summaryrefslogtreecommitdiffstats
path: root/lib/CodeGen/CGExprScalar.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'lib/CodeGen/CGExprScalar.cpp')
-rw-r--r--lib/CodeGen/CGExprScalar.cpp1575
1 files changed, 1575 insertions, 0 deletions
diff --git a/lib/CodeGen/CGExprScalar.cpp b/lib/CodeGen/CGExprScalar.cpp
new file mode 100644
index 0000000..950e9e5
--- /dev/null
+++ b/lib/CodeGen/CGExprScalar.cpp
@@ -0,0 +1,1575 @@
+//===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This contains code to emit Expr nodes with scalar LLVM types as LLVM code.
+//
+//===----------------------------------------------------------------------===//
+
+#include "CodeGenFunction.h"
+#include "CodeGenModule.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/DeclObjC.h"
+#include "clang/AST/RecordLayout.h"
+#include "clang/AST/StmtVisitor.h"
+#include "clang/Basic/TargetInfo.h"
+#include "llvm/Constants.h"
+#include "llvm/Function.h"
+#include "llvm/GlobalVariable.h"
+#include "llvm/Intrinsics.h"
+#include "llvm/Module.h"
+#include "llvm/Support/Compiler.h"
+#include "llvm/Support/CFG.h"
+#include "llvm/Target/TargetData.h"
+#include <cstdarg>
+
+using namespace clang;
+using namespace CodeGen;
+using llvm::Value;
+
+//===----------------------------------------------------------------------===//
+// Scalar Expression Emitter
+//===----------------------------------------------------------------------===//
+
+struct BinOpInfo {
+ Value *LHS;
+ Value *RHS;
+ QualType Ty; // Computation Type.
+ const BinaryOperator *E;
+};
+
+namespace {
+class VISIBILITY_HIDDEN ScalarExprEmitter
+ : public StmtVisitor<ScalarExprEmitter, Value*> {
+ CodeGenFunction &CGF;
+ CGBuilderTy &Builder;
+ bool IgnoreResultAssign;
+
+public:
+
+ ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false)
+ : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira) {
+ }
+
+ //===--------------------------------------------------------------------===//
+ // Utilities
+ //===--------------------------------------------------------------------===//
+
+ bool TestAndClearIgnoreResultAssign() {
+ bool I = IgnoreResultAssign; IgnoreResultAssign = false;
+ return I; }
+
+ const llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); }
+ LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); }
+
+ Value *EmitLoadOfLValue(LValue LV, QualType T) {
+ return CGF.EmitLoadOfLValue(LV, T).getScalarVal();
+ }
+
+ /// EmitLoadOfLValue - Given an expression with complex type that represents a
+ /// value l-value, this method emits the address of the l-value, then loads
+ /// and returns the result.
+ Value *EmitLoadOfLValue(const Expr *E) {
+ return EmitLoadOfLValue(EmitLValue(E), E->getType());
+ }
+
+ /// EmitConversionToBool - Convert the specified expression value to a
+ /// boolean (i1) truth value. This is equivalent to "Val != 0".
+ Value *EmitConversionToBool(Value *Src, QualType DstTy);
+
+ /// EmitScalarConversion - Emit a conversion from the specified type to the
+ /// specified destination type, both of which are LLVM scalar types.
+ Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy);
+
+ /// EmitComplexToScalarConversion - Emit a conversion from the specified
+ /// complex type to the specified destination type, where the destination
+ /// type is an LLVM scalar type.
+ Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
+ QualType SrcTy, QualType DstTy);
+
+ //===--------------------------------------------------------------------===//
+ // Visitor Methods
+ //===--------------------------------------------------------------------===//
+
+ Value *VisitStmt(Stmt *S) {
+ S->dump(CGF.getContext().getSourceManager());
+ assert(0 && "Stmt can't have complex result type!");
+ return 0;
+ }
+ Value *VisitExpr(Expr *S);
+ Value *VisitParenExpr(ParenExpr *PE) { return Visit(PE->getSubExpr()); }
+
+ // Leaves.
+ Value *VisitIntegerLiteral(const IntegerLiteral *E) {
+ return llvm::ConstantInt::get(E->getValue());
+ }
+ Value *VisitFloatingLiteral(const FloatingLiteral *E) {
+ return llvm::ConstantFP::get(E->getValue());
+ }
+ Value *VisitCharacterLiteral(const CharacterLiteral *E) {
+ return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
+ }
+ Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
+ return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
+ }
+ Value *VisitCXXZeroInitValueExpr(const CXXZeroInitValueExpr *E) {
+ return llvm::Constant::getNullValue(ConvertType(E->getType()));
+ }
+ Value *VisitGNUNullExpr(const GNUNullExpr *E) {
+ return llvm::Constant::getNullValue(ConvertType(E->getType()));
+ }
+ Value *VisitTypesCompatibleExpr(const TypesCompatibleExpr *E) {
+ return llvm::ConstantInt::get(ConvertType(E->getType()),
+ CGF.getContext().typesAreCompatible(
+ E->getArgType1(), E->getArgType2()));
+ }
+ Value *VisitSizeOfAlignOfExpr(const SizeOfAlignOfExpr *E);
+ Value *VisitAddrLabelExpr(const AddrLabelExpr *E) {
+ llvm::Value *V =
+ llvm::ConstantInt::get(llvm::Type::Int32Ty,
+ CGF.GetIDForAddrOfLabel(E->getLabel()));
+
+ return Builder.CreateIntToPtr(V, ConvertType(E->getType()));
+ }
+
+ // l-values.
+ Value *VisitDeclRefExpr(DeclRefExpr *E) {
+ if (const EnumConstantDecl *EC = dyn_cast<EnumConstantDecl>(E->getDecl()))
+ return llvm::ConstantInt::get(EC->getInitVal());
+ return EmitLoadOfLValue(E);
+ }
+ Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) {
+ return CGF.EmitObjCSelectorExpr(E);
+ }
+ Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) {
+ return CGF.EmitObjCProtocolExpr(E);
+ }
+ Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
+ return EmitLoadOfLValue(E);
+ }
+ Value *VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E) {
+ return EmitLoadOfLValue(E);
+ }
+ Value *VisitObjCKVCRefExpr(ObjCKVCRefExpr *E) {
+ return EmitLoadOfLValue(E);
+ }
+ Value *VisitObjCMessageExpr(ObjCMessageExpr *E) {
+ return CGF.EmitObjCMessageExpr(E).getScalarVal();
+ }
+
+ Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E);
+ Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E);
+ Value *VisitMemberExpr(Expr *E) { return EmitLoadOfLValue(E); }
+ Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); }
+ Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
+ return EmitLoadOfLValue(E);
+ }
+ Value *VisitStringLiteral(Expr *E) { return EmitLValue(E).getAddress(); }
+ Value *VisitObjCEncodeExpr(const ObjCEncodeExpr *E) {
+ return EmitLValue(E).getAddress();
+ }
+
+ Value *VisitPredefinedExpr(Expr *E) { return EmitLValue(E).getAddress(); }
+
+ Value *VisitInitListExpr(InitListExpr *E) {
+ bool Ignore = TestAndClearIgnoreResultAssign();
+ (void)Ignore;
+ assert (Ignore == false && "init list ignored");
+ unsigned NumInitElements = E->getNumInits();
+
+ if (E->hadArrayRangeDesignator()) {
+ CGF.ErrorUnsupported(E, "GNU array range designator extension");
+ }
+
+ const llvm::VectorType *VType =
+ dyn_cast<llvm::VectorType>(ConvertType(E->getType()));
+
+ // We have a scalar in braces. Just use the first element.
