diff options
Diffstat (limited to 'lib/CodeGen/RegAllocBigBlock.cpp')
-rw-r--r-- | lib/CodeGen/RegAllocBigBlock.cpp | 892 |
1 files changed, 892 insertions, 0 deletions
diff --git a/lib/CodeGen/RegAllocBigBlock.cpp b/lib/CodeGen/RegAllocBigBlock.cpp new file mode 100644 index 0000000..91e4099 --- /dev/null +++ b/lib/CodeGen/RegAllocBigBlock.cpp @@ -0,0 +1,892 @@ +//===- RegAllocBigBlock.cpp - A register allocator for large basic blocks -===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file implements the RABigBlock class +// +//===----------------------------------------------------------------------===// + +// This register allocator is derived from RegAllocLocal.cpp. Like it, this +// allocator works on one basic block at a time, oblivious to others. +// However, the algorithm used here is suited for long blocks of +// instructions - registers are spilled by greedily choosing those holding +// values that will not be needed for the longest amount of time. This works +// particularly well for blocks with 10 or more times as many instructions +// as machine registers, but can be used for general code. +// +//===----------------------------------------------------------------------===// +// +// TODO: - automagically invoke linearscan for (groups of) small BBs? +// - break ties when picking regs? (probably not worth it in a +// JIT context) +// +//===----------------------------------------------------------------------===// + +#define DEBUG_TYPE "regalloc" +#include "llvm/BasicBlock.h" +#include "llvm/CodeGen/Passes.h" +#include "llvm/CodeGen/MachineFunctionPass.h" +#include "llvm/CodeGen/MachineInstr.h" +#include "llvm/CodeGen/MachineFrameInfo.h" +#include "llvm/CodeGen/MachineRegisterInfo.h" +#include "llvm/CodeGen/LiveVariables.h" +#include "llvm/CodeGen/RegAllocRegistry.h" +#include "llvm/Target/TargetInstrInfo.h" +#include "llvm/Target/TargetMachine.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/Compiler.h" +#include "llvm/ADT/IndexedMap.h" +#include "llvm/ADT/DenseMap.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/ADT/Statistic.h" +#include <algorithm> +using namespace llvm; + +STATISTIC(NumStores, "Number of stores added"); +STATISTIC(NumLoads , "Number of loads added"); +STATISTIC(NumFolded, "Number of loads/stores folded into instructions"); + +static RegisterRegAlloc + bigBlockRegAlloc("bigblock", "Big-block register allocator", + createBigBlockRegisterAllocator); + +namespace { +/// VRegKeyInfo - Defines magic values required to use VirtRegs as DenseMap +/// keys. + struct VRegKeyInfo { + static inline unsigned getEmptyKey() { return -1U; } + static inline unsigned getTombstoneKey() { return -2U; } + static bool isEqual(unsigned LHS, unsigned RHS) { return LHS == RHS; } + static unsigned getHashValue(const unsigned &Key) { return Key; } + }; + + +/// This register allocator is derived from RegAllocLocal.cpp. Like it, this +/// allocator works on one basic block at a time, oblivious to others. +/// However, the algorithm used here is suited for long blocks of +/// instructions - registers are spilled by greedily choosing those holding +/// values that will not be needed for the longest amount of time. This works +/// particularly well for blocks with 10 or more times as many instructions +/// as machine registers, but can be used for general code. +/// +/// TODO: - automagically invoke linearscan for (groups of) small BBs? +/// - break ties when picking regs? (probably not worth it in a +/// JIT context) +/// + class VISIBILITY_HIDDEN RABigBlock : public MachineFunctionPass { + public: + static char ID; + RABigBlock() : MachineFunctionPass(&ID) {} + private: + /// TM - For getting at TargetMachine info + /// + const TargetMachine *TM; + + /// MF - Our generic MachineFunction pointer + /// + MachineFunction *MF; + + /// RegInfo - For dealing with machine register info (aliases, folds + /// etc) + const TargetRegisterInfo *RegInfo; + + typedef SmallVector<unsigned, 2> VRegTimes; + + /// VRegReadTable - maps VRegs in a BB to the set of times they are read + /// + DenseMap<unsigned, VRegTimes*, VRegKeyInfo> VRegReadTable; + + /// VRegReadIdx - keeps track of the "current time" in terms of + /// positions in VRegReadTable + DenseMap<unsigned, unsigned , VRegKeyInfo> VRegReadIdx; + + /// StackSlotForVirtReg - Maps virtual regs to the frame index where these + /// values are spilled. + IndexedMap<unsigned, VirtReg2IndexFunctor> StackSlotForVirtReg; + + /// Virt2PhysRegMap - This map contains entries for each virtual register + /// that is currently available in a physical register. + IndexedMap<unsigned, VirtReg2IndexFunctor> Virt2PhysRegMap; + + /// PhysRegsUsed - This array is effectively a map, containing entries for + /// each physical register that currently has a value (ie, it is in + /// Virt2PhysRegMap). The value mapped to is the virtual register + /// corresponding to the physical register (the inverse of the + /// Virt2PhysRegMap), or 0. The value is set to 0 if this register is pinned + /// because it is used by a future instruction, and to -2 if it is not + /// allocatable. If the entry for a physical register is -1, then the + /// physical register is "not in the map". + /// + std::vector<int> PhysRegsUsed; + + /// VirtRegModified - This bitset contains information about which virtual + /// registers need to be spilled back to memory when their registers are + /// scavenged. If a virtual register has simply been rematerialized, there + /// is no reason to spill it to memory when we need the register back. + /// + std::vector<int> VirtRegModified; + + /// MBBLastInsnTime - the number of the the last instruction in MBB + /// + int MBBLastInsnTime; + + /// MBBCurTime - the number of the the instruction being currently processed + /// + int MBBCurTime; + + unsigned &getVirt2PhysRegMapSlot(unsigned VirtReg) { + return Virt2PhysRegMap[VirtReg]; + } + + unsigned &getVirt2StackSlot(unsigned VirtReg) { + return StackSlotForVirtReg[VirtReg]; + } + + /// markVirtRegModified - Lets us flip bits in the VirtRegModified bitset + /// + void markVirtRegModified(unsigned Reg, bool Val = true) { + assert(TargetRegisterInfo::isVirtualRegister(Reg) && "Illegal VirtReg!"); + Reg -= TargetRegisterInfo::FirstVirtualRegister; + if (VirtRegModified.size() <= Reg) + VirtRegModified.resize(Reg+1); + VirtRegModified[Reg] = Val; + } + + /// isVirtRegModified - Lets us query the VirtRegModified bitset + /// + bool isVirtRegModified(unsigned Reg) const { + assert(TargetRegisterInfo::isVirtualRegister(Reg) && "Illegal VirtReg!"); + assert(Reg - TargetRegisterInfo::FirstVirtualRegister < VirtRegModified.size() + && "Illegal virtual register!"); + return VirtRegModified[Reg - TargetRegisterInfo::FirstVirtualRegister]; + } + + public: + /// getPassName - returns the BigBlock allocator's name + /// + virtual const char *getPassName() const { + return "BigBlock Register Allocator"; + } + + /// getAnalaysisUsage - declares the required analyses + /// + virtual void getAnalysisUsage(AnalysisUsage &AU) const { + AU.addRequiredID(PHIEliminationID); + AU.addRequiredID(TwoAddressInstructionPassID); + MachineFunctionPass::getAnalysisUsage(AU); + } + + private: + /// runOnMachineFunction - Register allocate the whole function + /// + bool runOnMachineFunction(MachineFunction &Fn); + + /// AllocateBasicBlock - Register allocate the specified basic block. + /// + void AllocateBasicBlock(MachineBasicBlock &MBB); + + /// FillVRegReadTable - Fill out the table of vreg read times given a BB + /// + void FillVRegReadTable(MachineBasicBlock &MBB); + + /// areRegsEqual - This method returns true if the specified registers are + /// related to each other. To do this, it checks to see if they are equal + /// or if the first register is in the alias set of the second register. + /// + bool areRegsEqual(unsigned R1, unsigned R2) const { + if (R1 == R2) return true; + for (const unsigned *AliasSet = RegInfo->getAliasSet(R2); + *AliasSet; ++AliasSet) { + if (*AliasSet == R1) return true; + } + return false; + } + + /// getStackSpaceFor - This returns the frame index of the specified virtual + /// register on the stack, allocating space if