+ ISDOpcode, Op0, Op1);
+ if (ResultReg == 0)
+ // Target-specific code wasn't able to find a machine opcode for
+ // the given ISD opcode and type. Halt "fast" selection and bail.
+ return false;
+
+ // We successfully emitted code for the given LLVM Instruction.
+ UpdateValueMap(I, ResultReg);
+ return true;
+}
+
+bool FastISel::SelectGetElementPtr(User *I) {
+ unsigned N = getRegForValue(I->getOperand(0));
+ if (N == 0)
+ // Unhandled operand. Halt "fast" selection and bail.
+ return false;
+
+ const Type *Ty = I->getOperand(0)->getType();
+ MVT::SimpleValueType VT = TLI.getPointerTy().getSimpleVT();
+ for (GetElementPtrInst::op_iterator OI = I->op_begin()+1, E = I->op_end();
+ OI != E; ++OI) {
+ Value *Idx = *OI;
+ if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
+ unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
+ if (Field) {
+ // N = N + Offset
+ uint64_t Offs = TD.getStructLayout(StTy)->getElementOffset(Field);
+ // FIXME: This can be optimized by combining the add with a
+ // subsequent one.
+ N = FastEmit_ri_(VT, ISD::ADD, N, Offs, VT);
+ if (N == 0)
+ // Unhandled operand. Halt "fast" selection and bail.
+ return false;
+ }
+ Ty = StTy->getElementType(Field);
+ } else {
+ Ty = cast<SequentialType>(Ty)->getElementType();
+
+ // If this is a constant subscript, handle it quickly.
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
+ if (CI->getZExtValue() == 0) continue;
+ uint64_t Offs =
+ TD.getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
+ N = FastEmit_ri_(VT, ISD::ADD, N, Offs, VT);
+ if (N == 0)
+ // Unhandled operand. Halt "fast" selection and bail.
+ return false;
+ continue;
+ }
+
+ // N = N + Idx * ElementSize;
+ uint64_t ElementSize = TD.getTypeAllocSize(Ty);
+ unsigned IdxN = getRegForGEPIndex(Idx);
+ if (IdxN == 0)
+ // Unhandled operand. Halt "fast" selection and bail.
+ return false;
+
+ if (ElementSize != 1) {
+ IdxN = FastEmit_ri_(VT, ISD::MUL, IdxN, ElementSize, VT);
+ if (IdxN == 0)
+ // Unhandled operand. Halt "fast" selection and bail.
+ return false;
+ }
+ N = FastEmit_rr(VT, VT, ISD::ADD, N, IdxN);
+ if (N == 0)
+ // Unhandled operand. Halt "fast" selection and bail.
+ return false;
+ }
+ }
+
+ // We successfully emitted code for the given LLVM Instruction.
+ UpdateValueMap(I, N);
+ return true;
+}
+
+bool FastISel::SelectCall(User *I) {
+ Function *F = cast<CallInst>(I)->getCalledFunction();
+ if (!F) return false;
+
+ unsigned IID = F->getIntrinsicID();
+ switch (IID) {
+ default: break;
+ case Intrinsic::dbg_stoppoint: {
+ DbgStopPointInst *SPI = cast<DbgStopPointInst>(I);
+ if (DIDescriptor::ValidDebugInfo(SPI->getContext(), CodeGenOpt::None)) {
+ DICompileUnit CU(cast<GlobalVariable>(SPI->getContext()));
+ unsigned Line = SPI->getLine();
+ unsigned Col = SPI->getColumn();
+ unsigned Idx = MF.getOrCreateDebugLocID(CU.getGV(), Line, Col);
+ setCurDebugLoc(DebugLoc::get(Idx));
+ }
+ return true;
+ }
+ case Intrinsic::dbg_region_start: {
+ DbgRegionStartInst *RSI = cast<DbgRegionStartInst>(I);
+ if (DIDescriptor::ValidDebugInfo(RSI->getContext(), CodeGenOpt::None) &&
+ DW && DW->ShouldEmitDwarfDebug()) {
+ unsigned ID =
+ DW->RecordRegionStart(cast<GlobalVariable>(RSI->getContext()));
+ const TargetInstrDesc &II = TII.get(TargetInstrInfo::DBG_LABEL);
+ BuildMI(MBB, DL, II).addImm(ID);
+ }
+ return true;
+ }
+ case Intrinsic::dbg_region_end: {
+ DbgRegionEndInst *REI = cast<DbgRegionEndInst>(I);
+ if (DIDescriptor::ValidDebugInfo(REI->getContext(), CodeGenOpt::None) &&
+ DW && DW->ShouldEmitDwarfDebug()) {
+ unsigned ID = 0;
+ DISubprogram Subprogram(cast<GlobalVariable>(REI->getContext()));
+ if (!Subprogram.isNull() && !Subprogram.describes(MF.getFunction())) {
+ // This is end of an inlined function.
