summaryrefslogtreecommitdiffstats
path: root/lib/CodeGen/LiveIntervalAnalysis.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'lib/CodeGen/LiveIntervalAnalysis.cpp')
-rw-r--r--lib/CodeGen/LiveIntervalAnalysis.cpp738
1 files changed, 295 insertions, 443 deletions
diff --git a/lib/CodeGen/LiveIntervalAnalysis.cpp b/lib/CodeGen/LiveIntervalAnalysis.cpp
index 934cc12..d0f8ae1 100644
--- a/lib/CodeGen/LiveIntervalAnalysis.cpp
+++ b/lib/CodeGen/LiveIntervalAnalysis.cpp
@@ -20,6 +20,7 @@
#include "llvm/Value.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/CodeGen/LiveVariables.h"
+#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/Passes.h"
@@ -31,20 +32,20 @@
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/ADT/DenseSet.h"
-#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/STLExtras.h"
+#include "LiveRangeCalc.h"
#include <algorithm>
#include <limits>
#include <cmath>
using namespace llvm;
-// Hidden options for help debugging.
-static cl::opt<bool> DisableReMat("disable-rematerialization",
- cl::init(false), cl::Hidden);
-
-STATISTIC(numIntervals , "Number of original intervals");
+// Switch to the new experimental algorithm for computing live intervals.
+static cl::opt<bool>
+NewLiveIntervals("new-live-intervals", cl::Hidden,
+ cl::desc("Use new algorithm forcomputing live intervals"));
char LiveIntervals::ID = 0;
+char &llvm::LiveIntervalsID = LiveIntervals::ID;
INITIALIZE_PASS_BEGIN(LiveIntervals, "liveintervals",
"Live Interval Analysis", false, false)
INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
@@ -61,23 +62,35 @@ void LiveIntervals::getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequired<LiveVariables>();
AU.addPreserved<LiveVariables>();
AU.addPreservedID(MachineLoopInfoID);
+ AU.addRequiredTransitiveID(MachineDominatorsID);
AU.addPreservedID(MachineDominatorsID);
AU.addPreserved<SlotIndexes>();
AU.addRequiredTransitive<SlotIndexes>();
MachineFunctionPass::getAnalysisUsage(AU);
}
+LiveIntervals::LiveIntervals() : MachineFunctionPass(ID),
+ DomTree(0), LRCalc(0) {
+ initializeLiveIntervalsPass(*PassRegistry::getPassRegistry());
+}
+
+LiveIntervals::~LiveIntervals() {
+ delete LRCalc;
+}
+
void LiveIntervals::releaseMemory() {
// Free the live intervals themselves.
- for (DenseMap<unsigned, LiveInterval*>::iterator I = r2iMap_.begin(),
- E = r2iMap_.end(); I != E; ++I)
- delete I->second;
-
- r2iMap_.clear();
+ for (unsigned i = 0, e = VirtRegIntervals.size(); i != e; ++i)
+ delete VirtRegIntervals[TargetRegisterInfo::index2VirtReg(i)];
+ VirtRegIntervals.clear();
RegMaskSlots.clear();
RegMaskBits.clear();
RegMaskBlocks.clear();
+ for (unsigned i = 0, e = RegUnitIntervals.size(); i != e; ++i)
+ delete RegUnitIntervals[i];
+ RegUnitIntervals.clear();
+
// Release VNInfo memory regions, VNInfo objects don't need to be dtor'd.
VNInfoAllocator.Reset();
}
@@ -85,20 +98,34 @@ void LiveIntervals::releaseMemory() {
/// runOnMachineFunction - Register allocate the whole function
///
bool LiveIntervals::runOnMachineFunction(MachineFunction &fn) {
- mf_ = &fn;
- mri_ = &mf_->getRegInfo();
- tm_ = &fn.getTarget();
- tri_ = tm_->getRegisterInfo();
- tii_ = tm_->getInstrInfo();
- aa_ = &getAnalysis<AliasAnalysis>();
- lv_ = &getAnalysis<LiveVariables>();
- indexes_ = &getAnalysis<SlotIndexes>();
- allocatableRegs_ = tri_->getAllocatableSet(fn);
- reservedRegs_ = tri_->getReservedRegs(fn);
-
- computeIntervals();
-
- numIntervals += getNumIntervals();
+ MF = &fn;
+ MRI = &MF->getRegInfo();
+ TM = &fn.getTarget();
+ TRI = TM->getRegisterInfo();
+ TII = TM->getInstrInfo();
+ AA = &getAnalysis<AliasAnalysis>();
+ LV = &getAnalysis<LiveVariables>();
+ Indexes = &getAnalysis<SlotIndexes>();
+ DomTree = &getAnalysis<MachineDominatorTree>();
+ if (!LRCalc)
+ LRCalc = new LiveRangeCalc();
+ AllocatableRegs = TRI->getAllocatableSet(fn);
+ ReservedRegs = TRI->getReservedRegs(fn);
+
+ // Allocate space for all virtual registers.
+ VirtRegIntervals.resize(MRI->getNumVirtRegs());
+
+ if (NewLiveIntervals) {
+ // This is the new way of computing live intervals.
+ // It is independent of LiveVariables, and it can run at any time.
+ computeVirtRegs();
+ computeRegMasks();
+ } else {
+ // This is the old way of computing live intervals.
+ // It depends on LiveVariables.
+ computeIntervals();
+ }
+ computeLiveInRegUnits();
DEBUG(dump());
return true;
@@ -108,27 +135,24 @@ bool LiveIntervals::runOnMachineFunction(MachineFunction &fn) {
void LiveIntervals::print(raw_ostream &OS, const Module* ) const {
OS << "********** INTERVALS **********\n";
- // Dump the physregs.
- for (unsigned Reg = 1, RegE = tri_->getNumRegs(); Reg != RegE; ++Reg)
- if (const LiveInterval *LI = r2iMap_.lookup(Reg)) {
- LI->print(OS, tri_);
- OS << '\n';
- }
+ // Dump the regunits.
