diff options
Diffstat (limited to 'lib/CodeGen/PBQP/HeuristicSolver.h')
-rw-r--r-- | lib/CodeGen/PBQP/HeuristicSolver.h | 616 |
1 files changed, 0 insertions, 616 deletions
diff --git a/lib/CodeGen/PBQP/HeuristicSolver.h b/lib/CodeGen/PBQP/HeuristicSolver.h deleted file mode 100644 index 35514f9..0000000 --- a/lib/CodeGen/PBQP/HeuristicSolver.h +++ /dev/null @@ -1,616 +0,0 @@ -//===-- HeuristicSolver.h - Heuristic PBQP Solver --------------*- C++ -*-===// -// -// The LLVM Compiler Infrastructure -// -// This file is distributed under the University of Illinois Open Source -// License. See LICENSE.TXT for details. -// -//===----------------------------------------------------------------------===// -// -// Heuristic PBQP solver. This solver is able to perform optimal reductions for -// nodes of degree 0, 1 or 2. For nodes of degree >2 a plugable heuristic is -// used to select a node for reduction. -// -//===----------------------------------------------------------------------===// - -#ifndef LLVM_CODEGEN_PBQP_HEURISTICSOLVER_H -#define LLVM_CODEGEN_PBQP_HEURISTICSOLVER_H - -#include "Graph.h" -#include "Solution.h" -#include <vector> -#include <limits> - -namespace PBQP { - - /// \brief Heuristic PBQP solver implementation. - /// - /// This class should usually be created (and destroyed) indirectly via a call - /// to HeuristicSolver<HImpl>::solve(Graph&). - /// See the comments for HeuristicSolver. - /// - /// HeuristicSolverImpl provides the R0, R1 and R2 reduction rules, - /// backpropagation phase, and maintains the internal copy of the graph on - /// which the reduction is carried out (the original being kept to facilitate - /// backpropagation). - template <typename HImpl> - class HeuristicSolverImpl { - private: - - typedef typename HImpl::NodeData HeuristicNodeData; - typedef typename HImpl::EdgeData HeuristicEdgeData; - - typedef std::list<Graph::EdgeItr> SolverEdges; - - public: - - /// \brief Iterator type for edges in the solver graph. - typedef SolverEdges::iterator SolverEdgeItr; - - private: - - class NodeData { - public: - NodeData() : solverDegree(0) {} - - HeuristicNodeData& getHeuristicData() { return hData; } - - SolverEdgeItr addSolverEdge(Graph::EdgeItr eItr) { - ++solverDegree; - return solverEdges.insert(solverEdges.end(), eItr); - } - - void removeSolverEdge(SolverEdgeItr seItr) { - --solverDegree; - solverEdges.erase(seItr); - } - - SolverEdgeItr solverEdgesBegin() { return solverEdges.begin(); } - SolverEdgeItr solverEdgesEnd() { return solverEdges.end(); } - unsigned getSolverDegree() const { return solverDegree; } - void clearSolverEdges() { - solverDegree = 0; - solverEdges.clear(); - } - - private: - HeuristicNodeData hData; - unsigned solverDegree; - SolverEdges solverEdges; - }; - - class EdgeData { - public: - HeuristicEdgeData& getHeuristicData() { return hData; } - - void setN1SolverEdgeItr(SolverEdgeItr n1SolverEdgeItr) { - this->n1SolverEdgeItr = n1SolverEdgeItr; - } - - SolverEdgeItr getN1SolverEdgeItr() { return n1SolverEdgeItr; } - - void setN2SolverEdgeItr(SolverEdgeItr n2SolverEdgeItr){ - this->n2SolverEdgeItr = n2SolverEdgeItr; - } - - SolverEdgeItr getN2SolverEdgeItr() { return n2SolverEdgeItr; } - - private: - - HeuristicEdgeData hData; - SolverEdgeItr n1SolverEdgeItr, n2SolverEdgeItr; - }; - - Graph &g; - HImpl h; - Solution s; - std::vector<Graph::NodeItr> stack; - - typedef std::list<NodeData> NodeDataList; - NodeDataList nodeDataList; - - typedef std::list<EdgeData> EdgeDataList; - EdgeDataList