necessary. + int getStackSpaceFor(unsigned VirtReg, const TargetRegisterClass *RC); + + /// removePhysReg - This method marks the specified physical register as no + /// longer being in use. + /// + void removePhysReg(unsigned PhysReg); + + /// spillVirtReg - This method spills the value specified by PhysReg into + /// the virtual register slot specified by VirtReg. It then updates the RA + /// data structures to indicate the fact that PhysReg is now available. + /// + void spillVirtReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, + unsigned VirtReg, unsigned PhysReg); + + /// spillPhysReg - This method spills the specified physical register into + /// the virtual register slot associated with it. If OnlyVirtRegs is set to + /// true, then the request is ignored if the physical register does not + /// contain a virtual register. + /// + void spillPhysReg(MachineBasicBlock &MBB, MachineInstr *I, + unsigned PhysReg, bool OnlyVirtRegs = false); + + /// assignVirtToPhysReg - This method updates local state so that we know + /// that PhysReg is the proper container for VirtReg now. The physical + /// register must not be used for anything else when this is called. + /// + void assignVirtToPhysReg(unsigned VirtReg, unsigned PhysReg); + + /// isPhysRegAvailable - Return true if the specified physical register is + /// free and available for use. This also includes checking to see if + /// aliased registers are all free... + /// + bool isPhysRegAvailable(unsigned PhysReg) const; + + /// getFreeReg - Look to see if there is a free register available in the + /// specified register class. If not, return 0. + /// + unsigned getFreeReg(const TargetRegisterClass *RC); + + /// chooseReg - Pick a physical register to hold the specified + /// virtual register by choosing the one which will be read furthest + /// in the future. + /// + unsigned chooseReg(MachineBasicBlock &MBB, MachineInstr *MI, + unsigned VirtReg); + + /// reloadVirtReg - This method transforms the specified specified virtual + /// register use to refer to a physical register. This method may do this + /// in one of several ways: if the register is available in a physical + /// register already, it uses that physical register. If the value is not + /// in a physical register, and if there are physical registers available, + /// it loads it into a register. If register pressure is high, and it is + /// possible, it tries to fold the load of the virtual register into the + /// instruction itself. It avoids doing this if register pressure is low to + /// improve the chance that subsequent instructions can use the reloaded + /// value. This method returns the modified instruction. + /// + MachineInstr *reloadVirtReg(MachineBasicBlock &MBB, MachineInstr *MI, + unsigned OpNum); + + }; + char RABigBlock::ID = 0; +} + +/// getStackSpaceFor - This allocates space for the specified virtual register +/// to be held on the stack. +int RABigBlock::getStackSpaceFor(unsigned VirtReg, const TargetRegisterClass *RC) { + // Find the location Reg would belong... + int FrameIdx = getVirt2StackSlot(VirtReg); + + if (FrameIdx) + return FrameIdx - 1; // Already has space allocated? + + // Allocate a new stack object for this spill location... + FrameIdx = MF->getFrameInfo()->CreateStackObject(RC->getSize(), + RC->getAlignment()); + + // Assign the slot... + getVirt2StackSlot(VirtReg) = FrameIdx + 1; + return FrameIdx; +} + + +/// removePhysReg - This method marks the specified physical register as no +/// longer being in use. +/// +void RABigBlock::removePhysReg(unsigned PhysReg) { + PhysRegsUsed[PhysReg] = -1; // PhyReg no longer used +} + + +/// spillVirtReg - This method spills the value specified by PhysReg into the +/// virtual register slot specified by VirtReg. It then updates the RA data +/// structures to indicate the fact that PhysReg is now available. +/// +void RABigBlock::spillVirtReg(MachineBasicBlock &MBB, + MachineBasicBlock::iterator I, + unsigned VirtReg, unsigned PhysReg) { + assert(VirtReg && "Spilling a physical register is illegal!" + " Must not have appropriate