+ for (unsigned i = 0, e = RegUnitIntervals.size(); i != e; ++i)
+ if (LiveInterval *LI = RegUnitIntervals[i])
+ OS << PrintRegUnit(i, TRI) << " = " << *LI << '\n';
// Dump the virtregs.
- for (unsigned Reg = 0, RegE = mri_->getNumVirtRegs(); Reg != RegE; ++Reg)
- if (const LiveInterval *LI =
- r2iMap_.lookup(TargetRegisterInfo::index2VirtReg(Reg))) {
- LI->print(OS, tri_);
- OS << '\n';
- }
+ for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
+ unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
+ if (hasInterval(Reg))
+ OS << PrintReg(Reg) << " = " << getInterval(Reg) << '\n';
+ }
printInstrs(OS);
}
void LiveIntervals::printInstrs(raw_ostream &OS) const {
OS << "********** MACHINEINSTRS **********\n";
- mf_->print(OS, indexes_);
+ MF->print(OS, Indexes);
}
void LiveIntervals::dumpInstrs() const {
@@ -176,13 +200,13 @@ void LiveIntervals::handleVirtualRegisterDef(MachineBasicBlock *mbb,
MachineOperand& MO,
unsigned MOIdx,
LiveInterval &interval) {
- DEBUG(dbgs() << "\t\tregister: " << PrintReg(interval.reg, tri_));
+ DEBUG(dbgs() << "\t\tregister: " << PrintReg(interval.reg, TRI));
// Virtual registers may be defined multiple times (due to phi
// elimination and 2-addr elimination). Much of what we do only has to be
// done once for the vreg. We use an empty interval to detect the first
// time we see a vreg.
- LiveVariables::VarInfo& vi = lv_->getVarInfo(interval.reg);
+ LiveVariables::VarInfo& vi = LV->getVarInfo(interval.reg);
if (interval.empty()) {
// Get the Idx of the defining instructions.
SlotIndex defIndex = MIIdx.getRegSlot(MO.isEarlyClobber());
@@ -226,22 +250,22 @@ void LiveIntervals::handleVirtualRegisterDef(MachineBasicBlock *mbb,
DEBUG(dbgs() << " +" << NewLR);
interval.addRange(NewLR);
- bool PHIJoin = lv_->isPHIJoin(interval.reg);
+ bool PHIJoin = LV->isPHIJoin(interval.reg);
if (PHIJoin) {
- // A phi join register is killed at the end of the MBB and revived as a new
- // valno in the killing blocks.
+ // A phi join register is killed at the end of the MBB and revived as a
+ // new valno in the killing blocks.
assert(vi.AliveBlocks.empty() && "Phi join can't pass through blocks");
DEBUG(dbgs() << " phi-join");
- ValNo->setHasPHIKill(true);
} else {
// Iterate over all of the blocks that the variable is completely
// live in, adding [insrtIndex(begin), instrIndex(end)+4) to the
// live interval.
for (SparseBitVector<>::iterator I = vi.AliveBlocks.begin(),
E = vi.AliveBlocks.end(); I != E; ++I) {
- MachineBasicBlock *aliveBlock = mf_->getBlockNumbered(*I);
- LiveRange LR(getMBBStartIdx(aliveBlock), getMBBEndIdx(aliveBlock), ValNo);
+ MachineBasicBlock *aliveBlock = MF->getBlockNumbered(*I);
+ LiveRange LR(getMBBStartIdx(aliveBlock), getMBBEndIdx(aliveBlock),
+ ValNo);
interval.addRange(LR);
DEBUG(dbgs() << " +" << LR);
}
@@ -260,7 +284,6 @@ void LiveIntervals::handleVirtualRegisterDef(MachineBasicBlock *mbb,
assert(getInstructionFromIndex(Start) == 0 &&
"PHI def index points at actual instruction.");
ValNo = interval.getNextValue(Start, VNInfoAllocator);
- ValNo->setIsPHIDef(true);
}
LiveRange LR(Start, killIdx, ValNo);
interval.addRange(LR);
@@ -319,11 +342,8 @@ void LiveIntervals::handleVirtualRegisterDef(MachineBasicBlock *mbb,
interval.addRange(LiveRange(RedefIndex, RedefIndex.getDeadSlot(),
OldValNo));
- DEBUG({
- dbgs() << " RESULT: ";
- interval.print(dbgs(), tri_);
- });
- } else if (lv_->isPHIJoin(interval.reg)) {
+ DEBUG(dbgs() << " RESULT: " << interval);
+ } else if (LV->isPHIJoin(interval.reg)) {
// In the case of PHI elimination, each variable definition is only
// live until the end of the block. We've already taken care of the
// rest of the live range.
@@ -337,7 +357,6 @@ void LiveIntervals::handleVirtualRegisterDef(MachineBasicBlock *mbb,
SlotIndex killIndex = getMBBEndIdx(mbb);
LiveRange LR(defIndex, killIndex, ValNo);
interval.addRange(LR);
- ValNo->setHasPHIKill(true);
DEBUG(dbgs() << " phi-join +" << LR);
} else {
llvm_unreachable("Multiply defined register");
@@ -347,101 +366,6 @@ void LiveIntervals::handleVirtualRegisterDef(MachineBasicBlock *mbb,
DEBUG(dbgs() << '\n');
}
-static bool isRegLiveIntoSuccessor(const MachineBasicBlock *MBB, unsigned Reg) {
- for (MachineBasicBlock::const_succ_iterator SI = MBB->succ_begin(),
- SE = MBB->succ_end();
- SI != SE; ++SI) {
- const MachineBasicBlock* succ = *SI;
- if (succ->isLiveIn(Reg))
- return true;
- }
- return false;
-}
-
-void LiveIntervals::handlePhysicalRegisterDef(MachineBasicBlock *MBB,
- MachineBasicBlock::iterator mi,
- SlotIndex MIIdx,
- MachineOperand& MO,
- LiveInterval &interval) {
- DEBUG(dbgs() << "\t\tregister: " << PrintReg(interval.reg, tri_));
-
- SlotIndex baseIndex = MIIdx;
- SlotIndex start = baseIndex.getRegSlot(MO.isEarlyClobber());
- SlotIndex end = start;
-
- // If it is not used after definition, it is considered dead at
- // the instruction defining it. Hence its interval is:
- // [defSlot(def), defSlot(def)+1)
- // For earlyclobbers, the defSlot was pushed back one; the extra
- // advance below compensates.
