diff options
Diffstat (limited to 'lib/CodeGen/RegAllocLinearScan.cpp')
-rw-r--r-- | lib/CodeGen/RegAllocLinearScan.cpp | 1535 |
1 files changed, 1535 insertions, 0 deletions
diff --git a/lib/CodeGen/RegAllocLinearScan.cpp b/lib/CodeGen/RegAllocLinearScan.cpp new file mode 100644 index 0000000..ee118de --- /dev/null +++ b/lib/CodeGen/RegAllocLinearScan.cpp @@ -0,0 +1,1535 @@ +//===-- RegAllocLinearScan.cpp - Linear Scan register allocator -----------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file implements a linear scan register allocator. +// +//===----------------------------------------------------------------------===// + +#define DEBUG_TYPE "regalloc" +#include "VirtRegMap.h" +#include "VirtRegRewriter.h" +#include "Spiller.h" +#include "llvm/Function.h" +#include "llvm/CodeGen/LiveIntervalAnalysis.h" +#include "llvm/CodeGen/LiveStackAnalysis.h" +#include "llvm/CodeGen/MachineFunctionPass.h" +#include "llvm/CodeGen/MachineInstr.h" +#include "llvm/CodeGen/MachineLoopInfo.h" +#include "llvm/CodeGen/MachineRegisterInfo.h" +#include "llvm/CodeGen/Passes.h" +#include "llvm/CodeGen/RegAllocRegistry.h" +#include "llvm/CodeGen/RegisterCoalescer.h" +#include "llvm/Target/TargetRegisterInfo.h" +#include "llvm/Target/TargetMachine.h" +#include "llvm/Target/TargetOptions.h" +#include "llvm/Target/TargetInstrInfo.h" +#include "llvm/ADT/EquivalenceClasses.h" +#include "llvm/ADT/SmallSet.h" +#include "llvm/ADT/Statistic.h" +#include "llvm/ADT/STLExtras.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/Compiler.h" +#include <algorithm> +#include <set> +#include <queue> +#include <memory> +#include <cmath> +#include <iostream> + +using namespace llvm; + +STATISTIC(NumIters , "Number of iterations performed"); +STATISTIC(NumBacktracks, "Number of times we had to backtrack"); +STATISTIC(NumCoalesce, "Number of copies coalesced"); +STATISTIC(NumDowngrade, "Number of registers downgraded"); + +static cl::opt<bool> +NewHeuristic("new-spilling-heuristic", + cl::desc("Use new spilling heuristic"), + cl::init(false), cl::Hidden); + +static cl::opt<bool> +PreSplitIntervals("pre-alloc-split", + cl::desc("Pre-register allocation live interval splitting"), + cl::init(false), cl::Hidden); + +static cl::opt<bool> +NewSpillFramework("new-spill-framework", + cl::desc("New spilling framework"), + cl::init(false), cl::Hidden); + +static RegisterRegAlloc +linearscanRegAlloc("linearscan", "linear scan register allocator", + createLinearScanRegisterAllocator); + +namespace { + struct VISIBILITY_HIDDEN RALinScan : public MachineFunctionPass { + static char ID; + RALinScan() : MachineFunctionPass(&ID) {} + + typedef std::pair<LiveInterval*, LiveInterval::iterator> IntervalPtr; + typedef SmallVector<IntervalPtr, 32> IntervalPtrs; + private: + /// RelatedRegClasses - This structure is built the first time a function is + /// compiled, and keeps track of which register classes have registers that + /// belong to multiple classes or have aliases that are in other classes. + EquivalenceClasses<const TargetRegisterClass*> RelatedRegClasses; + DenseMap<unsigned, const TargetRegisterClass*> OneClassForEachPhysReg; + + // NextReloadMap - For each register in the map, it maps to the another + // register which is defined by a reload from the same stack slot and + // both reloads are in the same basic block. + DenseMap<unsigned, unsigned> NextReloadMap; + + // DowngradedRegs - A set of registers which are being "downgraded", i.e. + // un-favored for allocation. + SmallSet<unsigned, 8> DowngradedRegs; + + // DowngradeMap - A map from virtual registers to physical registers being + // downgraded for the virtual registers. + DenseMap<unsigned, unsigned> DowngradeMap; + + MachineFunction* mf_; + MachineRegisterInfo* mri_; + const TargetMachine* tm_; + const TargetRegisterInfo* tri_; + const TargetInstrInfo* tii_; + BitVector allocatableRegs_; + LiveIntervals* li_; + LiveStacks* ls_; + const MachineLoopInfo *loopInfo; + + /// handled_ - Intervals are added to the handled_ set in the order of their + /// start value. This is uses for backtracking. + std::vector<LiveInterval*> handled_; + + /// fixed_ - Intervals that correspond to machine registers. + /// + IntervalPtrs fixed_; + + /// active_ - Intervals that are currently being processed, and which have a + /// live range active for the current point. + IntervalPtrs active_; + + /// inactive_ - Intervals that are currently being processed, but which have + /// a hold at the current point. + IntervalPtrs inactive_; + + typedef std::priority_queue<LiveInterval*, + SmallVector<LiveInterval*, 64>, + greater_ptr<LiveInterval> > IntervalHeap; + IntervalHeap unhandled_; + + /// regUse_ - Tracks register usage. + SmallVector<unsigned, 32> regUse_; + SmallVector<unsigned, 32> regUseBackUp_; + + /// vrm_ - Tracks register assignments. + VirtRegMap* vrm_; + + std::auto_ptr<VirtRegRewriter> rewriter_; + + std::auto_ptr<Spiller> spiller_; + + public: + virtual const char* getPassName() const { + return "Linear Scan Register Allocator"; + } + + virtual void getAnalysisUsage(AnalysisUsage &AU) const { + AU.addRequired<LiveIntervals>(); + if (StrongPHIElim) + AU.addRequiredID(StrongPHIEliminationID); + // Make sure PassManager knows which analyses to make available + // to coalescing and which analyses coalescing invalidates. + AU.addRequiredTransitive<RegisterCoalescer>(); + if (PreSplitIntervals) + AU.addRequiredID(PreAllocSplittingID); + AU.addRequired<LiveStacks>(); + AU.addPreserved<LiveStacks>(); + AU.addRequired<MachineLoopInfo>(); + AU.addPreserved<MachineLoopInfo>(); + AU.addRequired<VirtRegMap>(); + AU.addPreserved<VirtRegMap>(); + AU.addPreservedID(MachineDominatorsID); + MachineFunctionPass::getAnalysisUsage(AU); + } + + /// runOnMachineFunction - register allocate the whole function + bool runOnMachineFunction(MachineFunction&); + + private: + /// linearScan - the linear scan algorithm + void linearScan(); + + /// initIntervalSets - initialize the interval sets. + /// + void initIntervalSets(); + + /// processActiveIntervals - expire old intervals and move non-overlapping + /// ones to the inactive list. + void processActiveIntervals(unsigned CurPoint); + + /// processInactiveIntervals - expire old intervals and move overlapping + /// ones to the active list. + void processInactiveIntervals(unsigned CurPoint); + + /// hasNextReloadInterval - Return the next liveinterval that's being + /// defined by a reload from the same SS as the specified one. + LiveInterval *hasNextReloadInterval(LiveInterval *cur); + + /// DowngradeRegister - Downgrade a register for allocation. + void DowngradeRegister(LiveInterval *li, unsigned Reg); + + /// UpgradeRegister - Upgrade a register for allocation. + void UpgradeRegister(unsigned Reg); + + /// assignRegOrStackSlotAtInterval - assign a register if one + /// is available, or spill. + void assignRegOrStackSlotAtInterval(LiveInterval* cur); + + void updateSpillWeights(std::vector<float> &Weights, + unsigned reg, float weight, + const TargetRegisterClass *RC); + + /// findIntervalsToSpill - Determine the intervals to spill for the + /// specified interval. It's passed the physical registers whose spill + /// weight is the lowest among all the registers whose live intervals + /// conflict with the interval. + void findIntervalsToSpill(LiveInterval *cur, + std::vector<std::pair<unsigned,float> > &Candidates, + unsigned NumCands, + SmallVector<LiveInterval*, 8> &SpillIntervals); + + /// attemptTrivialCoalescing - If a simple interval is defined by a copy, + /// try allocate the definition the same register as the source register + /// if the register is not defined during live time of the interval. This + /// eliminate a copy. This is used to coalesce copies which were not + /// coalesced away before allocation either due to dest and src being in + /// different register classes or because the coalescer was overly + /// conservative. + unsigned attemptTrivialCoalescing(LiveInterval &cur, unsigned Reg); + + /// + /// Register usage / availability tracking helpers. + /// + + void initRegUses() { + regUse_.resize(tri_->getNumRegs(), 0); + regUseBackUp_.resize(tri_->getNumRegs(), 0); + } + + void finalizeRegUses() { +#ifndef NDEBUG + // Verify all the registers are "freed". + bool Error = false; + for (unsigned i = 0, e = tri_->getNumRegs(); i != e; ++i) { + if (regUse_[i] != 0) { + cerr << tri_->getName(i) << " is still in use!\n"; + Error = true; + } + } + if (Error) + abort(); +#endif + regUse_.clear(); + regUseBackUp_.clear(); + } + + void addRegUse(unsigned physReg) { + assert(TargetRegisterInfo::isPhysicalRegister(physReg) && + "should be physical register!"); + ++regUse_[physReg]; + for (const unsigned* as = tri_->getAliasSet(physReg); *as; ++as) + ++regUse_[*as]; + } + + void delRegUse(unsigned physReg) { + assert(TargetRegisterInfo::isPhysicalRegister(physReg) && + "should be physical register!"); + assert(regUse_[physReg] != 0); + --regUse_[physReg]; + for (const unsigned* as = tri_->getAliasSet(physReg); *as; ++as) { + assert(regUse_[*as] != 0); + --regUse_[*as]; + } + } + + bool isRegAvail(unsigned physReg) const { + assert(TargetRegisterInfo::isPhysicalRegister(physReg) && + "should be physical register!"); + return regUse_[physReg] == 0; + } + + void backUpRegUses() { + regUseBackUp_ = regUse_; + } + + void restoreRegUses() { + regUse_ = regUseBackUp_; + } + + /// + /// Register handling helpers. + /// + + /// getFreePhysReg - return a free physical register for this virtual + /// register interval if we have one, otherwise return 0. + unsigned getFreePhysReg(LiveInterval* cur); + unsigned getFreePhysReg(const TargetRegisterClass *RC, + unsigned MaxInactiveCount, + SmallVector<unsigned, 256> &inactiveCounts, + bool SkipDGRegs); + + /// assignVirt2StackSlot - assigns this virtual register to a + /// stack slot. returns the stack slot + int assignVirt2StackSlot(unsigned virtReg); + + void ComputeRelatedRegClasses(); + + template <typename ItTy> + void printIntervals(const char* const str, ItTy i, ItTy e) const { + if (str) DOUT << str << " intervals:\n"; + for (; i != e; ++i) { + DOUT << "\t" << *i->first << " -> "; + unsigned reg = i->first->reg; + if (TargetRegisterInfo::isVirtualRegister(reg)) { + reg = vrm_->getPhys(reg); + } + DOUT << tri_->getName(reg) << '\n'; + } + } + }; + char RALinScan::ID = 0; +} + +static RegisterPass<RALinScan> +X("linearscan-regalloc", "Linear Scan Register Allocator"); + +bool validateRegAlloc(MachineFunction *mf, LiveIntervals *lis, + VirtRegMap *vrm) { + + MachineRegisterInfo *mri = &mf->getRegInfo(); + const TargetRegisterInfo *tri = mf->getTarget().getRegisterInfo(); + bool allocationValid = true; + + + for (LiveIntervals::iterator itr = lis->begin(), end = lis->end(); + itr != end; ++itr) { + + LiveInterval *li = itr->second; + + if (TargetRegisterInfo::isPhysicalRegister(li->reg)) { + continue; + } + + if (vrm->hasPhys(li->reg)) { + const TargetRegisterClass *trc = mri->getRegClass(li->reg); + + if (lis->hasInterval(vrm->getPhys(li->reg))) { + if (li->overlaps(lis->getInterval(vrm->getPhys(li->reg)))) { + std::cerr << "vreg " << li->reg << " overlaps its assigned preg " + << vrm->getPhys(li->reg) << "(" << tri->getName(vrm->getPhys(li->reg)) << ")\n"; + } + } + + TargetRegisterClass::iterator fReg = + std::find(trc->allocation_order_begin(*mf), trc->allocation_order_end(*mf), + vrm->getPhys(li->reg)); + + if (fReg == trc->allocation_order_end(*mf)) { + std::cerr << "preg " << vrm->getPhys(li->reg) + << "(" << tri->getName(vrm->getPhys(li->reg)) << ") is not in the allocation set for vreg " + << li->reg << "\n"; + allocationValid &= false; + } + } + else { + std::cerr << "No preg for vreg " << li->reg << "\n"; + // What about conflicting loads/stores? + continue; + } + + for (LiveIntervals::iterator itr2 = next(itr); itr2 != end; ++itr2) { + + LiveInterval *li2 = itr2->second; + + if (li2->empty()) + continue; + + if (TargetRegisterInfo::isPhysicalRegister(li2->reg)) { + if (li->overlaps(*li2)) { + if (vrm->getPhys(li->reg) == li2->reg || + tri->areAliases(vrm->getPhys(li->reg), li2->reg)) { + std::cerr << "vreg " << li->reg << " overlaps preg " + << li2->reg << "(" << tri->getName(li2->reg) << ") which aliases " + << vrm->getPhys(li->reg) << "(" << tri->getName(vrm->getPhys(li->reg)) << ")\n"; + allocationValid &= false; + } + } + } + else { + + if (!vrm->hasPhys(li2->reg)) { + continue; + } + + if (li->overlaps(*li2)) { + if (vrm->getPhys(li->reg) == vrm->getPhys(li2->reg) || + tri->areAliases(vrm->getPhys(li->reg), vrm->getPhys(li2->reg))) { + std::cerr << "vreg " << li->reg << " (preg " << vrm->getPhys(li->reg) + << ") overlaps vreg " << li2->reg << " (preg " << vrm->getPhys(li2->reg) + << ") and " << vrm->getPhys(li->reg) << " aliases " << vrm->getPhys(li2->reg) << "\n"; + allocationValid &= false; + } + } + } + } + + } + + return allocationValid; + +} + + +void RALinScan::ComputeRelatedRegClasses() { + // First pass, add all reg classes to the union, and determine