summaryrefslogtreecommitdiffstats
path: root/lib/CodeGen/LiveIntervalAnalysis.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'lib/CodeGen/LiveIntervalAnalysis.cpp')
-rw-r--r--lib/CodeGen/LiveIntervalAnalysis.cpp2298
1 files changed, 2298 insertions, 0 deletions
diff --git a/lib/CodeGen/LiveIntervalAnalysis.cpp b/lib/CodeGen/LiveIntervalAnalysis.cpp
new file mode 100644
index 0000000..cf0a648
--- /dev/null
+++ b/lib/CodeGen/LiveIntervalAnalysis.cpp
@@ -0,0 +1,2298 @@
+//===-- LiveIntervalAnalysis.cpp - Live Interval Analysis -----------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the LiveInterval analysis pass which is used
+// by the Linear Scan Register allocator. This pass linearizes the
+// basic blocks of the function in DFS order and uses the
+// LiveVariables pass to conservatively compute live intervals for
+// each virtual and physical register.
+//
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "liveintervals"
+#include "llvm/CodeGen/LiveIntervalAnalysis.h"
+#include "VirtRegMap.h"
+#include "llvm/Value.h"
+#include "llvm/Analysis/AliasAnalysis.h"
+#include "llvm/CodeGen/LiveVariables.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineInstr.h"
+#include "llvm/CodeGen/MachineLoopInfo.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/Passes.h"
+#include "llvm/CodeGen/PseudoSourceValue.h"
+#include "llvm/Target/TargetRegisterInfo.h"
+#include "llvm/Target/TargetInstrInfo.h"
+#include "llvm/Target/TargetMachine.h"
+#include "llvm/Target/TargetOptions.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/ADT/STLExtras.h"
+#include <algorithm>
+#include <limits>
+#include <cmath>
+using namespace llvm;
+
+// Hidden options for help debugging.
+static cl::opt<bool> DisableReMat("disable-rematerialization",
+ cl::init(false), cl::Hidden);
+
+static cl::opt<bool> SplitAtBB("split-intervals-at-bb",
+ cl::init(true), cl::Hidden);
+static cl::opt<int> SplitLimit("split-limit",
+ cl::init(-1), cl::Hidden);
+
+static cl::opt<bool> EnableAggressiveRemat("aggressive-remat", cl::Hidden);
+
+static cl::opt<bool> EnableFastSpilling("fast-spill",
+ cl::init(false), cl::Hidden);
+
+STATISTIC(numIntervals, "Number of original intervals");
+STATISTIC(numFolds , "Number of loads/stores folded into instructions");
+STATISTIC(numSplits , "Number of intervals split");
+
+char LiveIntervals::ID = 0;
+static RegisterPass<LiveIntervals> X("liveintervals", "Live Interval Analysis");
+
+void LiveIntervals::getAnalysisUsage(AnalysisUsage &AU) const {
+ AU.addRequired<AliasAnalysis>();
+ AU.addPreserved<AliasAnalysis>();
+ AU.addPreserved<LiveVariables>();
+ AU.addRequired<LiveVariables>();
+ AU.addPreservedID(MachineLoopInfoID);
+ AU.addPreservedID(MachineDominatorsID);
+
+ if (!StrongPHIElim) {
+ AU.addPreservedID(PHIEliminationID);
+ AU.addRequiredID(PHIEliminationID);
+ }
+
+ AU.addRequiredID(TwoAddressInstructionPassID);
+ MachineFunctionPass::getAnalysisUsage(AU);
+}
+
+void LiveIntervals::releaseMemory() {
+ // Free the live intervals themselves.
+ for (DenseMap<unsigned, LiveInterval*>::iterator I = r2iMap_.begin(),
+ E = r2iMap_.end(); I != E; ++I)
+ delete I->second;
+
+ MBB2IdxMap.clear();
+ Idx2MBBMap.clear();
+ mi2iMap_.clear();
+ i2miMap_.clear();
+ r2iMap_.clear();
+ // Release VNInfo memroy regions after all VNInfo objects are dtor'd.
+ VNInfoAllocator.Reset();
+ while (!ClonedMIs.empty()) {
+ MachineInstr *MI = ClonedMIs.back();
+ ClonedMIs.pop_back();
+ mf_->DeleteMachineInstr(MI);
+ }
+}
+
+void LiveIntervals::computeNumbering() {
+ Index2MiMap OldI2MI = i2miMap_;
+ std::vector<IdxMBBPair> OldI2MBB = Idx2MBBMap;
+
+ Idx2MBBMap.clear();
+ MBB2IdxMap.clear();
+ mi2iMap_.clear();
+ i2miMap_.clear();
+
+ FunctionSize = 0;
+
+ // Number MachineInstrs and MachineBasicBlocks.
+ // Initialize MBB indexes to a sentinal.
+ MBB2IdxMap.resize(mf_->getNumBlockIDs(), std::make_pair(~0U,~0U));
+
+ unsigned MIIndex = 0;
+ for (MachineFunction::iterator MBB = mf_->begin(), E = mf_->end();
+ MBB != E; ++MBB) {
+ unsigned StartIdx = MIIndex;
+
+ // Insert an empty slot at the beginning of each block.
+ MIIndex += InstrSlots::NUM;
+ i2miMap_.push_back(0);
+
+ for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end();
+ I != E; ++I) {
+ bool inserted = mi2iMap_.insert(std::make_pair(I, MIIndex)).second;
+ assert(inserted && "multiple MachineInstr -> index mappings");
+ inserted = true;
+ i2miMap_.push_back(I);
+ MIIndex += InstrSlots::NUM;
+ FunctionSize++;
+
+ // Insert max(1, numdefs) empty slots after every instruction.
+ unsigned Slots = I->getDesc().getNumDefs();
+ if (Slots == 0)
+ Slots = 1;
+ MIIndex += InstrSlots::NUM * Slots;
+ while (Slots--)
+ i2miMap_.push_back(0);
+ }
+
+ // Set the MBB2IdxMap entry for this MBB.
+ MBB2IdxMap[MBB->getNumber()] = std::make_pair(StartIdx, MIIndex - 1);
+ Idx2MBBMap.push_back(std::make_pair(StartIdx, MBB));
+ }
+ std::sort(Idx2MBBMap.begin(), Idx2MBBMap.end(), Idx2MBBCompare());
+
+ if (!OldI2MI.empty())
+ for (iterator OI = begin(), OE = end(); OI != OE; ++OI) {
+ for (LiveInterval::iterator LI = OI->second->begin(),
+ LE = OI->second->end(); LI != LE; ++LI) {
+
+ // Remap the start index of the live range to the corresponding new
+ // number, or our best guess at what it _should_ correspond to if the
+ // original instruction has been erased. This is either the following
+ // instruction or its predecessor.
+ unsigned index = LI->start / InstrSlots::NUM;
+ unsigned offset = LI->start % InstrSlots::NUM;
+ if (offset == InstrSlots::LOAD) {
+ std::vector<IdxMBBPair>::const_iterator I =
+ std::lower_bound(OldI2MBB.begin(), OldI2MBB.end(), LI->start);
+ // Take the pair containing the index
+ std::vector<IdxMBBPair>::const_iterator J =
+ (I == OldI2MBB.end() && OldI2MBB.size()>0) ? (I-1): I;
+
+ LI->start = getMBBStartIdx(J->second);
+ } else {
+ LI->start = mi2iMap_[OldI2MI[index]] + offset;
+ }
+
+ // Remap the ending index in the same way that we remapped the start,
+ // except for the final step where we always map to the immediately
+ // following instruction.
+ index = (LI->end - 1) / InstrSlots::NUM;
+ offset = LI->end % InstrSlots::NUM;
+ if (offset == InstrSlots::LOAD) {
+ // VReg dies at end of block.
+ std::vector<IdxMBBPair>::const_iterator I =
+ std::lower_bound(OldI2MBB.begin(), OldI2MBB.end(), LI->end);
+ --I;
+
+ LI->end = getMBBEndIdx(I->second) + 1;
+ } else {
+ unsigned idx = index;
+ while (index < OldI2MI.size() && !OldI2MI[index]) ++index;
+
+ if (index != OldI2MI.size())
+ LI->end = mi2iMap_[OldI2MI[index]] + (idx == index ? offset : 0);
+ else
+ LI->end = InstrSlots::NUM * i2miMap_.size();
+ }
+ }
+
+ for (LiveInterval::vni_iterator VNI = OI->second->vni_begin(),
+ VNE = OI->second->vni_end(); VNI != VNE; ++VNI) {
+ VNInfo* vni = *VNI;
+
+ // Remap the VNInfo def index, which works the same as the
+ // start indices above. VN's with special sentinel defs
+ // don't need to be remapped.
+ if (vni->def != ~0U && vni->def != ~1U) {
+ unsigned index = vni->def / InstrSlots::NUM;
+ unsigned offset = vni->def % InstrSlots::NUM;
+ if (offset == InstrSlots::LOAD) {
+ std::vector<IdxMBBPair>::const_iterator I =
+ std::lower_bound(OldI2MBB.begin(), OldI2MBB.end(), vni->def);
+ // Take the pair containing the index
+ std::vector<IdxMBBPair>::const_iterator J =
+ (I == OldI2MBB.end() && OldI2MBB.size()>0) ? (I-1): I;
+
+ vni->def = getMBBStartIdx(J->second);
+ } else {
+ vni->def = mi2iMap_[OldI2MI[index]] + offset;
+ }
+ }
+
+ // Remap the VNInfo kill indices, which works the same as
+ // the end indices above.
+ for (size_t i = 0; i < vni->kills.size(); ++i) {
+ // PHI kills don't need to be remapped.
+ if (!vni->kills[i]) continue;
+
+ unsigned index = (vni->kills[i]-1) / InstrSlots::NUM;
+ unsigned offset = vni->kills[i] % InstrSlots::NUM;
+ if (offset == InstrSlots::LOAD) {
+ std::vector<IdxMBBPair>::const_iterator I =
+ std::lower_bound(OldI2MBB.begin(), OldI2MBB.end(), vni->kills[i]);
+ --I;
+
+ vni->kills[i] = getMBBEndIdx(I->second);
+ } else {
+ unsigned idx = index;
+ while (index < OldI2MI.size() && !OldI2MI[index]) ++index;
+
+ if (index != OldI2MI.size())
+ vni->kills[i] = mi2iMap_[OldI2MI[index]] +
+ (idx == index ? offset : 0);
+ else
+ vni->kills[i] = InstrSlots::NUM * i2miMap_.size();
+ }
+ }
+ }
+ }
+}
+
+void LiveIntervals::scaleNumbering(int factor) {
+ // Need to
+ // * scale MBB begin and end points
+ // * scale all ranges.
+ // * Update VNI structures.
+ // * Scale instruction numberings
+
+ // Scale the MBB indices.
+ Idx2MBBMap.clear();
+ for (MachineFunction::iterator MBB = mf_->begin(), MBBE = mf_->end();
+ MBB != MBBE; ++MBB) {
+ std::pair<unsigned, unsigned> &mbbIndices = MBB2IdxMap[MBB->getNumber()];
+ mbbIndices.first = InstrSlots::scale(mbbIndices.first, factor);
+ mbbIndices.second = InstrSlots::scale(mbbIndices.second, factor);
+ Idx2MBBMap.push_back(std::make_pair(mbbIndices.first, MBB));
+ }
+ std::sort(Idx2MBBMap.begin(), Idx2MBBMap.end(), Idx2MBBCompare());
+
+ // Scale the intervals.
+ for (iterator LI = begin(), LE = end(); LI != LE; ++LI) {
+ LI->second->scaleNumbering(factor);
+ }
+
+ // Scale MachineInstrs.
+ Mi2IndexMap oldmi2iMap = mi2iMap_;
+ unsigned highestSlot = 0;
+ for (Mi2IndexMap::iterator MI = oldmi2iMap.begin(), ME = oldmi2iMap.end();
+ MI != ME; ++MI) {
+ unsigned newSlot = InstrSlots::scale(MI->second, factor);
+ mi2iMap_[MI->first] = newSlot;
+ highestSlot = std::max(highestSlot, newSlot);
+ }
+
+ i2miMap_.clear();
+ i2miMap_.resize(highestSlot + 1);
+ for (Mi2IndexMap::iterator MI = mi2iMap_.begin(), ME = mi2iMap_.end();
+ MI != ME; ++MI) {
+ i2miMap_[MI->second] = MI->first;
+ }
+
+}
+
+
+/// runOnMachineFunction - Register allocate the whole function
+///
+bool LiveIntervals::runOnMachineFunction(MachineFunction &fn) {
+ mf_ = &fn;
+ mri_ = &mf_->getRegInfo();
+ tm_ = &fn.getTarget();
+ tri_ = tm_->getRegisterInfo();
+ tii_ = tm_->getInstrInfo();
+ aa_ = &getAnalysis<AliasAnalysis>();
+ lv_ = &getAnalysis<LiveVariables>();
+ allocatableRegs_ = tri_->getAllocatableSet(fn);
+
+ computeNumbering();
+ computeIntervals();
+
+ numIntervals += getNumIntervals();
+
+ DEBUG(dump());
+ return true;
+}
+
+/// print - Implement the dump method.