- if (MO.isDead()) {
- DEBUG(dbgs() << " dead");
- end = start.getDeadSlot();
- goto exit;
- }
-
- // If it is not dead on definition, it must be killed by a
- // subsequent instruction. Hence its interval is:
- // [defSlot(def), useSlot(kill)+1)
- baseIndex = baseIndex.getNextIndex();
- while (++mi != MBB->end()) {
-
- if (mi->isDebugValue())
- continue;
- if (getInstructionFromIndex(baseIndex) == 0)
- baseIndex = indexes_->getNextNonNullIndex(baseIndex);
-
- if (mi->killsRegister(interval.reg, tri_)) {
- DEBUG(dbgs() << " killed");
- end = baseIndex.getRegSlot();
- goto exit;
- } else {
- int DefIdx = mi->findRegisterDefOperandIdx(interval.reg,false,false,tri_);
- if (DefIdx != -1) {
- if (mi->isRegTiedToUseOperand(DefIdx)) {
- // Two-address instruction.
- end = baseIndex.getRegSlot(mi->getOperand(DefIdx).isEarlyClobber());
- } else {
- // Another instruction redefines the register before it is ever read.
- // Then the register is essentially dead at the instruction that
- // defines it. Hence its interval is:
- // [defSlot(def), defSlot(def)+1)
- DEBUG(dbgs() << " dead");
- end = start.getDeadSlot();
- }
- goto exit;
- }
- }
-
- baseIndex = baseIndex.getNextIndex();
- }
-
- // If we get here the register *should* be live out.
- assert(!isAllocatable(interval.reg) && "Physregs shouldn't be live out!");
-
- // FIXME: We need saner rules for reserved regs.
- if (isReserved(interval.reg)) {
- end = start.getDeadSlot();
- } else {
- // Unreserved, unallocable registers like EFLAGS can be live across basic
- // block boundaries.
- assert(isRegLiveIntoSuccessor(MBB, interval.reg) &&
- "Unreserved reg not live-out?");
- end = getMBBEndIdx(MBB);
- }
-exit:
- assert(start < end && "did not find end of interval?");
-
- // Already exists? Extend old live interval.
- VNInfo *ValNo = interval.getVNInfoAt(start);
- bool Extend = ValNo != 0;
- if (!Extend)
- ValNo = interval.getNextValue(start, VNInfoAllocator);
- LiveRange LR(start, end, ValNo);
- interval.addRange(LR);
- DEBUG(dbgs() << " +" << LR << '\n');
-}
-
void LiveIntervals::handleRegisterDef(MachineBasicBlock *MBB,
MachineBasicBlock::iterator MI,
SlotIndex MIIdx,
@@ -450,93 +374,6 @@ void LiveIntervals::handleRegisterDef(MachineBasicBlock *MBB,
if (TargetRegisterInfo::isVirtualRegister(MO.getReg()))
handleVirtualRegisterDef(MBB, MI, MIIdx, MO, MOIdx,
getOrCreateInterval(MO.getReg()));
- else
- handlePhysicalRegisterDef(MBB, MI, MIIdx, MO,
- getOrCreateInterval(MO.getReg()));
-}
-
-void LiveIntervals::handleLiveInRegister(MachineBasicBlock *MBB,
- SlotIndex MIIdx,
- LiveInterval &interval) {
- assert(TargetRegisterInfo::isPhysicalRegister(interval.reg) &&
- "Only physical registers can be live in.");
- assert((!isAllocatable(interval.reg) || MBB->getParent()->begin() ||
- MBB->isLandingPad()) &&
- "Allocatable live-ins only valid for entry blocks and landing pads.");
-
- DEBUG(dbgs() << "\t\tlivein register: " << PrintReg(interval.reg, tri_));
-
- // Look for kills, if it reaches a def before it's killed, then it shouldn't
- // be considered a livein.
- MachineBasicBlock::iterator mi = MBB->begin();
- MachineBasicBlock::iterator E = MBB->end();
- // Skip over DBG_VALUE at the start of the MBB.
- if (mi != E && mi->isDebugValue()) {
- while (++mi != E && mi->isDebugValue())
- ;
- if (mi == E)
- // MBB is empty except for DBG_VALUE's.
- return;
- }
-
- SlotIndex baseIndex = MIIdx;
- SlotIndex start = baseIndex;
- if (getInstructionFromIndex(baseIndex) == 0)
- baseIndex = indexes_->getNextNonNullIndex(baseIndex);
-
- SlotIndex end = baseIndex;
- bool SeenDefUse = false;
-
- while (mi != E) {
- if (mi->killsRegister(interval.reg, tri_)) {
- DEBUG(dbgs() << " killed");
- end = baseIndex.getRegSlot();
- SeenDefUse = true;
- break;
- } else if (mi->modifiesRegister(interval.reg, tri_)) {
- // Another instruction redefines the register before it is ever read.
- // Then the register is essentially dead at the instruction that defines
- // it. Hence its interval is:
- // [defSlot(def), defSlot(def)+1)
- DEBUG(dbgs() << " dead");
- end = start.getDeadSlot();
- SeenDefUse = true;
- break;
- }
-
- while (++mi != E && mi->isDebugValue())
- // Skip over DBG_VALUE.