+ const TargetInstrDesc &II = TII.get(TargetInstrInfo::DBG_LABEL);
+ ID = DW->RecordInlinedFnEnd(Subprogram);
+ if (ID)
+ // Returned ID is 0 if this is unbalanced "end of inlined
+ // scope". This could happen if optimizer eats dbg intrinsics
+ // or "beginning of inlined scope" is not recoginized due to
+ // missing location info. In such cases, do ignore this region.end.
+ BuildMI(MBB, DL, II).addImm(ID);
+ } else {
+ const TargetInstrDesc &II = TII.get(TargetInstrInfo::DBG_LABEL);
+ ID = DW->RecordRegionEnd(cast<GlobalVariable>(REI->getContext()));
+ BuildMI(MBB, DL, II).addImm(ID);
+ }
+ }
+ return true;
+ }
+ case Intrinsic::dbg_func_start: {
+ DbgFuncStartInst *FSI = cast<DbgFuncStartInst>(I);
+ Value *SP = FSI->getSubprogram();
+ if (!DIDescriptor::ValidDebugInfo(SP, CodeGenOpt::None))
+ return true;
+
+ // llvm.dbg.func.start implicitly defines a dbg_stoppoint which is what
+ // (most?) gdb expects.
+ DebugLoc PrevLoc = DL;
+ DISubprogram Subprogram(cast<GlobalVariable>(SP));
+ DICompileUnit CompileUnit = Subprogram.getCompileUnit();
+
+ if (!Subprogram.describes(MF.getFunction())) {
+ // This is a beginning of an inlined function.
+
+ // If llvm.dbg.func.start is seen in a new block before any
+ // llvm.dbg.stoppoint intrinsic then the location info is unknown.
+ // FIXME : Why DebugLoc is reset at the beginning of each block ?
+ if (PrevLoc.isUnknown())
+ return true;
+ // Record the source line.
+ unsigned Line = Subprogram.getLineNumber();
+ setCurDebugLoc(DebugLoc::get(MF.getOrCreateDebugLocID(
+ CompileUnit.getGV(), Line, 0)));
+
+ if (DW && DW->ShouldEmitDwarfDebug()) {
+ DebugLocTuple PrevLocTpl = MF.getDebugLocTuple(PrevLoc);
+ unsigned LabelID = DW->RecordInlinedFnStart(Subprogram,
+ DICompileUnit(PrevLocTpl.CompileUnit),
+ PrevLocTpl.Line,
+ PrevLocTpl.Col);
+ const TargetInstrDesc &II = TII.get(TargetInstrInfo::DBG_LABEL);
+ BuildMI(MBB, DL, II).addImm(LabelID);
+ }
+ } else {
+ // Record the source line.
+ unsigned Line = Subprogram.getLineNumber();
+ MF.setDefaultDebugLoc(DebugLoc::get(MF.getOrCreateDebugLocID(
+ CompileUnit.getGV(), Line, 0)));
+ if (DW && DW->ShouldEmitDwarfDebug()) {
+ // llvm.dbg.func_start also defines beginning of function scope.
+ DW->RecordRegionStart(cast<GlobalVariable>(FSI->getSubprogram()));
+ }
+ }
+
+ return true;
+ }
+ case Intrinsic::dbg_declare: {
+ DbgDeclareInst *DI = cast<DbgDeclareInst>(I);
+ Value *Variable = DI->getVariable();
+ if (DIDescriptor::ValidDebugInfo(Variable, CodeGenOpt::None) &&
+ DW && DW->ShouldEmitDwarfDebug()) {
+ // Determine the address of the declared object.