+void LiveIntervals::print(std::ostream &O, const Module* ) const {
+ O << "********** INTERVALS **********\n";
+ for (const_iterator I = begin(), E = end(); I != E; ++I) {
+ I->second->print(O, tri_);
+ O << "\n";
+ }
+
+ O << "********** MACHINEINSTRS **********\n";
+ for (MachineFunction::iterator mbbi = mf_->begin(), mbbe = mf_->end();
+ mbbi != mbbe; ++mbbi) {
+ O << ((Value*)mbbi->getBasicBlock())->getName() << ":\n";
+ for (MachineBasicBlock::iterator mii = mbbi->begin(),
+ mie = mbbi->end(); mii != mie; ++mii) {
+ O << getInstructionIndex(mii) << '\t' << *mii;
+ }
+ }
+}
+
+/// conflictsWithPhysRegDef - Returns true if the specified register
+/// is defined during the duration of the specified interval.
+bool LiveIntervals::conflictsWithPhysRegDef(const LiveInterval &li,
+ VirtRegMap &vrm, unsigned reg) {
+ for (LiveInterval::Ranges::const_iterator
+ I = li.ranges.begin(), E = li.ranges.end(); I != E; ++I) {
+ for (unsigned index = getBaseIndex(I->start),
+ end = getBaseIndex(I->end-1) + InstrSlots::NUM; index != end;
+ index += InstrSlots::NUM) {
+ // skip deleted instructions
+ while (index != end && !getInstructionFromIndex(index))
+ index += InstrSlots::NUM;
+ if (index == end) break;
+
+ MachineInstr *MI = getInstructionFromIndex(index);
+ unsigned SrcReg, DstReg, SrcSubReg, DstSubReg;
+ if (tii_->isMoveInstr(*MI, SrcReg, DstReg, SrcSubReg, DstSubReg))
+ if (SrcReg == li.reg || DstReg == li.reg)
+ continue;
+ for (unsigned i = 0; i != MI->getNumOperands(); ++i) {
+ MachineOperand& mop = MI->getOperand(i);
+ if (!mop.isReg())
+ continue;
+ unsigned PhysReg = mop.getReg();
+ if (PhysReg == 0 || PhysReg == li.reg)
+ continue;
+ if (TargetRegisterInfo::isVirtualRegister(PhysReg)) {
+ if (!vrm.hasPhys(PhysReg))
+ continue;
+ PhysReg = vrm.getPhys(PhysReg);
+ }
+ if (PhysReg && tri_->regsOverlap(PhysReg, reg))
+ return true;
+ }
+ }
+ }
+
+ return false;
+}
+
+/// conflictsWithPhysRegRef - Similar to conflictsWithPhysRegRef except
+/// it can check use as well.
+bool LiveIntervals::conflictsWithPhysRegRef(LiveInterval &li,
+ unsigned Reg, bool CheckUse,
+ SmallPtrSet<MachineInstr*,32> &JoinedCopies) {
+ for (LiveInterval::Ranges::const_iterator
+ I = li.ranges.begin(), E = li.ranges.end(); I != E; ++I) {
+ for (unsigned index = getBaseIndex(I->start),
+ end = getBaseIndex(I->end-1) + InstrSlots::NUM; index != end;
+ index += InstrSlots::NUM) {
+ // Skip deleted instructions.
+ MachineInstr *MI = 0;
+ while (index != end) {
+ MI = getInstructionFromIndex(index);
+ if (MI)
+ break;
+ index += InstrSlots::NUM;
+ }
+ if (index == end) break;
+
+ if (JoinedCopies.count(MI))
+ continue;
+ for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
+ MachineOperand& MO = MI->getOperand(i);
+ if (!MO.isReg())
+ continue;
+ if (MO.isUse() && !CheckUse)
+ continue;
+ unsigned PhysReg = MO.getReg();
+ if (PhysReg == 0 || TargetRegisterInfo::isVirtualRegister(PhysReg))
+ continue;
+ if (tri_->isSubRegister(Reg, PhysReg))
+ return true;
+ }
+ }
+ }
+
+ return false;
+}
+
+
+void LiveIntervals::printRegName(unsigned reg) const {
+ if (TargetRegisterInfo::isPhysicalRegister(reg))
+ cerr << tri_->getName(reg);
+ else
+ cerr << "%reg" << reg;
+}
+
+void LiveIntervals::handleVirtualRegisterDef(MachineBasicBlock *mbb,
+ MachineBasicBlock::iterator mi,
+ unsigned MIIdx, MachineOperand& MO,
+ unsigned MOIdx,
+ LiveInterval &interval) {
+ DOUT << "\t\tregister: "; DEBUG(printRegName(interval.reg));
+ LiveVariables::VarInfo& vi = lv_->getVarInfo(interval.reg);
+
+ if (mi->getOpcode() == TargetInstrInfo::IMPLICIT_DEF) {
+ DOUT << "is a implicit_def\n";
+ return;
+ }
+
+ // Virtual registers may be defined multiple times (due to phi
+ // elimination and 2-addr elimination). Much of what we do only has to be
+ // done once for the vreg. We use an empty interval to detect the first
+ // time we see a vreg.
+ if (interval.empty()) {
+ // Get the Idx of the defining instructions.
+ unsigned defIndex = getDefIndex(MIIdx);
+ // Earlyclobbers move back one.
+ if (MO.isEarlyClobber())
+ defIndex = getUseIndex(MIIdx);
+ VNInfo *ValNo;
+ MachineInstr *CopyMI = NULL;
+ unsigned SrcReg, DstReg, SrcSubReg, DstSubReg;
+ if (mi->getOpcode() == TargetInstrInfo::EXTRACT_SUBREG ||
+ mi->getOpcode() == TargetInstrInfo::INSERT_SUBREG ||
+ mi->getOpcode() == TargetInstrInfo::SUBREG_TO_REG ||
+ tii_->isMoveInstr(*mi, SrcReg, DstReg, SrcSubReg, DstSubReg))
+ CopyMI = mi;
+ // Earlyclobbers move back one.
+ ValNo = interval.getNextValue(defIndex, CopyMI, VNInfoAllocator);
+
+ assert(ValNo->id == 0 && "First value in interval is not 0?");
+
+ // Loop over all of the blocks that the vreg is defined in. There are
+ // two cases we have to handle here. The most common case is a vreg
+ // whose lifetime is contained within a basic block. In this case there
+ // will be a single kill, in MBB, which comes after the definition.
+ if (vi.Kills.size() == 1 && vi.Kills[0]->getParent() == mbb) {
+ // FIXME: what about dead vars?
+ unsigned killIdx;
+ if (vi.Kills[0] != mi)
+ killIdx = getUseIndex(getInstructionIndex(vi.Kills[0]))+1;
+ else
+ killIdx = defIndex+1;
+
+ // If the kill happens after the definition, we have an intra-block
+ // live range.
+ if (killIdx > defIndex) {
+ assert(vi.AliveBlocks.empty() &&
+ "Shouldn't be alive across any blocks!");
+ LiveRange LR(defIndex, killIdx, ValNo);
+ interval.addRange(LR);
+ DOUT << " +" << LR << "\n";
+ interval.addKill(ValNo, killIdx);
+ return;
+ }
+ }
+
+ // The other case we handle is when a virtual register lives to the end
+ // of the defining block, potentially live across some blocks, then is
+ // live into some number of blocks, but gets killed. Start by adding a
+ // range that goes from this definition to the end of the defining block.
+ LiveRange NewLR(defIndex, getMBBEndIdx(mbb)+1, ValNo);
+ DOUT << " +" << NewLR;
+ interval.addRange(NewLR);
+
+ // Iterate over all of the blocks that the variable is completely
+ // live in, adding [insrtIndex(begin), instrIndex(end)+4) to the
+ // live interval.
+ for (SparseBitVector<>::iterator I = vi.AliveBlocks.begin(),
+ E = vi.AliveBlocks.end(); I != E; ++I) {
+ LiveRange LR(getMBBStartIdx(*I),
+ getMBBEndIdx(*I)+1, // MBB ends at -1.
+ ValNo);
+ interval.addRange(LR);
+ DOUT << " +" << LR;
+ }
+
+ // Finally, this virtual register is live from the start of any killing
+ // block to the 'use' slot of the killing instruction.
+ for (unsigned i = 0, e = vi.Kills.size(); i != e; ++i) {
+ MachineInstr *Kill = vi.Kills[i];
+ unsigned killIdx = getUseIndex(getInstructionIndex(Kill))+1;
+ LiveRange LR(getMBBStartIdx(Kill->getParent()),
+ killIdx, ValNo);
+ interval.addRange(LR);
+ interval.addKill(ValNo, killIdx);
+ DOUT << " +" << LR;
+ }
+
+ } else {
+ // If this is the second time we see a virtual register definition, it
+ // must be due to phi elimination or two addr elimination. If this is
+ // the result of two address elimination, then the vreg is one of the
+ // def-and-use register operand.
+ if (mi->isRegTiedToUseOperand(MOIdx)) {
+ // If this is a two-address definition, then we have already processed
+ // the live range. The only problem is that we didn't realize there
+ // are actually two values in the live interval. Because of this we
+ // need to take the LiveRegion that defines this register and split it
+ // into two values.
+ assert(interval.containsOneValue());
+ unsigned DefIndex = getDefIndex(interval.getValNumInfo(0)->def);
+ unsigned RedefIndex = getDefIndex(MIIdx);
+ if (MO.isEarlyClobber())
+ RedefIndex = getUseIndex(MIIdx);
+
+ const LiveRange *OldLR = interval.getLiveRangeContaining(RedefIndex-1);
+ VNInfo *OldValNo = OldLR->valno;
+
+ // Delete the initial value, which should be short and continuous,
+ // because the 2-addr copy must be in the same MBB as the redef.
+ interval.removeRange(DefIndex, RedefIndex);
+
+ // Two-address vregs should always only be redefined once. This means
+ // that at this point, there should be exactly one value number in it.
+ assert(interval.containsOneValue() && "Unexpected 2-addr liveint!");
+
+ // The new value number (#1) is defined by the instruction we claimed
+ // defined value #0.
+ VNInfo *ValNo = interval.getNextValue(OldValNo->def, OldValNo->copy,
+ VNInfoAllocator);
+
+ // Value#0 is now defined by the 2-addr instruction.
+ OldValNo->def = RedefIndex;
+ OldValNo->copy = 0;
+ if (MO.isEarlyClobber())
+ OldValNo->redefByEC = true;
+
+ // Add the new live interval which replaces the range for the input copy.
+ LiveRange LR(DefIndex, RedefIndex, ValNo);
+ DOUT << " replace range with " << LR;
+ interval.addRange(LR);
+ interval.addKill(ValNo, RedefIndex);
+
+ // If this redefinition is dead, we need to add a dummy unit live
+ // range covering the def slot.
+ if (MO.isDead())
+ interval.addRange(LiveRange(RedefIndex, RedefIndex+1, OldValNo));
+
+ DOUT << " RESULT: ";
+ interval.print(DOUT, tri_);
+
+ } else {
+ // Otherwise, this must be because of phi elimination. If this is the
+ // first redefinition of the vreg that we have seen, go back and change
+ // the live range in the PHI block to be a different value number.
+ if (interval.containsOneValue()) {
+ assert(vi.Kills.size() == 1 &&
+ "PHI elimination vreg should have one kill, the PHI itself!");
+
+ // Remove the old range that we now know has an incorrect number.