- ;
- if (mi != E)
- baseIndex = indexes_->getNextNonNullIndex(baseIndex);
- }
-
- // Live-in register might not be used at all.
- if (!SeenDefUse) {
- if (isAllocatable(interval.reg) ||
- !isRegLiveIntoSuccessor(MBB, interval.reg)) {
- // Allocatable registers are never live through.
- // Non-allocatable registers that aren't live into any successors also
- // aren't live through.
- DEBUG(dbgs() << " dead");
- return;
- } else {
- // If we get here the register is non-allocatable and live into some
- // successor. We'll conservatively assume it's live-through.
- DEBUG(dbgs() << " live through");
- end = getMBBEndIdx(MBB);
- }
- }
-
- SlotIndex defIdx = getMBBStartIdx(MBB);
- assert(getInstructionFromIndex(defIdx) == 0 &&
- "PHI def index points at actual instruction.");
- VNInfo *vni = interval.getNextValue(defIdx, VNInfoAllocator);
- vni->setIsPHIDef(true);
- LiveRange LR(start, end, vni);
-
- interval.addRange(LR);
- DEBUG(dbgs() << " +" << LR << '\n');
}
/// computeIntervals - computes the live intervals for virtual
@@ -546,12 +383,12 @@ void LiveIntervals::handleLiveInRegister(MachineBasicBlock *MBB,
void LiveIntervals::computeIntervals() {
DEBUG(dbgs() << "********** COMPUTING LIVE INTERVALS **********\n"
<< "********** Function: "
- << ((Value*)mf_->getFunction())->getName() << '\n');
+ << ((Value*)MF->getFunction())->getName() << '\n');
- RegMaskBlocks.resize(mf_->getNumBlockIDs());
+ RegMaskBlocks.resize(MF->getNumBlockIDs());
SmallVector<unsigned, 8> UndefUses;
- for (MachineFunction::iterator MBBI = mf_->begin(), E = mf_->end();
+ for (MachineFunction::iterator MBBI = MF->begin(), E = MF->end();
MBBI != E; ++MBBI) {
MachineBasicBlock *MBB = MBBI;
RegMaskBlocks[MBB->getNumber()].first = RegMaskSlots.size();
@@ -564,22 +401,16 @@ void LiveIntervals::computeIntervals() {
DEBUG(dbgs() << "BB#" << MBB->getNumber()
<< ":\t\t# derived from " << MBB->getName() << "\n");
- // Create intervals for live-ins to this BB first.
- for (MachineBasicBlock::livein_iterator LI = MBB->livein_begin(),
- LE = MBB->livein_end(); LI != LE; ++LI) {
- handleLiveInRegister(MBB, MIIndex, getOrCreateInterval(*LI));
- }
-
// Skip over empty initial indices.
if (getInstructionFromIndex(MIIndex) == 0)
- MIIndex = indexes_->getNextNonNullIndex(MIIndex);
+ MIIndex = Indexes->getNextNonNullIndex(MIIndex);
for (MachineBasicBlock::iterator MI = MBB->begin(), miEnd = MBB->end();
MI != miEnd; ++MI) {
DEBUG(dbgs() << MIIndex << "\t" << *MI);
if (MI->isDebugValue())
continue;
- assert(indexes_->getInstructionFromIndex(MIIndex) == MI &&
+ assert(Indexes->getInstructionFromIndex(MIIndex) == MI &&
"Lost SlotIndex synchronization");
// Handle defs.
@@ -593,7 +424,7 @@ void LiveIntervals::computeIntervals() {
continue;
}
- if (!MO.isReg() || !MO.getReg())
+ if (!MO.isReg() || !TargetRegisterInfo::isVirtualRegister(MO.getReg()))
continue;
// handle register defs - build intervals
@@ -604,7 +435,7 @@ void LiveIntervals::computeIntervals() {
}
// Move to the next instr slot.
- MIIndex = indexes_->getNextNonNullIndex(MIIndex);
+ MIIndex = Indexes->getNextNonNullIndex(MIIndex);
}
// Compute the number of register mask instructions in this block.
@@ -626,14 +457,147 @@ LiveInterval* LiveIntervals::createInterval(unsigned reg) {
return new LiveInterval(reg, Weight);
}
-/// dupInterval - Duplicate a live interval. The caller is responsible for
-/// managing the allocated memory.
-LiveInterval* LiveIntervals::dupInterval(LiveInterval *li) {
- LiveInterval *NewLI = createInterval(li->reg);
- NewLI->Copy(*li, mri_, getVNInfoAllocator());
- return NewLI;
+
+/// computeVirtRegInterval - Compute the live interval of a virtual register,
+/// based on defs and uses.
+void LiveIntervals::computeVirtRegInterval(LiveInterval *LI) {
+ assert(LRCalc && "LRCalc not initialized.");
+ assert(LI->empty() && "Should only compute empty intervals.");
+ LRCalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator());
+ LRCalc->createDeadDefs(LI);
+ LRCalc->extendToUses(LI);
+}
+
+void LiveIntervals::computeVirtRegs() {
+ for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
+ unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
+ if (MRI->reg_nodbg_empty(Reg))
+ continue;
+ LiveInterval *LI = createInterval(Reg);
+ VirtRegIntervals[Reg] = LI;
+ computeVirtRegInterval(LI);
+ }
+}
+
+void LiveIntervals::computeRegMasks() {
+ RegMaskBlocks.resize(MF->getNumBlockIDs());
+
+ // Find all instructions with regmask operands.
