diff options
Diffstat (limited to 'lib/CodeGen/LiveIntervalAnalysis.cpp')
-rw-r--r-- | lib/CodeGen/LiveIntervalAnalysis.cpp | 738 |
1 files changed, 295 insertions, 443 deletions
diff --git a/lib/CodeGen/LiveIntervalAnalysis.cpp b/lib/CodeGen/LiveIntervalAnalysis.cpp index 934cc12..d0f8ae1 100644 --- a/lib/CodeGen/LiveIntervalAnalysis.cpp +++ b/lib/CodeGen/LiveIntervalAnalysis.cpp @@ -20,6 +20,7 @@ #include "llvm/Value.h" #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/CodeGen/LiveVariables.h" +#include "llvm/CodeGen/MachineDominators.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/Passes.h" @@ -31,20 +32,20 @@ #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/raw_ostream.h" #include "llvm/ADT/DenseSet.h" -#include "llvm/ADT/Statistic.h" #include "llvm/ADT/STLExtras.h" +#include "LiveRangeCalc.h" #include <algorithm> #include <limits> #include <cmath> using namespace llvm; -// Hidden options for help debugging. -static cl::opt<bool> DisableReMat("disable-rematerialization", - cl::init(false), cl::Hidden); - -STATISTIC(numIntervals , "Number of original intervals"); +// Switch to the new experimental algorithm for computing live intervals. +static cl::opt<bool> +NewLiveIntervals("new-live-intervals", cl::Hidden, + cl::desc("Use new algorithm forcomputing live intervals")); char LiveIntervals::ID = 0; +char &llvm::LiveIntervalsID = LiveIntervals::ID; INITIALIZE_PASS_BEGIN(LiveIntervals, "liveintervals", "Live Interval Analysis", false, false) INITIALIZE_AG_DEPENDENCY(AliasAnalysis) @@ -61,23 +62,35 @@ void LiveIntervals::getAnalysisUsage(AnalysisUsage &AU) const { AU.addRequired<LiveVariables>(); AU.addPreserved<LiveVariables>(); AU.addPreservedID(MachineLoopInfoID); + AU.addRequiredTransitiveID(MachineDominatorsID); AU.addPreservedID(MachineDominatorsID); AU.addPreserved<SlotIndexes>(); AU.addRequiredTransitive<SlotIndexes>(); MachineFunctionPass::getAnalysisUsage(AU); } +LiveIntervals::LiveIntervals() : MachineFunctionPass(ID), + DomTree(0), LRCalc(0) { + initializeLiveIntervalsPass(*PassRegistry::getPassRegistry()); +} + +LiveIntervals::~LiveIntervals() { + delete LRCalc; +} + void LiveIntervals::releaseMemory() { // Free the live intervals themselves. - for (DenseMap<unsigned, LiveInterval*>::iterator I = r2iMap_.begin(), - E = r2iMap_.end(); I != E; ++I) - delete I->second; - - r2iMap_.clear(); + for (unsigned i = 0, e = VirtRegIntervals.size(); i != e; ++i) + delete VirtRegIntervals[TargetRegisterInfo::index2VirtReg(i)]; + VirtRegIntervals.clear(); RegMaskSlots.clear(); RegMaskBits.clear(); RegMaskBlocks.clear(); + for (unsigned i = 0, e = RegUnitIntervals.size(); i != e; ++i) + delete RegUnitIntervals[i]; + RegUnitIntervals.clear(); + // Release VNInfo memory regions, VNInfo objects don't need to be dtor'd. VNInfoAllocator.Reset(); } @@ -85,20 +98,34 @@ void LiveIntervals::releaseMemory() { /// runOnMachineFunction - Register allocate the whole function /// bool LiveIntervals::runOnMachineFunction(MachineFunction &fn) { - mf_ = &fn; - mri_ = &mf_->getRegInfo(); - tm_ = &fn.getTarget(); - tri_ = tm_->getRegisterInfo(); - tii_ = tm_->getInstrInfo(); - aa_ = &getAnalysis<AliasAnalysis>(); - lv_ = &getAnalysis<LiveVariables>(); - indexes_ = &getAnalysis<SlotIndexes>(); - allocatableRegs_ = tri_->getAllocatableSet(fn); - reservedRegs_ = tri_->getReservedRegs(fn); - - computeIntervals(); - - numIntervals += getNumIntervals(); + MF = &fn; + MRI = &MF->getRegInfo(); + TM = &fn.getTarget(); + TRI = TM->getRegisterInfo(); + TII = TM->getInstrInfo(); + AA = &getAnalysis<AliasAnalysis>(); + LV = &getAnalysis<LiveVariables>(); + Indexes = &getAnalysis<SlotIndexes>(); + DomTree = &getAnalysis<MachineDominatorTree>(); + if (!LRCalc) + LRCalc = new LiveRangeCalc(); + AllocatableRegs = TRI->getAllocatableSet(fn); + ReservedRegs = TRI->getReservedRegs(fn); + + // Allocate space for all virtual registers. + VirtRegIntervals.resize(MRI->getNumVirtRegs()); + + if (NewLiveIntervals) { + // This is the new way of computing live intervals. + // It is independent of LiveVariables, and it can run at any time. + computeVirtRegs(); + computeRegMasks(); + } else { + // This is the old way of computing live intervals. + // It depends on LiveVariables. + computeIntervals(); + } + computeLiveInRegUnits(); DEBUG(dump()); return true; @@ -108,27 +135,24 @@ bool LiveIntervals::runOnMachineFunction(MachineFunction &fn) { void LiveIntervals::print(raw_ostream &OS, const Module* ) const { OS << "********** INTERVALS **********\n"; - // Dump the physregs. - for (unsigned Reg = 1, RegE = tri_->getNumRegs(); Reg != RegE; ++Reg) - if (const LiveInterval *LI = r2iMap_.lookup(Reg)) { - LI->print(OS, tri_); - OS << '\n'; - } + // Dump the regunits. + for (unsigned i = 0, e = RegUnitIntervals.size(); i != e; ++i) + if (LiveInterval *LI = RegUnitIntervals[i]) + OS << PrintRegUnit(i, TRI) << " = " << *LI << '\n'; // Dump the virtregs. - for (unsigned Reg = 0, RegE = mri_->getNumVirtRegs(); Reg != RegE; ++Reg) - if (const LiveInterval *LI = - r2iMap_.lookup(TargetRegisterInfo::index2VirtReg(Reg))) { - LI->print(OS, tri_); - OS << '\n'; - } + for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { + unsigned Reg = TargetRegisterInfo::index2VirtReg(i); + if (hasInterval(Reg)) + OS << PrintReg(Reg) << " = " << getInterval(Reg) << '\n'; + } printInstrs(OS); } void LiveIntervals::printInstrs(raw_ostream &OS) const { OS << "********** MACHINEINSTRS **********\n"; - mf_->print(OS, indexes_); + MF->print(OS, Indexes); } void LiveIntervals::dumpInstrs() const { @@ -176,13 +200,13 @@ void LiveIntervals::handleVirtualRegisterDef(MachineBasicBlock *mbb, MachineOperand& MO, unsigned MOIdx, LiveInterval &interval) { - DEBUG(dbgs() << "\t\tregister: " << PrintReg(interval.reg, tri_)); + DEBUG(dbgs() << "\t\tregister: " << PrintReg(interval.reg, TRI)); // Virtual registers may be defined multiple times (due to phi // elimination and 2-addr elimination). Much of what we do only has to be // done once for the vreg. We use an empty interval to detect the first // time we see a vreg. - LiveVariables::VarInfo& vi = lv_->getVarInfo(interval.reg); + LiveVariables::VarInfo& vi = LV->getVarInfo(interval.reg); if (interval.empty()) { // Get the Idx of the defining instructions. SlotIndex defIndex = MIIdx.getRegSlot(MO.isEarlyClobber()); @@ -226,22 +250,22 @@ void LiveIntervals::handleVirtualRegisterDef(MachineBasicBlock *mbb, DEBUG(dbgs() << " +" << NewLR); interval.addRange(NewLR); - bool PHIJoin = lv_->isPHIJoin(interval.reg); + bool PHIJoin = LV->isPHIJoin(interval.reg); if (PHIJoin) { - // A phi join register is killed at the end of the MBB and revived as a new - // valno in the killing blocks. + // A phi join register is killed at the end of the MBB and revived as a + // new valno in the killing blocks. assert(vi.AliveBlocks.empty() && "Phi join can't pass through blocks"); DEBUG(dbgs() << " phi-join"); - ValNo->setHasPHIKill(true); } else { // Iterate over all of the blocks that the variable is completely // live in, adding [insrtIndex(begin), instrIndex(end)+4) to the // live interval. for (SparseBitVector<>::iterator I = vi.AliveBlocks.begin(), E = vi.AliveBlocks.end(); I != E; ++I) { - MachineBasicBlock *aliveBlock = mf_->getBlockNumbered(*I); - LiveRange LR(getMBBStartIdx(aliveBlock), getMBBEndIdx(aliveBlock), ValNo); + MachineBasicBlock *aliveBlock = MF->getBlockNumbered(*I); + LiveRange LR(getMBBStartIdx(aliveBlock), getMBBEndIdx(aliveBlock), + ValNo); interval.addRange(LR); DEBUG(dbgs() << " +" << LR); } @@ -260,7 +284,6 @@ void LiveIntervals::handleVirtualRegisterDef(MachineBasicBlock *mbb, assert(getInstructionFromIndex(Start) == 0 && "PHI def index points at actual instruction."); ValNo = interval.getNextValue(Start, VNInfoAllocator); - ValNo->setIsPHIDef(true); } LiveRange LR(Start, killIdx, ValNo); interval.addRange(LR); @@ -319,11 +342,8 @@ void LiveIntervals::handleVirtualRegisterDef(MachineBasicBlock *mbb, interval.addRange(LiveRange(RedefIndex, RedefIndex.getDeadSlot(), OldValNo)); - DEBUG({ - dbgs() << " RESULT: "; - interval.print(dbgs(), tri_); - }); - } else if (lv_->isPHIJoin(interval.reg)) { + DEBUG(dbgs() << " RESULT: " << interval); + } else if (LV->isPHIJoin(interval.reg)) { // In the case of PHI elimination, each variable definition is only // live until the end of the block. We've already taken care of the // rest of the live range. @@ -337,7 +357,6 @@ void LiveIntervals::handleVirtualRegisterDef(MachineBasicBlock *mbb, SlotIndex killIndex = getMBBEndIdx(mbb); LiveRange LR(defIndex, killIndex, ValNo); interval.addRange(LR); - ValNo->setHasPHIKill(true); DEBUG(dbgs() << " phi-join +" << LR); } else { llvm_unreachable("Multiply defined register"); @@ -347,101 +366,6 @@ void LiveIntervals::handleVirtualRegisterDef(MachineBasicBlock *mbb, DEBUG(dbgs() << '\n'); } -static bool isRegLiveIntoSuccessor(const MachineBasicBlock *MBB, unsigned Reg) { - for (MachineBasicBlock::const_succ_iterator SI = MBB->succ_begin(), - SE = MBB->succ_end(); - SI != SE; ++SI) { - const MachineBasicBlock* succ = *SI; - if (succ->isLiveIn(Reg)) - return true; - } - return false; -} - -void LiveIntervals::handlePhysicalRegisterDef(MachineBasicBlock *MBB, - MachineBasicBlock::iterator mi, - SlotIndex MIIdx, - MachineOperand& MO, - LiveInterval &interval) { - DEBUG(dbgs() << "\t\tregister: " << PrintReg(interval.reg, tri_)); - - SlotIndex baseIndex = MIIdx; - SlotIndex start = baseIndex.getRegSlot(MO.isEarlyClobber()); - SlotIndex end = start; - - // If it is not used after definition, it is considered dead at - // the instruction defining it. Hence its interval is: - // [defSlot(def), defSlot(def)+1) - // For earlyclobbers, the defSlot was pushed back one; the extra - // advance below compensates. - if (MO.isDead()) { - DEBUG(dbgs() << " dead"); - end = start.getDeadSlot(); - goto exit; - } - - // If it is not dead on definition, it must be killed by a - // subsequent instruction. Hence its interval is: - // [defSlot(def), useSlot(kill)+1) - baseIndex = baseIndex.getNextIndex(); - while (++mi != MBB->end()) { - - if (mi->isDebugValue()) - continue; - if (getInstructionFromIndex(baseIndex) == 0) - baseIndex = indexes_->getNextNonNullIndex(baseIndex); - - if (mi->killsRegister(interval.reg, tri_)) { - DEBUG(dbgs() << " killed"); - end = baseIndex.getRegSlot(); - goto exit; - } else { - int DefIdx = mi->findRegisterDefOperandIdx(interval.reg,false,false,tri_); - if (DefIdx != -1) { - if (mi->isRegTiedToUseOperand(DefIdx)) { - // Two-address instruction. - end = baseIndex.getRegSlot(mi->getOperand(DefIdx).isEarlyClobber()); - } else { - // Another instruction redefines the register before it is ever read. - // Then the register is essentially dead at the instruction that - // defines it. Hence its interval is: - // [defSlot(def), defSlot(def)+1) - DEBUG(dbgs() << " dead"); - end = start.getDeadSlot(); - } - goto exit; - } - } - - baseIndex = baseIndex.getNextIndex(); - } - - // If we get here the register *should* be live out. - assert(!isAllocatable(interval.reg) && "Physregs shouldn't be live out!"); - - // FIXME: We need saner rules for reserved regs. - if (isReserved(interval.reg)) { - end = start.getDeadSlot(); - } else { - // Unreserved, unallocable registers like EFLAGS can be live across basic - // block boundaries. - assert(isRegLiveIntoSuccessor(MBB, interval.reg) && - "Unreserved reg not live-out?"); - end = getMBBEndIdx(MBB); - } -exit: - assert(start < end && "did not find end of interval?"); - - // Already exists? Extend old live interval. - VNInfo *ValNo = interval.getVNInfoAt(start); - bool Extend = ValNo != 0; - if (!Extend) - ValNo = interval.getNextValue(start, VNInfoAllocator); - LiveRange LR(start, end, ValNo); - interval.addRange(LR); - DEBUG(dbgs() << " +" << LR << '\n'); -} - void LiveIntervals::handleRegisterDef(MachineBasicBlock *MBB, MachineBasicBlock::iterator MI, SlotIndex MIIdx, @@ -450,93 +374,6 @@ void LiveIntervals::handleRegisterDef(MachineBasicBlock *MBB, if (TargetRegisterInfo::isVirtualRegister(MO.getReg())) handleVirtualRegisterDef(MBB, MI, MIIdx, MO, MOIdx, getOrCreateInterval(MO.getReg())); - else - handlePhysicalRegisterDef(MBB, MI, MIIdx, MO, - getOrCreateInterval(MO.getReg())); -} - -void LiveIntervals::handleLiveInRegister(MachineBasicBlock *MBB, - SlotIndex MIIdx, - LiveInterval &interval) { - assert(TargetRegisterInfo::isPhysicalRegister(interval.reg) && - "Only physical registers can be live in."); - assert((!isAllocatable(interval.reg) || MBB->getParent()->begin() || - MBB->isLandingPad()) && - "Allocatable live-ins only valid for entry blocks and landing pads."); - - DEBUG(dbgs() << "\t\tlivein register: " << PrintReg(interval.reg, tri_)); - - // Look for kills, if it reaches a def before it's killed, then it shouldn't - // be considered a livein. - MachineBasicBlock::iterator mi = MBB->begin(); - MachineBasicBlock::iterator E = MBB->end(); - // Skip over DBG_VALUE at the start of the MBB. - if (mi != E && mi->isDebugValue()) { - while (++mi != E && mi->isDebugValue()) - ; - if (mi == E) - // MBB is empty except for DBG_VALUE's. - return; - } - - SlotIndex baseIndex = MIIdx; - SlotIndex start = baseIndex; - if (getInstructionFromIndex(baseIndex) == 0) - baseIndex = indexes_->getNextNonNullIndex(baseIndex); - - SlotIndex end = baseIndex; - bool SeenDefUse = false; - - while (mi != E) { - if (mi->killsRegister(interval.reg, tri_)) { - DEBUG(dbgs() << " killed"); - end = baseIndex.getRegSlot(); - SeenDefUse = true; - break; - } else if (mi->modifiesRegister(interval.reg, tri_)) { - // Another instruction redefines the register before it is ever read. - // Then the register is essentially dead at the instruction that defines - // it. Hence its interval is: - // [defSlot(def), defSlot(def)+1) - DEBUG(dbgs() << " dead"); - end = start.getDeadSlot(); - SeenDefUse = true; - break; - } - - while (++mi != E && mi->isDebugValue()) - // Skip over DBG_VALUE. - ; - if (mi != E) - baseIndex = indexes_->getNextNonNullIndex(baseIndex); - } - - // Live-in