+ if (!VType)
+ return Visit(E->getInit(0));
+
+ unsigned NumVectorElements = VType->getNumElements();
+ const llvm::Type *ElementType = VType->getElementType();
+
+ // Emit individual vector element stores.
+ llvm::Value *V = llvm::UndefValue::get(VType);
+
+ // Emit initializers
+ unsigned i;
+ for (i = 0; i < NumInitElements; ++i) {
+ Value *NewV = Visit(E->getInit(i));
+ Value *Idx = llvm::ConstantInt::get(llvm::Type::Int32Ty, i);
+ V = Builder.CreateInsertElement(V, NewV, Idx);
+ }
+
+ // Emit remaining default initializers
+ for (/* Do not initialize i*/; i < NumVectorElements; ++i) {
+ Value *Idx = llvm::ConstantInt::get(llvm::Type::Int32Ty, i);
+ llvm::Value *NewV = llvm::Constant::getNullValue(ElementType);
+ V = Builder.CreateInsertElement(V, NewV, Idx);
+ }
+
+ return V;
+ }
+
+ Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
+ return llvm::Constant::getNullValue(ConvertType(E->getType()));
+ }
+ Value *VisitImplicitCastExpr(const ImplicitCastExpr *E);
+ Value *VisitCastExpr(const CastExpr *E) {
+ // Make sure to evaluate VLA bounds now so that we have them for later.
+ if (E->getType()->isVariablyModifiedType())
+ CGF.EmitVLASize(E->getType());
+
+ return EmitCastExpr(E->getSubExpr(), E->getType());
+ }
+ Value *EmitCastExpr(const Expr *E, QualType T);
+
+ Value *VisitCallExpr(const CallExpr *E) {
+ if (E->getCallReturnType()->isReferenceType())
+ return EmitLoadOfLValue(E);
+
+ return CGF.EmitCallExpr(E).getScalarVal();
+ }
+
+ Value *VisitStmtExpr(const StmtExpr *E);
+
+ Value *VisitBlockDeclRefExpr(const BlockDeclRefExpr *E);
+
+ // Unary Operators.
+ Value *VisitPrePostIncDec(const UnaryOperator *E, bool isInc, bool isPre);
+ Value *VisitUnaryPostDec(const UnaryOperator *E) {
+ return VisitPrePostIncDec(E, false, false);
+ }
+ Value *VisitUnaryPostInc(const UnaryOperator *E) {
+ return VisitPrePostIncDec(E, true, false);
+ }
+ Value *VisitUnaryPreDec(const UnaryOperator *E) {
+ return VisitPrePostIncDec(E, false, true);
+ }
+ Value *VisitUnaryPreInc(const UnaryOperator *E) {
+ return VisitPrePostIncDec(E, true, true);
+ }
+ Value *VisitUnaryAddrOf(const UnaryOperator *E) {
+ return EmitLValue(E->getSubExpr()).getAddress();
+ }
+ Value *VisitUnaryDeref(const Expr *E) { return EmitLoadOfLValue(E); }
+ Value *VisitUnaryPlus(const UnaryOperator *E) {
+ // This differs from gcc, though, most likely due to a bug in gcc.
+ TestAndClearIgnoreResultAssign();
+ return Visit(E->getSubExpr());
+ }
+ Value *VisitUnaryMinus (const UnaryOperator *E);
+ Value *VisitUnaryNot (const UnaryOperator *E);
+ Value *VisitUnaryLNot (const UnaryOperator *E);
+ Value *VisitUnaryReal (const UnaryOperator *E);
+ Value *VisitUnaryImag (const UnaryOperator *E);
+ Value *VisitUnaryExtension(const UnaryOperator *E) {
+ return Visit(E->getSubExpr());
+ }
+ Value *VisitUnaryOffsetOf(const UnaryOperator *E);
+
+ // C++
+ Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
+ return Visit(DAE->getExpr());
+ }
+ Value *VisitCXXThisExpr(CXXThisExpr *TE) {
+ return CGF.LoadCXXThis();
+ }
+
+ Value *VisitCXXExprWithTemporaries(CXXExprWithTemporaries *E) {
+ return CGF.EmitCXXExprWithTemporaries(E).getScalarVal();
+ }
+ Value *VisitCXXNewExpr(const CXXNewExpr *E) {
+ return CGF.EmitCXXNewExpr(E);
+ }
+
+ // Binary Operators.
+ Value *EmitMul(const BinOpInfo &Ops) {
+ if (CGF.getContext().getLangOptions().OverflowChecking
+ && Ops.Ty->isSignedIntegerType())
+ return EmitOverflowCheckedBinOp(Ops);
+ return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
+ }
+ /// Create a binary op that checks for overflow.
+ /// Currently only supports +, - and *.
+ Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops);
+ Value *EmitDiv(const BinOpInfo &Ops);
+ Value *EmitRem(const BinOpInfo &Ops);
+ Value *EmitAdd(const BinOpInfo &Ops);
+ Value *EmitSub(const BinOpInfo &Ops);
+ Value *EmitShl(const BinOpInfo &Ops);
+ Value *EmitShr(const BinOpInfo &Ops);
+ Value *EmitAnd(const BinOpInfo &Ops) {
+ return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and");
+ }
+ Value *EmitXor(const BinOpInfo &Ops) {
+ return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor");
+ }
+ Value *EmitOr (const BinOpInfo &Ops) {
+ return Builder.CreateOr(Ops.LHS, Ops.RHS, "or");
+ }
+
+ BinOpInfo EmitBinOps(const BinaryOperator *E);
+ Value *EmitCompoundAssign(const CompoundAssignOperator *E,
+ Value *(ScalarExprEmitter::*F)(const BinOpInfo &));
+
+ // Binary operators and binary compound assignment operators.
+#define HANDLEBINOP(OP) \
+ Value *VisitBin ## OP(const BinaryOperator *E) { \
+ return Emit ## OP(EmitBinOps(E)); \
+ } \
+ Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) { \
+ return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP); \
+ }
+ HANDLEBINOP(Mul);
+ HANDLEBINOP(Div);
+ HANDLEBINOP(Rem);
+ HANDLEBINOP(Add);
+ HANDLEBINOP(Sub);
+ HANDLEBINOP(Shl);
+ HANDLEBINOP(Shr);
+ HANDLEBINOP(And);
+ HANDLEBINOP(Xor);
+ HANDLEBINOP(Or);
+#undef HANDLEBINOP
+
+ // Comparisons.
+ Value *EmitCompare(const BinaryOperator *E, unsigned UICmpOpc,
+ unsigned SICmpOpc, unsigned FCmpOpc);
+#define VISITCOMP(CODE, UI, SI, FP) \
+ Value *VisitBin##CODE(const BinaryOperator *E) { \
+ return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \
+ llvm::FCmpInst::FP); }
+ VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT);
+ VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT);
+ VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE);
+ VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE);
+ VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ);
+ VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE);
+#undef VISITCOMP
+
+ Value *VisitBinAssign (const BinaryOperator *E);
+
+ Value *VisitBinLAnd (const BinaryOperator *E);
+ Value *VisitBinLOr (const BinaryOperator *E);
+ Value *VisitBinComma (const BinaryOperator *E);
+
+ // Other Operators.
+ Value *VisitBlockExpr(const BlockExpr *BE);
+ Value *VisitConditionalOperator(const ConditionalOperator *CO);
+ Value *VisitChooseExpr(ChooseExpr *CE);
+ Value *VisitVAArgExpr(VAArgExpr *VE);
+ Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) {
+ return CGF.EmitObjCStringLiteral(E);
+ }
+};
+} // end anonymous namespace.