+ for (MachineFunction::iterator MBBI = MF->begin(), E = MF->end();
+ MBBI != E; ++MBBI) {
+ MachineBasicBlock *MBB = MBBI;
+ std::pair<unsigned, unsigned> &RMB = RegMaskBlocks[MBB->getNumber()];
+ RMB.first = RegMaskSlots.size();
+ for (MachineBasicBlock::iterator MI = MBB->begin(), ME = MBB->end();
+ MI != ME; ++MI)
+ for (MIOperands MO(MI); MO.isValid(); ++MO) {
+ if (!MO->isRegMask())
+ continue;
+ RegMaskSlots.push_back(Indexes->getInstructionIndex(MI).getRegSlot());
+ RegMaskBits.push_back(MO->getRegMask());
+ }
+ // Compute the number of register mask instructions in this block.
+ RMB.second = RegMaskSlots.size() - RMB.first;;
+ }
}
+//===----------------------------------------------------------------------===//
+// Register Unit Liveness
+//===----------------------------------------------------------------------===//
+//
+// Fixed interference typically comes from ABI boundaries: Function arguments
+// and return values are passed in fixed registers, and so are exception
+// pointers entering landing pads. Certain instructions require values to be
+// present in specific registers. That is also represented through fixed
+// interference.
+//
+
+/// computeRegUnitInterval - Compute the live interval of a register unit, based
+/// on the uses and defs of aliasing registers. The interval should be empty,
+/// or contain only dead phi-defs from ABI blocks.
+void LiveIntervals::computeRegUnitInterval(LiveInterval *LI) {
+ unsigned Unit = LI->reg;
+
+ assert(LRCalc && "LRCalc not initialized.");
+ LRCalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator());
+
+ // The physregs aliasing Unit are the roots and their super-registers.
+ // Create all values as dead defs before extending to uses. Note that roots
+ // may share super-registers. That's OK because createDeadDefs() is
+ // idempotent. It is very rare for a register unit to have multiple roots, so
+ // uniquing super-registers is probably not worthwhile.
+ for (MCRegUnitRootIterator Roots(Unit, TRI); Roots.isValid(); ++Roots) {
+ unsigned Root = *Roots;
+ if (!MRI->reg_empty(Root))
+ LRCalc->createDeadDefs(LI, Root);
+ for (MCSuperRegIterator Supers(Root, TRI); Supers.isValid(); ++Supers) {
+ if (!MRI->reg_empty(*Supers))
+ LRCalc->createDeadDefs(LI, *Supers);
+ }
+ }
+
+ // Now extend LI to reach all uses.
+ // Ignore uses of reserved registers. We only track defs of those.
+ for (MCRegUnitRootIterator Roots(Unit, TRI); Roots.isValid(); ++Roots) {
+ unsigned Root = *Roots;
+ if (!isReserved(Root) && !MRI->reg_empty(Root))
+ LRCalc->extendToUses(LI, Root);
+ for (MCSuperRegIterator Supers(Root, TRI); Supers.isValid(); ++Supers) {
+ unsigned Reg = *Supers;
+ if (!isReserved(Reg) && !MRI->reg_empty(Reg))
+ LRCalc->extendToUses(LI, Reg);
+ }
+ }
+}
+
+
+/// computeLiveInRegUnits - Precompute the live ranges of any register units
+/// that are live-in to an ABI block somewhere. Register values can appear
+/// without a corresponding def when entering the entry block or a landing pad.
+///
+void LiveIntervals::computeLiveInRegUnits() {
+ RegUnitIntervals.resize(TRI->getNumRegUnits());
+ DEBUG(dbgs() << "Computing live-in reg-units in ABI blocks.\n");
+
+ // Keep track of the intervals allocated.
+ SmallVector<LiveInterval*, 8> NewIntvs;
+
+ // Check all basic blocks for live-ins.
+ for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end();
+ MFI != MFE; ++MFI) {
+ const MachineBasicBlock *MBB = MFI;
+
+ // We only care about ABI blocks: Entry + landing pads.
+ if ((MFI != MF->begin() && !MBB->isLandingPad()) || MBB->livein_empty())
+ continue;
+
+ // Create phi-defs at Begin for all live-in registers.
+ SlotIndex Begin = Indexes->getMBBStartIdx(MBB);
+ DEBUG(dbgs() << Begin << "\tBB#" << MBB->getNumber());
+ for (MachineBasicBlock::livein_iterator LII = MBB->livein_begin(),
+ LIE = MBB->livein_end(); LII != LIE; ++LII) {
+ for (MCRegUnitIterator Units(*LII, TRI); Units.isValid(); ++Units) {
+ unsigned Unit = *Units;
+ LiveInterval *Intv = RegUnitIntervals[Unit];
+ if (!Intv) {
+ Intv = RegUnitIntervals[Unit] = new LiveInterval(Unit, HUGE_VALF);
+ NewIntvs.push_back(Intv);
+ }
+ VNInfo *VNI = Intv->createDeadDef(Begin, getVNInfoAllocator());
+ (void)VNI;
+ DEBUG(dbgs() << ' ' << PrintRegUnit(Unit, TRI) << '#' << VNI->id);
+ }
+ }
+ DEBUG(dbgs() << '\n');
+ }
+ DEBUG(dbgs() << "Created " << NewIntvs.size() << " new intervals.\n");
+
+ // Compute the 'normal' part of the intervals.
+ for (unsigned i = 0, e = NewIntvs.size(); i != e; ++i)
+ computeRegUnitInterval(NewIntvs[i]);
+}
+
+
/// shrinkToUses - After removing some uses of a register, shrink its live
/// range to just the remaining uses. This method does not compute reaching
/// defs for new uses, and it doesn't remove dead defs.
@@ -649,14 +613,13 @@ bool LiveIntervals::shrinkToUses(LiveInterval *li,
SmallPtrSet<MachineBasicBlock*, 16> LiveOut;
// Visit all instructions reading li->reg.
- for (MachineRegisterInfo::reg_iterator I = mri_->reg_begin(li->reg);
+ for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(li->reg);
MachineInstr *UseMI = I.skipInstruction();) {
if (UseMI->isDebugValue() || !UseMI->readsVirtualRegister(li->reg))
continue;
SlotIndex Idx = getInstructionIndex(UseMI).getRegSlot();
- // Note: This intentionally picks up the wrong VNI in case of an EC redef.
