summaryrefslogtreecommitdiffstats
path: root/lib/CodeGen/CGValue.h
diff options
context:
space:
mode:
Diffstat (limited to 'lib/CodeGen/CGValue.h')
-rw-r--r--lib/CodeGen/CGValue.h323
1 files changed, 323 insertions, 0 deletions
diff --git a/lib/CodeGen/CGValue.h b/lib/CodeGen/CGValue.h
new file mode 100644
index 0000000..820e1bd6
--- /dev/null
+++ b/lib/CodeGen/CGValue.h
@@ -0,0 +1,323 @@
+//===-- CGValue.h - LLVM CodeGen wrappers for llvm::Value* ------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// These classes implement wrappers around llvm::Value in order to
+// fully represent the range of values for C L- and R- values.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef CLANG_CODEGEN_CGVALUE_H
+#define CLANG_CODEGEN_CGVALUE_H
+
+#include "clang/AST/Type.h"
+
+namespace llvm {
+ class Constant;
+ class Value;
+}
+
+namespace clang {
+ class ObjCPropertyRefExpr;
+ class ObjCKVCRefExpr;
+
+namespace CodeGen {
+
+/// RValue - This trivial value class is used to represent the result of an
+/// expression that is evaluated. It can be one of three things: either a
+/// simple LLVM SSA value, a pair of SSA values for complex numbers, or the
+/// address of an aggregate value in memory.
+class RValue {
+ llvm::Value *V1, *V2;
+ // TODO: Encode this into the low bit of pointer for more efficient
+ // return-by-value.
+ enum { Scalar, Complex, Aggregate } Flavor;
+
+ bool Volatile:1;
+public:
+
+ bool isScalar() const { return Flavor == Scalar; }
+ bool isComplex() const { return Flavor == Complex; }
+ bool isAggregate() const { return Flavor == Aggregate; }
+
+ bool isVolatileQualified() const { return Volatile; }
+
+ /// getScalar() - Return the Value* of this scalar value.
+ llvm::Value *getScalarVal() const {
+ assert(isScalar() && "Not a scalar!");
+ return V1;
+ }
+
+ /// getComplexVal - Return the real/imag components of this complex value.
+ ///
+ std::pair<llvm::Value *, llvm::Value *> getComplexVal() const {
+ return std::pair<llvm::Value *, llvm::Value *>(V1, V2);
+ }
+
+ /// getAggregateAddr() - Return the Value* of the address of the aggregate.
+ llvm::Value *getAggregateAddr() const {
+ assert(isAggregate() && "Not an aggregate!");
+ return V1;
+ }
+
+ static RValue get(llvm::Value *V) {
+ RValue ER;
+ ER.V1 = V;
+ ER.Flavor = Scalar;
+ ER.Volatile = false;
+ return ER;
+ }
+ static RValue getComplex(llvm::Value *V1, llvm::Value *V2) {
+ RValue ER;
+ ER.V1 = V1;
+ ER.V2 = V2;
+ ER.Flavor = Complex;
+ ER.Volatile = false;
+ return ER;
+ }
+ static RValue getComplex(const std::pair<llvm::Value *, llvm::Value *> &C) {
+ RValue ER;
+ ER.V1 = C.first;
+ ER.V2 = C.second;
+ ER.Flavor = Complex;
+ ER.Volatile = false;
+ return ER;
+ }
+ // FIXME: Aggregate rvalues need to retain information about whether they are
+ // volatile or not. Remove default to find all places that probably get this
+ // wrong.
+ static RValue getAggregate(llvm::Value *V, bool Vol = false) {
+ RValue ER;
+ ER.V1 = V;
+ ER.Flavor = Aggregate;
+ ER.Volatile = Vol;
+ return ER;
+ }
+};
+
+
+/// LValue - This represents an lvalue references. Because C/C++ allow
+/// bitfields, this is not a simple LLVM pointer, it may be a pointer plus a
+/// bitrange.
+class LValue {
+ // FIXME: alignment?