+ VNInfo *VNI = interval.getValNumInfo(0);
+ MachineInstr *Killer = vi.Kills[0];
+ unsigned Start = getMBBStartIdx(Killer->getParent());
+ unsigned End = getUseIndex(getInstructionIndex(Killer))+1;
+ DOUT << " Removing [" << Start << "," << End << "] from: ";
+ interval.print(DOUT, tri_); DOUT << "\n";
+ interval.removeRange(Start, End);
+ VNI->hasPHIKill = true;
+ DOUT << " RESULT: "; interval.print(DOUT, tri_);
+
+ // Replace the interval with one of a NEW value number. Note that this
+ // value number isn't actually defined by an instruction, weird huh? :)
+ LiveRange LR(Start, End, interval.getNextValue(~0, 0, VNInfoAllocator));
+ DOUT << " replace range with " << LR;
+ interval.addRange(LR);
+ interval.addKill(LR.valno, End);
+ DOUT << " RESULT: "; interval.print(DOUT, tri_);
+ }
+
+ // In the case of PHI elimination, each variable definition is only
+ // live until the end of the block. We've already taken care of the
+ // rest of the live range.
+ unsigned defIndex = getDefIndex(MIIdx);
+ if (MO.isEarlyClobber())
+ defIndex = getUseIndex(MIIdx);
+
+ VNInfo *ValNo;
+ MachineInstr *CopyMI = NULL;
+ unsigned SrcReg, DstReg, SrcSubReg, DstSubReg;
+ if (mi->getOpcode() == TargetInstrInfo::EXTRACT_SUBREG ||
+ mi->getOpcode() == TargetInstrInfo::INSERT_SUBREG ||
+ mi->getOpcode() == TargetInstrInfo::SUBREG_TO_REG ||
+ tii_->isMoveInstr(*mi, SrcReg, DstReg, SrcSubReg, DstSubReg))
+ CopyMI = mi;
+ ValNo = interval.getNextValue(defIndex, CopyMI, VNInfoAllocator);
+
+ unsigned killIndex = getMBBEndIdx(mbb) + 1;
+ LiveRange LR(defIndex, killIndex, ValNo);
+ interval.addRange(LR);
+ interval.addKill(ValNo, killIndex);
+ ValNo->hasPHIKill = true;
+ DOUT << " +" << LR;
+ }
+ }
+
+ DOUT << '\n';
+}
+
+void LiveIntervals::handlePhysicalRegisterDef(MachineBasicBlock *MBB,
+ MachineBasicBlock::iterator mi,
+ unsigned MIIdx,
+ MachineOperand& MO,
+ LiveInterval &interval,
+ MachineInstr *CopyMI) {
+ // A physical register cannot be live across basic block, so its
+ // lifetime must end somewhere in its defining basic block.
+ DOUT << "\t\tregister: "; DEBUG(printRegName(interval.reg));
+
+ unsigned baseIndex = MIIdx;
+ unsigned start = getDefIndex(baseIndex);
+ // Earlyclobbers move back one.
+ if (MO.isEarlyClobber())
+ start = getUseIndex(MIIdx);
+ unsigned end = start;
+
+ // If it is not used after definition, it is considered dead at
+ // the instruction defining it. Hence its interval is:
+ // [defSlot(def), defSlot(def)+1)
+ if (MO.isDead()) {
+ DOUT << " dead";
+ end = start + 1;
+ goto exit;
+ }
+
+ // If it is not dead on definition, it must be killed by a
+ // subsequent instruction. Hence its interval is:
+ // [defSlot(def), useSlot(kill)+1)
+ baseIndex += InstrSlots::NUM;
+ while (++mi != MBB->end()) {
+ while (baseIndex / InstrSlots::NUM < i2miMap_.size() &&
+ getInstructionFromIndex(baseIndex) == 0)
+ baseIndex += InstrSlots::NUM;
+ if (mi->killsRegister(interval.reg, tri_)) {
+ DOUT << " killed";
+ end = getUseIndex(baseIndex) + 1;
+ goto exit;
+ } else {
+ int DefIdx = mi->findRegisterDefOperandIdx(interval.reg, false, tri_);
+ if (DefIdx != -1) {
+ if (mi->isRegTiedToUseOperand(DefIdx)) {
+ // Two-address instruction.
+ end = getDefIndex(baseIndex);
+ if (mi->getOperand(DefIdx).isEarlyClobber())
+ end = getUseIndex(baseIndex);
+ } else {
+ // Another instruction redefines the register before it is ever read.
+ // Then the register is essentially dead at the instruction that defines
+ // it. Hence its interval is:
+ // [defSlot(def), defSlot(def)+1)
+ DOUT << " dead";
+ end = start + 1;
+ }
+ goto exit;
+ }
+ }
+
+ baseIndex += InstrSlots::NUM;
+ }
+
+ // The only case we should have a dead physreg here without a killing or
+ // instruction where we know it's dead is if it is live-in to the function
+ // and never used. Another possible case is the implicit use of the
+ // physical register has been deleted by two-address pass.
+ end = start + 1;
+
+exit:
+ assert(start < end && "did not find end of interval?");
+
+ // Already exists? Extend old live interval.
+ LiveInterval::iterator OldLR = interval.FindLiveRangeContaining(start);
+ bool Extend = OldLR != interval.end();
+ VNInfo *ValNo = Extend
+ ? OldLR->valno : interval.getNextValue(start, CopyMI, VNInfoAllocator);
+ if (MO.isEarlyClobber() && Extend)
+ ValNo->redefByEC = true;
+ LiveRange LR(start, end, ValNo);
+ interval.addRange(LR);
+ interval.addKill(LR.valno, end);
+ DOUT << " +" << LR << '\n';
+}
+
+void LiveIntervals::handleRegisterDef(MachineBasicBlock *MBB,
+ MachineBasicBlock::iterator MI,
+ unsigned MIIdx,
+ MachineOperand& MO,
+ unsigned MOIdx) {
+ if (TargetRegisterInfo::isVirtualRegister(MO.getReg()))
+ handleVirtualRegisterDef(MBB, MI, MIIdx, MO, MOIdx,
+ getOrCreateInterval(MO.getReg()));
+ else if (allocatableRegs_[MO.getReg()]) {
+ MachineInstr *CopyMI = NULL;
+ unsigned SrcReg, DstReg, SrcSubReg, DstSubReg;
+ if (MI->getOpcode() == TargetInstrInfo::EXTRACT_SUBREG ||
+ MI->getOpcode() == TargetInstrInfo::INSERT_SUBREG ||
+ MI->getOpcode() == TargetInstrInfo::SUBREG_TO_REG ||
+ tii_->isMoveInstr(*MI, SrcReg, DstReg, SrcSubReg, DstSubReg))
+ CopyMI = MI;
+ handlePhysicalRegisterDef(MBB, MI, MIIdx, MO,
+ getOrCreateInterval(MO.getReg()), CopyMI);
+ // Def of a register also defines its sub-registers.
+ for (const unsigned* AS = tri_->getSubRegisters(MO.getReg()); *AS; ++AS)
+ // If MI also modifies the sub-register explicitly, avoid processing it
+ // more than once. Do not pass in TRI here so it checks for exact match.
+ if (!MI->modifiesRegister(*AS))
+ handlePhysicalRegisterDef(MBB, MI, MIIdx, MO,
+ getOrCreateInterval(*AS), 0);
+ }
+}
+
+void LiveIntervals::handleLiveInRegister(MachineBasicBlock *MBB,
+ unsigned MIIdx,
+ LiveInterval &interval, bool isAlias) {
+ DOUT << "\t\tlivein register: "; DEBUG(printRegName(interval.reg));
+
+ // Look for kills, if it reaches a def before it's killed, then it shouldn't
+ // be considered a livein.
+ MachineBasicBlock::iterator mi = MBB->begin();
+ unsigned baseIndex = MIIdx;
+ unsigned start = baseIndex;
+ while (baseIndex / InstrSlots::NUM < i2miMap_.size() &&
+ getInstructionFromIndex(baseIndex) == 0)
+ baseIndex += InstrSlots::NUM;
+ unsigned end = baseIndex;
+ bool SeenDefUse = false;
+
+ while (mi != MBB->end()) {
+ if (mi->killsRegister(interval.reg, tri_)) {
+ DOUT << " killed";
+ end = getUseIndex(baseIndex) + 1;
+ SeenDefUse = true;
+ goto exit;
+ } else if (mi->modifiesRegister(interval.reg, tri_)) {
+ // Another instruction redefines the register before it is ever read.
+ // Then the register is essentially dead at the instruction that defines
+ // it. Hence its interval is:
+ // [defSlot(def), defSlot(def)+1)
+ DOUT << " dead";
+ end = getDefIndex(start) + 1;
+ SeenDefUse = true;
+ goto exit;
+ }
+
+ baseIndex += InstrSlots::NUM;
+ ++mi;
+ if (mi != MBB->end()) {
+ while (baseIndex / InstrSlots::NUM < i2miMap_.size() &&
+ getInstructionFromIndex(baseIndex) == 0)
+ baseIndex += InstrSlots::NUM;
+ }
+ }
+
+exit:
+ // Live-in register might not be used at all.
+ if (!SeenDefUse) {
+ if (isAlias) {
+ DOUT << " dead";
+ end = getDefIndex(MIIdx) + 1;
+ } else {
+ DOUT << " live through";
+ end = baseIndex;
+ }
+ }
+
+ LiveRange LR(start, end, interval.getNextValue(~0U, 0, VNInfoAllocator));
+ interval.addRange(LR);
+ interval.addKill(LR.valno, end);
+ DOUT << " +" << LR << '\n';
+}
+
+/// computeIntervals - computes the live intervals for virtual
+/// registers. for some ordering of the machine instructions [1,N] a
+/// live interval is an interval [i, j) where 1 <= i <= j < N for
+/// which a variable is live
+void LiveIntervals::computeIntervals() {
+
+ DOUT << "********** COMPUTING LIVE INTERVALS **********\n"
+ << "********** Function: "
+ << ((Value*)mf_->getFunction())->getName() << '\n';
+
+ for (MachineFunction::iterator MBBI = mf_->begin(), E = mf_->end();
+ MBBI != E; ++MBBI) {
+ MachineBasicBlock *MBB = MBBI;
+ // Track the index of the current machine instr.
+ unsigned MIIndex = getMBBStartIdx(MBB);
+ DOUT << ((Value*)MBB->getBasicBlock())->getName() << ":\n";
+
+ MachineBasicBlock::iterator MI = MBB->begin(), miEnd = MBB->end();
+
+ // Create intervals for live-ins to this BB first.
+ for (MachineBasicBlock::const_livein_iterator LI = MBB->livein_begin(),
+ LE = MBB->livein_end(); LI != LE; ++LI) {
+ handleLiveInRegister(MBB, MIIndex, getOrCreateInterval(*LI));
+ // Multiple live-ins can alias the same register.
+ for (const unsigned* AS = tri_->getSubRegisters(*LI); *AS; ++AS)
+ if (!hasInterval(*AS))
+ handleLiveInRegister(MBB, MIIndex, getOrCreateInterval(*AS),
+ true);
+ }
+
+ // Skip over empty initial indices.
+ while (MIIndex / InstrSlots::NUM < i2miMap_.size() &&
+ getInstructionFromIndex(MIIndex) == 0)
+ MIIndex += InstrSlots::NUM;
+
+ for (; MI != miEnd; ++MI) {
+ DOUT << MIIndex << "\t" << *MI;
+
+ // Handle defs.
+ for (int i = MI->getNumOperands() - 1; i >= 0; --i) {
+ MachineOperand &MO = MI->getOperand(i);
+ // handle register defs - build intervals
+ if (MO.isReg() && MO.getReg() && MO.isDef()) {
+ handleRegisterDef(MBB, MI, MIIndex, MO, i);
+ }
+ }
+
+ // Skip over the empty slots after each instruction.
+ unsigned Slots = MI->getDesc().getNumDefs();
+ if (Slots == 0)
+ Slots = 1;
+ MIIndex += InstrSlots::NUM * Slots;
+
+ // Skip over empty indices.