- // See below.
- VNInfo *VNI = li->getVNInfoBefore(Idx);
+ LiveRangeQuery LRQ(*li, Idx);
+ VNInfo *VNI = LRQ.valueIn();
if (!VNI) {
// This shouldn't happen: readsVirtualRegister returns true, but there is
// no live value. It is likely caused by a target getting <undef> flags
@@ -667,13 +630,10 @@ bool LiveIntervals::shrinkToUses(LiveInterval *li,
continue;
}
// Special case: An early-clobber tied operand reads and writes the
- // register one slot early. The getVNInfoBefore call above would have
- // picked up the value defined by UseMI. Adjust the kill slot and value.
- if (SlotIndex::isSameInstr(VNI->def, Idx)) {
- Idx = VNI->def;
- VNI = li->getVNInfoBefore(Idx);
- assert(VNI && "Early-clobber tied value not available");
- }
+ // register one slot early.
+ if (VNInfo *DefVNI = LRQ.valueDefined())
+ Idx = DefVNI->def;
+
WorkList.push_back(std::make_pair(Idx, VNI));
}
@@ -747,7 +707,7 @@ bool LiveIntervals::shrinkToUses(LiveInterval *li,
continue;
if (VNI->isPHIDef()) {
// This is a dead PHI. Remove it.
- VNI->setIsUnused(true);
+ VNI->markUnused();
NewLI.removeRange(*LII);
DEBUG(dbgs() << "Dead PHI at " << VNI->def << " may separate interval\n");
CanSeparate = true;
@@ -755,7 +715,7 @@ bool LiveIntervals::shrinkToUses(LiveInterval *li,
// This is a dead def. Make sure the instruction knows.
MachineInstr *MI = getInstructionFromIndex(VNI->def);
assert(MI && "No instruction defining live value");
- MI->addRegisterDead(li->reg, tri_);
+ MI->addRegisterDead(li->reg, TRI);
if (dead && MI->allDefsAreDead()) {
DEBUG(dbgs() << "All defs dead: " << VNI->def << '\t' << *MI);
dead->push_back(MI);
@@ -775,13 +735,11 @@ bool LiveIntervals::shrinkToUses(LiveInterval *li,
//
void LiveIntervals::addKillFlags() {
- for (iterator I = begin(), E = end(); I != E; ++I) {
- unsigned Reg = I->first;
- if (TargetRegisterInfo::isPhysicalRegister(Reg))
+ for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
+ unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
+ if (MRI->reg_nodbg_empty(Reg))
continue;
- if (mri_->reg_nodbg_empty(Reg))
- continue;
- LiveInterval *LI = I->second;
+ LiveInterval *LI = &getInterval(Reg);
// Every instruction that kills Reg corresponds to a live range end point.
for (LiveInterval::iterator RI = LI->begin(), RE = LI->end(); RI != RE;
@@ -797,101 +755,6 @@ void LiveIntervals::addKillFlags() {
}
}
-/// getReMatImplicitUse - If the remat definition MI has one (for now, we only
-/// allow one) virtual register operand, then its uses are implicitly using
-/// the register. Returns the virtual register.
-unsigned LiveIntervals::getReMatImplicitUse(const LiveInterval &li,
- MachineInstr *MI) const {
- unsigned RegOp = 0;
- for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
- MachineOperand &MO = MI->getOperand(i);
- if (!MO.isReg() || !MO.isUse())
- continue;
- unsigned Reg = MO.getReg();
- if (Reg == 0 || Reg == li.reg)
- continue;
-
- if (TargetRegisterInfo::isPhysicalRegister(Reg) && !isAllocatable(Reg))
- continue;
- RegOp = MO.getReg();
- break; // Found vreg operand - leave the loop.
- }
- return RegOp;
-}
-
-/// isValNoAvailableAt - Return true if the val# of the specified interval
-/// which reaches the given instruction also reaches the specified use index.
-bool LiveIntervals::isValNoAvailableAt(const LiveInterval &li, MachineInstr *MI,
- SlotIndex UseIdx) const {
- VNInfo *UValNo = li.getVNInfoAt(UseIdx);
- return UValNo && UValNo == li.getVNInfoAt(getInstructionIndex(MI));
-}
-
-/// isReMaterializable - Returns true if the definition MI of the specified
-/// val# of the specified interval is re-materializable.
-bool
-LiveIntervals::isReMaterializable(const LiveInterval &li,
- const VNInfo *ValNo, MachineInstr *MI,
- const SmallVectorImpl<LiveInterval*> *SpillIs,
- bool &isLoad) {
- if (DisableReMat)
- return false;
-
- if (!tii_->isTriviallyReMaterializable(MI, aa_))
- return false;
-
- // Target-specific code can mark an instruction as being rematerializable
- // if it has one virtual reg use, though it had better be something like
- // a PIC base register which is likely to be live everywhere.
- unsigned ImpUse = getReMatImplicitUse(li, MI);
- if (ImpUse) {
- const LiveInterval &ImpLi = getInterval(ImpUse);
- for (MachineRegisterInfo::use_nodbg_iterator
- ri = mri_->use_nodbg_begin(li.reg), re = mri_->use_nodbg_end();
- ri != re; ++ri) {
- MachineInstr *UseMI = &*ri;
- SlotIndex UseIdx = getInstructionIndex(UseMI);
- if (li.getVNInfoAt(UseIdx) != ValNo)
- continue;
- if (!isValNoAvailableAt(ImpLi, MI, UseIdx))
- return false;
- }
-
- // If a register operand of the re-materialized instruction is going to
- // be spilled next, then it's not legal to re-materialize this instruction.