at least one + // reg class that each register is in. + bool HasAliases = false; + for (TargetRegisterInfo::regclass_iterator RCI = tri_->regclass_begin(), + E = tri_->regclass_end(); RCI != E; ++RCI) { + RelatedRegClasses.insert(*RCI); + for (TargetRegisterClass::iterator I = (*RCI)->begin(), E = (*RCI)->end(); + I != E; ++I) { + HasAliases = HasAliases || *tri_->getAliasSet(*I) != 0; + + const TargetRegisterClass *&PRC = OneClassForEachPhysReg[*I]; + if (PRC) { + // Already processed this register. Just make sure we know that + // multiple register classes share a register. + RelatedRegClasses.unionSets(PRC, *RCI); + } else { + PRC = *RCI; + } + } + } + + // Second pass, now that we know conservatively what register classes each reg + // belongs to, add info about aliases. We don't need to do this for targets + // without register aliases. + if (HasAliases) + for (DenseMap<unsigned, const TargetRegisterClass*>::iterator + I = OneClassForEachPhysReg.begin(), E = OneClassForEachPhysReg.end(); + I != E; ++I) + for (const unsigned *AS = tri_->getAliasSet(I->first); *AS; ++AS) + RelatedRegClasses.unionSets(I->second, OneClassForEachPhysReg[*AS]); +} + +/// attemptTrivialCoalescing - If a simple interval is defined by a copy, +/// try allocate the definition the same register as the source register +/// if the register is not defined during live time of the interval. This +/// eliminate a copy. This is used to coalesce copies which were not +/// coalesced away before allocation either due to dest and src being in +/// different register classes or because the coalescer was overly +/// conservative. +unsigned RALinScan::attemptTrivialCoalescing(LiveInterval &cur, unsigned Reg) { + if ((cur.preference && cur.preference == Reg) || !cur.containsOneValue()) + return Reg; + + VNInfo *vni = cur.begin()->valno; + if (!vni->def || vni->def == ~1U || vni->def == ~0U) + return Reg; + MachineInstr *CopyMI = li_->getInstructionFromIndex(vni->def); + unsigned SrcReg, DstReg, SrcSubReg, DstSubReg, PhysReg; + if (!CopyMI || + !tii_->isMoveInstr(*CopyMI, SrcReg, DstReg, SrcSubReg, DstSubReg)) + return Reg; + PhysReg = SrcReg; + if (TargetRegisterInfo::isVirtualRegister(SrcReg)) { + if (!vrm_->isAssignedReg(SrcReg)) + return Reg; + PhysReg = vrm_->getPhys(SrcReg); + } + if (Reg == PhysReg) + return Reg; + + const TargetRegisterClass *RC = mri_->getRegClass(cur.reg); + if (!RC->contains(PhysReg)) + return Reg; + + // Try to coalesce. + if (!li_->conflictsWithPhysRegDef(cur, *vrm_, PhysReg)) { + DOUT << "Coalescing: " << cur << " -> " << tri_->getName(PhysReg) + << '\n'; + vrm_->clearVirt(cur.reg); + vrm_->assignVirt2Phys(cur.reg, PhysReg); + + // Remove unnecessary kills since a copy does not clobber the register. + if (li_->hasInterval(SrcReg)) { + LiveInterval &SrcLI = li_->getInterval(SrcReg); + for (MachineRegisterInfo::reg_iterator I = mri_->reg_begin(cur.reg), + E = mri_->reg_end(); I != E; ++I) { + MachineOperand &O = I.getOperand(); + if (!O.isUse() || !O.isKill()) + continue; + MachineInstr *MI = &*I; + if (SrcLI.liveAt(li_->getDefIndex(li_->getInstructionIndex(MI)))) + O.setIsKill(false); + } + } + + ++NumCoalesce; + return SrcReg; + } + + return Reg; +} + +bool RALinScan::runOnMachineFunction(MachineFunction &fn) { + mf_ = &fn; + mri_ = &fn.getRegInfo(); + tm_ = &fn.getTarget(); + tri_ = tm_->getRegisterInfo(); + tii_ = tm_->getInstrInfo(); + allocatableRegs_ = tri_->getAllocatableSet(fn); + li_ = &getAnalysis<LiveIntervals>(); + ls_ = &getAnalysis<LiveStacks>(); + loopInfo = &getAnalysis<MachineLoopInfo>(); + + // We don't run the coalescer here because we have no reason to + // interact with it. If the coalescer requires interaction, it + // won't do anything. If it doesn't require interaction, we assume + // it was run as a separate pass. + + // If this is the first function compiled, compute the related reg classes. + if (RelatedRegClasses.empty()) + ComputeRelatedRegClasses(); + + // Also resize register usage trackers. + initRegUses(); + + vrm_ = &getAnalysis<VirtRegMap>(); + if (!rewriter_.get()) rewriter_.reset(createVirtRegRewriter()); + + if (NewSpillFramework) { + spiller_.reset(createSpiller(mf_, li_, ls_, vrm_)); + } + + initIntervalSets(); + + linearScan(); + + if (NewSpillFramework) { + bool allocValid = validateRegAlloc(mf_, li_, vrm_); + } + + // Rewrite spill code and update the PhysRegsUsed set. + rewriter_->runOnMachineFunction(*mf_, *vrm_, li_); + + assert(unhandled_.empty() && "Unhandled live intervals remain!"); + + finalizeRegUses(); + + fixed_.clear(); + active_.clear(); + inactive_.clear(); + handled_.clear(); + NextReloadMap.clear(); + DowngradedRegs.clear(); + DowngradeMap.clear(); + spiller_.reset(0); + + return true; +} + +/// initIntervalSets - initialize the interval sets. +/// +void RALinScan::initIntervalSets() +{ + assert(unhandled_.empty() && fixed_.empty() && + active_.empty() && inactive_.empty() && + "interval sets should be empty on initialization"); + + handled_.reserve(li_->getNumIntervals()); + + for (LiveIntervals::iterator i = li_->begin(), e = li_->end(); i != e; ++i) { + if (TargetRegisterInfo::isPhysicalRegister(i->second->reg)) { + mri_->setPhysRegUsed(i->second->reg); + fixed_.push_back(std::make_pair(i->second, i->second->begin())); + } else + unhandled_.push(i->second); + } +} + +void RALinScan::linearScan() +{ + // linear scan algorithm + DOUT << "********** LINEAR SCAN **********\n"; + DOUT << "********** Function: " << mf_->getFunction()->getName() << '\n'; + + DEBUG(printIntervals("fixed", fixed_.begin(), fixed_.end())); + + while (!unhandled_.empty()) { + // pick the interval with the earliest start point + LiveInterval* cur = unhandled_.top(); + unhandled_.pop(); + ++NumIters; + DOUT << "\n*** CURRENT ***: " << *cur << '\n'; + + if (!cur->empty()) { + processActiveIntervals(cur->beginNumber()); + processInactiveIntervals(cur->beginNumber()); + + assert(TargetRegisterInfo::isVirtualRegister(cur->reg) && + "Can only allocate virtual registers!"); + } + + // Allocating a virtual register. try to find a free + // physical register or spill an interval (possibly this one) in order to + // assign it one. + assignRegOrStackSlotAtInterval(cur); + + DEBUG(printIntervals("active", active_.begin(), active_.end())); + DEBUG(printIntervals("inactive", inactive_.begin(), inactive_.end())); + } + + // Expire any remaining active intervals + while (!active_.empty()) { + IntervalPtr &IP = active_.back(); + unsigned reg = IP.first->reg; + DOUT << "\tinterval " << *IP.first << " expired\n"; + assert(TargetRegisterInfo::isVirtualRegister(reg) && + "Can only allocate virtual registers!"); + reg = vrm_->getPhys(reg); + delRegUse(reg); + active_.pop_back(); + } + + // Expire any remaining inactive intervals + DEBUG(for (IntervalPtrs::reverse_iterator + i = inactive_.rbegin(); i != inactive_.rend(); ++i) + DOUT << "\tinterval " << *i->first << " expired\n"); + inactive_.clear(); + + // Add live-ins to every BB except for entry. Also perform trivial coalescing. + MachineFunction::iterator EntryMBB = mf_->begin(); + SmallVector<MachineBasicBlock*, 8> LiveInMBBs; + for (LiveIntervals::iterator i = li_->begin(), e = li_->end(); i != e; ++i) { + LiveInterval &cur = *i->second; + unsigned Reg = 0; + bool isPhys = TargetRegisterInfo::isPhysicalRegister(cur.reg); + if (isPhys) + Reg = cur.reg; + else if (vrm_->isAssignedReg(cur.reg)) + Reg = attemptTrivialCoalescing(cur, vrm_->getPhys(cur.reg)); + if (!Reg) + continue; + // Ignore splited live intervals. + if (!isPhys && vrm_->getPreSplitReg(cur.reg)) + continue; + for (LiveInterval::Ranges::const_iterator I = cur.begin(), E = cur.end(); + I != E; ++I) { + const LiveRange &LR = *I; + if (li_->findLiveInMBBs(LR.start, LR.end, LiveInMBBs)) { + for (unsigned i = 0, e = LiveInMBBs.size(); i != e; ++i) + if (LiveInMBBs[i] != EntryMBB) + LiveInMBBs[i]->addLiveIn(Reg); + LiveInMBBs.clear(); + } + } + } + + DOUT << *vrm_; + + // Look for physical registers that end up not being allocated even though + // register allocator had to spill other registers in its register class. + if (ls_->getNumIntervals() == 0) + return; + if (!vrm_->FindUnusedRegisters(tri_, li_)) + return; +} + +/// processActiveIntervals - expire old intervals and move non-overlapping ones +/// to the inactive list. +void RALinScan::processActiveIntervals(unsigned CurPoint) +{ + DOUT << "\tprocessing active intervals:\n"; + + for (unsigned i = 0, e = active_.size(); i != e; ++i) { + LiveInterval *Interval = active_[i].first; + LiveInterval::iterator IntervalPos = active_[i].second; + unsigned reg = Interval->reg; + + IntervalPos = Interval->advanceTo(IntervalPos, CurPoint); + + if (IntervalPos == Interval->end()) { // Remove expired intervals. + DOUT << "\t\tinterval " << *Interval << " expired\n"; + assert(TargetRegisterInfo::isVirtualRegister(reg) && + "Can only allocate virtual registers!"); + reg = vrm_->getPhys(reg); + delRegUse(reg); + + // Pop off the end of the list. + active_[i] = active_.back(); + active_.pop_back(); + --i; --e; + + } else if (IntervalPos->start > CurPoint) { + // Move inactive intervals to inactive list. + DOUT << "\t\tinterval " << *Interval << " inactive\n"; + assert(TargetRegisterInfo::isVirtualRegister(reg) && + "Can only allocate virtual registers!"); + reg = vrm_->getPhys(reg); + delRegUse(reg); + // add to inactive. + inactive_.push_back(std::make_pair(Interval, IntervalPos)); + + // Pop off the end of the list. + active_[i] = active_.back(); + active_.pop_back(); + --i; --e; + } else { + // Otherwise, just update the iterator position. + active_[i].second = IntervalPos; + } + } +} + +/// processInactiveIntervals - expire old intervals and move overlapping +/// ones to the active list. +void RALinScan::processInactiveIntervals(unsigned CurPoint) +{ + DOUT << "\tprocessing inactive intervals:\n"; + + for (unsigned i = 0, e = inactive_.size(); i != e; ++i) { + LiveInterval *Interval = inactive_[i].first; + LiveInterval::iterator IntervalPos = inactive_[i].second; + unsigned reg = Interval->reg; + + IntervalPos = Interval->advanceTo(IntervalPos, CurPoint); + + if (IntervalPos == Interval->end()) { // remove expired intervals. + DOUT << "\t\tinterval " << *Interval << " expired\n"; + + // Pop off the end of the list. + inactive_[i] = inactive_.back(); + inactive_.pop_back(); + --i; --e; + } else if (IntervalPos->start <= CurPoint) { + // move re-activated intervals in active list + DOUT << "\t\tinterval " << *Interval << " active\n"; + assert(TargetRegisterInfo::isVirtualRegister(reg) && + "Can only allocate virtual registers!"); + reg = vrm_->getPhys(reg); + addRegUse(reg); + // add to active + active_.push_back(std::make_pair(Interval, IntervalPos)); + + // Pop off the end of the list. + inactive_[i] = inactive_.back(); + inactive_.pop_back(); + --i; --e; + } else { + // Otherwise, just update the iterator position. + inactive_[i].second = IntervalPos; + } + } +} + +/// updateSpillWeights - updates the spill weights of the specifed physical +/// register and its weight. +void RALinScan::updateSpillWeights(std::vector<float> &Weights, + unsigned reg, float weight, + const TargetRegisterClass *RC) { + SmallSet<unsigned, 4> Processed; + SmallSet<unsigned, 4> SuperAdded; + SmallVector<unsigned, 4> Supers; + Weights[reg] += weight; + Processed.insert(reg); + for (const unsigned* as = tri_->getAliasSet(reg); *as; ++as) { + Weights[*as] += weight; + Processed.insert(*as); + if (tri_->isSubRegister(*as, reg) && + SuperAdded.insert(*as) && + RC->contains(*as)) { + Supers.push_back(*as); + } + } + + // If the alias is a super-register, and the super-register is in the + // register class we are trying to allocate. Then add the weight to all + // sub-registers of the super-register even if they are not aliases. + // e.g. allocating for GR32, bh is not used, updating bl spill weight. + // bl should get the same spill weight otherwise it will be choosen + // as a spill candidate since spilling bh doesn't make ebx available. + for (unsigned i = 0, e = Supers.size(); i != e; ++i) { + for (const unsigned *sr = tri_->getSubRegisters(Supers[i]); *sr; ++sr) + if (!Processed.count(*sr)) + Weights[*sr] += weight; + } +} + +static +RALinScan::IntervalPtrs::iterator +FindIntervalInVector(RALinScan::IntervalPtrs &IP, LiveInterval *LI) { + for (RALinScan::IntervalPtrs::iterator I = IP.begin(), E = IP.end(); + I != E; ++I) + if (I->first == LI) return I; + return IP.end(); +} + +static void RevertVectorIteratorsTo(RALinScan::IntervalPtrs &V, unsigned Point){ + for (unsigned i = 0, e = V.size(); i != e; ++i) { + RALinScan::IntervalPtr &IP = V[i]; + LiveInterval::iterator I = std::upper_bound(IP.first->begin(), + IP.second, Point); + if (I != IP.first->begin()) --I; + IP.second = I; + } +} + +/// addStackInterval - Create a LiveInterval for stack if the specified live +/// interval has been spilled. +static void addStackInterval(LiveInterval *cur, LiveStacks *ls_, + LiveIntervals *li_, + MachineRegisterInfo* mri_, VirtRegMap &vrm_) { + int SS = vrm_.getStackSlot(cur->reg); + if (SS == VirtRegMap::NO_STACK_SLOT) + return; + + const TargetRegisterClass *RC = mri_->getRegClass(cur->reg); + LiveInterval &SI = ls_->getOrCreateInterval(SS, RC); + + VNInfo *VNI; + if (SI.hasAtLeastOneValue()) + VNI = SI.getValNumInfo(0); + else + VNI = SI.getNextValue(~0U, 0, ls_->getVNInfoAllocator()); + + LiveInterval &RI = li_->getInterval(cur->reg); + // FIXME: This may be overly conservative. + SI.MergeRangesInAsValue(RI, VNI); +} + +/// getConflictWeight - Return the number of conflicts between cur +/// live interval and defs and uses of Reg weighted by loop depthes. +static +float getConflictWeight(LiveInterval *cur, unsigned Reg, LiveIntervals *li_, + MachineRegisterInfo *mri_, + const MachineLoopInfo *loopInfo) { + float Conflicts = 0; + for (MachineRegisterInfo::reg_iterator I = mri_->reg_begin(Reg), + E = mri_->reg_end(); I != E; ++I) { + MachineInstr *MI = &*I; + if (cur->liveAt(li_->getInstructionIndex(MI))) { + unsigned loopDepth = loopInfo->getLoopDepth(MI->getParent()); + Conflicts += powf(10.0f, (float)loopDepth); + } + } + return Conflicts; +} + +/// findIntervalsToSpill - Determine the intervals to spill for the +/// specified interval. It's passed the physical registers whose spill +/// weight is the lowest among all the registers whose live intervals +/// conflict with the interval. +void RALinScan::findIntervalsToSpill(LiveInterval *cur, + std::vector<std::pair<unsigned,float> > &Candidates, + unsigned NumCands, + SmallVector<LiveInterval*, 8> &SpillIntervals) { + // We have figured out the *best* register to spill. But there are other + // registers that are pretty good as well (spill weight within 3%). Spill + // the one that has fewest defs and uses that conflict with cur. + float Conflicts[3] = { 0.0f, 0.0f, 0.0f }; + SmallVector<LiveInterval*, 8> SLIs[3]; + + DOUT << "\tConsidering " << NumCands << " candidates: "; + DEBUG(for (unsigned i = 0; i != NumCands; ++i) + DOUT << tri_->getName(Candidates[i].first) << " "; + DOUT << "\n";); + + // Calculate the number of conflicts of each candidate. + for (IntervalPtrs::iterator i = active_.begin(); i != active_.end(); ++i) { + unsigned Reg = i->first->reg; + unsigned PhysReg = vrm_->getPhys(Reg); + if (!cur->overlapsFrom(*i->first, i->second)) + continue; + for (unsigned j = 0; j < NumCands; ++j) { + unsigned Candidate = Candidates[j].first; + if (tri_->regsOverlap(PhysReg, Candidate)) { + if (NumCands > 1) + Conflicts[j] += getConflictWeight(cur, Reg, li_, mri_, loopInfo); + SLIs[j].push_back(i->first); + } + } + } + + for (IntervalPtrs::iterator i = inactive_.begin(); i != inactive_.end(); ++i){ + unsigned Reg = i->first->reg; + unsigned PhysReg = vrm_->getPhys(Reg); + if (!cur->overlapsFrom(*i->first, i->second-1)) + continue; + for (unsigned j = 0; j < NumCands; ++j) { + unsigned Candidate = Candidates[j].first; + if (tri_->regsOverlap(PhysReg, Candidate)) { + if (NumCands > 1) + Conflicts[j] += getConflictWeight(cur, Reg, li_, mri_, loopInfo); + SLIs[j].push_back(i->first); + } + } + } + + // Which is the best candidate? + unsigned BestCandidate = 0; + float MinConflicts = Conflicts[0]; + for (unsigned i = 1; i != NumCands; ++i) { + if (Conflicts[i] < MinConflicts) { + BestCandidate = i; + MinConflicts = Conflicts[i]; + } + } + + std::copy(SLIs[BestCandidate].begin(), SLIs[BestCandidate].end(), + std::back_inserter(SpillIntervals)); +} + +namespace { + struct WeightCompare { + typedef std::pair<unsigned, float> RegWeightPair; + bool operator()(const RegWeightPair &LHS, const RegWeightPair &RHS) const { + return LHS.second < RHS.second; + } + }; +} + +static bool weightsAreClose(float w1, float w2) { + if (!NewHeuristic) + return false; + + float diff = w1 - w2; + if (diff <= 0.02f) // Within 0.02f + return true; + return (diff / w2) <= 0.05f; // Within 5%. +} + +LiveInterval *RALinScan::hasNextReloadInterval(LiveInterval *cur) { + DenseMap<unsigned, unsigned>::iterator I = NextReloadMap.find(cur->reg); + if (I == NextReloadMap.end()) + return 0; + return &li_->getInterval(I->second); +} + +void RALinScan::DowngradeRegister(LiveInterval *li, unsigned Reg) { + bool isNew = DowngradedRegs.insert(Reg); + isNew = isNew; // Silence compiler warning. + assert(isNew && "Multiple reloads holding the same register?"); + DowngradeMap.insert(std::make_pair(li->reg, Reg)); + for (const unsigned *AS = tri_->getAliasSet(Reg); *AS; ++AS) { + isNew = DowngradedRegs.insert(*AS); + isNew = isNew; // Silence compiler warning. + assert(isNew && "Multiple reloads holding the same register?"); + DowngradeMap.insert(std::make_pair(li->reg, *AS)); + } + ++NumDowngrade; +} + +void RALinScan::UpgradeRegister(unsigned Reg) { + if (Reg) { + DowngradedRegs.erase(Reg); + for (const unsigned *AS = tri_->getAliasSet(Reg); *AS; ++AS) + DowngradedRegs.erase(*AS); + } +} + +namespace { + struct LISorter { + bool operator()(LiveInterval* A, LiveInterval* B) { + return A->beginNumber() < B->beginNumber(); + } + }; +} + +/// assignRegOrStackSlotAtInterval - assign a register if one is available, or +/// spill. +void RALinScan::assignRegOrStackSlotAtInterval(LiveInterval* cur) +{ + DOUT << "\tallocating current interval: "; + + // This is an implicitly defined live interval, just assign any register. + const TargetRegisterClass *RC = mri_->getRegClass(cur->reg); + if (cur->empty()) { + unsigned physReg = cur->preference; + if (!physReg) + physReg = *RC->allocation_order_begin(*mf_); + DOUT << tri_->getName(physReg) << '\n'; + // Note the register is not really in use. + vrm_->assignVirt2Phys(cur->reg, physReg); + return; + } + + backUpRegUses(); + + std::vector<std::pair<unsigned, float> > SpillWeightsToAdd; + unsigned StartPosition = cur->beginNumber(); + const TargetRegisterClass *RCLeader = RelatedRegClasses.getLeaderValue(RC); + + // If start of this live interval is defined by a move instruction and its + // source is assigned a physical register that is compatible with the target + // register class, then we should try to assign it the same register. + // This can happen when the move is from a larger register class to a smaller + // one, e.g. X86::mov32to32_. These move instructions are not coalescable. + if (!cur->preference && cur->hasAtLeastOneValue()) { + VNInfo *vni = cur->begin()->valno; + if (vni->def && vni->def != ~1U && vni->def != ~0U) { + MachineInstr *CopyMI = li_->getInstructionFromIndex(vni->def); + unsigned SrcReg, DstReg, SrcSubReg, DstSubReg; + if (CopyMI && + tii_->isMoveInstr(*CopyMI, SrcReg, DstReg, SrcSubReg, DstSubReg)) { + unsigned Reg = 0; + if (TargetRegisterInfo::isPhysicalRegister(SrcReg)) + Reg = SrcReg; + else if (vrm_->isAssignedReg(SrcReg)) + Reg = vrm_->getPhys(SrcReg); + if (Reg) { + if (SrcSubReg) + Reg = tri_->getSubReg(Reg, SrcSubReg); + if (DstSubReg) + Reg = tri_->getMatchingSuperReg(Reg, DstSubReg, RC); + if (Reg && allocatableRegs_[Reg] && RC->contains(Reg)) + cur->preference = Reg; + } + } + } + } + + // For every interval in inactive we overlap with, mark the + // register as not free and update spill weights. + for (IntervalPtrs::const_iterator i = inactive_.begin(), + e = inactive_.end(); i != e; ++i) { + unsigned Reg = i->first->reg; + assert(TargetRegisterInfo::isVirtualRegister(Reg) && + "Can only allocate virtual registers!"); + const TargetRegisterClass *RegRC = mri_->getRegClass(Reg); + // If this is not in a related reg class to the register we're allocating, + // don't check it. + if (RelatedRegClasses.getLeaderValue(RegRC) == RCLeader && + cur->overlapsFrom(*i->first, i->second-1)) { + Reg = vrm_->getPhys(Reg); + addRegUse(Reg); + SpillWeightsToAdd.push_back(std::make_pair(Reg, i->first->weight)); + } + } + + // Speculatively check to see if we can get a register right now. If not, + // we know we won't be able to by adding more constraints. If so, we can + // check to see if it is valid. Doing an exhaustive search of the fixed_ list + // is very bad (it contains all callee clobbered registers for any functions + // with a call), so we want to avoid doing that if possible. + unsigned physReg = getFreePhysReg(cur); + unsigned BestPhysReg = physReg; + if (physReg) { + // We got a register. However, if it's in the fixed_ list, we might + // conflict with it. Check to see if we conflict with it or any of its + // aliases. + SmallSet<unsigned, 8> RegAliases; + for (const unsigned *AS = tri_->getAliasSet(physReg); *AS; ++AS) + RegAliases.insert(*AS); + + bool ConflictsWithFixed = false; + for (unsigned i = 0, e = fixed_.size(); i != e; ++i) { + IntervalPtr &IP = fixed_[i]; + if (physReg == IP.first->reg || RegAliases.count(IP.first->reg)) { + // Okay, this reg is on the fixed list. Check to see if we actually + // conflict. + LiveInterval *I = IP.first; + if (I->endNumber() > StartPosition) { + LiveInterval::iterator II = I->advanceTo(IP.second, StartPosition); + IP.second = II; + if (II != I->begin() && II->start > StartPosition) + --II; + if (cur->overlapsFrom(*I, II)) { + ConflictsWithFixed = true; + break; + } + } + } + } + + // Okay, the register picked by our speculative getFreePhysReg call turned + // out to be in use. Actually add all of the conflicting fixed registers to + // regUse_ so we can do an accurate query. + if (ConflictsWithFixed) { + // For every interval in fixed we overlap with, mark the register as not + // free and update spill weights. + for (unsigned i = 0, e = fixed_.size(); i != e; ++i) { + IntervalPtr &IP = fixed_[i]; + LiveInterval *I = IP.first; + + const TargetRegisterClass *RegRC = OneClassForEachPhysReg[I->reg]; + if (RelatedRegClasses.getLeaderValue(RegRC) == RCLeader && + I->endNumber() > StartPosition) { + LiveInterval::iterator II = I->advanceTo(IP.second, StartPosition); + IP.second = II; + if (II != I->begin() && II->start > StartPosition) + --II; + if (cur->overlapsFrom(*I, II)) { + unsigned reg = I->reg; + addRegUse(reg); + SpillWeightsToAdd.push_back(std::make_pair(reg, I->weight)); + } + } + } + + // Using the newly updated regUse_ object, which includes conflicts in the + // future, see if there are any registers available. + physReg = getFreePhysReg(cur); + } + } + + // Restore the physical register tracker, removing information about the + // future. + restoreRegUses(); + + // If we find a free register, we are done: assign this virtual to + // the free physical register and add this interval to the active + // list. + if (physReg) { + DOUT << tri_->getName(physReg) << '\n'; + vrm_->assignVirt2Phys(cur->reg, physReg); + addRegUse(physReg); + active_.push_back(std::make_pair(cur, cur->begin())); + handled_.push_back(cur); + + // "Upgrade" the physical register since it has been allocated. + UpgradeRegister(physReg); + if (LiveInterval *NextReloadLI = hasNextReloadInterval(cur)) { + // "Downgrade" physReg to try to keep physReg from being allocated until + // the next reload from the same SS is allocated. + NextReloadLI->preference = physReg; + DowngradeRegister(cur, physReg); + } + return; + } + DOUT << "no free registers\n"; + + // Compile the spill weights into an array that is better for scanning. + std::vector<float> SpillWeights(tri_->getNumRegs(), 0.0f); + for (std::vector<std::pair<unsigned, float> >::iterator + I = SpillWeightsToAdd.begin(), E = SpillWeightsToAdd.end(); I != E; ++I) + updateSpillWeights(SpillWeights, I->first, I->second, RC); + + // for each interval in active, update spill weights. + for (IntervalPtrs::const_iterator i = active_.begin(), e = active_.end(); + i != e; ++i) { + unsigned reg = i->first->reg; + assert(TargetRegisterInfo::isVirtualRegister(reg) && + "Can only allocate virtual registers!"); + reg = vrm_->getPhys(reg); + updateSpillWeights(SpillWeights, reg, i->first->weight, RC); + } + + DOUT << "\tassigning stack slot at interval "<< *cur << ":\n"; + + // Find a register to spill. + float minWeight = HUGE_VALF; + unsigned minReg = 0; /*cur->preference*/; // Try the pref register first. + + bool Found = false; + std::vector<std::pair<unsigned,float> > RegsWeights; + if (!minReg || SpillWeights[minReg] == HUGE_VALF) + for (TargetRegisterClass::iterator i = RC->allocation_order_begin(*mf_), + e = RC->allocation_order_end(*mf_); i != e; ++i) { + unsigned reg = *i; + float regWeight = SpillWeights[reg]; + if (minWeight > regWeight) + Found = true; + RegsWeights.push_back(std::make_pair(reg, regWeight)); + } + + // If we didn't find a register that is spillable, try aliases? + if (!Found) { + for (TargetRegisterClass::iterator i = RC->allocation_order_begin(*mf_), + e = RC->allocation_order_end(*mf_); i != e; ++i) { + unsigned reg = *i; + // No need to worry about if the alias register size < regsize of RC. + // We are going to spill all registers that alias it anyway. + for (const unsigned* as = tri_->getAliasSet(reg); *as; ++as) + RegsWeights.push_back(std::make_pair(*as, SpillWeights[*as])); + } + } + + // Sort all potential spill candidates by weight. + std::sort(RegsWeights.begin(), RegsWeights.end(), WeightCompare()); + minReg = RegsWeights[0].first; + minWeight = RegsWeights[0].second; + if (minWeight == HUGE_VALF) { + // All registers must have inf weight. Just grab one! + minReg = BestPhysReg ? BestPhysReg : *RC->allocation_order_begin(*mf_); + if (cur->weight == HUGE_VALF || + li_->getApproximateInstructionCount(*cur) == 0) { + // Spill a physical register around defs and uses. + if (li_->spillPhysRegAroundRegDefsUses(*cur, minReg, *vrm_)) { + // spillPhysRegAroundRegDefsUses may have invalidated iterator stored + // in fixed_. Reset them. + for (unsigned i = 0, e = fixed_.size(); i != e; ++i) { + IntervalPtr &IP = fixed_[i]; + LiveInterval *I = IP.first; + if (I->reg == minReg || tri_->isSubRegister(minReg, I->reg)) + IP.second = I->advanceTo(I->begin(), StartPosition); + } + + DowngradedRegs.clear(); + assignRegOrStackSlotAtInterval(cur); + } else { + cerr << "Ran out of registers during register allocation!