+ while (MIIndex / InstrSlots::NUM < i2miMap_.size() &&
+ getInstructionFromIndex(MIIndex) == 0)
+ MIIndex += InstrSlots::NUM;
+ }
+ }
+}
+
+bool LiveIntervals::findLiveInMBBs(unsigned Start, unsigned End,
+ SmallVectorImpl<MachineBasicBlock*> &MBBs) const {
+ std::vector<IdxMBBPair>::const_iterator I =
+ std::lower_bound(Idx2MBBMap.begin(), Idx2MBBMap.end(), Start);
+
+ bool ResVal = false;
+ while (I != Idx2MBBMap.end()) {
+ if (I->first >= End)
+ break;
+ MBBs.push_back(I->second);
+ ResVal = true;
+ ++I;
+ }
+ return ResVal;
+}
+
+bool LiveIntervals::findReachableMBBs(unsigned Start, unsigned End,
+ SmallVectorImpl<MachineBasicBlock*> &MBBs) const {
+ std::vector<IdxMBBPair>::const_iterator I =
+ std::lower_bound(Idx2MBBMap.begin(), Idx2MBBMap.end(), Start);
+
+ bool ResVal = false;
+ while (I != Idx2MBBMap.end()) {
+ if (I->first > End)
+ break;
+ MachineBasicBlock *MBB = I->second;
+ if (getMBBEndIdx(MBB) > End)
+ break;
+ for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
+ SE = MBB->succ_end(); SI != SE; ++SI)
+ MBBs.push_back(*SI);
+ ResVal = true;
+ ++I;
+ }
+ return ResVal;
+}
+
+LiveInterval* LiveIntervals::createInterval(unsigned reg) {
+ float Weight = TargetRegisterInfo::isPhysicalRegister(reg) ? HUGE_VALF : 0.0F;
+ return new LiveInterval(reg, Weight);
+}
+
+/// dupInterval - Duplicate a live interval. The caller is responsible for
+/// managing the allocated memory.
+LiveInterval* LiveIntervals::dupInterval(LiveInterval *li) {
+ LiveInterval *NewLI = createInterval(li->reg);
+ NewLI->Copy(*li, getVNInfoAllocator());
+ return NewLI;
+}
+
+/// getVNInfoSourceReg - Helper function that parses the specified VNInfo
+/// copy field and returns the source register that defines it.
+unsigned LiveIntervals::getVNInfoSourceReg(const VNInfo *VNI) const {
+ if (!VNI->copy)
+ return 0;
+
+ if (VNI->copy->getOpcode() == TargetInstrInfo::EXTRACT_SUBREG) {
+ // If it's extracting out of a physical register, return the sub-register.
+ unsigned Reg = VNI->copy->getOperand(1).getReg();
+ if (TargetRegisterInfo::isPhysicalRegister(Reg))
+ Reg = tri_->getSubReg(Reg, VNI->copy->getOperand(2).getImm());
+ return Reg;
+ } else if (VNI->copy->getOpcode() == TargetInstrInfo::INSERT_SUBREG ||
+ VNI->copy->getOpcode() == TargetInstrInfo::SUBREG_TO_REG)
+ return VNI->copy->getOperand(2).getReg();
+
+ unsigned SrcReg, DstReg, SrcSubReg, DstSubReg;
+ if (tii_->isMoveInstr(*VNI->copy, SrcReg, DstReg, SrcSubReg, DstSubReg))
+ return SrcReg;
+ assert(0 && "Unrecognized copy instruction!");
+ return 0;
+}
+
+//===----------------------------------------------------------------------===//
+// Register allocator hooks.
+//
+
+/// getReMatImplicitUse - If the remat definition MI has one (for now, we only
+/// allow one) virtual register operand, then its uses are implicitly using
+/// the register. Returns the virtual register.
+unsigned LiveIntervals::getReMatImplicitUse(const LiveInterval &li,
+ MachineInstr *MI) const {
+ unsigned RegOp = 0;
+ for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
+ MachineOperand &MO = MI->getOperand(i);
+ if (!MO.isReg() || !MO.isUse())
+ continue;
+ unsigned Reg = MO.getReg();
+ if (Reg == 0 || Reg == li.reg)
+ continue;
+ // FIXME: For now, only remat MI with at most one register operand.
+ assert(!RegOp &&
+ "Can't rematerialize instruction with multiple register operand!");
+ RegOp = MO.getReg();
+#ifndef NDEBUG
+ break;
+#endif
+ }
+ return RegOp;
+}
+
+/// isValNoAvailableAt - Return true if the val# of the specified interval
+/// which reaches the given instruction also reaches the specified use index.
+bool LiveIntervals::isValNoAvailableAt(const LiveInterval &li, MachineInstr *MI,
+ unsigned UseIdx) const {
+ unsigned Index = getInstructionIndex(MI);
+ VNInfo *ValNo = li.FindLiveRangeContaining(Index)->valno;
+ LiveInterval::const_iterator UI = li.FindLiveRangeContaining(UseIdx);
+ return UI != li.end() && UI->valno == ValNo;
+}
+
+/// isReMaterializable - Returns true if the definition MI of the specified
+/// val# of the specified interval is re-materializable.
+bool LiveIntervals::isReMaterializable(const LiveInterval &li,
+ const VNInfo *ValNo, MachineInstr *MI,
+ SmallVectorImpl<LiveInterval*> &SpillIs,
+ bool &isLoad) {
+ if (DisableReMat)
+ return false;
+
+ if (MI->getOpcode() == TargetInstrInfo::IMPLICIT_DEF)
+ return true;
+
+ int FrameIdx = 0;
+ if (tii_->isLoadFromStackSlot(MI, FrameIdx) &&
+ mf_->getFrameInfo()->isImmutableObjectIndex(FrameIdx))
+ // FIXME: Let target specific isReallyTriviallyReMaterializable determines
+ // this but remember this is not safe to fold into a two-address
+ // instruction.
+ // This is a load from fixed stack slot. It can be rematerialized.
+ return true;
+
+ // If the target-specific rules don't identify an instruction as
+ // being trivially rematerializable, use some target-independent
+ // rules.
+ if (!MI->getDesc().isRematerializable() ||
+ !tii_->isTriviallyReMaterializable(MI)) {
+ if (!EnableAggressiveRemat)
+ return false;
+
+ // If the instruction accesses memory but the memoperands have been lost,
+ // we can't analyze it.
+ const TargetInstrDesc &TID = MI->getDesc();
+ if ((TID.mayLoad() || TID.mayStore()) && MI->memoperands_empty())
+ return false;
+
+ // Avoid instructions obviously unsafe for remat.
+ if (TID.hasUnmodeledSideEffects() || TID.isNotDuplicable())
+ return false;
+
+ // If the instruction accesses memory and the memory could be non-constant,
+ // assume the instruction is not rematerializable.
+ for (std::list<MachineMemOperand>::const_iterator
+ I = MI->memoperands_begin(), E = MI->memoperands_end(); I != E; ++I){
+ const MachineMemOperand &MMO = *I;
+ if (MMO.isVolatile() || MMO.isStore())
+ return false;
+ const Value *V = MMO.getValue();
+ if (!V)
+ return false;
+ if (const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(V)) {
+ if (!PSV->isConstant(mf_->getFrameInfo()))
+ return false;
+ } else if (!aa_->pointsToConstantMemory(V))
+ return false;
+ }
+
+ // If any of the registers accessed are non-constant, conservatively assume
+ // the instruction is not rematerializable.
+ unsigned ImpUse = 0;
+ for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
+ const MachineOperand &MO = MI->getOperand(i);
+ if (MO.isReg()) {
+ unsigned Reg = MO.getReg();
+ if (Reg == 0)
+ continue;
+ if (TargetRegisterInfo::isPhysicalRegister(Reg))
+ return false;
+
+ // Only allow one def, and that in the first operand.
+ if (MO.isDef() != (i == 0))
+ return false;
+
+ // Only allow constant-valued registers.
+ bool IsLiveIn = mri_->isLiveIn(Reg);
+ MachineRegisterInfo::def_iterator I = mri_->def_begin(Reg),
+ E = mri_->def_end();
+
+ // For the def, it should be the only def of that register.
+ if (MO.isDef() && (next(I) != E || IsLiveIn))
+ return false;
+
+ if (MO.isUse()) {
+ // Only allow one use other register use, as that's all the
+ // remat mechanisms support currently.
+ if (Reg != li.reg) {
+ if (ImpUse == 0)
+ ImpUse = Reg;
+ else if (Reg != ImpUse)
+ return false;
+ }
+ // For the use, there should be only one associated def.
+ if (I != E && (next(I) != E || IsLiveIn))
+ return false;
+ }
+ }
+ }
+ }
+
+ unsigned ImpUse = getReMatImplicitUse(li, MI);
+ if (ImpUse) {
+ const LiveInterval &ImpLi = getInterval(ImpUse);
+ for (MachineRegisterInfo::use_iterator ri = mri_->use_begin(li.reg),
+ re = mri_->use_end(); ri != re; ++ri) {
+ MachineInstr *UseMI = &*ri;
+ unsigned UseIdx = getInstructionIndex(UseMI);
+ if (li.FindLiveRangeContaining(UseIdx)->valno != ValNo)
+ continue;
+ if (!isValNoAvailableAt(ImpLi, MI, UseIdx))
+ return false;
+ }
+
+ // If a register operand of the re-materialized instruction is going to
+ // be spilled next, then it's not legal to re-materialize this instruction.
+ for (unsigned i = 0, e = SpillIs.size(); i != e; ++i)
+ if (ImpUse == SpillIs[i]->reg)
+ return false;
+ }
+ return true;
+}
+
+/// isReMaterializable - Returns true if the definition MI of the specified
+/// val# of the specified interval is re-materializable.
+bool LiveIntervals::isReMaterializable(const LiveInterval &li,
+ const VNInfo *ValNo, MachineInstr *MI) {
+ SmallVector<LiveInterval*, 4> Dummy1;
+ bool Dummy2;
+ return isReMaterializable(li, ValNo, MI, Dummy1, Dummy2);
+}
+
+/// isReMaterializable - Returns true if every definition of MI of every
+/// val# of the specified interval is re-materializable.
+bool LiveIntervals::isReMaterializable(const LiveInterval &li,
+ SmallVectorImpl<LiveInterval*> &SpillIs,
+ bool &isLoad) {
+ isLoad = false;
+ for (LiveInterval::const_vni_iterator i = li.vni_begin(), e = li.vni_end();
+ i != e; ++i) {
+ const VNInfo *VNI = *i;
+ unsigned DefIdx = VNI->def;
+ if (DefIdx == ~1U)
+ continue; // Dead val#.
+ // Is the def for the val# rematerializable?
+ if (DefIdx == ~0u)
+ return false;
+ MachineInstr *ReMatDefMI = getInstructionFromIndex(DefIdx);
+ bool DefIsLoad = false;
+ if (!ReMatDefMI ||
+ !isReMaterializable(li, VNI, ReMatDefMI, SpillIs, DefIsLoad))
+ return false;
+ isLoad |= DefIsLoad;
+ }
+ return true;
+}
+
+/// FilterFoldedOps - Filter out two-address use operands. Return
+/// true if it finds any issue with the operands that ought to prevent
+/// folding.
+static bool FilterFoldedOps(MachineInstr *MI,
+ SmallVector<unsigned, 2> &Ops,
+ unsigned &MRInfo,
+ SmallVector<unsigned, 2> &FoldOps) {
+ MRInfo = 0;
+ for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
+ unsigned OpIdx = Ops[i];
+ MachineOperand &MO = MI->getOperand(OpIdx);
+ // FIXME: fold subreg use.
+ if (MO.getSubReg())
+ return true;
+ if (MO.isDef())
+ MRInfo |= (unsigned)VirtRegMap::isMod;
+ else {
+ // Filter out two-address use operand(s).
+ if (MI->isRegTiedToDefOperand(OpIdx)) {
+ MRInfo = VirtRegMap::isModRef;
+ continue;
+ }
+ MRInfo |= (unsigned)VirtRegMap::isRef;
+ }
+ FoldOps.push_back(OpIdx);
+ }
+ return false;
+}
+
+
+/// tryFoldMemoryOperand - Attempts to fold either a spill / restore from
+/// slot / to reg or any rematerialized load into ith operand of specified
+/// MI. If it is successul, MI is updated with the newly created MI and
+/// returns true.
+bool LiveIntervals::tryFoldMemoryOperand(MachineInstr* &MI,
+ VirtRegMap &vrm, MachineInstr *DefMI,
+ unsigned InstrIdx,
+ SmallVector<unsigned, 2> &Ops,
+ bool isSS, int Slot, unsigned Reg) {
+ // If it is an implicit def instruction, just delete it.
+ if (MI->getOpcode() == TargetInstrInfo::IMPLICIT_DEF) {
+ RemoveMachineInstrFromMaps(MI);
+ vrm.RemoveMachineInstrFromMaps(MI);
+ MI->eraseFromParent();
+ ++numFolds;
+ return true;
+ }
+
+ // Filter the list of operand indexes that are to be folded. Abort if
+ // any operand will prevent folding.
+ unsigned MRInfo = 0;
+ SmallVector<unsigned, 2> FoldOps;
+ if (FilterFoldedOps(MI, Ops, MRInfo, FoldOps))
+ return false;
+
+ // The only time it's safe to fold into a two address instruction is when
+ // it's folding reload and spill from / into a spill stack slot.