- if (SpillIs)
- for (unsigned i = 0, e = SpillIs->size(); i != e; ++i)
- if (ImpUse == (*SpillIs)[i]->reg)
- return false;
- }
- return true;
-}
-
-/// isReMaterializable - Returns true if every definition of MI of every
-/// val# of the specified interval is re-materializable.
-bool
-LiveIntervals::isReMaterializable(const LiveInterval &li,
- const SmallVectorImpl<LiveInterval*> *SpillIs,
- bool &isLoad) {
- isLoad = false;
- for (LiveInterval::const_vni_iterator i = li.vni_begin(), e = li.vni_end();
- i != e; ++i) {
- const VNInfo *VNI = *i;
- if (VNI->isUnused())
- continue; // Dead val#.
- // Is the def for the val# rematerializable?
- MachineInstr *ReMatDefMI = getInstructionFromIndex(VNI->def);
- if (!ReMatDefMI)
- return false;
- bool DefIsLoad = false;
- if (!ReMatDefMI ||
- !isReMaterializable(li, VNI, ReMatDefMI, SpillIs, DefIsLoad))
- return false;
- isLoad |= DefIsLoad;
- }
- return true;
-}
-
MachineBasicBlock*
LiveIntervals::intervalIsInOneMBB(const LiveInterval &LI) const {
// A local live range must be fully contained inside the block, meaning it is
@@ -911,11 +774,30 @@ LiveIntervals::intervalIsInOneMBB(const LiveInterval &LI) const {
// getMBBFromIndex doesn't need to search the MBB table when both indexes
// belong to proper instructions.
- MachineBasicBlock *MBB1 = indexes_->getMBBFromIndex(Start);
- MachineBasicBlock *MBB2 = indexes_->getMBBFromIndex(Stop);
+ MachineBasicBlock *MBB1 = Indexes->getMBBFromIndex(Start);
+ MachineBasicBlock *MBB2 = Indexes->getMBBFromIndex(Stop);
return MBB1 == MBB2 ? MBB1 : NULL;
}
+bool
+LiveIntervals::hasPHIKill(const LiveInterval &LI, const VNInfo *VNI) const {
+ for (LiveInterval::const_vni_iterator I = LI.vni_begin(), E = LI.vni_end();
+ I != E; ++I) {
+ const VNInfo *PHI = *I;
+ if (PHI->isUnused() || !PHI->isPHIDef())
+ continue;
+ const MachineBasicBlock *PHIMBB = getMBBFromIndex(PHI->def);
+ // Conservatively return true instead of scanning huge predecessor lists.
+ if (PHIMBB->pred_size() > 100)
+ return true;
+ for (MachineBasicBlock::const_pred_iterator
+ PI = PHIMBB->pred_begin(), PE = PHIMBB->pred_end(); PI != PE; ++PI)
+ if (VNI == LI.getVNInfoBefore(Indexes->getMBBEndIdx(*PI)))
+ return true;
+ }
+ return false;
+}
+
float
LiveIntervals::getSpillWeight(bool isDef, bool isUse, unsigned loopDepth) {
// Limit the loop depth ridiculousness.
@@ -940,7 +822,6 @@ LiveRange LiveIntervals::addLiveRangeToEndOfBlock(unsigned reg,
VNInfo* VN = Interval.getNextValue(
SlotIndex(getInstructionIndex(startInst).getRegSlot()),
getVNInfoAllocator());
- VN->setHasPHIKill(true);
LiveRange LR(
SlotIndex(getInstructionIndex(startInst).getRegSlot()),
getMBBEndIdx(startInst->getParent()), VN);
@@ -990,7 +871,7 @@ bool LiveIntervals::checkRegMaskInterference(LiveInterval &LI,
if (!Found) {
// This is the first overlap. Initialize UsableRegs to all ones.
UsableRegs.clear();
- UsableRegs.resize(tri_->getNumRegs(), true);
+ UsableRegs.resize(TRI->getNumRegs(), true);
Found = true;
}
// Remove usable registers clobbered by this mask.
@@ -1101,6 +982,9 @@ public:
BundleRanges BR = createBundleRanges(Entering, Internal, Exiting);
+ Entering.clear();
+ Internal.clear();
+ Exiting.clear();
collectRanges(MI, Entering, Internal, Exiting, hasRegMaskOp, OldIdx);
assert(!hasRegMaskOp && "Can't have RegMask operand in bundle.");
@@ -1176,78 +1060,44 @@ private:
// TODO: Currently we're skipping uses that are reserved or have no
// interval, but we're not updating their kills. This should be
// fixed.
- if (!LIS.hasInterval(Reg) ||
- (TargetRegisterInfo::isPhysicalRegister(Reg) && LIS.isReserved(Reg)))
+ if (TargetRegisterInfo::isPhysicalRegister(Reg) && LIS.isReserved(Reg))
continue;
- LiveInterval* LI = &LIS.getInterval(Reg);
-
- if (MO.readsReg()) {
- LiveRange* LR = LI->getLiveRangeContaining(OldIdx);
- if (LR != 0)
- Entering.insert(std::make_pair(LI, LR));
- }
- if (MO.isDef()) {
- if (MO.isEarlyClobber()) {
- LiveRange* LR = LI->getLiveRangeContaining(OldIdx.getRegSlot(true));
- assert(LR != 0 && "No EC range?");
- if (LR->end > OldIdx.getDeadSlot())
- Exiting.insert(std::make_pair(LI, LR));
- else
- Internal.insert(std::make_pair(LI, LR));
- } else if (MO.isDead()) {
- LiveRange* LR = LI->getLiveRangeContaining(OldIdx.getRegSlot());
- assert(LR != 0 && "No dead-def range?");
- Internal.insert(std::make_pair(LI, LR));
- } else {
- LiveRange* LR = LI->getLiveRangeContaining(OldIdx.getDeadSlot());
- assert(LR && LR->end > OldIdx.getDeadSlot() &&
- "Non-dead-def should have live range exiting.");
- Exiting.insert(std::make_pair(LI, LR));
- }
+ // Collect ranges for register units. These live ranges are computed on
+ // demand, so just skip any that haven't been computed yet.