register might not be used at all. - if (!SeenDefUse) { - if (isAllocatable(interval.reg) || - !isRegLiveIntoSuccessor(MBB, interval.reg)) { - // Allocatable registers are never live through. - // Non-allocatable registers that aren't live into any successors also - // aren't live through. - DEBUG(dbgs() << " dead"); - return; - } else { - // If we get here the register is non-allocatable and live into some - // successor. We'll conservatively assume it's live-through. - DEBUG(dbgs() << " live through"); - end = getMBBEndIdx(MBB); - } - } - - SlotIndex defIdx = getMBBStartIdx(MBB); - assert(getInstructionFromIndex(defIdx) == 0 && - "PHI def index points at actual instruction."); - VNInfo *vni = interval.getNextValue(defIdx, VNInfoAllocator); - vni->setIsPHIDef(true); - LiveRange LR(start, end, vni); - - interval.addRange(LR); - DEBUG(dbgs() << " +" << LR << '\n'); } /// computeIntervals - computes the live intervals for virtual @@ -546,12 +383,12 @@ void LiveIntervals::handleLiveInRegister(MachineBasicBlock *MBB, void LiveIntervals::computeIntervals() { DEBUG(dbgs() << "********** COMPUTING LIVE INTERVALS **********\n" << "********** Function: " - << ((Value*)mf_->getFunction())->getName() << '\n'); + << ((Value*)MF->getFunction())->getName() << '\n'); - RegMaskBlocks.resize(mf_->getNumBlockIDs()); + RegMaskBlocks.resize(MF->getNumBlockIDs()); SmallVector<unsigned, 8> UndefUses; - for (MachineFunction::iterator MBBI = mf_->begin(), E = mf_->end(); + for (MachineFunction::iterator MBBI = MF->begin(), E = MF->end(); MBBI != E; ++MBBI) { MachineBasicBlock *MBB = MBBI; RegMaskBlocks[MBB->getNumber()].first = RegMaskSlots.size(); @@ -564,22 +401,16 @@ void LiveIntervals::computeIntervals() { DEBUG(dbgs() << "BB#" << MBB->getNumber() << ":\t\t# derived from " << MBB->getName() << "\n"); - // Create intervals for live-ins to this BB first. - for (MachineBasicBlock::livein_iterator LI = MBB->livein_begin(), - LE = MBB->livein_end(); LI != LE; ++LI) { - handleLiveInRegister(MBB, MIIndex, getOrCreateInterval(*LI)); - } - // Skip over empty initial indices. if (getInstructionFromIndex(MIIndex) == 0) - MIIndex = indexes_->getNextNonNullIndex(MIIndex); + MIIndex = Indexes->getNextNonNullIndex(MIIndex); for (MachineBasicBlock::iterator MI = MBB->begin(), miEnd = MBB->end(); MI != miEnd; ++MI) { DEBUG(dbgs() << MIIndex << "\t" << *MI); if (MI->isDebugValue()) continue; - assert(indexes_->getInstructionFromIndex(MIIndex) == MI && + assert(Indexes->getInstructionFromIndex(MIIndex) == MI && "Lost SlotIndex synchronization"); // Handle defs. @@ -593,7 +424,7 @@ void LiveIntervals::computeIntervals() { continue; } - if (!MO.isReg() || !MO.getReg()) + if (!MO.isReg() || !TargetRegisterInfo::isVirtualRegister(MO.getReg())) continue; // handle register defs - build intervals @@ -604,7 +435,7 @@ void LiveIntervals::computeIntervals() { } // Move to the next instr slot. - MIIndex = indexes_->getNextNonNullIndex(MIIndex); + MIIndex = Indexes->getNextNonNullIndex(MIIndex); } // Compute the number of register mask instructions in this block. @@ -626,14 +457,147 @@ LiveInterval* LiveIntervals::createInterval(unsigned reg) { return new LiveInterval(reg, Weight); } -/// dupInterval - Duplicate a live interval. The caller is responsible for -/// managing the allocated memory. -LiveInterval* LiveIntervals::dupInterval(LiveInterval *li) { - LiveInterval *NewLI = createInterval(li->reg); - NewLI->Copy(*li, mri_, getVNInfoAllocator()); - return NewLI; + +/// computeVirtRegInterval - Compute the live interval of a virtual register, +/// based on defs and uses. +void LiveIntervals::computeVirtRegInterval(LiveInterval *LI) { + assert(LRCalc && "LRCalc not initialized."); + assert(LI->empty() && "Should only compute empty intervals."); + LRCalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator()); + LRCalc->createDeadDefs(LI); + LRCalc->extendToUses(LI); +} + +void LiveIntervals::computeVirtRegs() { + for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { + unsigned Reg = TargetRegisterInfo::index2VirtReg(i); + if (MRI->reg_nodbg_empty(Reg)) + continue; + LiveInterval *LI = createInterval(Reg); + VirtRegIntervals[Reg] = LI; + computeVirtRegInterval(LI); + } +} + +void LiveIntervals::computeRegMasks() { + RegMaskBlocks.resize(MF->getNumBlockIDs()); + + // Find all instructions with regmask operands. + for (MachineFunction::iterator MBBI = MF->begin(), E = MF->end(); + MBBI != E; ++MBBI) { + MachineBasicBlock *MBB = MBBI; + std::pair<unsigned, unsigned> &RMB = RegMaskBlocks[MBB->getNumber()]; + RMB.first = RegMaskSlots.size(); + for (MachineBasicBlock::iterator MI = MBB->begin(), ME = MBB->end(); + MI != ME; ++MI) + for (MIOperands MO(MI); MO.isValid(); ++MO) { + if (!MO->isRegMask()) + continue; + RegMaskSlots.push_back(Indexes->getInstructionIndex(MI).getRegSlot()); + RegMaskBits.push_back(MO->getRegMask()); + } + // Compute the number of register mask instructions in this block. + RMB.second = RegMaskSlots.size() - RMB.first;; + } } +//===----------------------------------------------------------------------===// +// Register Unit Liveness +//===----------------------------------------------------------------------===// +// +// Fixed interference typically comes from ABI boundaries: Function arguments +// and return values are passed in fixed registers, and so are exception +// pointers entering landing pads. Certain instructions require values to be +// present in specific registers. That is also represented through fixed +// interference. +// + +/// computeRegUnitInterval - Compute the live interval of a register unit, based +/// on the uses and defs of aliasing registers. The interval should be empty, +/// or contain only dead phi-defs from ABI blocks. +void LiveIntervals::computeRegUnitInterval(LiveInterval *LI) { + unsigned Unit = LI->reg; + + assert(LRCalc && "LRCalc not initialized."); + LRCalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator()); + + // The physregs aliasing Unit are the roots and their super-registers. + // Create all values as dead defs before extending to uses. Note that roots + // may share super-registers. That's OK because createDeadDefs() is + // idempotent. It is very rare for a register unit to have multiple roots, so + // uniquing super-registers is probably not worthwhile. + for (MCRegUnitRootIterator Roots(Unit, TRI); Roots.isValid(); ++Roots) { + unsigned Root = *Roots; + if (!MRI->reg_empty(Root)) + LRCalc->createDeadDefs(LI, Root); + for (MCSuperRegIterator Supers(Root, TRI); Supers.isValid(); ++Supers) { + if (!MRI->reg_empty(*Supers)) + LRCalc->createDeadDefs(LI, *Supers); + } + } + + // Now extend LI to reach all uses. + // Ignore uses of reserved registers. We only track defs of those. + for (MCRegUnitRootIterator Roots(Unit, TRI); Roots.isValid(); ++Roots) { + unsigned Root = *Roots; + if (!isReserved(Root) && !MRI->reg_empty(Root)) + LRCalc->extendToUses(LI, Root); + for (MCSuperRegIterator Supers(Root, TRI); Supers.isValid(); ++Supers) { + unsigned Reg = *Supers; + if (!isReserved(Reg) && !MRI->reg_empty(Reg)) + LRCalc->extendToUses(LI, Reg); + } + } +} + + +/// computeLiveInRegUnits - Precompute the live ranges of any register units +/// that are live-in to an ABI block somewhere. Register values can appear +/// without a corresponding def when entering the entry block or a landing pad. +/// +void LiveIntervals::computeLiveInRegUnits() { + RegUnitIntervals.resize(TRI->getNumRegUnits()); + DEBUG(dbgs() << "Computing live-in reg-units in ABI blocks.\n"); + + // Keep track of the intervals allocated. + SmallVector<LiveInterval*, 8> NewIntvs; + + // Check all basic blocks for live-ins. + for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end(); + MFI != MFE; ++MFI) { + const MachineBasicBlock *MBB = MFI; + + // We only care about ABI blocks: Entry + landing pads. + if ((MFI != MF->begin() && !MBB->isLandingPad()) || MBB->livein_empty()) + continue; + + // Create phi-defs at Begin for all live-in registers. + SlotIndex Begin = Indexes->getMBBStartIdx(MBB); + DEBUG(dbgs() << Begin << "\tBB#" << MBB->getNumber()); + for (MachineBasicBlock::livein_iterator LII = MBB->livein_begin(), + LIE = MBB->livein_end(); LII != LIE; ++LII) { + for (MCRegUnitIterator Units(*LII, TRI); Units.isValid(); ++Units) { + unsigned Unit = *Units; + LiveInterval *Intv = RegUnitIntervals[Unit]; + if (!Intv) { + Intv = RegUnitIntervals[Unit] = new LiveInterval(Unit, HUGE_VALF); + NewIntvs.push_back(Intv); + } + VNInfo *VNI = Intv->createDeadDef(Begin, getVNInfoAllocator()); + (void)VNI; + DEBUG(dbgs() << ' ' << PrintRegUnit(Unit, TRI) << '#' << VNI->id); + } + } + DEBUG(dbgs() << '\n'); + } + DEBUG(dbgs() << "Created " << NewIntvs.size() << " new intervals.