+
+ enum {
+ Simple, // This is a normal l-value, use getAddress().
+ VectorElt, // This is a vector element l-value (V[i]), use getVector*
+ BitField, // This is a bitfield l-value, use getBitfield*.
+ ExtVectorElt, // This is an extended vector subset, use getExtVectorComp
+ PropertyRef, // This is an Objective-C property reference, use
+ // getPropertyRefExpr
+ KVCRef // This is an objective-c 'implicit' property ref,
+ // use getKVCRefExpr
+ } LVType;
+
+ enum ObjCType {
+ None = 0, // object with no gc attribute.
+ Weak, // __weak object expression
+ Strong // __strong object expression
+ };
+
+ llvm::Value *V;
+
+ union {
+ // Index into a vector subscript: V[i]
+ llvm::Value *VectorIdx;
+
+ // ExtVector element subset: V.xyx
+ llvm::Constant *VectorElts;
+
+ // BitField start bit and size
+ struct {
+ unsigned short StartBit;
+ unsigned short Size;
+ bool IsSigned;
+ } BitfieldData;
+
+ // Obj-C property reference expression
+ const ObjCPropertyRefExpr *PropertyRefExpr;
+ // ObjC 'implicit' property reference expression
+ const ObjCKVCRefExpr *KVCRefExpr;
+ };
+
+ bool Volatile:1;
+ // FIXME: set but never used, what effect should it have?
+ bool Restrict:1;
+
+ // objective-c's ivar
+ bool Ivar:1;
+
+ // LValue is non-gc'able for any reason, including being a parameter or local
+ // variable.
+ bool NonGC: 1;
+
+ // Lvalue is a global reference of an objective-c object
+ bool GlobalObjCRef : 1;
+
+ // objective-c's gc attributes
+ unsigned ObjCType : 2;
+
+
+
+private:
+ static void SetQualifiers(unsigned Qualifiers, LValue& R) {
+ R.Volatile = (Qualifiers&QualType::Volatile)!=0;
+ R.Restrict = (Qualifiers&QualType::Restrict)!=0;
+ // FIXME: Convenient place to set objc flags to 0. This should really be
+ // done in a user-defined constructor instead.
+ R.ObjCType = None;
+ R.Ivar = R.NonGC = R.GlobalObjCRef = false;
+ }
+
+public:
+ bool isSimple() const { return LVType == Simple; }
+ bool isVectorElt() const { return LVType == VectorElt; }
+ bool isBitfield() const { return LVType == BitField; }
+ bool isExtVectorElt() const { return LVType == ExtVectorElt; }
+ bool isPropertyRef() const { return LVType == PropertyRef; }
+ bool isKVCRef() const { return LVType == KVCRef; }
+
+ bool isVolatileQualified() const { return Volatile; }
+ bool isRestrictQualified() const { return Restrict; }
+ unsigned getQualifiers() const {
+ return (Volatile ? QualType::Volatile : 0) |
+ (Restrict ? QualType::Restrict : 0);
+ }
+
+ bool isObjCIvar() const { return Ivar; }
+ bool isNonGC () const { return NonGC; }
+ bool isGlobalObjCRef() const { return GlobalObjCRef; }
+ bool isObjCWeak() const { return ObjCType == Weak; }
+ bool isObjCStrong() const { return ObjCType == Strong; }
+
+ static void SetObjCIvar(LValue& R, bool iValue) {
+ R.Ivar = iValue;
+ }
+
+ static void SetGlobalObjCRef(LValue& R, bool iValue) {
+ R.GlobalObjCRef = iValue;
+ }
+
+ static void SetObjCNonGC(LValue& R, bool iValue) {
+ R.NonGC = iValue;
+ }
+ static void SetObjCType(QualType::GCAttrTypes GCAttrs, LValue& R) {
+ if (GCAttrs == QualType::Weak)
+ R.ObjCType = Weak;
+ else if (GCAttrs == QualType::Strong)
+ R.ObjCType = Strong;
+ else
+ R.ObjCType = None;
+ }
+
+ // simple lvalue
+ llvm::Value *getAddress() const { assert(isSimple()); return V; }
+ // vector elt lvalue
+ llvm::Value *getVectorAddr() const { assert(isVectorElt()); return V; }
+ llvm::Value *getVectorIdx() const { assert(isVectorElt()); return VectorIdx; }
+ // extended vector elements.