+ if (DefMI && (MRInfo & VirtRegMap::isMod))
+ return false;
+
+ MachineInstr *fmi = isSS ? tii_->foldMemoryOperand(*mf_, MI, FoldOps, Slot)
+ : tii_->foldMemoryOperand(*mf_, MI, FoldOps, DefMI);
+ if (fmi) {
+ // Remember this instruction uses the spill slot.
+ if (isSS) vrm.addSpillSlotUse(Slot, fmi);
+
+ // Attempt to fold the memory reference into the instruction. If
+ // we can do this, we don't need to insert spill code.
+ MachineBasicBlock &MBB = *MI->getParent();
+ if (isSS && !mf_->getFrameInfo()->isImmutableObjectIndex(Slot))
+ vrm.virtFolded(Reg, MI, fmi, (VirtRegMap::ModRef)MRInfo);
+ vrm.transferSpillPts(MI, fmi);
+ vrm.transferRestorePts(MI, fmi);
+ vrm.transferEmergencySpills(MI, fmi);
+ mi2iMap_.erase(MI);
+ i2miMap_[InstrIdx /InstrSlots::NUM] = fmi;
+ mi2iMap_[fmi] = InstrIdx;
+ MI = MBB.insert(MBB.erase(MI), fmi);
+ ++numFolds;
+ return true;
+ }
+ return false;
+}
+
+/// canFoldMemoryOperand - Returns true if the specified load / store
+/// folding is possible.
+bool LiveIntervals::canFoldMemoryOperand(MachineInstr *MI,
+ SmallVector<unsigned, 2> &Ops,
+ bool ReMat) const {
+ // Filter the list of operand indexes that are to be folded. Abort if
+ // any operand will prevent folding.
+ unsigned MRInfo = 0;
+ SmallVector<unsigned, 2> FoldOps;
+ if (FilterFoldedOps(MI, Ops, MRInfo, FoldOps))
+ return false;
+
+ // It's only legal to remat for a use, not a def.
+ if (ReMat && (MRInfo & VirtRegMap::isMod))
+ return false;
+
+ return tii_->canFoldMemoryOperand(MI, FoldOps);
+}
+
+bool LiveIntervals::intervalIsInOneMBB(const LiveInterval &li) const {
+ SmallPtrSet<MachineBasicBlock*, 4> MBBs;
+ for (LiveInterval::Ranges::const_iterator
+ I = li.ranges.begin(), E = li.ranges.end(); I != E; ++I) {
+ std::vector<IdxMBBPair>::const_iterator II =
+ std::lower_bound(Idx2MBBMap.begin(), Idx2MBBMap.end(), I->start);
+ if (II == Idx2MBBMap.end())
+ continue;
+ if (I->end > II->first) // crossing a MBB.
+ return false;
+ MBBs.insert(II->second);
+ if (MBBs.size() > 1)
+ return false;
+ }
+ return true;
+}
+
+/// rewriteImplicitOps - Rewrite implicit use operands of MI (i.e. uses of
+/// interval on to-be re-materialized operands of MI) with new register.
+void LiveIntervals::rewriteImplicitOps(const LiveInterval &li,
+ MachineInstr *MI, unsigned NewVReg,
+ VirtRegMap &vrm) {
+ // There is an implicit use. That means one of the other operand is
+ // being remat'ed and the remat'ed instruction has li.reg as an
+ // use operand. Make sure we rewrite that as well.
+ for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
+ MachineOperand &MO = MI->getOperand(i);
+ if (!MO.isReg())
+ continue;
+ unsigned Reg = MO.getReg();
+ if (Reg == 0 || TargetRegisterInfo::isPhysicalRegister(Reg))
+ continue;
+ if (!vrm.isReMaterialized(Reg))
+ continue;
+ MachineInstr *ReMatMI = vrm.getReMaterializedMI(Reg);
+ MachineOperand *UseMO = ReMatMI->findRegisterUseOperand(li.reg);
+ if (UseMO)
+ UseMO->setReg(NewVReg);
+ }
+}
+
+/// rewriteInstructionForSpills, rewriteInstructionsForSpills - Helper functions
+/// for addIntervalsForSpills to rewrite uses / defs for the given live range.
+bool LiveIntervals::
+rewriteInstructionForSpills(const LiveInterval &li, const VNInfo *VNI,
+ bool TrySplit, unsigned index, unsigned end, MachineInstr *MI,
+ MachineInstr *ReMatOrigDefMI, MachineInstr *ReMatDefMI,
+ unsigned Slot, int LdSlot,
+ bool isLoad, bool isLoadSS, bool DefIsReMat, bool CanDelete,
+ VirtRegMap &vrm,
+ const TargetRegisterClass* rc,
+ SmallVector<int, 4> &ReMatIds,
+ const MachineLoopInfo *loopInfo,
+ unsigned &NewVReg, unsigned ImpUse, bool &HasDef, bool &HasUse,
+ DenseMap<unsigned,unsigned> &MBBVRegsMap,
+ std::vector<LiveInterval*> &NewLIs) {
+ bool CanFold = false;
+ RestartInstruction:
+ for (unsigned i = 0; i != MI->getNumOperands(); ++i) {
+ MachineOperand& mop = MI->getOperand(i);
+ if (!mop.isReg())
+ continue;
+ unsigned Reg = mop.getReg();
+ unsigned RegI = Reg;
+ if (Reg == 0 || TargetRegisterInfo::isPhysicalRegister(Reg))
+ continue;
+ if (Reg != li.reg)
+ continue;
+
+ bool TryFold = !DefIsReMat;
+ bool FoldSS = true; // Default behavior unless it's a remat.
+ int FoldSlot = Slot;
+ if (DefIsReMat) {
+ // If this is the rematerializable definition MI itself and
+ // all of its uses are rematerialized, simply delete it.
+ if (MI == ReMatOrigDefMI && CanDelete) {
+ DOUT << "\t\t\t\tErasing re-materlizable def: ";
+ DOUT << MI << '\n';
+ RemoveMachineInstrFromMaps(MI);
+ vrm.RemoveMachineInstrFromMaps(MI);
+ MI->eraseFromParent();
+ break;
+ }
+
+ // If def for this use can't be rematerialized, then try folding.
+ // If def is rematerializable and it's a load, also try folding.
+ TryFold = !ReMatDefMI || (ReMatDefMI && (MI == ReMatOrigDefMI || isLoad));
+ if (isLoad) {
+ // Try fold loads (from stack slot, constant pool, etc.) into uses.
+ FoldSS = isLoadSS;
+ FoldSlot = LdSlot;
+ }
+ }
+
+ // Scan all of the operands of this instruction rewriting operands
+ // to use NewVReg instead of li.reg as appropriate. We do this for
+ // two reasons:
+ //
+ // 1. If the instr reads the same spilled vreg multiple times, we
+ // want to reuse the NewVReg.
+ // 2. If the instr is a two-addr instruction, we are required to
+ // keep the src/dst regs pinned.
+ //
+ // Keep track of whether we replace a use and/or def so that we can
+ // create the spill interval with the appropriate range.
+
+ HasUse = mop.isUse();
+ HasDef = mop.isDef();
+ SmallVector<unsigned, 2> Ops;
+ Ops.push_back(i);
+ for (unsigned j = i+1, e = MI->getNumOperands(); j != e; ++j) {
+ const MachineOperand &MOj = MI->getOperand(j);
+ if (!MOj.isReg())
+ continue;
+ unsigned RegJ = MOj.getReg();
+ if (RegJ == 0 || TargetRegisterInfo::isPhysicalRegister(RegJ))
+ continue;
+ if (RegJ == RegI) {
+ Ops.push_back(j);
+ HasUse |= MOj.isUse();
+ HasDef |= MOj.isDef();
+ }
+ }
+
+ if (HasUse && !li.liveAt(getUseIndex(index)))
+ // Must be defined by an implicit def. It should not be spilled. Note,
+ // this is for correctness reason. e.g.
+ // 8 %reg1024<def> = IMPLICIT_DEF
+ // 12 %reg1024<def> = INSERT_SUBREG %reg1024<kill>, %reg1025, 2
+ // The live range [12, 14) are not part of the r1024 live interval since
+ // it's defined by an implicit def. It will not conflicts with live
+ // interval of r1025. Now suppose both registers are spilled, you can
+ // easily see a situation where both registers are reloaded before
+ // the INSERT_SUBREG and both target registers that would overlap.
+ HasUse = false;
+
+ // Create a new virtual register for the spill interval.
+ // Create the new register now so we can map the fold instruction
+ // to the new register so when it is unfolded we get the correct
+ // answer.
+ bool CreatedNewVReg = false;
+ if (NewVReg == 0) {
+ NewVReg = mri_->createVirtualRegister(rc);
+ vrm.grow();
+ CreatedNewVReg = true;
+ }
+
+ if (!TryFold)
+ CanFold = false;
+ else {
+ // Do not fold load / store here if we are splitting. We'll find an
+ // optimal point to insert a load / store later.
+ if (!TrySplit) {
+ if (tryFoldMemoryOperand(MI, vrm, ReMatDefMI, index,
+ Ops, FoldSS, FoldSlot, NewVReg)) {
+ // Folding the load/store can completely change the instruction in
+ // unpredictable ways, rescan it from the beginning.
+
+ if (FoldSS) {
+ // We need to give the new vreg the same stack slot as the
+ // spilled interval.
+ vrm.assignVirt2StackSlot(NewVReg, FoldSlot);
+ }
+
+ HasUse = false;
+ HasDef = false;
+ CanFold = false;
+ if (isNotInMIMap(MI))
+ break;
+ goto RestartInstruction;
+ }
+ } else {
+ // We'll try to fold it later if it's profitable.
+ CanFold = canFoldMemoryOperand(MI, Ops, DefIsReMat);
+ }
+ }
+
+ mop.setReg(NewVReg);
+ if (mop.isImplicit())
+ rewriteImplicitOps(li, MI, NewVReg, vrm);
+
+ // Reuse NewVReg for other reads.
+ for (unsigned j = 0, e = Ops.size(); j != e; ++j) {
+ MachineOperand &mopj = MI->getOperand(Ops[j]);
+ mopj.setReg(NewVReg);
+ if (mopj.isImplicit())
+ rewriteImplicitOps(li, MI, NewVReg, vrm);
+ }
+
+ if (CreatedNewVReg) {
+ if (DefIsReMat) {
+ vrm.setVirtIsReMaterialized(NewVReg, ReMatDefMI/*, CanDelete*/);
+ if (ReMatIds[VNI->id] == VirtRegMap::MAX_STACK_SLOT) {
+ // Each valnum may have its own remat id.
+ ReMatIds[VNI->id] = vrm.assignVirtReMatId(NewVReg);
+ } else {
+ vrm.assignVirtReMatId(NewVReg, ReMatIds[VNI->id]);
+ }
+ if (!CanDelete || (HasUse && HasDef)) {
+ // If this is a two-addr instruction then its use operands are
+ // rematerializable but its def is not. It should be assigned a
+ // stack slot.
+ vrm.assignVirt2StackSlot(NewVReg, Slot);
+ }
+ } else {
+ vrm.assignVirt2StackSlot(NewVReg, Slot);
+ }
+ } else if (HasUse && HasDef &&
+ vrm.getStackSlot(NewVReg) == VirtRegMap::NO_STACK_SLOT) {
+ // If this interval hasn't been assigned a stack slot (because earlier
+ // def is a deleted remat def), do it now.
+ assert(Slot != VirtRegMap::NO_STACK_SLOT);
+ vrm.assignVirt2StackSlot(NewVReg, Slot);
+ }
+
+ // Re-matting an instruction with virtual register use. Add the
+ // register as an implicit use on the use MI.
+ if (DefIsReMat && ImpUse)
+ MI->addOperand(MachineOperand::CreateReg(ImpUse, false, true));
+
+ // Create a new register interval for this spill / remat.
+ LiveInterval &nI = getOrCreateInterval(NewVReg);
+ if (CreatedNewVReg) {
+ NewLIs.push_back(&nI);
+ MBBVRegsMap.insert(std::make_pair(MI->getParent()->getNumber(), NewVReg));
+ if (TrySplit)
+ vrm.setIsSplitFromReg(NewVReg, li.reg);
+ }
+
+ if (HasUse) {
+ if (CreatedNewVReg) {
+ LiveRange LR(getLoadIndex(index), getUseIndex(index)+1,
+ nI.getNextValue(~0U, 0, VNInfoAllocator));
+ DOUT << " +" << LR;
+ nI.addRange(LR);
+ } else {
+ // Extend the split live interval to this def / use.