+
+//===----------------------------------------------------------------------===//
+// Utilities
+//===----------------------------------------------------------------------===//
+
+/// EmitConversionToBool - Convert the specified expression value to a
+/// boolean (i1) truth value. This is equivalent to "Val != 0".
+Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) {
+ assert(SrcType->isCanonical() && "EmitScalarConversion strips typedefs");
+
+ if (SrcType->isRealFloatingType()) {
+ // Compare against 0.0 for fp scalars.
+ llvm::Value *Zero = llvm::Constant::getNullValue(Src->getType());
+ return Builder.CreateFCmpUNE(Src, Zero, "tobool");
+ }
+
+ assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) &&
+ "Unknown scalar type to convert");
+
+ // Because of the type rules of C, we often end up computing a logical value,
+ // then zero extending it to int, then wanting it as a logical value again.
+ // Optimize this common case.
+ if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(Src)) {
+ if (ZI->getOperand(0)->getType() == llvm::Type::Int1Ty) {
+ Value *Result = ZI->getOperand(0);
+ // If there aren't any more uses, zap the instruction to save space.
+ // Note that there can be more uses, for example if this
+ // is the result of an assignment.
+ if (ZI->use_empty())
+ ZI->eraseFromParent();
+ return Result;
+ }
+ }
+
+ // Compare against an integer or pointer null.
+ llvm::Value *Zero = llvm::Constant::getNullValue(Src->getType());
+ return Builder.CreateICmpNE(Src, Zero, "tobool");
+}
+
+/// EmitScalarConversion - Emit a conversion from the specified type to the
+/// specified destination type, both of which are LLVM scalar types.
+Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
+ QualType DstType) {
+ SrcType = CGF.getContext().getCanonicalType(SrcType);
+ DstType = CGF.getContext().getCanonicalType(DstType);
+ if (SrcType == DstType) return Src;
+
+ if (DstType->isVoidType()) return 0;
+
+ // Handle conversions to bool first, they are special: comparisons against 0.
+ if (DstType->isBooleanType())
+ return EmitConversionToBool(Src, SrcType);
+
+ const llvm::Type *DstTy = ConvertType(DstType);
+
+ // Ignore conversions like int -> uint.
+ if (Src->getType() == DstTy)
+ return Src;
+
+ // Handle pointer conversions next: pointers can only be converted
+ // to/from other pointers and integers. Check for pointer types in
+ // terms of LLVM, as some native types (like Obj-C id) may map to a
+ // pointer type.
+ if (isa<llvm::PointerType>(DstTy)) {
+ // The source value may be an integer, or a pointer.
+ if (isa<llvm::PointerType>(Src->getType()))
+ return Builder.CreateBitCast(Src, DstTy, "conv");
+ assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
+ // First, convert to the correct width so that we control the kind of
+ // extension.
+ const llvm::Type *MiddleTy = llvm::IntegerType::get(CGF.LLVMPointerWidth);
+ bool InputSigned = SrcType->isSignedIntegerType();
+ llvm::Value* IntResult =
+ Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
+ // Then, cast to pointer.
+ return Builder.CreateIntToPtr(IntResult, DstTy, "conv");
+ }
+
+ if (isa<llvm::PointerType>(Src->getType())) {
+ // Must be an ptr to int cast.
+ assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?");
+ return Builder.CreatePtrToInt(Src, DstTy, "conv");
+ }
+
+ // A scalar can be splatted to an extended vector of the same element type
+ if (DstType->isExtVectorType() && !isa<VectorType>(SrcType)) {
+ // Cast the scalar to element type
+ QualType EltTy = DstType->getAsExtVectorType()->getElementType();
+ llvm::Value *Elt = EmitScalarConversion(Src, SrcType, EltTy);
+
+ // Insert the element in element zero of an undef vector
+ llvm::Value *UnV = llvm::UndefValue::get(DstTy);
+ llvm::Value *Idx = llvm::ConstantInt::get(llvm::Type::Int32Ty, 0);
+ UnV = Builder.CreateInsertElement(UnV, Elt, Idx, "tmp");
+
+ // Splat the element across to all elements
+ llvm::SmallVector<llvm::Constant*, 16> Args;
+ unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
+ for (unsigned i = 0; i < NumElements; i++)
+ Args.push_back(llvm::ConstantInt::get(llvm::Type::Int32Ty, 0));
+
+ llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], NumElements);
+ llvm::Value *Yay = Builder.CreateShuffleVector(UnV, UnV, Mask, "splat");
+ return Yay;
+ }
+
+ // Allow bitcast from vector to integer/fp of the same size.
+ if (isa<llvm::VectorType>(Src->getType()) ||
+ isa<llvm::VectorType>(DstTy))
+ return Builder.CreateBitCast(Src, DstTy, "conv");
+
+ // Finally, we have the arithmetic types: real int/float.
+ if (isa<llvm::IntegerType>(Src->getType())) {
+ bool InputSigned = SrcType->isSignedIntegerType();
+ if (isa<llvm::IntegerType>(DstTy))
+ return Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
+ else if (InputSigned)
+ return Builder.CreateSIToFP(Src, DstTy, "conv");
+ else
+ return Builder.CreateUIToFP(Src, DstTy, "conv");
+ }
+
+ assert(Src->getType()->isFloatingPoint() && "Unknown real conversion");
+ if (isa<llvm::IntegerType>(DstTy)) {
+ if (DstType->isSignedIntegerType())
+ return Builder.CreateFPToSI(Src, DstTy, "conv");
+ else
+ return Builder.CreateFPToUI(Src, DstTy, "conv");
+ }
+
+ assert(DstTy->isFloatingPoint() && "Unknown real conversion");
+ if (DstTy->getTypeID() < Src->getType()->getTypeID())
+ return Builder.CreateFPTrunc(Src, DstTy, "conv");
+ else
+ return Builder.CreateFPExt(Src, DstTy, "conv");
+}
+
+/// EmitComplexToScalarConversion - Emit a conversion from the specified
+/// complex type to the specified destination type, where the destination
+/// type is an LLVM scalar type.
+Value *ScalarExprEmitter::
+EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
+ QualType SrcTy, QualType DstTy) {
+ // Get the source element type.
+ SrcTy = SrcTy->getAsComplexType()->getElementType();
+
+ // Handle conversions to bool first, they are special: comparisons against 0.
+ if (DstTy->isBooleanType()) {
+ // Complex != 0 -> (Real != 0) | (Imag != 0)
+ Src.first = EmitScalarConversion(Src.first, SrcTy, DstTy);
+ Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy);
+ return Builder.CreateOr(Src.first, Src.second, "tobool");
+ }
+
+ // C99 6.3.1.7p2: "When a value of complex type is converted to a real type,
+ // the imaginary part of the complex value is discarded and the value of the
+ // real part is converted according to the conversion rules for the
+ // corresponding real type.