+ Value *Address = DI->getAddress();
+ if (BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
+ Address = BCI->getOperand(0);
+ AllocaInst *AI = dyn_cast<AllocaInst>(Address);
+ // Don't handle byval struct arguments or VLAs, for example.
+ if (!AI) break;
+ DenseMap<const AllocaInst*, int>::iterator SI =
+ StaticAllocaMap.find(AI);
+ if (SI == StaticAllocaMap.end()) break; // VLAs.
+ int FI = SI->second;
+
+ // Determine the debug globalvariable.
+ GlobalValue *GV = cast<GlobalVariable>(Variable);
+
+ // Build the DECLARE instruction.
+ const TargetInstrDesc &II = TII.get(TargetInstrInfo::DECLARE);
+ MachineInstr *DeclareMI
+ = BuildMI(MBB, DL, II).addFrameIndex(FI).addGlobalAddress(GV);
+ DIVariable DV(cast<GlobalVariable>(GV));
+ if (!DV.isNull()) {
+ // This is a local variable
+ DW->RecordVariableScope(DV, DeclareMI);
+ }
+ }
+ return true;
+ }
+ case Intrinsic::eh_exception: {
+ MVT VT = TLI.getValueType(I->getType());
+ switch (TLI.getOperationAction(ISD::EXCEPTIONADDR, VT)) {
+ default: break;
+ case TargetLowering::Expand: {
+ assert(MBB->isLandingPad() && "Call to eh.exception not in landing pad!");
+ unsigned Reg = TLI.getExceptionAddressRegister();
+ const TargetRegisterClass *RC = TLI.getRegClassFor(VT);
+ unsigned ResultReg = createResultReg(RC);
+ bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
+ Reg, RC, RC);
+ assert(InsertedCopy && "Can't copy address registers!");
+ InsertedCopy = InsertedCopy;
+ UpdateValueMap(I, ResultReg);
+ return true;
+ }
+ }
+ break;
+ }
+ case Intrinsic::eh_selector_i32:
+ case Intrinsic::eh_selector_i64: {
+ MVT VT = TLI.getValueType(I->getType());
+ switch (TLI.getOperationAction(ISD::EHSELECTION, VT)) {
+ default: break;
+ case TargetLowering::Expand: {
+ MVT VT = (IID == Intrinsic::eh_selector_i32 ?
+ MVT::i32 : MVT::i64);
+
+ if (MMI) {
+ if (MBB->isLandingPad())
+ AddCatchInfo(*cast<CallInst>(I), MMI, MBB);
+ else {
+#ifndef NDEBUG
+ CatchInfoLost.insert(cast<CallInst>(I));
+#endif
+ // FIXME: Mark exception selector register as live in. Hack for PR1508.
+ unsigned Reg = TLI.getExceptionSelectorRegister();
+ if (Reg) MBB->addLiveIn(Reg);
+ }
+
+ unsigned Reg = TLI.getExceptionSelectorRegister();
+ const TargetRegisterClass *RC = TLI.getRegClassFor(VT);
+ unsigned ResultReg = createResultReg(RC);
+ bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
+ Reg, RC, RC);
+ assert(InsertedCopy && "Can't copy address registers!");
+ InsertedCopy = InsertedCopy;
+ UpdateValueMap(I, ResultReg);
+ } else {
+ unsigned ResultReg =
+ getRegForValue(Constant::getNullValue(I->getType()));
+ UpdateValueMap(I, ResultReg);
+ }
+ return true;
+ }
+ }
+ break;
+ }
+ }
+ return false;
+}
+
+bool FastISel::SelectCast(User *I, ISD::NodeType Opcode) {
+ MVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
+ MVT DstVT = TLI.getValueType(I->getType());
+
+ if (SrcVT == MVT::Other || !SrcVT.isSimple() ||
+ DstVT == MVT::Other || !DstVT.isSimple())
+ // Unhandled type. Halt "fast" selection and bail.
+ return false;
+
+ // Check if the destination type is legal. Or as a special case,
+ // it may be i1 if we're doing a truncate because that's
+ // easy and somewhat common.