+ unsigned End = getUseIndex(index)+1;
+ LiveRange LR(nI.ranges[nI.ranges.size()-1].end, End,
+ nI.getValNumInfo(nI.getNumValNums()-1));
+ DOUT << " +" << LR;
+ nI.addRange(LR);
+ }
+ }
+ if (HasDef) {
+ LiveRange LR(getDefIndex(index), getStoreIndex(index),
+ nI.getNextValue(~0U, 0, VNInfoAllocator));
+ DOUT << " +" << LR;
+ nI.addRange(LR);
+ }
+
+ DOUT << "\t\t\t\tAdded new interval: ";
+ nI.print(DOUT, tri_);
+ DOUT << '\n';
+ }
+ return CanFold;
+}
+bool LiveIntervals::anyKillInMBBAfterIdx(const LiveInterval &li,
+ const VNInfo *VNI,
+ MachineBasicBlock *MBB, unsigned Idx) const {
+ unsigned End = getMBBEndIdx(MBB);
+ for (unsigned j = 0, ee = VNI->kills.size(); j != ee; ++j) {
+ unsigned KillIdx = VNI->kills[j];
+ if (KillIdx > Idx && KillIdx < End)
+ return true;
+ }
+ return false;
+}
+
+/// RewriteInfo - Keep track of machine instrs that will be rewritten
+/// during spilling.
+namespace {
+ struct RewriteInfo {
+ unsigned Index;
+ MachineInstr *MI;
+ bool HasUse;
+ bool HasDef;
+ RewriteInfo(unsigned i, MachineInstr *mi, bool u, bool d)
+ : Index(i), MI(mi), HasUse(u), HasDef(d) {}
+ };
+
+ struct RewriteInfoCompare {
+ bool operator()(const RewriteInfo &LHS, const RewriteInfo &RHS) const {
+ return LHS.Index < RHS.Index;
+ }
+ };
+}
+
+void LiveIntervals::
+rewriteInstructionsForSpills(const LiveInterval &li, bool TrySplit,
+ LiveInterval::Ranges::const_iterator &I,
+ MachineInstr *ReMatOrigDefMI, MachineInstr *ReMatDefMI,
+ unsigned Slot, int LdSlot,
+ bool isLoad, bool isLoadSS, bool DefIsReMat, bool CanDelete,
+ VirtRegMap &vrm,
+ const TargetRegisterClass* rc,
+ SmallVector<int, 4> &ReMatIds,
+ const MachineLoopInfo *loopInfo,
+ BitVector &SpillMBBs,
+ DenseMap<unsigned, std::vector<SRInfo> > &SpillIdxes,
+ BitVector &RestoreMBBs,
+ DenseMap<unsigned, std::vector<SRInfo> > &RestoreIdxes,
+ DenseMap<unsigned,unsigned> &MBBVRegsMap,
+ std::vector<LiveInterval*> &NewLIs) {
+ bool AllCanFold = true;
+ unsigned NewVReg = 0;
+ unsigned start = getBaseIndex(I->start);
+ unsigned end = getBaseIndex(I->end-1) + InstrSlots::NUM;
+
+ // First collect all the def / use in this live range that will be rewritten.
+ // Make sure they are sorted according to instruction index.
+ std::vector<RewriteInfo> RewriteMIs;
+ for (MachineRegisterInfo::reg_iterator ri = mri_->reg_begin(li.reg),
+ re = mri_->reg_end(); ri != re; ) {
+ MachineInstr *MI = &*ri;
+ MachineOperand &O = ri.getOperand();
+ ++ri;
+ assert(!O.isImplicit() && "Spilling register that's used as implicit use?");
+ unsigned index = getInstructionIndex(MI);
+ if (index < start || index >= end)
+ continue;
+ if (O.isUse() && !li.liveAt(getUseIndex(index)))
+ // Must be defined by an implicit def. It should not be spilled. Note,
+ // this is for correctness reason. e.g.
+ // 8 %reg1024<def> = IMPLICIT_DEF
+ // 12 %reg1024<def> = INSERT_SUBREG %reg1024<kill>, %reg1025, 2
+ // The live range [12, 14) are not part of the r1024 live interval since
+ // it's defined by an implicit def. It will not conflicts with live
+ // interval of r1025. Now suppose both registers are spilled, you can
+ // easily see a situation where both registers are reloaded before
+ // the INSERT_SUBREG and both target registers that would overlap.
+ continue;
+ RewriteMIs.push_back(RewriteInfo(index, MI, O.isUse(), O.isDef()));
+ }
+ std::sort(RewriteMIs.begin(), RewriteMIs.end(), RewriteInfoCompare());
+
+ unsigned ImpUse = DefIsReMat ? getReMatImplicitUse(li, ReMatDefMI) : 0;
+ // Now rewrite the defs and uses.
+ for (unsigned i = 0, e = RewriteMIs.size(); i != e; ) {
+ RewriteInfo &rwi = RewriteMIs[i];
+ ++i;
+ unsigned index = rwi.Index;
+ bool MIHasUse = rwi.HasUse;
+ bool MIHasDef = rwi.HasDef;
+ MachineInstr *MI = rwi.MI;
+ // If MI def and/or use the same register multiple times, then there
+ // are multiple entries.
+ unsigned NumUses = MIHasUse;
+ while (i != e && RewriteMIs[i].MI == MI) {
+ assert(RewriteMIs[i].Index == index);
+ bool isUse = RewriteMIs[i].HasUse;
+ if (isUse) ++NumUses;
+ MIHasUse |= isUse;
+ MIHasDef |= RewriteMIs[i].HasDef;
+ ++i;
+ }
+ MachineBasicBlock *MBB = MI->getParent();
+
+ if (ImpUse && MI != ReMatDefMI) {
+ // Re-matting an instruction with virtual register use. Update the
+ // register interval's spill weight to HUGE_VALF to prevent it from
+ // being spilled.
+ LiveInterval &ImpLi = getInterval(ImpUse);
+ ImpLi.weight = HUGE_VALF;
+ }
+
+ unsigned MBBId = MBB->getNumber();
+ unsigned ThisVReg = 0;
+ if (TrySplit) {
+ DenseMap<unsigned,unsigned>::iterator NVI = MBBVRegsMap.find(MBBId);
+ if (NVI != MBBVRegsMap.end()) {
+ ThisVReg = NVI->second;
+ // One common case:
+ // x = use
+ // ...
+ // ...
+ // def = ...
+ // = use
+ // It's better to start a new interval to avoid artifically
+ // extend the new interval.
+ if (MIHasDef && !MIHasUse) {
+ MBBVRegsMap.erase(MBB->getNumber());
+ ThisVReg = 0;
+ }
+ }
+ }
+
+ bool IsNew = ThisVReg == 0;
+ if (IsNew) {
+ // This ends the previous live interval. If all of its def / use
+ // can be folded, give it a low spill weight.
+ if (NewVReg && TrySplit && AllCanFold) {
+ LiveInterval &nI = getOrCreateInterval(NewVReg);
+ nI.weight /= 10.0F;
+ }
+ AllCanFold = true;
+ }
+ NewVReg = ThisVReg;
+
+ bool HasDef = false;
+ bool HasUse = false;
+ bool CanFold = rewriteInstructionForSpills(li, I->valno, TrySplit,
+ index, end, MI, ReMatOrigDefMI, ReMatDefMI,
+ Slot, LdSlot, isLoad, isLoadSS, DefIsReMat,
+ CanDelete, vrm, rc, ReMatIds, loopInfo, NewVReg,
+ ImpUse, HasDef, HasUse, MBBVRegsMap, NewLIs);
+ if (!HasDef && !HasUse)
+ continue;
+
+ AllCanFold &= CanFold;
+
+ // Update weight of spill interval.
+ LiveInterval &nI = getOrCreateInterval(NewVReg);
+ if (!TrySplit) {
+ // The spill weight is now infinity as it cannot be spilled again.
+ nI.weight = HUGE_VALF;
+ continue;
+ }
+
+ // Keep track of the last def and first use in each MBB.
+ if (HasDef) {
+ if (MI != ReMatOrigDefMI || !CanDelete) {
+ bool HasKill = false;
+ if (!HasUse)
+ HasKill = anyKillInMBBAfterIdx(li, I->valno, MBB, getDefIndex(index));
+ else {
+ // If this is a two-address code, then this index starts a new VNInfo.
+ const VNInfo *VNI = li.findDefinedVNInfo(getDefIndex(index));
+ if (VNI)
+ HasKill = anyKillInMBBAfterIdx(li, VNI, MBB, getDefIndex(index));
+ }
+ DenseMap<unsigned, std::vector<SRInfo> >::iterator SII =
+ SpillIdxes.find(MBBId);
+ if (!HasKill) {
+ if (SII == SpillIdxes.end()) {
+ std::vector<SRInfo> S;
+ S.push_back(SRInfo(index, NewVReg, true));
+ SpillIdxes.insert(std::make_pair(MBBId, S));
+ } else if (SII->second.back().vreg != NewVReg) {
+ SII->second.push_back(SRInfo(index, NewVReg, true));
+ } else if ((int)index > SII->second.back().index) {
+ // If there is an earlier def and this is a two-address
+ // instruction, then it's not possible to fold the store (which
+ // would also fold the load).
+ SRInfo &Info = SII->second.back();
+ Info.index = index;
+ Info.canFold = !HasUse;
+ }
+ SpillMBBs.set(MBBId);
+ } else if (SII != SpillIdxes.end() &&
+ SII->second.back().vreg == NewVReg &&
+ (int)index > SII->second.back().index) {
+ // There is an earlier def that's not killed (must be two-address).
+ // The spill is no longer needed.
+ SII->second.pop_back();
+ if (SII->second.empty()) {
+ SpillIdxes.erase(MBBId);
+ SpillMBBs.reset(MBBId);
+ }
+ }
+ }
+ }
+
+ if (HasUse) {
+ DenseMap<unsigned, std::vector<SRInfo> >::iterator SII =
+ SpillIdxes.find(MBBId);
+ if (SII != SpillIdxes.end() &&
+ SII->second.back().vreg == NewVReg &&
+ (int)index > SII->second.back().index)
+ // Use(s) following the last def, it's not safe to fold the spill.
+ SII->second.back().canFold = false;
+ DenseMap<unsigned, std::vector<SRInfo> >::iterator RII =
+ RestoreIdxes.find(MBBId);
+ if (RII != RestoreIdxes.end() && RII->second.back().vreg == NewVReg)
+ // If we are splitting live intervals, only fold if it's the first
+ // use and there isn't another use later in the MBB.
+ RII->second.back().canFold = false;
+ else if (IsNew) {
+ // Only need a reload if there isn't an earlier def / use.
+ if (RII == RestoreIdxes.end()) {
+ std::vector<SRInfo> Infos;
+ Infos.push_back(SRInfo(index, NewVReg, true));
+ RestoreIdxes.insert(std::make_pair(MBBId, Infos));
+ } else {
+ RII->second.push_back(SRInfo(index, NewVReg, true));
+ }
+ RestoreMBBs.set(MBBId);
+ }
+ }
+
+ // Update spill weight.
+ unsigned loopDepth = loopInfo->getLoopDepth(MBB);
+ nI.weight += getSpillWeight(HasDef, HasUse, loopDepth);
+ }
+
+ if (NewVReg && TrySplit && AllCanFold) {
+ // If all of its def / use can be folded, give it a low spill weight.
+ LiveInterval &nI = getOrCreateInterval(NewVReg);
+ nI.weight /= 10.0F;
+ }
+}
+
+bool LiveIntervals::alsoFoldARestore(int Id, int index, unsigned vr,
+ BitVector &RestoreMBBs,
+ DenseMap<unsigned,std::vector<SRInfo> > &RestoreIdxes) {
+ if (!RestoreMBBs[Id])
+ return false;
+ std::vector<SRInfo> &Restores = RestoreIdxes[Id];
+ for (unsigned i = 0, e = Restores.size(); i != e; ++i)
+ if (Restores[i].index == index &&
+ Restores[i].vreg == vr &&
+ Restores[i].canFold)
+ return true;
+ return false;
+}
+
+void LiveIntervals::eraseRestoreInfo(int Id, int index, unsigned vr,
+ BitVector &RestoreMBBs,
+ DenseMap<unsigned,std::vector<SRInfo> > &RestoreIdxes) {
+ if (!RestoreMBBs[Id])
+ return;
+ std::vector<SRInfo> &Restores = RestoreIdxes[Id];
+ for (unsigned i = 0, e = Restores.size(); i != e; ++i)
+ if (Restores[i].index == index && Restores[i].vreg)
+ Restores[i].index = -1;
+}
+
+/// handleSpilledImpDefs - Remove IMPLICIT_DEF instructions which are being
+/// spilled and create empty intervals for their uses.