+ return EmitScalarConversion(Src.first, SrcTy, DstTy);
+}
+
+
+//===----------------------------------------------------------------------===//
+// Visitor Methods
+//===----------------------------------------------------------------------===//
+
+Value *ScalarExprEmitter::VisitExpr(Expr *E) {
+ CGF.ErrorUnsupported(E, "scalar expression");
+ if (E->getType()->isVoidType())
+ return 0;
+ return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
+}
+
+Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) {
+ llvm::SmallVector<llvm::Constant*, 32> indices;
+ for (unsigned i = 2; i < E->getNumSubExprs(); i++) {
+ indices.push_back(cast<llvm::Constant>(CGF.EmitScalarExpr(E->getExpr(i))));
+ }
+ Value* V1 = CGF.EmitScalarExpr(E->getExpr(0));
+ Value* V2 = CGF.EmitScalarExpr(E->getExpr(1));
+ Value* SV = llvm::ConstantVector::get(indices.begin(), indices.size());
+ return Builder.CreateShuffleVector(V1, V2, SV, "shuffle");
+}
+
+Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
+ TestAndClearIgnoreResultAssign();
+
+ // Emit subscript expressions in rvalue context's. For most cases, this just
+ // loads the lvalue formed by the subscript expr. However, we have to be
+ // careful, because the base of a vector subscript is occasionally an rvalue,
+ // so we can't get it as an lvalue.
+ if (!E->getBase()->getType()->isVectorType())
+ return EmitLoadOfLValue(E);
+
+ // Handle the vector case. The base must be a vector, the index must be an
+ // integer value.
+ Value *Base = Visit(E->getBase());
+ Value *Idx = Visit(E->getIdx());
+ bool IdxSigned = E->getIdx()->getType()->isSignedIntegerType();
+ Idx = Builder.CreateIntCast(Idx, llvm::Type::Int32Ty, IdxSigned,
+ "vecidxcast");
+ return Builder.CreateExtractElement(Base, Idx, "vecext");
+}
+
+/// VisitImplicitCastExpr - Implicit casts are the same as normal casts, but
+/// also handle things like function to pointer-to-function decay, and array to
+/// pointer decay.
+Value *ScalarExprEmitter::VisitImplicitCastExpr(const ImplicitCastExpr *E) {
+ const Expr *Op = E->getSubExpr();
+
+ // If this is due to array->pointer conversion, emit the array expression as
+ // an l-value.
+ if (Op->getType()->isArrayType()) {
+ Value *V = EmitLValue(Op).getAddress(); // Bitfields can't be arrays.
+
+ // Note that VLA pointers are always decayed, so we don't need to do
+ // anything here.
+ if (!Op->getType()->isVariableArrayType()) {
+ assert(isa<llvm::PointerType>(V->getType()) && "Expected pointer");
+ assert(isa<llvm::ArrayType>(cast<llvm::PointerType>(V->getType())
+ ->getElementType()) &&
+ "Expected pointer to array");
+ V = Builder.CreateStructGEP(V, 0, "arraydecay");
+ }
+
+ // The resultant pointer type can be implicitly casted to other pointer
+ // types as well (e.g. void*) and can be implicitly converted to integer.
+ const llvm::Type *DestTy = ConvertType(E->getType());
+ if (V->getType() != DestTy) {
+ if (isa<llvm::PointerType>(DestTy))
+ V = Builder.CreateBitCast(V, DestTy, "ptrconv");
+ else {
+ assert(isa<llvm::IntegerType>(DestTy) && "Unknown array decay");
+ V = Builder.CreatePtrToInt(V, DestTy, "ptrconv");
+ }
+ }
+ return V;
+ }
+
+ return EmitCastExpr(Op, E->getType());
+}
+
+
+// VisitCastExpr - Emit code for an explicit or implicit cast. Implicit casts
+// have to handle a more broad range of conversions than explicit casts, as they
+// handle things like function to ptr-to-function decay etc.
+Value *ScalarExprEmitter::EmitCastExpr(const Expr *E, QualType DestTy) {
+ if (!DestTy->isVoidType())
+ TestAndClearIgnoreResultAssign();
+
+ // Handle cases where the source is an non-complex type.
+
+ if (!CGF.hasAggregateLLVMType(E->getType())) {
+ Value *Src = Visit(const_cast<Expr*>(E));
+
+ // Use EmitScalarConversion to perform the conversion.
+ return EmitScalarConversion(Src, E->getType(), DestTy);
+ }
+
+ if (E->getType()->isAnyComplexType()) {
+ // Handle cases where the source is a complex type.
+ bool IgnoreImag = true;
+ bool IgnoreImagAssign = true;
+ bool IgnoreReal = IgnoreResultAssign;
+ bool IgnoreRealAssign = IgnoreResultAssign;
+ if (DestTy->isBooleanType())
+ IgnoreImagAssign = IgnoreImag = false;
+ else if (DestTy->isVoidType()) {
+ IgnoreReal = IgnoreImag = false;
+ IgnoreRealAssign = IgnoreImagAssign = true;
+ }
+ CodeGenFunction::ComplexPairTy V
+ = CGF.EmitComplexExpr(E, IgnoreReal, IgnoreImag, IgnoreRealAssign,
+ IgnoreImagAssign);
+ return EmitComplexToScalarConversion(V, E->getType(), DestTy);
+ }
+
+ // Okay, this is a cast from an aggregate. It must be a cast to void. Just
+ // evaluate the result and return.
+ CGF.EmitAggExpr(E, 0, false, true);
+ return 0;
+}
+
+Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) {
+ return CGF.EmitCompoundStmt(*E->getSubStmt(),
+ !E->getType()->isVoidType()).getScalarVal();
+}
+
+Value *ScalarExprEmitter::VisitBlockDeclRefExpr(const BlockDeclRefExpr *E) {
+ return Builder.CreateLoad(CGF.GetAddrOfBlockDecl(E), false, "tmp");
+}
+
+//===----------------------------------------------------------------------===//
+// Unary Operators
+//===----------------------------------------------------------------------===//
+
+Value *ScalarExprEmitter::VisitPrePostIncDec(const UnaryOperator *E,
+ bool isInc, bool isPre) {
+ LValue LV = EmitLValue(E->getSubExpr());
+ QualType ValTy = E->getSubExpr()->getType();
+ Value *InVal = CGF.EmitLoadOfLValue(LV, ValTy).getScalarVal();
+
+ int AmountVal = isInc ? 1 : -1;
+
+ if (ValTy->isPointerType() &&
+ ValTy->getAsPointerType()->isVariableArrayType()) {
+ // The amount of the addition/subtraction needs to account for the VLA size
+ CGF.ErrorUnsupported(E, "VLA pointer inc/dec");
+ }
+
+ Value *NextVal;
+ if (const llvm::PointerType *PT =
+ dyn_cast<llvm::PointerType>(InVal->getType())) {
+ llvm::Constant *Inc =llvm::ConstantInt::get(llvm::Type::Int32Ty, AmountVal);
+ if (!isa<llvm::FunctionType>(PT->getElementType())) {
+ NextVal = Builder.CreateGEP(InVal, Inc, "ptrincdec");
+ } else {
+ const llvm::Type *i8Ty = llvm::PointerType::getUnqual(llvm::Type::Int8Ty);
+ NextVal = Builder.CreateBitCast(InVal, i8Ty, "tmp");
+ NextVal = Builder.CreateGEP(NextVal, Inc, "ptrincdec");
+ NextVal = Builder.CreateBitCast(NextVal, InVal->getType());
+ }
+ } else if (InVal->getType() == llvm::Type::Int1Ty && isInc) {
+ // Bool++ is an interesting case, due to promotion rules, we get:
+ // Bool++ -> Bool = Bool+1 -> Bool = (int)Bool+1 ->
+ // Bool = ((int)Bool+1) != 0
+ // An interesting aspect of this is that increment is always true.
+ // Decrement does not have this property.