edgeDataList; - - public: - - /// \brief Construct a heuristic solver implementation to solve the given - /// graph. - /// @param g The graph representing the problem instance to be solved. - HeuristicSolverImpl(Graph &g) : g(g), h(*this) {} - - /// \brief Get the graph being solved by this solver. - /// @return The graph representing the problem instance being solved by this - /// solver. - Graph& getGraph() { return g; } - - /// \brief Get the heuristic data attached to the given node. - /// @param nItr Node iterator. - /// @return The heuristic data attached to the given node. - HeuristicNodeData& getHeuristicNodeData(Graph::NodeItr nItr) { - return getSolverNodeData(nItr).getHeuristicData(); - } - - /// \brief Get the heuristic data attached to the given edge. - /// @param eItr Edge iterator. - /// @return The heuristic data attached to the given node. - HeuristicEdgeData& getHeuristicEdgeData(Graph::EdgeItr eItr) { - return getSolverEdgeData(eItr).getHeuristicData(); - } - - /// \brief Begin iterator for the set of edges adjacent to the given node in - /// the solver graph. - /// @param nItr Node iterator. - /// @return Begin iterator for the set of edges adjacent to the given node - /// in the solver graph. - SolverEdgeItr solverEdgesBegin(Graph::NodeItr nItr) { - return getSolverNodeData(nItr).solverEdgesBegin(); - } - - /// \brief End iterator for the set of edges adjacent to the given node in - /// the solver graph. - /// @param nItr Node iterator. - /// @return End iterator for the set of edges adjacent to the given node in - /// the solver graph. - SolverEdgeItr solverEdgesEnd(Graph::NodeItr nItr) { - return getSolverNodeData(nItr).solverEdgesEnd(); - } - - /// \brief Remove a node from the solver graph. - /// @param eItr Edge iterator for edge to be removed. - /// - /// Does <i>not</i> notify the heuristic of the removal. That should be - /// done manually if necessary. - void removeSolverEdge(Graph::EdgeItr eItr) { - EdgeData &eData = getSolverEdgeData(eItr); - NodeData &n1Data = getSolverNodeData(g.getEdgeNode1(eItr)), - &n2Data = getSolverNodeData(g.getEdgeNode2(eItr)); - - n1Data.removeSolverEdge(eData.getN1SolverEdgeItr()); - n2Data.removeSolverEdge(eData.getN2SolverEdgeItr()); - } - - /// \brief Compute a solution to the PBQP problem instance with which this - /// heuristic solver was constructed. - /// @return A solution to the PBQP problem. - /// - /// Performs the full PBQP heuristic solver algorithm, including setup, - /// calls to the heuristic (which will call back to the reduction rules in - /// this class), and cleanup. - Solution computeSolution() { - setup(); - h.setup(); - h.reduce(); - backpropagate(); - h.cleanup(); - cleanup(); - return s; - } - - /// \brief Add to the end of the stack. - /// @param nItr Node iterator to add to the reduction stack. - void pushToStack(Graph::NodeItr nItr) { - getSolverNodeData(nItr).clearSolverEdges(); - stack.push_back(nItr); - } - - /// \brief Returns the solver degree of the given node. - /// @param nItr Node iterator for which degree is requested. - /// @return Node degree in the <i>solver</i> graph (not the original graph). - unsigned getSolverDegree(Graph::NodeItr nItr) { - return getSolverNodeData(nItr).getSolverDegree(); - } - - /// \brief Set the solution of the given node. - /// @param nItr Node iterator to set solution for. - /// @param selection Selection for node. - void setSolution(const Graph::NodeItr &nItr, unsigned selection) { - s.setSelection(nItr, selection); - - for (Graph::AdjEdgeItr aeItr = g.adjEdgesBegin(nItr), - aeEnd = g.adjEdgesEnd(nItr); - aeItr != aeEnd; ++aeItr) { - Graph::EdgeItr eItr(*aeItr); - Graph::NodeItr anItr(g.getEdgeOtherNode(eItr, nItr)); - getSolverNodeData(anItr).addSolverEdge(eItr); - } - } - - /// \brief Apply rule R0. - /// @param nItr Node iterator for node to apply R0 to. - /// - /// Node will be automatically pushed to the solver stack. - void applyR0(Graph::NodeItr nItr) { - assert(getSolverNodeData(nItr).getSolverDegree() == 0 && - "R0 applied to node with degree != 0."); - - // Nothing to do. Just push the node onto the reduction stack. - pushToStack(nItr); - - s.recordR0(); - } - - /// \brief Apply rule R1. - /// @param xnItr Node iterator for node to apply R1 to. - /// - /// Node will be automatically pushed to the solver stack. - void applyR1(Graph::NodeItr xnItr) { - NodeData &nd = getSolverNodeData(xnItr); - assert(nd.getSolverDegree() == 1 && - "R1 applied to node with degree != 1."); - - Graph::EdgeItr eItr = *nd.solverEdgesBegin(); - - const Matrix &eCosts = g.getEdgeCosts(eItr); - const Vector &xCosts = g.getNodeCosts(xnItr); - - // Duplicate a little to avoid transposing matrices. - if (xnItr == g.getEdgeNode1(eItr)) { - Graph::NodeItr ynItr = g.getEdgeNode2(eItr); - Vector &yCosts = g.getNodeCosts(ynItr); - for (unsigned j = 0; j < yCosts.getLength(); ++j) { - PBQPNum min = eCosts[0][j] + xCosts[0]; - for (unsigned i = 1; i < xCosts.getLength(); ++i) { - PBQPNum c = eCosts[i][j] + xCosts[i]; - if (c < min) - min = c; - } - yCosts[j] += min; - } - h.handleRemoveEdge(eItr, ynItr); - } else { - Graph::NodeItr ynItr = g.getEdgeNode1(eItr); - Vector &yCosts = g.getNodeCosts(ynItr); - for (unsigned i = 0; i < yCosts.getLength(); ++i) { - PBQPNum min = eCosts[i][0] + xCosts[0]; - for (unsigned j = 1; j < xCosts.getLength(); ++j) { - PBQPNum c = eCosts[i][j] + xCosts[j]; - if (c < min) - min = c; - } - yCosts[i] += min; - } - h.handleRemoveEdge(eItr, ynItr); - } - removeSolverEdge(eItr); - assert(nd.getSolverDegree() == 0 && - "Degree 1 with edge removed should be 0."); - pushToStack(xnItr); - s.recordR1(); - } - - /// \brief Apply rule R2. - /// @param xnItr Node iterator for node to apply R2 to. - /// - /// Node will be automatically pushed to the solver stack. - void applyR2(Graph::NodeItr xnItr) { - assert(getSolverNodeData(xnItr).getSolverDegree() == 2 && - "R2 applied to node with degree != 2."); - - NodeData &nd = getSolverNodeData(xnItr); - const Vector &xCosts = g.getNodeCosts(xnItr); - - SolverEdgeItr aeItr = nd.solverEdgesBegin(); - Graph::EdgeItr yxeItr = *aeItr, - zxeItr = *(++aeItr); - - Graph::NodeItr ynItr = g.getEdgeOtherNode(yxeItr, xnItr), - znItr = g.getEdgeOtherNode(zxeItr, xnItr); - - bool flipEdge1 = (g.getEdgeNode1(yxeItr) == xnItr), - flipEdge2 = (g.getEdgeNode1(zxeItr) == xnItr); - - const Matrix *yxeCosts = flipEdge1 ? - new Matrix(g.getEdgeCosts(yxeItr).transpose()) : - &g.getEdgeCosts(yxeItr); - - const Matrix *zxeCosts = flipEdge2 ? - new Matrix(g.getEdgeCosts(zxeItr).transpose()) : - &g.getEdgeCosts(zxeItr); - - unsigned xLen = xCosts.getLength(), - yLen = yxeCosts->getRows(), - zLen = zxeCosts->getRows(); - - Matrix delta(yLen, zLen); - - for (unsigned i = 0; i < yLen; ++i) { - for (unsigned j = 0; j < zLen; ++j) { - PBQPNum min = (*yxeCosts)[i][0] + (*zxeCosts)[j][0] + xCosts[0]; - for (unsigned k = 1; k < xLen; ++k) { - PBQPNum c = (*yxeCosts)[i][k] + (*zxeCosts)[j][k] + xCosts[k]; - if (c < min) { - min = c; - } - } - delta[i][j] = min; - } - } - - if (flipEdge1) - delete yxeCosts; - - if (flipEdge2) - delete zxeCosts; - - Graph::EdgeItr yzeItr = g.findEdge(ynItr, znItr); - bool addedEdge = false; - - if (yzeItr == g.edgesEnd()) { - yzeItr = g.addEdge(ynItr, znItr, delta); - addedEdge = true; - } else { - Matrix &yzeCosts = g.getEdgeCosts(yzeItr); - h.preUpdateEdgeCosts(yzeItr); - if (ynItr == g.getEdgeNode1(yzeItr)) { - yzeCosts += delta; - } else { - yzeCosts += delta.transpose(); - } - } - - bool nullCostEdge = tryNormaliseEdgeMatrix(yzeItr); - - if (!addedEdge) { - // If we modified the edge costs let the heuristic know. - h.postUpdateEdgeCosts(yzeItr); - } - - if (nullCostEdge) { - // If this edge ended up null remove it. - if (!addedEdge) { - // We didn't just add it, so we need to notify the heuristic - // and remove it from the solver. - h.handleRemoveEdge(yzeItr, ynItr); - h.handleRemoveEdge(yzeItr, znItr); - removeSolverEdge(yzeItr); - } - g.removeEdge(yzeItr); - } else if (addedEdge) { - // If the edge was added, and non-null, finish setting it up, add it to - // the solver & notify heuristic. - edgeDataList.push_back(EdgeData()); - g.setEdgeData(yzeItr, &edgeDataList.back()); - addSolverEdge(yzeItr); - h.handleAddEdge(yzeItr); - } - - h.handleRemoveEdge(yxeItr, ynItr); - removeSolverEdge(yxeItr); - h.handleRemoveEdge(zxeItr, znItr); - removeSolverEdge(zxeItr); - - pushToStack(xnItr); - s.recordR2(); - } - - /// \brief Record an application of the RN rule. - /// - /// For use by the HeuristicBase. - void recordRN() { s.recordRN(); } - - private: - - NodeData& getSolverNodeData(Graph::NodeItr nItr) { - return *static_cast<NodeData*>(g.getNodeData(nItr)); - } - - EdgeData& getSolverEdgeData(Graph::EdgeItr eItr) { - return *static_cast<EdgeData*>(g.getEdgeData(eItr)); - } - - void addSolverEdge(Graph::EdgeItr eItr) { - EdgeData &eData = getSolverEdgeData(eItr); - NodeData &n1Data = getSolverNodeData(g.getEdgeNode1(eItr)), - &n2Data = getSolverNodeData(g.getEdgeNode2(eItr)); - - eData.setN1SolverEdgeItr(n1Data.addSolverEdge(eItr)); - eData.setN2SolverEdgeItr(n2Data.addSolverEdge(eItr)); - } - - void setup() { - if (h.solverRunSimplify()) { - simplify(); - } - - // Create node data objects. - for (Graph::NodeItr nItr = g.nodesBegin(), nEnd = g.nodesEnd(); - nItr != nEnd; ++nItr) { - nodeDataList.push_back(NodeData()); - g.setNodeData(nItr, &nodeDataList.back()); - } - - // Create edge data objects. - for (Graph::EdgeItr eItr = g.edgesBegin(), eEnd = g.edgesEnd(); - eItr != eEnd; ++eItr) { - edgeDataList.push_back(EdgeData()); - g.setEdgeData(eItr, &edgeDataList.back()); - addSolverEdge(eItr); - } - } - - void simplify() { - disconnectTrivialNodes(); - eliminateIndependentEdges(); - } - - // Eliminate trivial nodes. - void disconnectTrivialNodes() { - unsigned numDisconnected = 0; - - for (Graph::NodeItr nItr = g.nodesBegin(), nEnd = g.nodesEnd(); - nItr != nEnd; ++nItr) { - - if (g.getNodeCosts(nItr).getLength() == 1) { - - std::vector<Graph::EdgeItr> edgesToRemove; - - for (Graph::AdjEdgeItr aeItr = g.adjEdgesBegin(nItr), - aeEnd = g.adjEdgesEnd(nItr); - aeItr != aeEnd; ++aeItr) { - - Graph::EdgeItr eItr = *aeItr; - - if (g.getEdgeNode1(eItr) == nItr) { - Graph::NodeItr otherNodeItr = g.getEdgeNode2(eItr); - g.getNodeCosts(otherNodeItr) += - g.getEdgeCosts(eItr).getRowAsVector(0); - } - else { - Graph::NodeItr otherNodeItr = g.getEdgeNode1(eItr); - g.getNodeCosts(otherNodeItr) += - g.getEdgeCosts(eItr).getColAsVector(0); - } - - edgesToRemove.push_back(eItr); - } - - if (!edgesToRemove.empty()) - ++numDisconnected; - - while (!edgesToRemove.empty()) { - g.removeEdge(edgesToRemove.back()); - edgesToRemove.pop_back(); - } - } - } - } - - void eliminateIndependentEdges() { - std::vector<Graph::EdgeItr> edgesToProcess; - unsigned numEliminated = 0; - - for (Graph::EdgeItr eItr = g.edgesBegin(), eEnd = g.edgesEnd(); - eItr != eEnd; ++eItr) { - edgesToProcess.push_back(eItr); - } - - while (!edgesToProcess.empty()) { - if (tryToEliminateEdge(edgesToProcess.back())) - ++numEliminated; - edgesToProcess.pop_back(); - } - } - - bool tryToEliminateEdge(Graph::EdgeItr eItr) { - if (tryNormaliseEdgeMatrix(eItr)) { - g.removeEdge(eItr); - return true; - } - return false; - } - - bool tryNormaliseEdgeMatrix(Graph::EdgeItr &eItr) { - - const PBQPNum infinity = std::numeric_limits<PBQPNum>::infinity(); - - Matrix &edgeCosts = g.getEdgeCosts(eItr); - Vector &uCosts = g.getNodeCosts(g.getEdgeNode1(eItr)), - &vCosts = g.getNodeCosts(g.getEdgeNode2(eItr)); - - for (unsigned r = 0; r < edgeCosts.getRows(); ++r) { - PBQPNum rowMin = infinity; - - for (unsigned c = 0; c < edgeCosts.getCols(); ++c) { - if (vCosts[c] != infinity && edgeCosts[r][c] < rowMin) - rowMin = edgeCosts[r][c]; - } - - uCosts[r] += rowMin; - - if (rowMin != infinity) { - edgeCosts.subFromRow(r, rowMin); - } - else { - edgeCosts.setRow(r, 0); - } - } - - for (unsigned c = 0; c < edgeCosts.getCols(); ++c) { - PBQPNum colMin = infinity; - - for (unsigned r = 0; r < edgeCosts.getRows(); ++r) { - if (uCosts[r] != infinity && edgeCosts[r][c] < colMin) - colMin = edgeCosts[r][c]; - } - - vCosts[c] += colMin; - - if (colMin != infinity) { - edgeCosts.subFromCol(c, colMin); - } - else { - edgeCosts.setCol(c, 0); - } - } - - return edgeCosts.isZero(); - } - - void backpropagate() { - while (!stack.empty()) { - computeSolution(stack.back()); - stack.pop_back(); - } - } - - void computeSolution(Graph::NodeItr nItr) { - - NodeData &nodeData = getSolverNodeData(nItr); - - Vector v(g.getNodeCosts(nItr)); - - // Solve based on existing solved edges. - for (SolverEdgeItr solvedEdgeItr = nodeData.solverEdgesBegin(), - solvedEdgeEnd = nodeData.solverEdgesEnd(); - solvedEdgeItr != solvedEdgeEnd; ++solvedEdgeItr) { - - Graph::EdgeItr eItr(*solvedEdgeItr); - Matrix &edgeCosts = g.getEdgeCosts(eItr); - - if (nItr == g.getEdgeNode1(eItr)) { - Graph::NodeItr adjNode(g.getEdgeNode2(eItr)); - unsigned adjSolution = s.getSelection(adjNode); - v += edgeCosts.getColAsVector(adjSolution); - } - else { - Graph::NodeItr adjNode(g.getEdgeNode1(eItr)); - unsigned adjSolution = s.getSelection(adjNode); - v += edgeCosts.getRowAsVector(adjSolution); - } - - } - - setSolution(nItr, v.minIndex()); - } - - void cleanup() { - h.cleanup(); - nodeDataList.clear(); - edgeDataList.clear(); - } - }; - - /// \brief PBQP heuristic solver class. - /// - /// Given a PBQP Graph g representing a PBQP problem, you can find a solution - /// by calling - /// <tt>Solution s = HeuristicSolver<H>::solve(g);</tt> - /// - /// The choice of heuristic for the H parameter will affect both the solver - /// speed and solution quality. The heuristic should be chosen based on the - /// nature of the problem being solved. - /// Currently the only solver included with LLVM is the Briggs heuristic for - /// register allocation. - template <typename HImpl> - class HeuristicSolver { - public: - static Solution solve(Graph &g) { - HeuristicSolverImpl<HImpl> hs(g); - return hs.computeSolution(); - } - }; - -} - -#endif // LLVM_CODEGEN_PBQP_HEURISTICSOLVER_H |