+void
+LiveIntervals::handleSpilledImpDefs(const LiveInterval &li, VirtRegMap &vrm,
+ const TargetRegisterClass* rc,
+ std::vector<LiveInterval*> &NewLIs) {
+ for (MachineRegisterInfo::reg_iterator ri = mri_->reg_begin(li.reg),
+ re = mri_->reg_end(); ri != re; ) {
+ MachineOperand &O = ri.getOperand();
+ MachineInstr *MI = &*ri;
+ ++ri;
+ if (O.isDef()) {
+ assert(MI->getOpcode() == TargetInstrInfo::IMPLICIT_DEF &&
+ "Register def was not rewritten?");
+ RemoveMachineInstrFromMaps(MI);
+ vrm.RemoveMachineInstrFromMaps(MI);
+ MI->eraseFromParent();
+ } else {
+ // This must be an use of an implicit_def so it's not part of the live
+ // interval. Create a new empty live interval for it.
+ // FIXME: Can we simply erase some of the instructions? e.g. Stores?
+ unsigned NewVReg = mri_->createVirtualRegister(rc);
+ vrm.grow();
+ vrm.setIsImplicitlyDefined(NewVReg);
+ NewLIs.push_back(&getOrCreateInterval(NewVReg));
+ for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
+ MachineOperand &MO = MI->getOperand(i);
+ if (MO.isReg() && MO.getReg() == li.reg)
+ MO.setReg(NewVReg);
+ }
+ }
+ }
+}
+
+std::vector<LiveInterval*> LiveIntervals::
+addIntervalsForSpillsFast(const LiveInterval &li,
+ const MachineLoopInfo *loopInfo,
+ VirtRegMap &vrm) {
+ unsigned slot = vrm.assignVirt2StackSlot(li.reg);
+
+ std::vector<LiveInterval*> added;
+
+ assert(li.weight != HUGE_VALF &&
+ "attempt to spill already spilled interval!");
+
+ DOUT << "\t\t\t\tadding intervals for spills for interval: ";
+ DEBUG(li.dump());
+ DOUT << '\n';
+
+ const TargetRegisterClass* rc = mri_->getRegClass(li.reg);
+
+ MachineRegisterInfo::reg_iterator RI = mri_->reg_begin(li.reg);
+ while (RI != mri_->reg_end()) {
+ MachineInstr* MI = &*RI;
+
+ SmallVector<unsigned, 2> Indices;
+ bool HasUse = false;
+ bool HasDef = false;
+
+ for (unsigned i = 0; i != MI->getNumOperands(); ++i) {
+ MachineOperand& mop = MI->getOperand(i);
+ if (!mop.isReg() || mop.getReg() != li.reg) continue;
+
+ HasUse |= MI->getOperand(i).isUse();
+ HasDef |= MI->getOperand(i).isDef();
+
+ Indices.push_back(i);
+ }
+
+ if (!tryFoldMemoryOperand(MI, vrm, NULL, getInstructionIndex(MI),
+ Indices, true, slot, li.reg)) {
+ unsigned NewVReg = mri_->createVirtualRegister(rc);
+ vrm.grow();
+ vrm.assignVirt2StackSlot(NewVReg, slot);
+
+ // create a new register for this spill
+ LiveInterval &nI = getOrCreateInterval(NewVReg);
+
+ // the spill weight is now infinity as it
+ // cannot be spilled again
+ nI.weight = HUGE_VALF;
+
+ // Rewrite register operands to use the new vreg.
+ for (SmallVectorImpl<unsigned>::iterator I = Indices.begin(),
+ E = Indices.end(); I != E; ++I) {
+ MI->getOperand(*I).setReg(NewVReg);
+
+ if (MI->getOperand(*I).isUse())
+ MI->getOperand(*I).setIsKill(true);
+ }
+
+ // Fill in the new live interval.
+ unsigned index = getInstructionIndex(MI);
+ if (HasUse) {
+ LiveRange LR(getLoadIndex(index), getUseIndex(index),
+ nI.getNextValue(~0U, 0, getVNInfoAllocator()));
+ DOUT << " +" << LR;
+ nI.addRange(LR);
+ vrm.addRestorePoint(NewVReg, MI);
+ }
+ if (HasDef) {
+ LiveRange LR(getDefIndex(index), getStoreIndex(index),
+ nI.getNextValue(~0U, 0, getVNInfoAllocator()));
+ DOUT << " +" << LR;
+ nI.addRange(LR);
+ vrm.addSpillPoint(NewVReg, true, MI);
+ }
+
+ added.push_back(&nI);
+
+ DOUT << "\t\t\t\tadded new interval: ";
+ DEBUG(nI.dump());
+ DOUT << '\n';
+ }
+
+
+ RI = mri_->reg_begin(li.reg);
+ }
+
+ return added;
+}
+
+std::vector<LiveInterval*> LiveIntervals::
+addIntervalsForSpills(const LiveInterval &li,
+ SmallVectorImpl<LiveInterval*> &SpillIs,
+ const MachineLoopInfo *loopInfo, VirtRegMap &vrm) {
+
+ if (EnableFastSpilling)
+ return addIntervalsForSpillsFast(li, loopInfo, vrm);
+
+ assert(li.weight != HUGE_VALF &&
+ "attempt to spill already spilled interval!");
+
+ DOUT << "\t\t\t\tadding intervals for spills for interval: ";
+ li.print(DOUT, tri_);
+ DOUT << '\n';
+
+ // Each bit specify whether a spill is required in the MBB.
+ BitVector SpillMBBs(mf_->getNumBlockIDs());
+ DenseMap<unsigned, std::vector<SRInfo> > SpillIdxes;
+ BitVector RestoreMBBs(mf_->getNumBlockIDs());
+ DenseMap<unsigned, std::vector<SRInfo> > RestoreIdxes;
+ DenseMap<unsigned,unsigned> MBBVRegsMap;
+ std::vector<LiveInterval*> NewLIs;
+ const TargetRegisterClass* rc = mri_->getRegClass(li.reg);
+
+ unsigned NumValNums = li.getNumValNums();
+ SmallVector<MachineInstr*, 4> ReMatDefs;
+ ReMatDefs.resize(NumValNums, NULL);
+ SmallVector<MachineInstr*, 4> ReMatOrigDefs;
+ ReMatOrigDefs.resize(NumValNums, NULL);
+ SmallVector<int, 4> ReMatIds;
+ ReMatIds.resize(NumValNums, VirtRegMap::MAX_STACK_SLOT);
+ BitVector ReMatDelete(NumValNums);
+ unsigned Slot = VirtRegMap::MAX_STACK_SLOT;
+
+ // Spilling a split live interval. It cannot be split any further. Also,
+ // it's also guaranteed to be a single val# / range interval.
+ if (vrm.getPreSplitReg(li.reg)) {
+ vrm.setIsSplitFromReg(li.reg, 0);
+ // Unset the split kill marker on the last use.
+ unsigned KillIdx = vrm.getKillPoint(li.reg);
+ if (KillIdx) {
+ MachineInstr *KillMI = getInstructionFromIndex(KillIdx);
+ assert(KillMI && "Last use disappeared?");
+ int KillOp = KillMI->findRegisterUseOperandIdx(li.reg, true);
+ assert(KillOp != -1 && "Last use disappeared?");
+ KillMI->getOperand(KillOp).setIsKill(false);
+ }
+ vrm.removeKillPoint(li.reg);
+ bool DefIsReMat = vrm.isReMaterialized(li.reg);
+ Slot = vrm.getStackSlot(li.reg);
+ assert(Slot != VirtRegMap::MAX_STACK_SLOT);
+ MachineInstr *ReMatDefMI = DefIsReMat ?
+ vrm.getReMaterializedMI(li.reg) : NULL;
+ int LdSlot = 0;
+ bool isLoadSS = DefIsReMat && tii_->isLoadFromStackSlot(ReMatDefMI, LdSlot);
+ bool isLoad = isLoadSS ||
+ (DefIsReMat && (ReMatDefMI->getDesc().canFoldAsLoad()));
+ bool IsFirstRange = true;
+ for (LiveInterval::Ranges::const_iterator
+ I = li.ranges.begin(), E = li.ranges.end(); I != E; ++I) {
+ // If this is a split live interval with multiple ranges, it means there
+ // are two-address instructions that re-defined the value. Only the
+ // first def can be rematerialized!
+ if (IsFirstRange) {
+ // Note ReMatOrigDefMI has already been deleted.
+ rewriteInstructionsForSpills(li, false, I, NULL, ReMatDefMI,
+ Slot, LdSlot, isLoad, isLoadSS, DefIsReMat,
+ false, vrm, rc, ReMatIds, loopInfo,
+ SpillMBBs, SpillIdxes, RestoreMBBs, RestoreIdxes,
+ MBBVRegsMap, NewLIs);
+ } else {
+ rewriteInstructionsForSpills(li, false, I, NULL, 0,
+ Slot, 0, false, false, false,
+ false, vrm, rc, ReMatIds, loopInfo,
+ SpillMBBs, SpillIdxes, RestoreMBBs, RestoreIdxes,
+ MBBVRegsMap, NewLIs);
+ }
+ IsFirstRange = false;
+ }
+
+ handleSpilledImpDefs(li, vrm, rc, NewLIs);
+ return NewLIs;
+ }
+
+ bool TrySplit = SplitAtBB && !intervalIsInOneMBB(li);
+ if (SplitLimit != -1 && (int)numSplits >= SplitLimit)
+ TrySplit = false;
+ if (TrySplit)
+ ++numSplits;
+ bool NeedStackSlot = false;
+ for (LiveInterval::const_vni_iterator i = li.vni_begin(), e = li.vni_end();
+ i != e; ++i) {
+ const VNInfo *VNI = *i;
+ unsigned VN = VNI->id;
+ unsigned DefIdx = VNI->def;
+ if (DefIdx == ~1U)
+ continue; // Dead val#.
+ // Is the def for the val# rematerializable?
+ MachineInstr *ReMatDefMI = (DefIdx == ~0u)
+ ? 0 : getInstructionFromIndex(DefIdx);
+ bool dummy;
+ if (ReMatDefMI && isReMaterializable(li, VNI, ReMatDefMI, SpillIs, dummy)) {
+ // Remember how to remat the def of this val#.
+ ReMatOrigDefs[VN] = ReMatDefMI;
+ // Original def may be modified so we have to make a copy here.
+ MachineInstr *Clone = mf_->CloneMachineInstr(ReMatDefMI);
+ ClonedMIs.push_back(Clone);
+ ReMatDefs[VN] = Clone;
+
+ bool CanDelete = true;
+ if (VNI->hasPHIKill) {
+ // A kill is a phi node, not all of its uses can be rematerialized.
+ // It must not be deleted.
+ CanDelete = false;
+ // Need a stack slot if there is any live range where uses cannot be
+ // rematerialized.
+ NeedStackSlot = true;
+ }
+ if (CanDelete)
+ ReMatDelete.set(VN);
+ } else {
+ // Need a stack slot if there is any live range where uses cannot be
+ // rematerialized.
+ NeedStackSlot = true;
+ }
+ }
+
+ // One stack slot per live interval.
+ if (NeedStackSlot && vrm.getPreSplitReg(li.reg) == 0) {
+ if (vrm.getStackSlot(li.reg) == VirtRegMap::NO_STACK_SLOT)
+ Slot = vrm.assignVirt2StackSlot(li.reg);
+
+ // This case only occurs when the prealloc splitter has already assigned
+ // a stack slot to this vreg.
+ else
+ Slot = vrm.getStackSlot(li.reg);
+ }
+
+ // Create new intervals and rewrite defs and uses.