kill for the register or use exists beyond" + " the intended one."); + DOUT << " Spilling register " << RegInfo->getName(PhysReg) + << " containing %reg" << VirtReg; + + const TargetInstrInfo* TII = MBB.getParent()->getTarget().getInstrInfo(); + + if (!isVirtRegModified(VirtReg)) + DOUT << " which has not been modified, so no store necessary!"; + + // Otherwise, there is a virtual register corresponding to this physical + // register. We only need to spill it into its stack slot if it has been + // modified. + if (isVirtRegModified(VirtReg)) { + const TargetRegisterClass *RC = MF->getRegInfo().getRegClass(VirtReg); + int FrameIndex = getStackSpaceFor(VirtReg, RC); + DOUT << " to stack slot #" << FrameIndex; + TII->storeRegToStackSlot(MBB, I, PhysReg, true, FrameIndex, RC); + ++NumStores; // Update statistics + } + + getVirt2PhysRegMapSlot(VirtReg) = 0; // VirtReg no longer available + + DOUT << "\n"; + removePhysReg(PhysReg); +} + + +/// spillPhysReg - This method spills the specified physical register into the +/// virtual register slot associated with it. If OnlyVirtRegs is set to true, +/// then the request is ignored if the physical register does not contain a +/// virtual register. +/// +void RABigBlock::spillPhysReg(MachineBasicBlock &MBB, MachineInstr *I, + unsigned PhysReg, bool OnlyVirtRegs) { + if (PhysRegsUsed[PhysReg] != -1) { // Only spill it if it's used! + assert(PhysRegsUsed[PhysReg] != -2 && "Non allocable reg used!"); + if (PhysRegsUsed[PhysReg] || !OnlyVirtRegs) + spillVirtReg(MBB, I, PhysRegsUsed[PhysReg], PhysReg); + } else { + // If the selected register aliases any other registers, we must make + // sure that one of the aliases isn't alive. + for (const unsigned *AliasSet = RegInfo->getAliasSet(PhysReg); + *AliasSet; ++AliasSet) + if (PhysRegsUsed[*AliasSet] != -1 && // Spill aliased register. + PhysRegsUsed[*AliasSet] != -2) // If allocatable. + if (PhysRegsUsed[*AliasSet]) + spillVirtReg(MBB, I, PhysRegsUsed[*AliasSet], *AliasSet); + } +} + + +/// assignVirtToPhysReg - This method updates local state so that we know +/// that PhysReg is the proper container for VirtReg now. The physical +/// register must not be used for anything else when this is called. +/// +void RABigBlock::assignVirtToPhysReg(unsigned VirtReg, unsigned PhysReg) { + assert(PhysRegsUsed[PhysReg] == -1 && "Phys reg already assigned!"); + // Update information to note the fact that this register was just used, and + // it holds VirtReg. + PhysRegsUsed[PhysReg] = VirtReg; + getVirt2PhysRegMapSlot(VirtReg) = PhysReg; +} + + +/// isPhysRegAvailable - Return true if the specified physical register is free +/// and available for use. This also includes checking to see if aliased +/// registers are all free... +/// +bool RABigBlock::isPhysRegAvailable(unsigned PhysReg) const { + if (PhysRegsUsed[PhysReg] != -1) return false; + + // If the selected register aliases any other allocated registers, it is + // not free! + for (const unsigned *AliasSet = RegInfo->getAliasSet(PhysReg); + *AliasSet; ++AliasSet) + if (PhysRegsUsed[*AliasSet] >= 0) // Aliased register in use? + return false; // Can't use this reg then. + return true; +} + + +/// getFreeReg - Look to see if there is a free register available in the +/// specified register class. If not, return 0. +/// +unsigned RABigBlock::getFreeReg(const TargetRegisterClass *RC) { + // Get iterators defining the range of registers that are valid to allocate in + // this class, which also specifies the preferred allocation order. + TargetRegisterClass::iterator RI = RC->allocation_order_begin(*MF); + TargetRegisterClass::iterator RE = RC->allocation_order_end(*MF); + + for (; RI != RE; ++RI) + if (isPhysRegAvailable(*RI)) { // Is reg unused? + assert(*RI != 0 && "Cannot use register!"); + return *RI; // Found an unused register! + } + return 0; +} + + +/// chooseReg - Pick a physical register to hold the specified +/// virtual register by choosing the one whose value will be read +/// furthest in the future. +/// +unsigned RABigBlock::chooseReg(MachineBasicBlock &MBB, MachineInstr *I, + unsigned VirtReg) { + const TargetRegisterClass *RC = MF->getRegInfo().getRegClass(VirtReg); + // First check to see if we have a free register of the requested type... + unsigned PhysReg = getFreeReg(RC); + + // If we didn't find an unused register, find the one which will be + // read at the most distant point in time. + if (PhysReg == 0) { + unsigned delay=0, longest_delay=0; + VRegTimes* ReadTimes; + + unsigned curTime = MBBCurTime; + + // for all physical regs in the RC, + for(TargetRegisterClass::iterator pReg = RC->begin(); + pReg != RC->end(); ++pReg) { + // how long until they're read? + if(PhysRegsUsed[*pReg]>0) { // ignore non-allocatable regs + ReadTimes = VRegReadTable[PhysRegsUsed[*pReg]]; + if(ReadTimes && !ReadTimes->empty()) { + unsigned& pt = VRegReadIdx[PhysRegsUsed[*pReg]]; + while(pt < ReadTimes->size() && (*ReadTimes)[pt] < curTime) { + ++pt; + } + + if(pt < ReadTimes->size()) + delay = (*ReadTimes)[pt] - curTime; + else + delay = MBBLastInsnTime + 1 - curTime; + } else { + // This register is only defined, but never + // read in this MBB. Therefore the next read + // happens after the end of this MBB + delay = MBBLastInsnTime + 1 - curTime; + } + + + if(delay > longest_delay) { + longest_delay = delay; + PhysReg = *pReg; + } + } + } + + if(PhysReg == 0) { // ok, now we're desperate. We couldn't choose + // a register to spill by looking through the + // read timetable, so now we just spill the + // first allocatable register we find. + + // for all physical regs in the RC, + for(TargetRegisterClass::iterator pReg = RC->begin(); + pReg != RC->end(); ++pReg) { + // if we find a register we can spill + if(PhysRegsUsed[*pReg]>=-1) + PhysReg = *pReg; // choose it to be spilled + } + } + + assert(PhysReg && "couldn't choose a register to spill :( "); + // TODO: assert that RC->contains(PhysReg) / handle aliased registers? + + // since we needed to look in the table we need to spill this register. + spillPhysReg(MBB, I, PhysReg); + } + + // assign the vreg to our chosen physical register + assignVirtToPhysReg(VirtReg, PhysReg); + return PhysReg; // and return it +} + + +/// reloadVirtReg - This method transforms an instruction with a virtual +/// register use to one that references a physical register. It does this as +/// follows: +/// +/// 1) If the register is already in a physical register, it uses it. +/// 2) Otherwise, if there is a free physical register, it uses that. +/// 3) Otherwise, it calls chooseReg() to get the physical register +/// holding the most distantly needed value, generating a spill in +/// the process. +/// +/// This method returns the modified instruction. +MachineInstr *RABigBlock::reloadVirtReg(MachineBasicBlock &MBB, MachineInstr *MI, + unsigned OpNum) { + unsigned VirtReg = MI->getOperand(OpNum).getReg(); + const TargetInstrInfo* TII = MBB.getParent()->getTarget().getInstrInfo(); + + // If the virtual register is already available in a physical register, + // just update the instruction and return. + if (unsigned PR = getVirt2PhysRegMapSlot(VirtReg)) { + MI->getOperand(OpNum).setReg(PR); + return MI; + } + + // Otherwise, if we have free physical registers available to hold the + // value, use them. + const TargetRegisterClass *RC = MF->getRegInfo().getRegClass(VirtReg); + unsigned PhysReg = getFreeReg(RC); + int FrameIndex = getStackSpaceFor(VirtReg, RC); + + if (PhysReg) { // we have a free register, so use it. + assignVirtToPhysReg(VirtReg, PhysReg); + } else { // no free registers available. + // try to fold the spill into the instruction + SmallVector<unsigned, 1> Ops; + Ops.push_back(OpNum); + if(MachineInstr* FMI = TII->foldMemoryOperand(*MF, MI, Ops, FrameIndex)) { + ++NumFolded; + FMI->copyKillDeadInfo(MI); + return MBB.insert(MBB.erase(MI), FMI); + } + + // determine which of the physical registers we'll kill off, since we + // couldn't fold. + PhysReg = chooseReg(MBB, MI, VirtReg); + } + + // this virtual register is now unmodified (since we just reloaded it) + markVirtRegModified(VirtReg, false); + + DOUT << " Reloading %reg" << VirtReg << " into " + << RegInfo->getName(PhysReg) << "\n"; + + // Add move instruction(s) + TII->loadRegFromStackSlot(MBB, MI, PhysReg, FrameIndex, RC); + ++NumLoads; // Update statistics + + MF->getRegInfo().setPhysRegUsed(PhysReg); + MI->getOperand(OpNum).setReg(PhysReg); // Assign the input register + return MI; +} + +/// Fill out the vreg read timetable. Since ReadTime increases +/// monotonically, the individual readtime sets will be sorted +/// in ascending order. +void RABigBlock::FillVRegReadTable(MachineBasicBlock &MBB) { + // loop over each instruction + MachineBasicBlock::iterator MII; + unsigned ReadTime; + + for(ReadTime=0, MII = MBB.begin(); MII != MBB.end(); ++ReadTime, ++MII) { + MachineInstr *MI = MII; + + for (unsigned i = 0; i != MI->getNumOperands(); ++i) { + MachineOperand& MO = MI->getOperand(i); + // look for vreg reads.. + if (MO.isReg() && !MO.isDef() && MO.getReg() && + TargetRegisterInfo::isVirtualRegister(MO.getReg())) { + // ..and add them to the read table. + VRegTimes* &Times = VRegReadTable[MO.getReg()]; + if(!VRegReadTable[MO.getReg()]) { + Times = new VRegTimes; + VRegReadIdx[MO.getReg()] = 0; + } + Times->push_back(ReadTime); + } + } + + } + + MBBLastInsnTime = ReadTime; + + for(DenseMap<unsigned, VRegTimes*, VRegKeyInfo>::iterator Reads = VRegReadTable.begin(); + Reads != VRegReadTable.end(); ++Reads) { + if(Reads->second) { + DOUT << "Reads[" << Reads->first << "]=" << Reads->second->size() << "\n"; + } + } +} + +/// isReadModWriteImplicitKill - True if this is an implicit kill for a +/// read/mod/write register, i.e. update partial register. +static bool isReadModWriteImplicitKill(MachineInstr *MI, unsigned Reg) { + for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { + MachineOperand& MO = MI->getOperand(i); + if (MO.isReg() && MO.getReg() == Reg && MO.isImplicit() && + MO.isDef() && !MO.isDead()) + return true; + } + return false; +} + +/// isReadModWriteImplicitDef - True if this is an implicit def for a +/// read/mod/write register, i.e. update partial register. +static bool isReadModWriteImplicitDef(MachineInstr *MI, unsigned Reg) { + for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { + MachineOperand& MO = MI->getOperand(i); + if (MO.isReg() && MO.getReg() == Reg && MO.isImplicit() && + !MO.isDef() && MO.isKill()) + return true; + } + return false; +} + + +void RABigBlock::AllocateBasicBlock(MachineBasicBlock &MBB) { + // loop over each instruction + MachineBasicBlock::iterator MII = MBB.begin(); + const TargetInstrInfo &TII = *TM->getInstrInfo(); + + DEBUG(const BasicBlock *LBB = MBB.getBasicBlock(); + if (LBB) DOUT << "\nStarting RegAlloc of BB: " << LBB->getName()); + + // If this is the first basic block in the machine function, add live-in + // registers as active. + if (&MBB == &*MF->begin()) { + for (MachineRegisterInfo::livein_iterator + I = MF->getRegInfo().livein_begin(), + E = MF->getRegInfo().livein_end(); I != E; ++I) { + unsigned Reg = I->first; + MF->getRegInfo().setPhysRegUsed(Reg); + PhysRegsUsed[Reg] = 0; // It is free and reserved now + for (const unsigned *AliasSet = RegInfo->getSubRegisters(Reg); + *AliasSet; ++AliasSet) { + if (PhysRegsUsed[*AliasSet] != -2) { + PhysRegsUsed[*AliasSet] = 0; // It is free and reserved now + MF->getRegInfo().setPhysRegUsed(*AliasSet); + } + } + } + } + + // Otherwise, sequentially allocate each instruction in the MBB. + MBBCurTime = -1; + while (MII != MBB.end()) { + MachineInstr *MI = MII++; + MBBCurTime++; + const TargetInstrDesc &TID = MI->getDesc(); + DEBUG(DOUT << "\nTime=" << MBBCurTime << " Starting RegAlloc of: " << *MI; + DOUT << " Regs have values: "; + for (unsigned i = 0; i != RegInfo->getNumRegs(); ++i) + if (PhysRegsUsed[i] != -1 && PhysRegsUsed[i] != -2) + DOUT << "[" << RegInfo->getName(i) + << ",%reg" << PhysRegsUsed[i] << "] "; + DOUT << "\n"); + + SmallVector<unsigned, 8> Kills; + for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { + MachineOperand& MO = MI->getOperand(i); + if (MO.isReg() && MO.isKill()) { + if (!MO.isImplicit()) + Kills.push_back(MO.getReg()); + else if (!isReadModWriteImplicitKill(MI, MO.getReg())) + // These