\n"; + exit(1); + } + return; + } + } + + // Find up to 3 registers to consider as spill candidates. + unsigned LastCandidate = RegsWeights.size() >= 3 ? 3 : 1; + while (LastCandidate > 1) { + if (weightsAreClose(RegsWeights[LastCandidate-1].second, minWeight)) + break; + --LastCandidate; + } + + DOUT << "\t\tregister(s) with min weight(s): "; + DEBUG(for (unsigned i = 0; i != LastCandidate; ++i) + DOUT << tri_->getName(RegsWeights[i].first) + << " (" << RegsWeights[i].second << ")\n"); + + // If the current has the minimum weight, we need to spill it and + // add any added intervals back to unhandled, and restart + // linearscan. + if (cur->weight != HUGE_VALF && cur->weight <= minWeight) { + DOUT << "\t\t\tspilling(c): " << *cur << '\n'; + SmallVector<LiveInterval*, 8> spillIs; + std::vector<LiveInterval*> added; + + if (!NewSpillFramework) { + added = li_->addIntervalsForSpills(*cur, spillIs, loopInfo, *vrm_); + } else { + added = spiller_->spill(cur); + } + + std::sort(added.begin(), added.end(), LISorter()); + addStackInterval(cur, ls_, li_, mri_, *vrm_); + if (added.empty()) + return; // Early exit if all spills were folded. + + // Merge added with unhandled. Note that we have already sorted + // intervals returned by addIntervalsForSpills by their starting + // point. + // This also update the NextReloadMap. That is, it adds mapping from a + // register defined by a reload from SS to the next reload from SS in the + // same basic block. + MachineBasicBlock *LastReloadMBB = 0; + LiveInterval *LastReload = 0; + int LastReloadSS = VirtRegMap::NO_STACK_SLOT; + for (unsigned i = 0, e = added.size(); i != e; ++i) { + LiveInterval *ReloadLi = added[i]; + if (ReloadLi->weight == HUGE_VALF && + li_->getApproximateInstructionCount(*ReloadLi) == 0) { + unsigned ReloadIdx = ReloadLi->beginNumber(); + MachineBasicBlock *ReloadMBB = li_->getMBBFromIndex(ReloadIdx); + int ReloadSS = vrm_->getStackSlot(ReloadLi->reg); + if (LastReloadMBB == ReloadMBB && LastReloadSS == ReloadSS) { + // Last reload of same SS is in the same MBB. We want to try to + // allocate both reloads the same register and make sure the reg + // isn't clobbered in between if at all possible. + assert(LastReload->beginNumber() < ReloadIdx); + NextReloadMap.insert(std::make_pair(LastReload->reg, ReloadLi->reg)); + } + LastReloadMBB = ReloadMBB; + LastReload = ReloadLi; + LastReloadSS = ReloadSS; + } + unhandled_.push(ReloadLi); + } + return; + } + + ++NumBacktracks; + + // Push the current interval back to unhandled since we are going + // to re-run at least this iteration. Since we didn't modify it it + // should go back right in the front of the list + unhandled_.push(cur); + + assert(TargetRegisterInfo::isPhysicalRegister(minReg) && + "did not choose a register to spill?"); + + // We spill all intervals aliasing the register with + // minimum weight, rollback to the interval with the earliest + // start point and let the linear scan algorithm run again + SmallVector<LiveInterval*, 8> spillIs; + + // Determine which intervals have to be spilled. + findIntervalsToSpill(cur, RegsWeights, LastCandidate, spillIs); + + // Set of spilled vregs (used later to rollback properly) + SmallSet<unsigned, 8> spilled; + + // The earliest start of a Spilled interval indicates up to where + // in handled we need to roll back + + unsigned earliestStart = cur->beginNumber(); + LiveInterval *earliestStartInterval = cur; + + // Spill live intervals of virtual regs mapped to the physical register we + // want to clear (and its aliases). We only spill those that overlap with the + // current interval as the rest do not affect its allocation. we also keep + // track of the earliest start of all spilled live intervals since this will + // mark our rollback point. + std::vector<LiveInterval*> added; + while (!spillIs.empty()) { + bool epicFail = false; + LiveInterval *sli = spillIs.back(); + spillIs.pop_back(); + DOUT << "\t\t\tspilling(a): " << *sli << '\n'; + earliestStart = std::min(earliestStart, sli->beginNumber()); + earliestStartInterval = + (earliestStartInterval->beginNumber() < sli->beginNumber()) ? + earliestStartInterval : sli; + + if (earliestStartInterval->beginNumber()!=earliestStart) { + epicFail |= true; + std::cerr << "What the 1 - " + << "earliestStart = " << earliestStart + << "earliestStartInterval = " << earliestStartInterval->beginNumber() + << "\n"; + } + + std::vector<LiveInterval*> newIs; + if (!NewSpillFramework) { + newIs = li_->addIntervalsForSpills(*sli, spillIs, loopInfo, *vrm_); + } else { + newIs = spiller_->spill(sli); + } + addStackInterval(sli, ls_, li_, mri_, *vrm_); + std::copy(newIs.begin(), newIs.end(), std::back_inserter(added)); + spilled.insert(sli->reg); + + if (earliestStartInterval->beginNumber()!