+ if (!TLI.isTypeLegal(DstVT))
+ if (DstVT != MVT::i1 || Opcode != ISD::TRUNCATE)
+ // Unhandled type. Halt "fast" selection and bail.
+ return false;
+
+ // Check if the source operand is legal. Or as a special case,
+ // it may be i1 if we're doing zero-extension because that's
+ // easy and somewhat common.
+ if (!TLI.isTypeLegal(SrcVT))
+ if (SrcVT != MVT::i1 || Opcode != ISD::ZERO_EXTEND)
+ // Unhandled type. Halt "fast" selection and bail.
+ return false;
+
+ unsigned InputReg = getRegForValue(I->getOperand(0));
+ if (!InputReg)
+ // Unhandled operand. Halt "fast" selection and bail.
+ return false;
+
+ // If the operand is i1, arrange for the high bits in the register to be zero.
+ if (SrcVT == MVT::i1) {
+ SrcVT = TLI.getTypeToTransformTo(SrcVT);
+ InputReg = FastEmitZExtFromI1(SrcVT.getSimpleVT(), InputReg);
+ if (!InputReg)
+ return false;
+ }
+ // If the result is i1, truncate to the target's type for i1 first.
+ if (DstVT == MVT::i1)
+ DstVT = TLI.getTypeToTransformTo(DstVT);
+
+ unsigned ResultReg = FastEmit_r(SrcVT.getSimpleVT(),
+ DstVT.getSimpleVT(),
+ Opcode,
+ InputReg);
+ if (!ResultReg)
+ return false;
+
+ UpdateValueMap(I, ResultReg);
+ return true;
+}
+
+bool FastISel::SelectBitCast(User *I) {
+ // If the bitcast doesn't change the type, just use the operand value.
+ if (I->getType() == I->getOperand(0)->getType()) {
+ unsigned Reg = getRegForValue(I->getOperand(0));
+ if (Reg == 0)
+ return false;
+ UpdateValueMap(I, Reg);
+ return true;
+ }
+
+ // Bitcasts of other values become reg-reg copies or BIT_CONVERT operators.
+ MVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
+ MVT DstVT = TLI.getValueType(I->getType());
+
+ if (SrcVT == MVT::Other || !SrcVT.isSimple() ||
+ DstVT == MVT::Other || !DstVT.isSimple() ||
+ !TLI.isTypeLegal(SrcVT) || !TLI.isTypeLegal(DstVT))
+ // Unhandled type. Halt "fast" selection and bail.
+ return false;
+
+ unsigned Op0 = getRegForValue(I->getOperand(0));
+ if (Op0 == 0)
+ // Unhandled operand. Halt "fast" selection and bail.
+ return false;
+
+ // First, try to perform the bitcast by inserting a reg-reg copy.
+ unsigned ResultReg = 0;
+ if (SrcVT.getSimpleVT() == DstVT.getSimpleVT()) {
+ TargetRegisterClass* SrcClass = TLI.getRegClassFor(SrcVT);
+ TargetRegisterClass* DstClass = TLI.getRegClassFor(DstVT);
+ ResultReg = createResultReg(DstClass);
+
+ bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
+ Op0, DstClass, SrcClass);
+ if (!InsertedCopy)
+ ResultReg = 0;
+ }
+
+ // If the reg-reg copy failed, select a BIT_CONVERT opcode.
+ if (!ResultReg)
+ ResultReg = FastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(),
+ ISD::BIT_CONVERT, Op0);
+
+ if (!ResultReg)
+ return false;
+
+ UpdateValueMap(I, ResultReg);
+ return true;
+}
+
+bool
+FastISel::SelectInstruction(Instruction *I) {
+ return SelectOperator(I, I->getOpcode());
+}
+
+/// FastEmitBranch - Emit an unconditional branch to the given block,
+/// unless it is the immediate (fall-through) successor, and update
+/// the CFG.
+void
+FastISel::FastEmitBranch(MachineBasicBlock *MSucc) {
+ MachineFunction::iterator NextMBB =
+ next(MachineFunction::iterator(MBB));
+
+ if (MBB->isLayoutSuccessor(MSucc)) {
+ // The unconditional fall-through case, which needs no instructions.
+ } else {
+ // The unconditional branch case.