+ llvm::Value *getExtVectorAddr() const { assert(isExtVectorElt()); return V; }
+ llvm::Constant *getExtVectorElts() const {
+ assert(isExtVectorElt());
+ return VectorElts;
+ }
+ // bitfield lvalue
+ llvm::Value *getBitfieldAddr() const { assert(isBitfield()); return V; }
+ unsigned short getBitfieldStartBit() const {
+ assert(isBitfield());
+ return BitfieldData.StartBit;
+ }
+ unsigned short getBitfieldSize() const {
+ assert(isBitfield());
+ return BitfieldData.Size;
+ }
+ bool isBitfieldSigned() const {
+ assert(isBitfield());
+ return BitfieldData.IsSigned;
+ }
+ // property ref lvalue
+ const ObjCPropertyRefExpr *getPropertyRefExpr() const {
+ assert(isPropertyRef());
+ return PropertyRefExpr;
+ }
+
+ // 'implicit' property ref lvalue
+ const ObjCKVCRefExpr *getKVCRefExpr() const {
+ assert(isKVCRef());
+ return KVCRefExpr;
+ }
+
+ static LValue MakeAddr(llvm::Value *V, unsigned Qualifiers,
+ QualType::GCAttrTypes GCAttrs = QualType::GCNone) {
+ LValue R;
+ R.LVType = Simple;
+ R.V = V;
+ SetQualifiers(Qualifiers,R);
+ SetObjCType(GCAttrs, R);
+ return R;
+ }
+
+ static LValue MakeVectorElt(llvm::Value *Vec, llvm::Value *Idx,
+ unsigned Qualifiers) {
+ LValue R;
+ R.LVType = VectorElt;
+ R.V = Vec;
+ R.VectorIdx = Idx;
+ SetQualifiers(Qualifiers,R);
+ return R;
+ }
+
+ static LValue MakeExtVectorElt(llvm::Value *Vec, llvm::Constant *Elts,
+ unsigned Qualifiers) {
+ LValue R;
+ R.LVType = ExtVectorElt;
+ R.V = Vec;
+ R.VectorElts = Elts;
+ SetQualifiers(Qualifiers,R);
+ return R;
+ }
+
+ static LValue MakeBitfield(llvm::Value *V, unsigned short StartBit,
+ unsigned short Size, bool IsSigned,
+ unsigned Qualifiers) {
+ LValue R;
+ R.LVType = BitField;
+ R.V = V;
+ R.BitfieldData.StartBit = StartBit;
+ R.BitfieldData.Size = Size;
+ R.BitfieldData.IsSigned = IsSigned;
+ SetQualifiers(Qualifiers,R);
+ return R;
+ }
+
+ // FIXME: It is probably bad that we aren't emitting the target when we build
+ // the lvalue. However, this complicates the code a bit, and I haven't figured
+ // out how to make it go wrong yet.
+ static LValue MakePropertyRef(const ObjCPropertyRefExpr *E,
+ unsigned Qualifiers) {
+ LValue R;
+ R.LVType = PropertyRef;
+ R.PropertyRefExpr = E;
+ SetQualifiers(Qualifiers,R);
+ return R;
+ }
+
+ static LValue MakeKVCRef(const ObjCKVCRefExpr *E, unsigned Qualifiers) {
+ LValue R;
+ R.LVType = KVCRef;
+ R.KVCRefExpr = E;
+ SetQualifiers(Qualifiers,R);
+ return R;
+ }
+};
+
+} // end namespace CodeGen
+} // end namespace clang
+
+#endif
OpenPOWER on IntegriCloud