\n"); + + // Compute the 'normal' part of the intervals. + for (unsigned i = 0, e = NewIntvs.size(); i != e; ++i) + computeRegUnitInterval(NewIntvs[i]); +} + + /// shrinkToUses - After removing some uses of a register, shrink its live /// range to just the remaining uses. This method does not compute reaching /// defs for new uses, and it doesn't remove dead defs. @@ -649,14 +613,13 @@ bool LiveIntervals::shrinkToUses(LiveInterval *li, SmallPtrSet<MachineBasicBlock*, 16> LiveOut; // Visit all instructions reading li->reg. - for (MachineRegisterInfo::reg_iterator I = mri_->reg_begin(li->reg); + for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(li->reg); MachineInstr *UseMI = I.skipInstruction();) { if (UseMI->isDebugValue() || !UseMI->readsVirtualRegister(li->reg)) continue; SlotIndex Idx = getInstructionIndex(UseMI).getRegSlot(); - // Note: This intentionally picks up the wrong VNI in case of an EC redef. - // See below. - VNInfo *VNI = li->getVNInfoBefore(Idx); + LiveRangeQuery LRQ(*li, Idx); + VNInfo *VNI = LRQ.valueIn(); if (!VNI) { // This shouldn't happen: readsVirtualRegister returns true, but there is // no live value. It is likely caused by a target getting <undef> flags @@ -667,13 +630,10 @@ bool LiveIntervals::shrinkToUses(LiveInterval *li, continue; } // Special case: An early-clobber tied operand reads and writes the - // register one slot early. The getVNInfoBefore call above would have - // picked up the value defined by UseMI. Adjust the kill slot and value. - if (SlotIndex::isSameInstr(VNI->def, Idx)) { - Idx = VNI->def; - VNI = li->getVNInfoBefore(Idx); - assert(VNI && "Early-clobber tied value not available"); - } + // register one slot early. + if (VNInfo *DefVNI = LRQ.valueDefined()) + Idx = DefVNI->def; + WorkList.push_back(std::make_pair(Idx, VNI)); } @@ -747,7 +707,7 @@ bool LiveIntervals::shrinkToUses(LiveInterval *li, continue; if (VNI->isPHIDef()) { // This is a dead PHI. Remove it. - VNI->setIsUnused(true); + VNI->markUnused(); NewLI.removeRange(*LII); DEBUG(dbgs() << "Dead PHI at " << VNI->def << " may separate interval\n"); CanSeparate = true; @@ -755,7 +715,7 @@ bool LiveIntervals::shrinkToUses(LiveInterval *li, // This is a dead def. Make sure the instruction knows. MachineInstr *MI = getInstructionFromIndex(VNI->def); assert(MI && "No instruction defining live value"); - MI->addRegisterDead(li->reg, tri_); + MI->addRegisterDead(li->reg, TRI); if (dead && MI->allDefsAreDead()) { DEBUG(dbgs() << "All defs dead: " << VNI->def << '\t' << *MI); dead->push_back(MI); @@ -775,13 +735,11 @@ bool LiveIntervals::shrinkToUses(LiveInterval *li, // void LiveIntervals::addKillFlags() { - for (iterator I = begin(), E = end(); I != E; ++I) { - unsigned Reg = I->first; - if (TargetRegisterInfo::isPhysicalRegister(Reg)) + for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { + unsigned Reg = TargetRegisterInfo::index2VirtReg(i); + if (MRI->reg_nodbg_empty(Reg)) continue; - if (mri_->reg_nodbg_empty(Reg)) - continue; - LiveInterval *LI = I->second; + LiveInterval *LI = &getInterval(Reg); // Every instruction that kills Reg corresponds to a live range end point. for (LiveInterval::iterator RI = LI->begin(), RE = LI->end(); RI != RE; @@ -797,101 +755,6 @@ void LiveIntervals::addKillFlags() { } } -/// getReMatImplicitUse - If the remat definition MI has one (for now, we only -/// allow one) virtual register operand, then its uses are implicitly using -/// the register. Returns the virtual register. -unsigned LiveIntervals::getReMatImplicitUse(const LiveInterval &li, - MachineInstr *MI) const { - unsigned RegOp = 0; - for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { - MachineOperand &MO = MI->getOperand(i); - if (!MO.isReg() || !MO.isUse()) - continue; - unsigned Reg = MO.getReg(); - if (Reg == 0 || Reg == li.reg) - continue; - - if (TargetRegisterInfo::isPhysicalRegister(Reg) && !isAllocatable(Reg)) - continue; - RegOp = MO.getReg(); - break; // Found vreg operand - leave the loop. - } - return RegOp; -} - -/// isValNoAvailableAt - Return true if the val# of the specified interval -/// which reaches the given instruction also reaches the specified use index. -bool LiveIntervals::isValNoAvailableAt(const LiveInterval &li, MachineInstr *MI, - SlotIndex UseIdx) const { - VNInfo *UValNo = li.getVNInfoAt(UseIdx); - return UValNo && UValNo == li.getVNInfoAt(getInstructionIndex(MI)); -} - -/// isReMaterializable - Returns true if the definition MI of the specified -/// val# of the specified interval is re-materializable. -bool -LiveIntervals::isReMaterializable(const LiveInterval &li, - const VNInfo *ValNo, MachineInstr *MI, - const SmallVectorImpl<LiveInterval*> *SpillIs, - bool &isLoad) { - if (DisableReMat) - return false; - - if (!tii_->isTriviallyReMaterializable(MI, aa_)) - return false; - - // Target-specific code can mark an instruction as being rematerializable - // if it has one virtual reg use, though it had better be something like - // a PIC base register which is likely to be live everywhere. - unsigned ImpUse = getReMatImplicitUse(li, MI); - if (ImpUse) { - const LiveInterval &ImpLi = getInterval(ImpUse); - for (MachineRegisterInfo::use_nodbg_iterator - ri = mri_->use_nodbg_begin(li.reg), re = mri_->use_nodbg_end(); - ri != re; ++ri) { - MachineInstr *UseMI = &*ri; - SlotIndex UseIdx = getInstructionIndex(UseMI); - if (li.getVNInfoAt(UseIdx) != ValNo) - continue; - if (!isValNoAvailableAt(ImpLi, MI, UseIdx)) - return false; - } - - // If a register operand of the re-materialized instruction is going to - // be spilled next, then it's not legal to re-materialize this instruction. - if (SpillIs) - for (unsigned i = 0, e = SpillIs->size(); i != e; ++i) - if (ImpUse == (*SpillIs)[i]->reg) - return false; - } - return true; -} - -/// isReMaterializable - Returns true if every definition of MI of every -/// val# of the specified interval is re-materializable. -bool -LiveIntervals::isReMaterializable(const LiveInterval &li, - const SmallVectorImpl<LiveInterval*> *SpillIs, - bool &isLoad) { - isLoad = false; - for (LiveInterval::const_vni_iterator i = li.vni_begin(), e = li.vni_end(); - i != e; ++i) { - const VNInfo *VNI = *i; - if (VNI->isUnused()) - continue; // Dead val#. - // Is the def for the val# rematerializable? - MachineInstr *ReMatDefMI = getInstructionFromIndex(VNI->def); - if (!ReMatDefMI) - return false; - bool DefIsLoad = false; - if (!ReMatDefMI || - !isReMaterializable(li, VNI, ReMatDefMI, SpillIs, DefIsLoad)) - return false; - isLoad |= DefIsLoad; - } - return true; -} - MachineBasicBlock* LiveIntervals::intervalIsInOneMBB(const LiveInterval &LI) const { // A local live range must be fully contained inside the block, meaning it is @@ -911,11 +774,30 @@ LiveIntervals::intervalIsInOneMBB(const LiveInterval &LI) const { // getMBBFromIndex doesn't need to search the MBB table when both indexes // belong to proper instructions. - MachineBasicBlock *MBB1 = indexes_->getMBBFromIndex(Start); - MachineBasicBlock *MBB2 = indexes_->getMBBFromIndex(Stop); + MachineBasicBlock *MBB1 = Indexes->getMBBFromIndex(Start); + MachineBasicBlock *MBB2 = Indexes->getMBBFromIndex(Stop); return MBB1 == MBB2 ? MBB1 : NULL; } +bool +LiveIntervals::hasPHIKill(const LiveInterval &LI, const VNInfo *VNI) const { + for (LiveInterval::const_vni_iterator I = LI.vni_begin(), E = LI.vni_end(); + I != E; ++I) { + const VNInfo *PHI = *I; + if (PHI->isUnused() || !PHI->isPHIDef()) + continue; + const MachineBasicBlock *PHIMBB = getMBBFromIndex(PHI->def); + // Conservatively return true instead of scanning huge predecessor lists. + if (PHIMBB->pred_size() > 100) + return true; + for (MachineBasicBlock::const_pred_iterator + PI = PHIMBB->pred_begin(), PE = PHIMBB->pred_end(); PI != PE; ++PI) + if (VNI == LI.getVNInfoBefore(Indexes->getMBBEndIdx(*PI))) + return true; + } + return false; +} + float LiveIntervals::getSpillWeight(bool isDef, bool isUse, unsigned loopDepth) { // Limit the loop depth ridiculousness. @@ -940,7 +822,6 @@ LiveRange LiveIntervals::addLiveRangeToEndOfBlock(unsigned reg, VNInfo* VN = Interval.getNextValue( SlotIndex(getInstructionIndex(startInst).getRegSlot()), getVNInfoAllocator()); - VN->setHasPHIKill(true); LiveRange LR( SlotIndex(getInstructionIndex(startInst).getRegSlot()), getMBBEndIdx(startInst->getParent()), VN); @@ -990,7 +871,7 @@ bool LiveIntervals::checkRegMaskInterference(LiveInterval &LI, if (!Found) { // This is the first overlap. Initialize UsableRegs to all ones. UsableRegs.clear(); - UsableRegs.resize(tri_->getNumRegs(), true); + UsableRegs.resize(TRI->getNumRegs(), true); Found = true; } // Remove usable registers clobbered by this mask. @@ -1101,6 +982,9 @@ public: BundleRanges BR = createBundleRanges(Entering, Internal, Exiting); + Entering.clear(); + Internal.clear(); + Exiting.clear(); collectRanges(MI, Entering, Internal, Exiting, hasRegMaskOp, OldIdx); assert(!hasRegMaskOp && "Can't have RegMask operand in bundle."); @@ -1176,78 +1060,44 @@ private: // TODO: Currently we're skipping uses that are reserved or have no // interval, but we're not updating their kills. This should be // fixed. - if (!LIS.hasInterval(Reg) || - (TargetRegisterInfo::isPhysicalRegister(Reg) && LIS.isReserved(Reg))) + if (TargetRegisterInfo::isPhysicalRegister(Reg) && LIS.isReserved(Reg)) continue; - LiveInterval* LI = &LIS.getInterval(Reg); - - if (MO.readsReg()) { - LiveRange* LR = LI->getLiveRangeContaining(OldIdx); - if (LR != 0) - Entering.insert(std::make_pair(LI, LR)); - } - if (MO.isDef()) { - if (MO.isEarlyClobber()) { - LiveRange* LR = LI->getLiveRangeContaining(OldIdx.getRegSlot(true)); - assert(LR != 0 && "No EC range?"); - if (LR->end > OldIdx.getDeadSlot()) - Exiting.insert(std::make_pair(LI, LR)); - else - Internal.insert(std::make_pair(LI, LR)); - } else if (MO.isDead()) { - LiveRange* LR = LI->getLiveRangeContaining(OldIdx.getRegSlot()); - assert(LR != 0 && "No dead-def