=earliestStart) { + epicFail |= true; + std::cerr << "What the 2 - " + << "earliestStart = " << earliestStart + << "earliestStartInterval = " << earliestStartInterval->beginNumber() + << "\n"; + } + + if (epicFail) { + //abort(); + } + } + + earliestStart = earliestStartInterval->beginNumber(); + + DOUT << "\t\trolling back to: " << earliestStart << '\n'; + + // Scan handled in reverse order up to the earliest start of a + // spilled live interval and undo each one, restoring the state of + // unhandled. + while (!handled_.empty()) { + LiveInterval* i = handled_.back(); + // If this interval starts before t we are done. + if (i->beginNumber() < earliestStart) + break; + DOUT << "\t\t\tundo changes for: " << *i << '\n'; + handled_.pop_back(); + + // When undoing a live interval allocation we must know if it is active or + // inactive to properly update regUse_ and the VirtRegMap. + IntervalPtrs::iterator it; + if ((it = FindIntervalInVector(active_, i)) != active_.end()) { + active_.erase(it); + assert(!TargetRegisterInfo::isPhysicalRegister(i->reg)); + if (!spilled.count(i->reg)) + unhandled_.push(i); + delRegUse(vrm_->getPhys(i->reg)); + vrm_->clearVirt(i->reg); + } else if ((it = FindIntervalInVector(inactive_, i)) != inactive_.end()) { + inactive_.erase(it); + assert(!TargetRegisterInfo::isPhysicalRegister(i->reg)); + if (!spilled.count(i->reg)) + unhandled_.push(i); + vrm_->clearVirt(i->reg); + } else { + assert(TargetRegisterInfo::isVirtualRegister(i->reg) && + "Can only allocate virtual registers!"); + vrm_->clearVirt(i->reg); + unhandled_.push(i); + } + + DenseMap<unsigned, unsigned>::iterator ii = DowngradeMap.find(i->reg); + if (ii == DowngradeMap.end()) + // It interval has a preference, it must be defined by a copy. Clear the + // preference now since the source interval allocation may have been + // undone as well. + i->preference = 0; + else { + UpgradeRegister(ii->second); + } + } + + // Rewind the iterators in the active, inactive, and fixed lists back to the + // point we reverted to. + RevertVectorIteratorsTo(active_, earliestStart); + RevertVectorIteratorsTo(inactive_, earliestStart); + RevertVectorIteratorsTo(fixed_, earliestStart); + + // Scan the rest and undo each interval that expired after t and + // insert it in active (the next iteration of the algorithm will + // put it in inactive if required) + for (unsigned i = 0, e = handled_.size(); i != e; ++i) { + LiveInterval *HI = handled_[i]; + if (!HI->expiredAt(earliestStart) && + HI->expiredAt(cur->beginNumber())) { + DOUT << "\t\t\tundo changes for: " << *HI << '\n'; + active_.push_back(std::make_pair(HI, HI->begin())); + assert(!TargetRegisterInfo::isPhysicalRegister(HI->reg)); + addRegUse(vrm_->getPhys(HI->reg)); + } + } + + // Merge added with unhandled. + // This also update the NextReloadMap. That is, it adds mapping from a + // register defined by a reload from SS to the next reload from SS in the + // same basic block. + MachineBasicBlock *LastReloadMBB = 0; + LiveInterval *LastReload = 0; + int LastReloadSS = VirtRegMap::NO_STACK_SLOT; + std::sort(added.begin(), added.end(), LISorter()); + for (unsigned i = 0, e = added.size(); i != e; ++i) { + LiveInterval *ReloadLi = added[i]; + if (ReloadLi->weight == HUGE_VALF && + li_->getApproximateInstructionCount(*ReloadLi) == 0) { + unsigned ReloadIdx = ReloadLi->beginNumber(); + MachineBasicBlock *ReloadMBB = li_->getMBBFromIndex(ReloadIdx); + int ReloadSS = vrm_->getStackSlot(ReloadLi->reg); + if (LastReloadMBB == ReloadMBB && LastReloadSS == ReloadSS) { + // Last reload of same SS is in the same MBB. We want to try to + // allocate both reloads the same register and make sure the reg + // isn't clobbered in between if at all possible. + assert(LastReload->beginNumber() < ReloadIdx); + NextReloadMap.insert(std::make_pair(LastReload->reg, ReloadLi->reg)); + } + LastReloadMBB = ReloadMBB; + LastReload = ReloadLi; + LastReloadSS = ReloadSS; + } + unhandled_.push(ReloadLi); + } +} + +unsigned RALinScan::getFreePhysReg(const TargetRegisterClass *RC, + unsigned MaxInactiveCount, + SmallVector<unsigned, 256> &inactiveCounts, + bool SkipDGRegs) { + unsigned FreeReg = 0; + unsigned FreeRegInactiveCount = 0; + + TargetRegisterClass::iterator I = RC->allocation_order_begin(*mf_); + TargetRegisterClass::iterator E = RC->allocation_order_end(*mf_); + assert(I != E && "No allocatable register in this register class!"); + + // Scan for the first available register. + for (; I != E; ++I) { + unsigned Reg = *I; + // Ignore "downgraded" registers. + if (SkipDGRegs && DowngradedRegs.count(Reg)) + continue; + if (isRegAvail(Reg)) { + FreeReg = Reg; + if (FreeReg < inactiveCounts.size()) + FreeRegInactiveCount = inactiveCounts[FreeReg]; + else + FreeRegInactiveCount = 0; + break; + } + } + + // If there are no free regs, or if this reg has the max inactive count, + // return this register. + if (FreeReg == 0 || FreeRegInactiveCount == MaxInactiveCount) + return FreeReg; + + // Continue scanning the registers, looking for the one with the highest + // inactive count. Alkis found that this reduced register pressure very + // slightly on X86 (in rev 1.94 of this file), though this should probably be + // reevaluated now. + for (; I != E; ++I) { + unsigned Reg = *I; + // Ignore "downgraded" registers. + if (SkipDGRegs && DowngradedRegs.count(Reg)) + continue; + if (isRegAvail(Reg) && Reg < inactiveCounts.size() && + FreeRegInactiveCount < inactiveCounts[Reg]) { + FreeReg = Reg; + FreeRegInactiveCount = inactiveCounts[Reg]; + if (FreeRegInactiveCount == MaxInactiveCount) + break; // We found the one with the max inactive count. + } + } + + return FreeReg; +} + +/// getFreePhysReg - return a free physical register for this virtual register +/// interval if we have one, otherwise return 0. +unsigned RALinScan::getFreePhysReg(LiveInterval *cur) { + SmallVector<unsigned, 256> inactiveCounts; + unsigned MaxInactiveCount = 0; + + const TargetRegisterClass *RC = mri_->getRegClass(cur->reg); + const TargetRegisterClass *RCLeader = RelatedRegClasses.getLeaderValue(RC); + + for (IntervalPtrs::iterator i = inactive_.begin(), e = inactive_.end(); + i != e; ++i) { + unsigned reg = i->first->reg; + assert(TargetRegisterInfo::isVirtualRegister(reg) && + "Can only allocate virtual registers!"); + + // If this is not in a related reg class to the register we're allocating, + // don't check it. + const TargetRegisterClass *RegRC = mri_->getRegClass(reg); + if (RelatedRegClasses.getLeaderValue(RegRC) == RCLeader) { + reg = vrm_->getPhys(reg); + if (inactiveCounts.size() <= reg) + inactiveCounts.resize(reg+1); + ++inactiveCounts[reg]; + MaxInactiveCount = std::max(MaxInactiveCount, inactiveCounts[reg]); + } + } + + // If copy coalescer has assigned a "preferred" register, check if it's + // available first. + if (cur->preference) { + DOUT << "(preferred: " << tri_->getName(cur->preference) << ") "; + if (isRegAvail(cur->preference) && + RC->contains(cur->preference)) + return cur->preference; + } + + if (!DowngradedRegs.empty()) { + unsigned FreeReg = getFreePhysReg(RC, MaxInactiveCount, inactiveCounts, + true); + if (FreeReg) + return FreeReg; + } + return getFreePhysReg(RC, MaxInactiveCount, inactiveCounts, false); +} + +FunctionPass* llvm::createLinearScanRegisterAllocator() { + return new RALinScan(); +} |