+ TII.InsertBranch(*MBB, MSucc, NULL, SmallVector<MachineOperand, 0>());
+ }
+ MBB->addSuccessor(MSucc);
+}
+
+bool
+FastISel::SelectOperator(User *I, unsigned Opcode) {
+ switch (Opcode) {
+ case Instruction::Add: {
+ ISD::NodeType Opc = I->getType()->isFPOrFPVector() ? ISD::FADD : ISD::ADD;
+ return SelectBinaryOp(I, Opc);
+ }
+ case Instruction::Sub: {
+ ISD::NodeType Opc = I->getType()->isFPOrFPVector() ? ISD::FSUB : ISD::SUB;
+ return SelectBinaryOp(I, Opc);
+ }
+ case Instruction::Mul: {
+ ISD::NodeType Opc = I->getType()->isFPOrFPVector() ? ISD::FMUL : ISD::MUL;
+ return SelectBinaryOp(I, Opc);
+ }
+ case Instruction::SDiv:
+ return SelectBinaryOp(I, ISD::SDIV);
+ case Instruction::UDiv:
+ return SelectBinaryOp(I, ISD::UDIV);
+ case Instruction::FDiv:
+ return SelectBinaryOp(I, ISD::FDIV);
+ case Instruction::SRem:
+ return SelectBinaryOp(I, ISD::SREM);
+ case Instruction::URem:
+ return SelectBinaryOp(I, ISD::UREM);
+ case Instruction::FRem:
+ return SelectBinaryOp(I, ISD::FREM);
+ case Instruction::Shl:
+ return SelectBinaryOp(I, ISD::SHL);
+ case Instruction::LShr:
+ return SelectBinaryOp(I, ISD::SRL);
+ case Instruction::AShr:
+ return SelectBinaryOp(I, ISD::SRA);
+ case Instruction::And:
+ return SelectBinaryOp(I, ISD::AND);
+ case Instruction::Or:
+ return SelectBinaryOp(I, ISD::OR);
+ case Instruction::Xor:
+ return SelectBinaryOp(I, ISD::XOR);
+
+ case Instruction::GetElementPtr:
+ return SelectGetElementPtr(I);
+
+ case Instruction::Br: {
+ BranchInst *BI = cast<BranchInst>(I);
+
+ if (BI->isUnconditional()) {
+ BasicBlock *LLVMSucc = BI->getSuccessor(0);
+ MachineBasicBlock *MSucc = MBBMap[LLVMSucc];
+ FastEmitBranch(MSucc);
+ return true;
+ }
+
+ // Conditional branches are not handed yet.
+ // Halt "fast" selection and bail.
+ return false;
+ }
+
+ case Instruction::Unreachable:
+ // Nothing to emit.
+ return true;
+
+ case Instruction::PHI:
+ // PHI nodes are already emitted.
+ return true;
+
+ case Instruction::Alloca:
+ // FunctionLowering has the static-sized case covered.
+ if (StaticAllocaMap.count(cast<AllocaInst>(I)))
+ return true;
+
+ // Dynamic-sized alloca is not handled yet.
+ return false;
+
+ case Instruction::Call:
+ return SelectCall(I);
+
+ case Instruction::BitCast:
+ return SelectBitCast(I);
+
+ case Instruction::FPToSI:
+ return SelectCast(I, ISD::FP_TO_SINT);
+ case Instruction::ZExt:
+ return SelectCast(I, ISD::ZERO_EXTEND);
+ case Instruction::SExt:
+ return SelectCast(I, ISD::SIGN_EXTEND);
+ case Instruction::Trunc:
+ return SelectCast(I, ISD::TRUNCATE);
+ case Instruction::SIToFP:
+ return SelectCast(I, ISD::SINT_TO_FP);
+
+ case Instruction::IntToPtr: // Deliberate fall-through.
+ case Instruction::PtrToInt: {
+ MVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
+ MVT DstVT = TLI.getValueType(I->getType());
+ if (DstVT.bitsGT(SrcVT))
+ return SelectCast(I, ISD::ZERO_EXTEND);
+ if (DstVT.bitsLT(SrcVT))
+ return SelectCast(I, ISD::TRUNCATE);
+ unsigned Reg = getRegForValue(I->getOperand(0));
+ if (Reg == 0) return false;
+ UpdateValueMap(I, Reg);
+ return true;
+ }
+
+ default:
+ // Unhandled instruction. Halt "fast" selection and bail.