+ if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
+ for (MCRegUnitIterator Units(Reg, &TRI); Units.isValid(); ++Units)
+ if (LiveInterval *LI = LIS.getCachedRegUnit(*Units))
+ collectRanges(MO, LI, Entering, Internal, Exiting, OldIdx);
+ } else {
+ // Collect ranges for individual virtual registers.
+ collectRanges(MO, &LIS.getInterval(Reg),
+ Entering, Internal, Exiting, OldIdx);
}
}
}
- // Collect IntRangePairs for all operands of MI that may need fixing.
- void collectRangesInBundle(MachineInstr* MI, RangeSet& Entering,
- RangeSet& Exiting, SlotIndex MIStartIdx,
- SlotIndex MIEndIdx) {
- for (MachineInstr::mop_iterator MOI = MI->operands_begin(),
- MOE = MI->operands_end();
- MOI != MOE; ++MOI) {
- const MachineOperand& MO = *MOI;
- assert(!MO.isRegMask() && "Can't have RegMasks in bundles.");
- if (!MO.isReg() || MO.getReg() == 0)
- continue;
-
- unsigned Reg = MO.getReg();
-
- // TODO: Currently we're skipping uses that are reserved or have no
- // interval, but we're not updating their kills. This should be
- // fixed.
- if (!LIS.hasInterval(Reg) ||
- (TargetRegisterInfo::isPhysicalRegister(Reg) && LIS.isReserved(Reg)))
- continue;
-
- LiveInterval* LI = &LIS.getInterval(Reg);
-
- if (MO.readsReg()) {
- LiveRange* LR = LI->getLiveRangeContaining(MIStartIdx);
- if (LR != 0)
- Entering.insert(std::make_pair(LI, LR));
- }
- if (MO.isDef()) {
- assert(!MO.isEarlyClobber() && "Early clobbers not allowed in bundles.");
- assert(!MO.isDead() && "Dead-defs not allowed in bundles.");
- LiveRange* LR = LI->getLiveRangeContaining(MIEndIdx.getDeadSlot());
- assert(LR != 0 && "Internal ranges not allowed in bundles.");
+ void collectRanges(const MachineOperand &MO, LiveInterval *LI,
+ RangeSet &Entering, RangeSet &Internal, RangeSet &Exiting,
+ SlotIndex OldIdx) {
+ if (MO.readsReg()) {
+ LiveRange* LR = LI->getLiveRangeContaining(OldIdx);
+ if (LR != 0)
+ Entering.insert(std::make_pair(LI, LR));
+ }
+ if (MO.isDef()) {
+ LiveRange* LR = LI->getLiveRangeContaining(OldIdx.getRegSlot());
+ assert(LR != 0 && "No live range for def?");
+ if (LR->end > OldIdx.getDeadSlot())
Exiting.insert(std::make_pair(LI, LR));
- }
+ else
+ Internal.insert(std::make_pair(LI, LR));
}
}
- BundleRanges createBundleRanges(RangeSet& Entering, RangeSet& Internal, RangeSet& Exiting) {
+ BundleRanges createBundleRanges(RangeSet& Entering,
+ RangeSet& Internal,
+ RangeSet& Exiting) {
BundleRanges BR;
for (RangeSet::iterator EI = Entering.begin(), EE = Entering.end();
@@ -1284,7 +1134,8 @@ private:
return; // Bail out if we don't have kill flags on the old register.
MachineInstr* NewKillMI = LIS.getInstructionFromIndex(newKillIdx);
assert(OldKillMI->killsRegister(reg) && "Old 'kill' instr isn't a kill.");
- assert(!NewKillMI->killsRegister(reg) && "New kill instr is already a kill.");
+ assert(!NewKillMI->killsRegister(reg) &&
+ "New kill instr is already a kill.");
OldKillMI->clearRegisterKills(reg, &TRI);
NewKillMI->addRegisterKilled(reg, &TRI);
}
@@ -1523,22 +1374,23 @@ private:
};
void LiveIntervals::handleMove(MachineInstr* MI) {
- SlotIndex OldIndex = indexes_->getInstructionIndex(MI);
- indexes_->removeMachineInstrFromMaps(MI);
+ SlotIndex OldIndex = Indexes->getInstructionIndex(MI);
+ Indexes->removeMachineInstrFromMaps(MI);
SlotIndex NewIndex = MI->isInsideBundle() ?
- indexes_->getInstructionIndex(MI) :
- indexes_->insertMachineInstrInMaps(MI);
+ Indexes->getInstructionIndex(MI) :
+ Indexes->insertMachineInstrInMaps(MI);
assert(getMBBStartIdx(MI->getParent()) <= OldIndex &&
OldIndex < getMBBEndIdx(MI->getParent()) &&
"Cannot handle moves across basic block boundaries.");
assert(!MI->isBundled() && "Can't handle bundled instructions yet.");
- HMEditor HME(*this, *mri_, *tri_, NewIndex);
+ HMEditor HME(*this, *MRI, *TRI, NewIndex);
HME.moveAllRangesFrom(MI, OldIndex);
}
-void LiveIntervals::handleMoveIntoBundle(MachineInstr* MI, MachineInstr* BundleStart) {
- SlotIndex NewIndex = indexes_->getInstructionIndex(BundleStart);
- HMEditor HME(*this, *mri_, *tri_, NewIndex);
+void LiveIntervals::handleMoveIntoBundle(MachineInstr* MI,
+ MachineInstr* BundleStart) {
+ SlotIndex NewIndex = Indexes->getInstructionIndex(BundleStart);
+ HMEditor HME(*this, *MRI, *TRI, NewIndex);
HME.moveAllRangesInto(MI, BundleStart);
}
OpenPOWER on IntegriCloud