+ NextVal = llvm::ConstantInt::getTrue();
+ } else {
+ // Add the inc/dec to the real part.
+ if (isa<llvm::IntegerType>(InVal->getType()))
+ NextVal = llvm::ConstantInt::get(InVal->getType(), AmountVal);
+ else if (InVal->getType() == llvm::Type::FloatTy)
+ NextVal =
+ llvm::ConstantFP::get(llvm::APFloat(static_cast<float>(AmountVal)));
+ else if (InVal->getType() == llvm::Type::DoubleTy)
+ NextVal =
+ llvm::ConstantFP::get(llvm::APFloat(static_cast<double>(AmountVal)));
+ else {
+ llvm::APFloat F(static_cast<float>(AmountVal));
+ bool ignored;
+ F.convert(CGF.Target.getLongDoubleFormat(), llvm::APFloat::rmTowardZero,
+ &ignored);
+ NextVal = llvm::ConstantFP::get(F);
+ }
+ NextVal = Builder.CreateAdd(InVal, NextVal, isInc ? "inc" : "dec");
+ }
+
+ // Store the updated result through the lvalue.
+ if (LV.isBitfield())
+ CGF.EmitStoreThroughBitfieldLValue(RValue::get(NextVal), LV, ValTy,
+ &NextVal);
+ else
+ CGF.EmitStoreThroughLValue(RValue::get(NextVal), LV, ValTy);
+
+ // If this is a postinc, return the value read from memory, otherwise use the
+ // updated value.
+ return isPre ? NextVal : InVal;
+}
+
+
+Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
+ TestAndClearIgnoreResultAssign();
+ Value *Op = Visit(E->getSubExpr());
+ return Builder.CreateNeg(Op, "neg");
+}
+
+Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
+ TestAndClearIgnoreResultAssign();
+ Value *Op = Visit(E->getSubExpr());
+ return Builder.CreateNot(Op, "neg");
+}
+
+Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) {
+ // Compare operand to zero.
+ Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr());
+
+ // Invert value.
+ // TODO: Could dynamically modify easy computations here. For example, if
+ // the operand is an icmp ne, turn into icmp eq.
+ BoolVal = Builder.CreateNot(BoolVal, "lnot");
+
+ // ZExt result to the expr type.
+ return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext");
+}
+
+/// VisitSizeOfAlignOfExpr - Return the size or alignment of the type of
+/// argument of the sizeof expression as an integer.
+Value *
+ScalarExprEmitter::VisitSizeOfAlignOfExpr(const SizeOfAlignOfExpr *E) {
+ QualType TypeToSize = E->getTypeOfArgument();
+ if (E->isSizeOf()) {
+ if (const VariableArrayType *VAT =
+ CGF.getContext().getAsVariableArrayType(TypeToSize)) {
+ if (E->isArgumentType()) {
+ // sizeof(type) - make sure to emit the VLA size.
+ CGF.EmitVLASize(TypeToSize);
+ } else {
+ // C99 6.5.3.4p2: If the argument is an expression of type
+ // VLA, it is evaluated.
+ CGF.EmitAnyExpr(E->getArgumentExpr());
+ }
+
+ return CGF.GetVLASize(VAT);
+ }
+ }
+
+ // If this isn't sizeof(vla), the result must be constant; use the
+ // constant folding logic so we don't have to duplicate it here.
+ Expr::EvalResult Result;
+ E->Evaluate(Result, CGF.getContext());
+ return llvm::ConstantInt::get(Result.Val.getInt());
+}
+
+Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) {
+ Expr *Op = E->getSubExpr();
+ if (Op->getType()->isAnyComplexType())
+ return CGF.EmitComplexExpr(Op, false, true, false, true).first;
+ return Visit(Op);
+}
+Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) {
+ Expr *Op = E->getSubExpr();
+ if (Op->getType()->isAnyComplexType())
+ return CGF.EmitComplexExpr(Op, true, false, true, false).second;
+
+ // __imag on a scalar returns zero. Emit the subexpr to ensure side
+ // effects are evaluated, but not the actual value.
+ if (E->isLvalue(CGF.getContext()) == Expr::LV_Valid)
+ CGF.EmitLValue(Op);
+ else
+ CGF.EmitScalarExpr(Op, true);
+ return llvm::Constant::getNullValue(ConvertType(E->getType()));
+}
+
+Value *ScalarExprEmitter::VisitUnaryOffsetOf(const UnaryOperator *E)
+{
+ Value* ResultAsPtr = EmitLValue(E->getSubExpr()).getAddress();
+ const llvm::Type* ResultType = ConvertType(E->getType());
+ return Builder.CreatePtrToInt(ResultAsPtr, ResultType, "offsetof");
+}
+
+//===----------------------------------------------------------------------===//
+// Binary Operators
+//===----------------------------------------------------------------------===//
+
+BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) {
+ TestAndClearIgnoreResultAssign();
+ BinOpInfo Result;
+ Result.LHS = Visit(E->getLHS());
+ Result.RHS = Visit(E->getRHS());
+ Result.Ty = E->getType();
+ Result.E = E;
+ return Result;
+}
+
+Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E,
+ Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) {
+ bool Ignore = TestAndClearIgnoreResultAssign();
+ QualType LHSTy = E->getLHS()->getType(), RHSTy = E->getRHS()->getType();
+
+ BinOpInfo OpInfo;
+
+ if (E->getComputationResultType()->isAnyComplexType()) {
+ // This needs to go through the complex expression emitter, but
+ // it's a tad complicated to do that... I'm leaving it out for now.
+ // (Note that we do actually need the imaginary part of the RHS for
+ // multiplication and division.)
+ CGF.ErrorUnsupported(E, "complex compound assignment");
+ return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
+ }
+
+ // Emit the RHS first. __block variables need to have the rhs evaluated
+ // first, plus this should improve codegen a little.
+ OpInfo.RHS = Visit(E->getRHS());
+ OpInfo.Ty = E->getComputationResultType();
+ OpInfo.E = E;
+ // Load/convert the LHS.
+ LValue LHSLV = EmitLValue(E->getLHS());
+ OpInfo.LHS = EmitLoadOfLValue(LHSLV, LHSTy);
+ OpInfo.LHS = EmitScalarConversion(OpInfo.LHS, LHSTy,
+ E->getComputationLHSType());
+
+ // Expand the binary operator.
+ Value *Result = (this->*Func)(OpInfo);
+
+ // Convert the result back to the LHS type.
+ Result = EmitScalarConversion(Result, E->getComputationResultType(), LHSTy);
+
+ // Store the result value into the LHS lvalue. Bit-fields are
+ // handled specially because the result is altered by the store,
+ // i.e., [C99 6.5.16p1] 'An assignment expression has the value of
+ // the left operand after the assignment...'.
+ if (LHSLV.isBitfield()) {
+ if (!LHSLV.isVolatileQualified()) {
+ CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, LHSTy,
+ &Result);
+ return Result;
+ } else
+ CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, LHSTy);
+ } else
+ CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV, LHSTy);
+ if (Ignore)
+ return 0;
+ return EmitLoadOfLValue(LHSLV, E->getType());
+}
+
+
+Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
+ if (Ops.LHS->getType()->isFPOrFPVector())
+ return Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div");
+ else if (Ops.Ty->isUnsignedIntegerType())
+ return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div");
+ else
+ return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div");
+}
+
+Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) {
+ // Rem in C can't be a floating point type: C99 6.5.5p2.