+ return false;
+ }
+}
+
+FastISel::FastISel(MachineFunction &mf,
+ MachineModuleInfo *mmi,
+ DwarfWriter *dw,
+ DenseMap<const Value *, unsigned> &vm,
+ DenseMap<const BasicBlock *, MachineBasicBlock *> &bm,
+ DenseMap<const AllocaInst *, int> &am
+#ifndef NDEBUG
+ , SmallSet<Instruction*, 8> &cil
+#endif
+ )
+ : MBB(0),
+ ValueMap(vm),
+ MBBMap(bm),
+ StaticAllocaMap(am),
+#ifndef NDEBUG
+ CatchInfoLost(cil),
+#endif
+ MF(mf),
+ MMI(mmi),
+ DW(dw),
+ MRI(MF.getRegInfo()),
+ MFI(*MF.getFrameInfo()),
+ MCP(*MF.getConstantPool()),
+ TM(MF.getTarget()),
+ TD(*TM.getTargetData()),
+ TII(*TM.getInstrInfo()),
+ TLI(*TM.getTargetLowering()) {
+}
+
+FastISel::~FastISel() {}
+
+unsigned FastISel::FastEmit_(MVT::SimpleValueType, MVT::SimpleValueType,
+ ISD::NodeType) {
+ return 0;
+}
+
+unsigned FastISel::FastEmit_r(MVT::SimpleValueType, MVT::SimpleValueType,
+ ISD::NodeType, unsigned /*Op0*/) {
+ return 0;
+}
+
+unsigned FastISel::FastEmit_rr(MVT::SimpleValueType, MVT::SimpleValueType,
+ ISD::NodeType, unsigned /*Op0*/,
+ unsigned /*Op0*/) {
+ return 0;
+}
+
+unsigned FastISel::FastEmit_i(MVT::SimpleValueType, MVT::SimpleValueType,
+ ISD::NodeType, uint64_t /*Imm*/) {
+ return 0;
+}
+
+unsigned FastISel::FastEmit_f(MVT::SimpleValueType, MVT::SimpleValueType,
+ ISD::NodeType, ConstantFP * /*FPImm*/) {
+ return 0;
+}
+
+unsigned FastISel::FastEmit_ri(MVT::SimpleValueType, MVT::SimpleValueType,
+ ISD::NodeType, unsigned /*Op0*/,
+ uint64_t /*Imm*/) {
+ return 0;
+}
+
+unsigned FastISel::FastEmit_rf(MVT::SimpleValueType, MVT::SimpleValueType,
+ ISD::NodeType, unsigned /*Op0*/,
+ ConstantFP * /*FPImm*/) {
+ return 0;
+}
+
+unsigned FastISel::FastEmit_rri(MVT::SimpleValueType, MVT::SimpleValueType,
+ ISD::NodeType,
+ unsigned /*Op0*/, unsigned /*Op1*/,
+ uint64_t /*Imm*/) {
+ return 0;
+}
+
+/// FastEmit_ri_ - This method is a wrapper of FastEmit_ri. It first tries
+/// to emit an instruction with an immediate operand using FastEmit_ri.
+/// If that fails, it materializes the immediate into a register and try
+/// FastEmit_rr instead.
+unsigned FastISel::FastEmit_ri_(MVT::SimpleValueType VT, ISD::NodeType Opcode,
+ unsigned Op0, uint64_t Imm,
+ MVT::SimpleValueType ImmType) {
+ // First check if immediate type is legal. If not, we can't use the ri form.
+ unsigned ResultReg = FastEmit_ri(VT, VT, Opcode, Op0, Imm);
+ if (ResultReg != 0)
+ return ResultReg;
+ unsigned MaterialReg = FastEmit_i(ImmType, ImmType, ISD::Constant, Imm);
+ if (MaterialReg == 0)
+ return 0;
+ return FastEmit_rr(VT, VT, Opcode, Op0, MaterialReg);
+}
+
+/// FastEmit_rf_ - This method is a wrapper of FastEmit_ri. It first tries
+/// to emit an instruction with a floating-point immediate operand using
+/// FastEmit_rf. If that fails, it materializes the immediate into a register
+/// and try FastEmit_rr instead.