are extra physical register kills when a sub-register + // is defined (def of a sub-register is a read/mod/write of the + // larger registers). Ignore. + Kills.push_back(MO.getReg()); + } + } + + // Get the used operands into registers. This has the potential to spill + // incoming values if we are out of registers. Note that we completely + // ignore physical register uses here. We assume that if an explicit + // physical register is referenced by the instruction, that it is guaranteed + // to be live-in, or the input is badly hosed. + // + for (unsigned i = 0; i != MI->getNumOperands(); ++i) { + MachineOperand& MO = MI->getOperand(i); + // here we are looking for only used operands (never def&use) + if (MO.isReg() && !MO.isDef() && MO.getReg() && !MO.isImplicit() && + TargetRegisterInfo::isVirtualRegister(MO.getReg())) + MI = reloadVirtReg(MBB, MI, i); + } + + // If this instruction is the last user of this register, kill the + // value, freeing the register being used, so it doesn't need to be + // spilled to memory. + // + for (unsigned i = 0, e = Kills.size(); i != e; ++i) { + unsigned VirtReg = Kills[i]; + unsigned PhysReg = VirtReg; + if (TargetRegisterInfo::isVirtualRegister(VirtReg)) { + // If the virtual register was never materialized into a register, it + // might not be in the map, but it won't hurt to zero it out anyway. + unsigned &PhysRegSlot = getVirt2PhysRegMapSlot(VirtReg); + PhysReg = PhysRegSlot; + PhysRegSlot = 0; + } else if (PhysRegsUsed[PhysReg] == -2) { + // Unallocatable register dead, ignore. + continue; + } else { + assert((!PhysRegsUsed[PhysReg] || PhysRegsUsed[PhysReg] == -1) && + "Silently clearing a virtual register?"); + } + + if (PhysReg) { + DOUT << " Last use of " << RegInfo->getName(PhysReg) + << "[%reg" << VirtReg <<"], removing it from live set\n"; + removePhysReg(PhysReg); + for (const unsigned *AliasSet = RegInfo->getSubRegisters(PhysReg); + *AliasSet; ++AliasSet) { + if (PhysRegsUsed[*AliasSet] != -2) { + DOUT << " Last use of " + << RegInfo->getName(*AliasSet) + << "[%reg" << VirtReg <<"], removing it from live set\n"; + removePhysReg(*AliasSet); + } + } + } + } + + // Loop over all of the operands of the instruction, spilling registers that + // are defined, and marking explicit destinations in the PhysRegsUsed map. + for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { + MachineOperand& MO = MI->getOperand(i); + if (MO.isReg() && MO.isDef() && !MO.isImplicit() && MO.getReg() && + TargetRegisterInfo::isPhysicalRegister(MO.getReg())) { + unsigned Reg = MO.getReg(); + if (PhysRegsUsed[Reg] == -2) continue; // Something like ESP. + // These are extra physical register defs when a sub-register + // is defined (def of a sub-register is a read/mod/write of the + // larger registers). Ignore. + if (isReadModWriteImplicitDef(MI, MO.getReg())) continue; + + MF->getRegInfo().setPhysRegUsed(Reg); + spillPhysReg(MBB, MI, Reg, true); // Spill any existing value in reg + PhysRegsUsed[Reg] = 0; // It is free and reserved now + for (const unsigned *AliasSet = RegInfo->getSubRegisters(Reg); + *AliasSet; ++AliasSet) { + if (PhysRegsUsed[*AliasSet] != -2) { + PhysRegsUsed[*AliasSet] = 0; // It is free and reserved now + MF->getRegInfo().setPhysRegUsed(*AliasSet); + } + } + } + } + + // Loop over the implicit defs, spilling them as well. + if (TID.getImplicitDefs()) { + for (const unsigned *ImplicitDefs = TID.getImplicitDefs(); + *ImplicitDefs; ++ImplicitDefs) { + unsigned Reg = *ImplicitDefs; + if (PhysRegsUsed[Reg] != -2) { + spillPhysReg(MBB, MI, Reg, true); + PhysRegsUsed[Reg] = 0; // It is free and reserved now + } + MF->getRegInfo().setPhysRegUsed(Reg); + for (const unsigned *AliasSet = RegInfo->getSubRegisters(Reg); + *AliasSet; ++AliasSet) { + if (PhysRegsUsed[*AliasSet] != -2) { + PhysRegsUsed[*AliasSet] = 0; // It is free and reserved now + MF->getRegInfo().setPhysRegUsed(*AliasSet); + } + } + } + } + + SmallVector<unsigned, 8> DeadDefs; + for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { + MachineOperand& MO = MI->getOperand(i); + if (MO.isReg() && MO.isDead()) + DeadDefs.push_back(MO.getReg()); + } + + // Okay, we have allocated all of the source operands and spilled any values + // that would be destroyed by defs of this instruction. Loop over the + // explicit defs and assign them to a register, spilling incoming values if + // we need to scavenge a register. + // + for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { + MachineOperand& MO = MI->getOperand(i); + if (MO.isReg() && MO.isDef() && MO.getReg() && + TargetRegisterInfo::isVirtualRegister(MO.getReg())) { + unsigned DestVirtReg = MO.getReg(); + unsigned DestPhysReg; + + // If DestVirtReg already has a value, use it. + if (!(DestPhysReg = getVirt2PhysRegMapSlot(DestVirtReg))) + DestPhysReg = chooseReg(MBB, MI, DestVirtReg); + MF->getRegInfo().setPhysRegUsed(DestPhysReg); + markVirtRegModified(DestVirtReg); + MI->getOperand(i).setReg(DestPhysReg); // Assign the output register + } + } + + // If this instruction defines any registers that are immediately dead, + // kill them now. + // + for (unsigned i = 0, e = DeadDefs.size(); i != e; ++i) { + unsigned VirtReg = DeadDefs[i]; + unsigned PhysReg = VirtReg; + if (TargetRegisterInfo::isVirtualRegister(VirtReg)) { + unsigned &PhysRegSlot = getVirt2PhysRegMapSlot(VirtReg); + PhysReg = PhysRegSlot; + assert(PhysReg != 0); + PhysRegSlot = 0; + } else if (PhysRegsUsed[PhysReg] == -2) { + // Unallocatable register dead, ignore. + continue; + } + + if (PhysReg) { + DOUT << " Register " << RegInfo->getName(PhysReg) + << " [%reg" << VirtReg + << "] is never used, removing it from live set\n"; + removePhysReg(PhysReg); + for (const unsigned *AliasSet = RegInfo->getAliasSet(PhysReg); + *AliasSet; ++AliasSet) { + if (PhysRegsUsed[*AliasSet] != -2) { + DOUT << " Register " << RegInfo->getName(*AliasSet) + << " [%reg" << *AliasSet + << "] is never used, removing it from live set\n"; + removePhysReg(*AliasSet); + } + } + } + } + + // Finally, if this is a noop copy instruction, zap it. + unsigned SrcReg, DstReg, SrcSubReg, DstSubReg; + if (TII.isMoveInstr(*MI, SrcReg, DstReg, SrcSubReg, DstSubReg) && + SrcReg == DstReg) + MBB.erase(MI); + } + + MachineBasicBlock::iterator MI = MBB.getFirstTerminator(); + + // Spill all physical registers holding virtual registers now. + for (unsigned i = 0, e = RegInfo->getNumRegs(); i != e; ++i) + if (PhysRegsUsed[i] != -1 && PhysRegsUsed[i] != -2) { + if (unsigned VirtReg = PhysRegsUsed[i]) + spillVirtReg(MBB, MI, VirtReg, i); + else + removePhysReg(i); + } +} + +/// runOnMachineFunction - Register allocate the whole function +/// +bool RABigBlock::runOnMachineFunction(MachineFunction &Fn) { + DOUT << "Machine Function " << "\n"; + MF = &Fn; + TM = &Fn.getTarget(); + RegInfo = TM->getRegisterInfo(); + + PhysRegsUsed.assign(RegInfo->getNumRegs(), -1); + + // At various places we want to efficiently check to see whether a register + // is allocatable. To handle this, we mark all unallocatable registers as + // being pinned down, permanently. + { + BitVector Allocable = RegInfo->getAllocatableSet(Fn); + for (unsigned i = 0, e = Allocable.size(); i != e; ++i) + if (!Allocable[i]) + PhysRegsUsed[i] = -2; // Mark the reg unallocable. + } + + // initialize the virtual->physical register map to have a 'null' + // mapping for all virtual registers + Virt2PhysRegMap.grow(MF->getRegInfo().getLastVirtReg()); + StackSlotForVirtReg.grow(MF->getRegInfo().getLastVirtReg()); + VirtRegModified.resize(MF->getRegInfo().getLastVirtReg() - + TargetRegisterInfo::FirstVirtualRegister + 1, 0); + + // Loop over all of the basic blocks, eliminating virtual register references + for (MachineFunction::iterator MBB = Fn.begin(), MBBe = Fn.end(); + MBB != MBBe; ++MBB) { + // fill out the read timetable + FillVRegReadTable(*MBB); + // use it to allocate the BB + AllocateBasicBlock(*MBB); + // clear it + VRegReadTable.clear(); + } + + StackSlotForVirtReg.clear(); + PhysRegsUsed.clear(); + VirtRegModified.clear(); + Virt2PhysRegMap.clear(); + return true; +} + +FunctionPass *llvm::createBigBlockRegisterAllocator() { + return new RABigBlock(); +} + |