+ for (LiveInterval::Ranges::const_iterator
+ I = li.ranges.begin(), E = li.ranges.end(); I != E; ++I) {
+ MachineInstr *ReMatDefMI = ReMatDefs[I->valno->id];
+ MachineInstr *ReMatOrigDefMI = ReMatOrigDefs[I->valno->id];
+ bool DefIsReMat = ReMatDefMI != NULL;
+ bool CanDelete = ReMatDelete[I->valno->id];
+ int LdSlot = 0;
+ bool isLoadSS = DefIsReMat && tii_->isLoadFromStackSlot(ReMatDefMI, LdSlot);
+ bool isLoad = isLoadSS ||
+ (DefIsReMat && ReMatDefMI->getDesc().canFoldAsLoad());
+ rewriteInstructionsForSpills(li, TrySplit, I, ReMatOrigDefMI, ReMatDefMI,
+ Slot, LdSlot, isLoad, isLoadSS, DefIsReMat,
+ CanDelete, vrm, rc, ReMatIds, loopInfo,
+ SpillMBBs, SpillIdxes, RestoreMBBs, RestoreIdxes,
+ MBBVRegsMap, NewLIs);
+ }
+
+ // Insert spills / restores if we are splitting.
+ if (!TrySplit) {
+ handleSpilledImpDefs(li, vrm, rc, NewLIs);
+ return NewLIs;
+ }
+
+ SmallPtrSet<LiveInterval*, 4> AddedKill;
+ SmallVector<unsigned, 2> Ops;
+ if (NeedStackSlot) {
+ int Id = SpillMBBs.find_first();
+ while (Id != -1) {
+ std::vector<SRInfo> &spills = SpillIdxes[Id];
+ for (unsigned i = 0, e = spills.size(); i != e; ++i) {
+ int index = spills[i].index;
+ unsigned VReg = spills[i].vreg;
+ LiveInterval &nI = getOrCreateInterval(VReg);
+ bool isReMat = vrm.isReMaterialized(VReg);
+ MachineInstr *MI = getInstructionFromIndex(index);
+ bool CanFold = false;
+ bool FoundUse = false;
+ Ops.clear();
+ if (spills[i].canFold) {
+ CanFold = true;
+ for (unsigned j = 0, ee = MI->getNumOperands(); j != ee; ++j) {
+ MachineOperand &MO = MI->getOperand(j);
+ if (!MO.isReg() || MO.getReg() != VReg)
+ continue;
+
+ Ops.push_back(j);
+ if (MO.isDef())
+ continue;
+ if (isReMat ||
+ (!FoundUse && !alsoFoldARestore(Id, index, VReg,
+ RestoreMBBs, RestoreIdxes))) {
+ // MI has two-address uses of the same register. If the use
+ // isn't the first and only use in the BB, then we can't fold
+ // it. FIXME: Move this to rewriteInstructionsForSpills.
+ CanFold = false;
+ break;
+ }
+ FoundUse = true;
+ }
+ }
+ // Fold the store into the def if possible.
+ bool Folded = false;
+ if (CanFold && !Ops.empty()) {
+ if (tryFoldMemoryOperand(MI, vrm, NULL, index, Ops, true, Slot,VReg)){
+ Folded = true;
+ if (FoundUse) {
+ // Also folded uses, do not issue a load.
+ eraseRestoreInfo(Id, index, VReg, RestoreMBBs, RestoreIdxes);
+ nI.removeRange(getLoadIndex(index), getUseIndex(index)+1);
+ }
+ nI.removeRange(getDefIndex(index), getStoreIndex(index));
+ }
+ }
+
+ // Otherwise tell the spiller to issue a spill.
+ if (!Folded) {
+ LiveRange *LR = &nI.ranges[nI.ranges.size()-1];
+ bool isKill = LR->end == getStoreIndex(index);
+ if (!MI->registerDefIsDead(nI.reg))
+ // No need to spill a dead def.
+ vrm.addSpillPoint(VReg, isKill, MI);
+ if (isKill)
+ AddedKill.insert(&nI);
+ }
+ }
+ Id = SpillMBBs.find_next(Id);
+ }
+ }
+
+ int Id = RestoreMBBs.find_first();
+ while (Id != -1) {
+ std::vector<SRInfo> &restores = RestoreIdxes[Id];
+ for (unsigned i = 0, e = restores.size(); i != e; ++i) {
+ int index = restores[i].index;
+ if (index == -1)
+ continue;
+ unsigned VReg = restores[i].vreg;
+ LiveInterval &nI = getOrCreateInterval(VReg);
+ bool isReMat = vrm.isReMaterialized(VReg);
+ MachineInstr *MI = getInstructionFromIndex(index);
+ bool CanFold = false;
+ Ops.clear();
+ if (restores[i].canFold) {
+ CanFold = true;
+ for (unsigned j = 0, ee = MI->getNumOperands(); j != ee; ++j) {
+ MachineOperand &MO = MI->getOperand(j);
+ if (!MO.isReg() || MO.getReg() != VReg)
+ continue;
+
+ if (MO.isDef()) {
+ // If this restore were to be folded, it would have been folded
+ // already.
+ CanFold = false;
+ break;
+ }
+ Ops.push_back(j);
+ }
+ }
+
+ // Fold the load into the use if possible.
+ bool Folded = false;
+ if (CanFold && !Ops.empty()) {
+ if (!isReMat)
+ Folded = tryFoldMemoryOperand(MI, vrm, NULL,index,Ops,true,Slot,VReg);
+ else {
+ MachineInstr *ReMatDefMI = vrm.getReMaterializedMI(VReg);
+ int LdSlot = 0;
+ bool isLoadSS = tii_->isLoadFromStackSlot(ReMatDefMI, LdSlot);
+ // If the rematerializable def is a load, also try to fold it.
+ if (isLoadSS || ReMatDefMI->getDesc().canFoldAsLoad())
+ Folded = tryFoldMemoryOperand(MI, vrm, ReMatDefMI, index,
+ Ops, isLoadSS, LdSlot, VReg);
+ if (!Folded) {
+ unsigned ImpUse = getReMatImplicitUse(li, ReMatDefMI);
+ if (ImpUse) {
+ // Re-matting an instruction with virtual register use. Add the
+ // register as an implicit use on the use MI and update the register
+ // interval's spill weight to HUGE_VALF to prevent it from being
+ // spilled.
+ LiveInterval &ImpLi = getInterval(ImpUse);
+ ImpLi.weight = HUGE_VALF;
+ MI->addOperand(MachineOperand::CreateReg(ImpUse, false, true));
+ }
+ }
+ }
+ }
+ // If folding is not possible / failed, then tell the spiller to issue a
+ // load / rematerialization for us.
+ if (Folded)
+ nI.removeRange(getLoadIndex(index), getUseIndex(index)+1);
+ else
+ vrm.addRestorePoint(VReg, MI);
+ }
+ Id = RestoreMBBs.find_next(Id);
+ }
+
+ // Finalize intervals: add kills, finalize spill weights, and filter out
+ // dead intervals.
+ std::vector<LiveInterval*> RetNewLIs;
+ for (unsigned i = 0, e = NewLIs.size(); i != e; ++i) {
+ LiveInterval *LI = NewLIs[i];
+ if (!LI->empty()) {
+ LI->weight /= InstrSlots::NUM * getApproximateInstructionCount(*LI);
+ if (!AddedKill.count(LI)) {
+ LiveRange *LR = &LI->ranges[LI->ranges.size()-1];
+ unsigned LastUseIdx = getBaseIndex(LR->end);
+ MachineInstr *LastUse = getInstructionFromIndex(LastUseIdx);
+ int UseIdx = LastUse->findRegisterUseOperandIdx(LI->reg, false);
+ assert(UseIdx != -1);
+ if (!LastUse->isRegTiedToDefOperand(UseIdx)) {
+ LastUse->getOperand(UseIdx).setIsKill();
+ vrm.addKillPoint(LI->reg, LastUseIdx);
+ }
+ }
+ RetNewLIs.push_back(LI);
+ }
+ }
+
+ handleSpilledImpDefs(li, vrm, rc, RetNewLIs);
+ return RetNewLIs;
+}
+
+/// hasAllocatableSuperReg - Return true if the specified physical register has
+/// any super register that's allocatable.
+bool LiveIntervals::hasAllocatableSuperReg(unsigned Reg) const {
+ for (const unsigned* AS = tri_->getSuperRegisters(Reg); *AS; ++AS)
+ if (allocatableRegs_[*AS] && hasInterval(*AS))
+ return true;
+ return false;
+}
+
+/// getRepresentativeReg - Find the largest super register of the specified
+/// physical register.
+unsigned LiveIntervals::getRepresentativeReg(unsigned Reg) const {
+ // Find the largest super-register that is allocatable.
+ unsigned BestReg = Reg;
+ for (const unsigned* AS = tri_->getSuperRegisters(Reg); *AS; ++AS) {
+ unsigned SuperReg = *AS;
+ if (!hasAllocatableSuperReg(SuperReg) && hasInterval(SuperReg)) {
+ BestReg = SuperReg;
+ break;
+ }
+ }
+ return BestReg;
+}
+
+/// getNumConflictsWithPhysReg - Return the number of uses and defs of the
+/// specified interval that conflicts with the specified physical register.
+unsigned LiveIntervals::getNumConflictsWithPhysReg(const LiveInterval &li,
+ unsigned PhysReg) const {
+ unsigned NumConflicts = 0;
+ const LiveInterval &pli = getInterval(getRepresentativeReg(PhysReg));
+ for (MachineRegisterInfo::reg_iterator I = mri_->reg_begin(li.reg),
+ E = mri_->reg_end(); I != E; ++I) {
+ MachineOperand &O = I.getOperand();
+ MachineInstr *MI = O.getParent();
+ unsigned Index = getInstructionIndex(MI);
+ if (pli.liveAt(Index))
+ ++NumConflicts;
+ }
+ return NumConflicts;
+}
+
+/// spillPhysRegAroundRegDefsUses - Spill the specified physical register
+/// around all defs and uses of the specified interval. Return true if it
+/// was able to cut its interval.
+bool LiveIntervals::spillPhysRegAroundRegDefsUses(const LiveInterval &li,
+ unsigned PhysReg, VirtRegMap &vrm) {
+ unsigned SpillReg = getRepresentativeReg(PhysReg);
+
+ for (const unsigned *AS = tri_->getAliasSet(PhysReg); *AS; ++AS)
+ // If there are registers which alias PhysReg, but which are not a
+ // sub-register of the chosen representative super register. Assert
+ // since we can't handle it yet.
+ assert(*AS == SpillReg || !allocatableRegs_[*AS] || !hasInterval(*AS) ||
+ tri_->isSuperRegister(*AS, SpillReg));
+
+ bool Cut = false;
+ LiveInterval &pli = getInterval(SpillReg);
+ SmallPtrSet<MachineInstr*, 8> SeenMIs;
+ for (MachineRegisterInfo::reg_iterator I = mri_->reg_begin(li.reg),
+ E = mri_->reg_end(); I != E; ++I) {
+ MachineOperand &O = I.getOperand();
+ MachineInstr *MI = O.getParent();
+ if (SeenMIs.count(MI))
+ continue;
+ SeenMIs.insert(MI);
+ unsigned Index = getInstructionIndex(MI);
+ if (pli.liveAt(Index)) {
+ vrm.addEmergencySpill(SpillReg, MI);
+ unsigned StartIdx = getLoadIndex(Index);
+ unsigned EndIdx = getStoreIndex(Index)+1;
+ if (pli.isInOneLiveRange(StartIdx, EndIdx)) {
+ pli.removeRange(StartIdx, EndIdx);
+ Cut = true;
+ } else {
+ cerr << "Ran out of registers during register allocation!\n";
+ if (MI->getOpcode() == TargetInstrInfo::INLINEASM) {
+ cerr << "Please check your inline asm statement for invalid "
+ << "constraints:\n";
+ MI->print(cerr.stream(), tm_);
+ }
+ exit(1);
+ }
+ for (const unsigned* AS = tri_->getSubRegisters(SpillReg); *AS; ++AS) {
+ if (!hasInterval(*AS))
+ continue;
+ LiveInterval &spli = getInterval(*AS);
+ if (spli.liveAt(Index))
+ spli.removeRange(getLoadIndex(Index), getStoreIndex(Index)+1);
+ }
+ }
+ }
+ return Cut;
+}
+
+LiveRange LiveIntervals::addLiveRangeToEndOfBlock(unsigned reg,
+ MachineInstr* startInst) {
+ LiveInterval& Interval = getOrCreateInterval(reg);
+ VNInfo* VN = Interval.getNextValue(
+ getInstructionIndex(startInst) + InstrSlots::DEF,
+ startInst, getVNInfoAllocator());
+ VN->hasPHIKill = true;
+ VN->kills.push_back(getMBBEndIdx(startInst->getParent()));
+ LiveRange LR(getInstructionIndex(startInst) + InstrSlots::DEF,
+ getMBBEndIdx(startInst->getParent()) + 1, VN);
+ Interval.addRange(LR);
+
+ return LR;
+}
OpenPOWER on IntegriCloud