+ if (Ops.Ty->isUnsignedIntegerType())
+ return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem");
+ else
+ return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem");
+}
+
+Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) {
+ unsigned IID;
+ unsigned OpID = 0;
+
+ switch (Ops.E->getOpcode()) {
+ case BinaryOperator::Add:
+ case BinaryOperator::AddAssign:
+ OpID = 1;
+ IID = llvm::Intrinsic::sadd_with_overflow;
+ break;
+ case BinaryOperator::Sub:
+ case BinaryOperator::SubAssign:
+ OpID = 2;
+ IID = llvm::Intrinsic::ssub_with_overflow;
+ break;
+ case BinaryOperator::Mul:
+ case BinaryOperator::MulAssign:
+ OpID = 3;
+ IID = llvm::Intrinsic::smul_with_overflow;
+ break;
+ default:
+ assert(false && "Unsupported operation for overflow detection");
+ IID = 0;
+ }
+ OpID <<= 1;
+ OpID |= 1;
+
+ const llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty);
+
+ llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, &opTy, 1);
+
+ Value *resultAndOverflow = Builder.CreateCall2(intrinsic, Ops.LHS, Ops.RHS);
+ Value *result = Builder.CreateExtractValue(resultAndOverflow, 0);
+ Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1);
+
+ // Branch in case of overflow.
+ llvm::BasicBlock *initialBB = Builder.GetInsertBlock();
+ llvm::BasicBlock *overflowBB =
+ CGF.createBasicBlock("overflow", CGF.CurFn);
+ llvm::BasicBlock *continueBB =
+ CGF.createBasicBlock("overflow.continue", CGF.CurFn);
+
+ Builder.CreateCondBr(overflow, overflowBB, continueBB);
+
+ // Handle overflow
+
+ Builder.SetInsertPoint(overflowBB);
+
+ // Handler is:
+ // long long *__overflow_handler)(long long a, long long b, char op,
+ // char width)
+ std::vector<const llvm::Type*> handerArgTypes;
+ handerArgTypes.push_back(llvm::Type::Int64Ty);
+ handerArgTypes.push_back(llvm::Type::Int64Ty);
+ handerArgTypes.push_back(llvm::Type::Int8Ty);
+ handerArgTypes.push_back(llvm::Type::Int8Ty);
+ llvm::FunctionType *handlerTy = llvm::FunctionType::get(llvm::Type::Int64Ty,
+ handerArgTypes, false);
+ llvm::Value *handlerFunction =
+ CGF.CGM.getModule().getOrInsertGlobal("__overflow_handler",
+ llvm::PointerType::getUnqual(handlerTy));
+ handlerFunction = Builder.CreateLoad(handlerFunction);
+
+ llvm::Value *handlerResult = Builder.CreateCall4(handlerFunction,
+ Builder.CreateSExt(Ops.LHS, llvm::Type::Int64Ty),
+ Builder.CreateSExt(Ops.RHS, llvm::Type::Int64Ty),
+ llvm::ConstantInt::get(llvm::Type::Int8Ty, OpID),
+ llvm::ConstantInt::get(llvm::Type::Int8Ty,
+ cast<llvm::IntegerType>(opTy)->getBitWidth()));
+
+ handlerResult = Builder.CreateTrunc(handlerResult, opTy);
+
+ Builder.CreateBr(continueBB);
+
+ // Set up the continuation
+ Builder.SetInsertPoint(continueBB);
+ // Get the correct result
+ llvm::PHINode *phi = Builder.CreatePHI(opTy);
+ phi->reserveOperandSpace(2);
+ phi->addIncoming(result, initialBB);
+ phi->addIncoming(handlerResult, overflowBB);
+
+ return phi;
+}
+
+Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &Ops) {
+ if (!Ops.Ty->isPointerType()) {
+ if (CGF.getContext().getLangOptions().OverflowChecking
+ && Ops.Ty->isSignedIntegerType())
+ return EmitOverflowCheckedBinOp(Ops);
+ return Builder.CreateAdd(Ops.LHS, Ops.RHS, "add");
+ }
+
+ if (Ops.Ty->getAsPointerType()->isVariableArrayType()) {
+ // The amount of the addition needs to account for the VLA size
+ CGF.ErrorUnsupported(Ops.E, "VLA pointer addition");
+ }
+ Value *Ptr, *Idx;
+ Expr *IdxExp;
+ const PointerType *PT;
+ if ((PT = Ops.E->getLHS()->getType()->getAsPointerType())) {
+ Ptr = Ops.LHS;
+ Idx = Ops.RHS;
+ IdxExp = Ops.E->getRHS();
+ } else { // int + pointer
+ PT = Ops.E->getRHS()->getType()->getAsPointerType();
+ assert(PT && "Invalid add expr");
+ Ptr = Ops.RHS;
+ Idx = Ops.LHS;
+ IdxExp = Ops.E->getLHS();
+ }
+
+ unsigned Width = cast<llvm::IntegerType>(Idx->getType())->getBitWidth();
+ if (Width < CGF.LLVMPointerWidth) {
+ // Zero or sign extend the pointer value based on whether the index is
+ // signed or not.
+ const llvm::Type *IdxType = llvm::IntegerType::get(CGF.LLVMPointerWidth);
+ if (IdxExp->getType()->isSignedIntegerType())
+ Idx = Builder.CreateSExt(Idx, IdxType, "idx.ext");
+ else
+ Idx = Builder.CreateZExt(Idx, IdxType, "idx.ext");
+ }
+
+ const QualType ElementType = PT->getPointeeType();
+ // Handle interface types, which are not represented with a concrete
+ // type.
+ if (const ObjCInterfaceType *OIT = dyn_cast<ObjCInterfaceType>(ElementType)) {
+ llvm::Value *InterfaceSize =
+ llvm::ConstantInt::get(Idx->getType(),
+ CGF.getContext().getTypeSize(OIT) / 8);
+ Idx = Builder.CreateMul(Idx, InterfaceSize);
+ const llvm::Type *i8Ty = llvm::PointerType::getUnqual(llvm::Type::Int8Ty);
+ Value *Casted = Builder.CreateBitCast(Ptr, i8Ty);
+ Value *Res = Builder.CreateGEP(Casted, Idx, "add.ptr");
+ return Builder.CreateBitCast(Res, Ptr->getType());
+ }
+
+ // Explicitly handle GNU void* and function pointer arithmetic
+ // extensions. The GNU void* casts amount to no-ops since our void*
+ // type is i8*, but this is future proof.
+ if (ElementType->isVoidType() || ElementType->isFunctionType()) {
+ const llvm::Type *i8Ty = llvm::PointerType::getUnqual(llvm::Type::Int8Ty);
+ Value *Casted = Builder.CreateBitCast(Ptr, i8Ty);
+ Value *Res = Builder.CreateGEP(Casted, Idx, "add.ptr");
+ return Builder.CreateBitCast(Res, Ptr->getType());
+ }
+
+ return Builder.CreateGEP(Ptr, Idx, "add.ptr");
+}
+
+Value *ScalarExprEmitter::EmitSub(const BinOpInfo &Ops) {
+ if (!isa<llvm::PointerType>(Ops.LHS->getType())) {
+ if (CGF.getContext().getLangOptions().OverflowChecking
+ && Ops.Ty->isSignedIntegerType())
+ return EmitOverflowCheckedBinOp(Ops);
+ return Builder.CreateSub(Ops.LHS, Ops.RHS, "sub");
+ }
+
+ if (Ops.E->getLHS()->getType()->getAsPointerType()->isVariableArrayType()) {
+ // The amount of the addition needs to account for the VLA size for
+ // ptr-int
+ // The amount of the division needs to account for the VLA size for
+ // ptr-ptr.