+unsigned FastISel::FastEmit_rf_(MVT::SimpleValueType VT, ISD::NodeType Opcode,
+ unsigned Op0, ConstantFP *FPImm,
+ MVT::SimpleValueType ImmType) {
+ // First check if immediate type is legal. If not, we can't use the rf form.
+ unsigned ResultReg = FastEmit_rf(VT, VT, Opcode, Op0, FPImm);
+ if (ResultReg != 0)
+ return ResultReg;
+
+ // Materialize the constant in a register.
+ unsigned MaterialReg = FastEmit_f(ImmType, ImmType, ISD::ConstantFP, FPImm);
+ if (MaterialReg == 0) {
+ // If the target doesn't have a way to directly enter a floating-point
+ // value into a register, use an alternate approach.
+ // TODO: The current approach only supports floating-point constants
+ // that can be constructed by conversion from integer values. This should
+ // be replaced by code that creates a load from a constant-pool entry,
+ // which will require some target-specific work.
+ const APFloat &Flt = FPImm->getValueAPF();
+ MVT IntVT = TLI.getPointerTy();
+
+ uint64_t x[2];
+ uint32_t IntBitWidth = IntVT.getSizeInBits();
+ bool isExact;
+ (void) Flt.convertToInteger(x, IntBitWidth, /*isSigned=*/true,
+ APFloat::rmTowardZero, &isExact);
+ if (!isExact)
+ return 0;
+ APInt IntVal(IntBitWidth, 2, x);
+
+ unsigned IntegerReg = FastEmit_i(IntVT.getSimpleVT(), IntVT.getSimpleVT(),
+ ISD::Constant, IntVal.getZExtValue());
+ if (IntegerReg == 0)
+ return 0;
+ MaterialReg = FastEmit_r(IntVT.getSimpleVT(), VT,
+ ISD::SINT_TO_FP, IntegerReg);
+ if (MaterialReg == 0)
+ return 0;
+ }
+ return FastEmit_rr(VT, VT, Opcode, Op0, MaterialReg);
+}
+
+unsigned FastISel::createResultReg(const TargetRegisterClass* RC) {
+ return MRI.createVirtualRegister(RC);
+}
+
+unsigned FastISel::FastEmitInst_(unsigned MachineInstOpcode,
+ const TargetRegisterClass* RC) {
+ unsigned ResultReg = createResultReg(RC);
+ const TargetInstrDesc &II = TII.get(MachineInstOpcode);
+
+ BuildMI(MBB, DL, II, ResultReg);
+ return ResultReg;
+}
+
+unsigned FastISel::FastEmitInst_r(unsigned MachineInstOpcode,
+ const TargetRegisterClass *RC,
+ unsigned Op0) {
+ unsigned ResultReg = createResultReg(RC);
+ const TargetInstrDesc &II = TII.get(MachineInstOpcode);
+
+ if (II.getNumDefs() >= 1)
+ BuildMI(MBB, DL, II, ResultReg).addReg(Op0);
+ else {
+ BuildMI(MBB, DL, II).addReg(Op0);
+ bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
+ II.ImplicitDefs[0], RC, RC);
+ if (!InsertedCopy)
+ ResultReg = 0;
+ }
+
+ return ResultReg;
+}
+
+unsigned FastISel::FastEmitInst_rr(unsigned MachineInstOpcode,
+ const TargetRegisterClass *RC,
+ unsigned Op0, unsigned Op1) {
+ unsigned ResultReg = createResultReg(RC);
+ const TargetInstrDesc &II = TII.get(MachineInstOpcode);
+
+ if (II.getNumDefs() >= 1)
+ BuildMI(MBB, DL, II, ResultReg).addReg(Op0).addReg(Op1);
+ else {
+ BuildMI(MBB, DL, II).addReg(Op0).addReg(Op1);
+ bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
+ II.ImplicitDefs[0], RC, RC);
+ if (!InsertedCopy)
+ ResultReg = 0;
+ }
+ return ResultReg;
+}
+
+unsigned FastISel::FastEmitInst_ri(unsigned MachineInstOpcode,