range?"); - Internal.insert(std::make_pair(LI, LR)); - } else { - LiveRange* LR = LI->getLiveRangeContaining(OldIdx.getDeadSlot()); - assert(LR && LR->end > OldIdx.getDeadSlot() && - "Non-dead-def should have live range exiting."); - Exiting.insert(std::make_pair(LI, LR)); - } + // Collect ranges for register units. These live ranges are computed on + // demand, so just skip any that haven't been computed yet. + if (TargetRegisterInfo::isPhysicalRegister(Reg)) { + for (MCRegUnitIterator Units(Reg, &TRI); Units.isValid(); ++Units) + if (LiveInterval *LI = LIS.getCachedRegUnit(*Units)) + collectRanges(MO, LI, Entering, Internal, Exiting, OldIdx); + } else { + // Collect ranges for individual virtual registers. + collectRanges(MO, &LIS.getInterval(Reg), + Entering, Internal, Exiting, OldIdx); } } } - // Collect IntRangePairs for all operands of MI that may need fixing. - void collectRangesInBundle(MachineInstr* MI, RangeSet& Entering, - RangeSet& Exiting, SlotIndex MIStartIdx, - SlotIndex MIEndIdx) { - for (MachineInstr::mop_iterator MOI = MI->operands_begin(), - MOE = MI->operands_end(); - MOI != MOE; ++MOI) { - const MachineOperand& MO = *MOI; - assert(!MO.isRegMask() && "Can't have RegMasks in bundles."); - if (!MO.isReg() || MO.getReg() == 0) - continue; - - unsigned Reg = MO.getReg(); - - // TODO: Currently we're skipping uses that are reserved or have no - // interval, but we're not updating their kills. This should be - // fixed. - if (!LIS.hasInterval(Reg) || - (TargetRegisterInfo::isPhysicalRegister(Reg) && LIS.isReserved(Reg))) - continue; - - LiveInterval* LI = &LIS.getInterval(Reg); - - if (MO.readsReg()) { - LiveRange* LR = LI->getLiveRangeContaining(MIStartIdx); - if (LR != 0) - Entering.insert(std::make_pair(LI, LR)); - } - if (MO.isDef()) { - assert(!MO.isEarlyClobber() && "Early clobbers not allowed in bundles."); - assert(!MO.isDead() && "Dead-defs not allowed in bundles."); - LiveRange* LR = LI->getLiveRangeContaining(MIEndIdx.getDeadSlot()); - assert(LR != 0 && "Internal ranges not allowed in bundles."); + void collectRanges(const MachineOperand &MO, LiveInterval *LI, + RangeSet &Entering, RangeSet &Internal, RangeSet &Exiting, + SlotIndex OldIdx) { + if (MO.readsReg()) { + LiveRange* LR = LI->getLiveRangeContaining(OldIdx); + if (LR != 0) + Entering.insert(std::make_pair(LI, LR)); + } + if (MO.isDef()) { + LiveRange* LR = LI->getLiveRangeContaining(OldIdx.getRegSlot()); + assert(LR != 0 && "No live range for def?"); + if (LR->end > OldIdx.getDeadSlot()) Exiting.insert(std::make_pair(LI, LR)); - } + else + Internal.insert(std::make_pair(LI, LR)); } } - BundleRanges createBundleRanges(RangeSet& Entering, RangeSet& Internal, RangeSet& Exiting) { + BundleRanges createBundleRanges(RangeSet& Entering, + RangeSet& Internal, + RangeSet& Exiting) { BundleRanges BR; for (RangeSet::iterator EI = Entering.begin(), EE = Entering.end(); @@ -1284,7 +1134,8 @@ private: return; // Bail out if we don't have kill flags on the old register. MachineInstr* NewKillMI = LIS.getInstructionFromIndex(newKillIdx); assert(OldKillMI->killsRegister(reg) && "Old 'kill' instr isn't a kill."); - assert(!NewKillMI->killsRegister(reg) && "New kill instr is already a kill."); + assert(!NewKillMI->killsRegister(reg) && + "New kill instr is already a kill."); OldKillMI->clearRegisterKills(reg, &TRI); NewKillMI->addRegisterKilled(reg, &TRI); } @@ -1523,22 +1374,23 @@ private: }; void LiveIntervals::handleMove(MachineInstr* MI) { - SlotIndex OldIndex = indexes_->getInstructionIndex(MI); - indexes_->removeMachineInstrFromMaps(MI); + SlotIndex OldIndex = Indexes->getInstructionIndex(MI); + Indexes->removeMachineInstrFromMaps(MI); SlotIndex NewIndex = MI->isInsideBundle() ? - indexes_->getInstructionIndex(MI) : - indexes_->insertMachineInstrInMaps(MI); + Indexes->getInstructionIndex(MI) : + Indexes->insertMachineInstrInMaps(MI); assert(getMBBStartIdx(MI->getParent()) <= OldIndex && OldIndex < getMBBEndIdx(MI->getParent()) && "Cannot handle moves across basic block boundaries."); assert(!MI->isBundled() && "Can't handle bundled instructions yet."); - HMEditor HME(*this, *mri_, *tri_, NewIndex); + HMEditor HME(*this, *MRI, *TRI, NewIndex); HME.moveAllRangesFrom(MI, OldIndex); } -void LiveIntervals::handleMoveIntoBundle(MachineInstr* MI, MachineInstr* BundleStart) { - SlotIndex NewIndex = indexes_->getInstructionIndex(BundleStart); - HMEditor HME(*this, *mri_, *tri_, NewIndex); +void LiveIntervals::handleMoveIntoBundle(MachineInstr* MI, + MachineInstr* BundleStart) { + SlotIndex NewIndex = Indexes->getInstructionIndex(BundleStart); + HMEditor HME(*this, *MRI, *TRI, NewIndex); HME.moveAllRangesInto(MI, BundleStart); } |