+ CGF.ErrorUnsupported(Ops.E, "VLA pointer subtraction");
+ }
+
+ const QualType LHSType = Ops.E->getLHS()->getType();
+ const QualType LHSElementType = LHSType->getAsPointerType()->getPointeeType();
+ if (!isa<llvm::PointerType>(Ops.RHS->getType())) {
+ // pointer - int
+ Value *Idx = Ops.RHS;
+ unsigned Width = cast<llvm::IntegerType>(Idx->getType())->getBitWidth();
+ if (Width < CGF.LLVMPointerWidth) {
+ // Zero or sign extend the pointer value based on whether the index is
+ // signed or not.
+ const llvm::Type *IdxType = llvm::IntegerType::get(CGF.LLVMPointerWidth);
+ if (Ops.E->getRHS()->getType()->isSignedIntegerType())
+ Idx = Builder.CreateSExt(Idx, IdxType, "idx.ext");
+ else
+ Idx = Builder.CreateZExt(Idx, IdxType, "idx.ext");
+ }
+ Idx = Builder.CreateNeg(Idx, "sub.ptr.neg");
+
+ // Handle interface types, which are not represented with a concrete
+ // type.
+ if (const ObjCInterfaceType *OIT =
+ dyn_cast<ObjCInterfaceType>(LHSElementType)) {
+ llvm::Value *InterfaceSize =
+ llvm::ConstantInt::get(Idx->getType(),
+ CGF.getContext().getTypeSize(OIT) / 8);
+ Idx = Builder.CreateMul(Idx, InterfaceSize);
+ const llvm::Type *i8Ty = llvm::PointerType::getUnqual(llvm::Type::Int8Ty);
+ Value *LHSCasted = Builder.CreateBitCast(Ops.LHS, i8Ty);
+ Value *Res = Builder.CreateGEP(LHSCasted, Idx, "add.ptr");
+ return Builder.CreateBitCast(Res, Ops.LHS->getType());
+ }
+
+ // Explicitly handle GNU void* and function pointer arithmetic
+ // extensions. The GNU void* casts amount to no-ops since our
+ // void* type is i8*, but this is future proof.
+ if (LHSElementType->isVoidType() || LHSElementType->isFunctionType()) {
+ const llvm::Type *i8Ty = llvm::PointerType::getUnqual(llvm::Type::Int8Ty);
+ Value *LHSCasted = Builder.CreateBitCast(Ops.LHS, i8Ty);
+ Value *Res = Builder.CreateGEP(LHSCasted, Idx, "sub.ptr");
+ return Builder.CreateBitCast(Res, Ops.LHS->getType());
+ }
+
+ return Builder.CreateGEP(Ops.LHS, Idx, "sub.ptr");
+ } else {
+ // pointer - pointer
+ Value *LHS = Ops.LHS;
+ Value *RHS = Ops.RHS;
+
+ uint64_t ElementSize;
+
+ // Handle GCC extension for pointer arithmetic on void* and function pointer
+ // types.
+ if (LHSElementType->isVoidType() || LHSElementType->isFunctionType()) {
+ ElementSize = 1;
+ } else {
+ ElementSize = CGF.getContext().getTypeSize(LHSElementType) / 8;
+ }
+
+ const llvm::Type *ResultType = ConvertType(Ops.Ty);
+ LHS = Builder.CreatePtrToInt(LHS, ResultType, "sub.ptr.lhs.cast");
+ RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
+ Value *BytesBetween = Builder.CreateSub(LHS, RHS, "sub.ptr.sub");
+
+ // Optimize out the shift for element size of 1.
+ if (ElementSize == 1)
+ return BytesBetween;
+
+ // HACK: LLVM doesn't have an divide instruction that 'knows' there is no
+ // remainder. As such, we handle common power-of-two cases here to generate
+ // better code. See PR2247.
+ if (llvm::isPowerOf2_64(ElementSize)) {
+ Value *ShAmt =
+ llvm::ConstantInt::get(ResultType, llvm::Log2_64(ElementSize));
+ return Builder.CreateAShr(BytesBetween, ShAmt, "sub.ptr.shr");
+ }
+
+ // Otherwise, do a full sdiv.
+ Value *BytesPerElt = llvm::ConstantInt::get(ResultType, ElementSize);
+ return Builder.CreateSDiv(BytesBetween, BytesPerElt, "sub.ptr.div");
+ }
+}
+
+Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
+ // LLVM requires the LHS and RHS to be the same type: promote or truncate the
+ // RHS to the same size as the LHS.
+ Value *RHS = Ops.RHS;
+ if (Ops.LHS->getType() != RHS->getType())
+ RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
+
+ return Builder.CreateShl(Ops.LHS, RHS, "shl");
+}
+
+Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) {
+ // LLVM requires the LHS and RHS to be the same type: promote or truncate the
+ // RHS to the same size as the LHS.
+ Value *RHS = Ops.RHS;
+ if (Ops.LHS->getType() != RHS->getType())
+ RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
+
+ if (Ops.Ty->isUnsignedIntegerType())
+ return Builder.CreateLShr(Ops.LHS, RHS, "shr");
+ return Builder.CreateAShr(Ops.LHS, RHS, "shr");
+}
+
+Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,unsigned UICmpOpc,
+ unsigned SICmpOpc, unsigned FCmpOpc) {
+ TestAndClearIgnoreResultAssign();
+ Value *Result;
+ QualType LHSTy = E->getLHS()->getType();
+ if (!LHSTy->isAnyComplexType() && !LHSTy->isVectorType()) {
+ Value *LHS = Visit(E->getLHS());
+ Value *RHS = Visit(E->getRHS());
+
+ if (LHS->getType()->isFloatingPoint()) {
+ Result = Builder.CreateFCmp((llvm::CmpInst::Predicate)FCmpOpc,
+ LHS, RHS, "cmp");
+ } else if (LHSTy->isSignedIntegerType()) {
+ Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)SICmpOpc,
+ LHS, RHS, "cmp");
+ } else {
+ // Unsigned integers and pointers.
+ Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
+ LHS, RHS, "cmp");
+ }
+ } else if (LHSTy->isVectorType()) {
+ Value *LHS = Visit(E->getLHS());
+ Value *RHS = Visit(E->getRHS());
+
+ if (LHS->getType()->isFPOrFPVector()) {
+ Result = Builder.CreateVFCmp((llvm::CmpInst::Predicate)FCmpOpc,
+ LHS, RHS, "cmp");
+ } else if (LHSTy->isUnsignedIntegerType()) {
+ Result = Builder.CreateVICmp((llvm::CmpInst::Predicate)UICmpOpc,
+ LHS, RHS, "cmp");
+ } else {
+ // Signed integers and pointers.
+ Result = Builder.CreateVICmp((llvm::CmpInst::Predicate)SICmpOpc,
+ LHS, RHS, "cmp");
+ }
+ return Result;
+ } else {
+ // Complex Comparison: can only be an equality comparison.
+ CodeGenFunction::ComplexPairTy LHS = CGF.EmitComplexExpr(E->getLHS());
+ CodeGenFunction::ComplexPairTy RHS = CGF.EmitComplexExpr(E->getRHS());
+
+ QualType CETy = LHSTy->getAsComplexType()->getElementType();
+
+ Value *ResultR, *ResultI;
+ if (CETy->isRealFloatingType()) {
+ ResultR = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
+ LHS.first, RHS.first, "cmp.r");
+ ResultI = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
+ LHS.second, RHS.second, "cmp.i");
+ } else {
+ // Complex comparisons can only be equality comparisons. As such, signed
+ // and unsigned opcodes are the same.