+ const TargetRegisterClass *RC,
+ unsigned Op0, uint64_t Imm) {
+ unsigned ResultReg = createResultReg(RC);
+ const TargetInstrDesc &II = TII.get(MachineInstOpcode);
+
+ if (II.getNumDefs() >= 1)
+ BuildMI(MBB, DL, II, ResultReg).addReg(Op0).addImm(Imm);
+ else {
+ BuildMI(MBB, DL, II).addReg(Op0).addImm(Imm);
+ bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
+ II.ImplicitDefs[0], RC, RC);
+ if (!InsertedCopy)
+ ResultReg = 0;
+ }
+ return ResultReg;
+}
+
+unsigned FastISel::FastEmitInst_rf(unsigned MachineInstOpcode,
+ const TargetRegisterClass *RC,
+ unsigned Op0, ConstantFP *FPImm) {
+ unsigned ResultReg = createResultReg(RC);
+ const TargetInstrDesc &II = TII.get(MachineInstOpcode);
+
+ if (II.getNumDefs() >= 1)
+ BuildMI(MBB, DL, II, ResultReg).addReg(Op0).addFPImm(FPImm);
+ else {
+ BuildMI(MBB, DL, II).addReg(Op0).addFPImm(FPImm);
+ bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
+ II.ImplicitDefs[0], RC, RC);
+ if (!InsertedCopy)
+ ResultReg = 0;
+ }
+ return ResultReg;
+}
+
+unsigned FastISel::FastEmitInst_rri(unsigned MachineInstOpcode,
+ const TargetRegisterClass *RC,
+ unsigned Op0, unsigned Op1, uint64_t Imm) {
+ unsigned ResultReg = createResultReg(RC);
+ const TargetInstrDesc &II = TII.get(MachineInstOpcode);
+
+ if (II.getNumDefs() >= 1)
+ BuildMI(MBB, DL, II, ResultReg).addReg(Op0).addReg(Op1).addImm(Imm);
+ else {
+ BuildMI(MBB, DL, II).addReg(Op0).addReg(Op1).addImm(Imm);
+ bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
+ II.ImplicitDefs[0], RC, RC);
+ if (!InsertedCopy)
+ ResultReg = 0;
+ }
+ return ResultReg;
+}
+
+unsigned FastISel::FastEmitInst_i(unsigned MachineInstOpcode,
+ const TargetRegisterClass *RC,
+ uint64_t Imm) {
+ unsigned ResultReg = createResultReg(RC);
+ const TargetInstrDesc &II = TII.get(MachineInstOpcode);
+
+ if (II.getNumDefs() >= 1)
+ BuildMI(MBB, DL, II, ResultReg).addImm(Imm);
+ else {
+ BuildMI(MBB, DL, II).addImm(Imm);
+ bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
+ II.ImplicitDefs[0], RC, RC);
+ if (!InsertedCopy)
+ ResultReg = 0;
+ }
+ return ResultReg;
+}
+
+unsigned FastISel::FastEmitInst_extractsubreg(MVT::SimpleValueType RetVT,
+ unsigned Op0, uint32_t Idx) {
+ const TargetRegisterClass* RC = MRI.getRegClass(Op0);
+
+ unsigned ResultReg = createResultReg(TLI.getRegClassFor(RetVT));
+ const TargetInstrDesc &II = TII.get(TargetInstrInfo::EXTRACT_SUBREG);
+
+ if (II.getNumDefs() >= 1)
+ BuildMI(MBB, DL, II, ResultReg).addReg(Op0).addImm(Idx);
+ else {
+ BuildMI(MBB, DL, II).addReg(Op0).addImm(Idx);
+ bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
+ II.ImplicitDefs[0], RC, RC);
+ if (!InsertedCopy)
+ ResultReg = 0;
+ }
+ return ResultReg;
+}
+
+/// FastEmitZExtFromI1 - Emit MachineInstrs to compute the value of Op
+/// with all but the least significant bit set to zero.
+unsigned FastISel::FastEmitZExtFromI1(MVT::SimpleValueType VT, unsigned Op) {
+ return FastEmit_ri(VT, VT, ISD::AND, Op, 1);
+}
OpenPOWER on IntegriCloud