+ ResultR = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
+ LHS.first, RHS.first, "cmp.r");
+ ResultI = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
+ LHS.second, RHS.second, "cmp.i");
+ }
+
+ if (E->getOpcode() == BinaryOperator::EQ) {
+ Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
+ } else {
+ assert(E->getOpcode() == BinaryOperator::NE &&
+ "Complex comparison other than == or != ?");
+ Result = Builder.CreateOr(ResultR, ResultI, "or.ri");
+ }
+ }
+
+ return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType());
+}
+
+Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) {
+ bool Ignore = TestAndClearIgnoreResultAssign();
+
+ // __block variables need to have the rhs evaluated first, plus this should
+ // improve codegen just a little.
+ Value *RHS = Visit(E->getRHS());
+ LValue LHS = EmitLValue(E->getLHS());
+
+ // Store the value into the LHS. Bit-fields are handled specially
+ // because the result is altered by the store, i.e., [C99 6.5.16p1]
+ // 'An assignment expression has the value of the left operand after
+ // the assignment...'.
+ if (LHS.isBitfield()) {
+ if (!LHS.isVolatileQualified()) {
+ CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, E->getType(),
+ &RHS);
+ return RHS;
+ } else
+ CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, E->getType());
+ } else
+ CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS, E->getType());
+ if (Ignore)
+ return 0;
+ return EmitLoadOfLValue(LHS, E->getType());
+}
+
+Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
+ // If we have 0 && RHS, see if we can elide RHS, if so, just return 0.
+ // If we have 1 && X, just emit X without inserting the control flow.
+ if (int Cond = CGF.ConstantFoldsToSimpleInteger(E->getLHS())) {
+ if (Cond == 1) { // If we have 1 && X, just emit X.
+ Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
+ // ZExt result to int.
+ return Builder.CreateZExt(RHSCond, CGF.LLVMIntTy, "land.ext");
+ }
+
+ // 0 && RHS: If it is safe, just elide the RHS, and return 0.
+ if (!CGF.ContainsLabel(E->getRHS()))
+ return llvm::Constant::getNullValue(CGF.LLVMIntTy);
+ }
+
+ llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end");
+ llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("land.rhs");
+
+ // Branch on the LHS first. If it is false, go to the failure (cont) block.
+ CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock);
+
+ // Any edges into the ContBlock are now from an (indeterminate number of)
+ // edges from this first condition. All of these values will be false. Start
+ // setting up the PHI node in the Cont Block for this.
+ llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::Int1Ty, "", ContBlock);
+ PN->reserveOperandSpace(2); // Normal case, two inputs.
+ for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
+ PI != PE; ++PI)
+ PN->addIncoming(llvm::ConstantInt::getFalse(), *PI);
+
+ CGF.EmitBlock(RHSBlock);
+ Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
+
+ // Reaquire the RHS block, as there may be subblocks inserted.
+ RHSBlock = Builder.GetInsertBlock();
+
+ // Emit an unconditional branch from this block to ContBlock. Insert an entry
+ // into the phi node for the edge with the value of RHSCond.
+ CGF.EmitBlock(ContBlock);
+ PN->addIncoming(RHSCond, RHSBlock);
+
+ // ZExt result to int.
+ return Builder.CreateZExt(PN, CGF.LLVMIntTy, "land.ext");
+}
+
+Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) {
+ // If we have 1 || RHS, see if we can elide RHS, if so, just return 1.
+ // If we have 0 || X, just emit X without inserting the control flow.
+ if (int Cond = CGF.ConstantFoldsToSimpleInteger(E->getLHS())) {
+ if (Cond == -1) { // If we have 0 || X, just emit X.
+ Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
+ // ZExt result to int.
+ return Builder.CreateZExt(RHSCond, CGF.LLVMIntTy, "lor.ext");
+ }
+
+ // 1 || RHS: If it is safe, just elide the RHS, and return 1.
+ if (!CGF.ContainsLabel(E->getRHS()))
+ return llvm::ConstantInt::get(CGF.LLVMIntTy, 1);
+ }
+
+ llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end");
+ llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs");
+
+ // Branch on the LHS first. If it is true, go to the success (cont) block.
+ CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock);
+
+ // Any edges into the ContBlock are now from an (indeterminate number of)
+ // edges from this first condition. All of these values will be true. Start
+ // setting up the PHI node in the Cont Block for this.
+ llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::Int1Ty, "", ContBlock);
+ PN->reserveOperandSpace(2); // Normal case, two inputs.
+ for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
+ PI != PE; ++PI)
+ PN->addIncoming(llvm::ConstantInt::getTrue(), *PI);
+
+ // Emit the RHS condition as a bool value.
+ CGF.EmitBlock(RHSBlock);
+ Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
+
+ // Reaquire the RHS block, as there may be subblocks inserted.
+ RHSBlock = Builder.GetInsertBlock();
+
+ // Emit an unconditional branch from this block to ContBlock. Insert an entry
+ // into the phi node for the edge with the value of RHSCond.
+ CGF.EmitBlock(ContBlock);
+ PN->addIncoming(RHSCond, RHSBlock);
+
+ // ZExt result to int.
+ return Builder.CreateZExt(PN, CGF.LLVMIntTy, "lor.ext");
+}
+
+Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) {
+ CGF.EmitStmt(E->getLHS());
+ CGF.EnsureInsertPoint();
+ return Visit(E->getRHS());
+}
+
+//===----------------------------------------------------------------------===//
+// Other Operators
+//===----------------------------------------------------------------------===//
+
+/// isCheapEnoughToEvaluateUnconditionally - Return true if the specified
+/// expression is cheap enough and side-effect-free enough to evaluate
+/// unconditionally instead of conditionally. This is used to convert control
+/// flow into selects in some cases.
+static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E) {
+ if (const ParenExpr *PE = dyn_cast<ParenExpr>(E))
+ return isCheapEnoughToEvaluateUnconditionally(PE->getSubExpr());
+
+ // TODO: Allow anything we can constant fold to an integer or fp constant.
+ if (isa<IntegerLiteral>(E) || isa<CharacterLiteral>(E) ||
+ isa<FloatingLiteral>(E))
+ return true;
+
+ // Non-volatile automatic variables too, to get "cond ? X : Y" where
+ // X and Y are local variables.
+ if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
+ if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl()))
+ if (VD->hasLocalStorage() && !VD->getType().isVolatileQualified())
+ return true;
+
+ return false;
+}
+
+
+Value *ScalarExprEmitter::
+VisitConditionalOperator(const ConditionalOperator *E) {
+ TestAndClearIgnoreResultAssign();
+ // If the condition constant folds and can be elided, try to avoid emitting
+ // the condition and the dead arm.
+ if (int Cond = CGF.ConstantFoldsToSimpleInteger(E->getCond())){
+ Expr *Live = E->getLHS(), *Dead = E->getRHS();
+ if (Cond == -1)
+ std::swap(Live, Dead);
+
+ // If the dead side doesn't have labels we need, and if the Live side isn't
+ // the gnu missing ?: extension (which we could handle, but don't bother
+ // to), just emit the Live part.
+ if ((!Dead || !CGF.ContainsLabel(Dead)) && // No labels in dead part
+ Live) // Live part isn't missing.
+ return Visit(Live);
+ }
+
+
+ // If this is a really simple expression (like x ? 4 : 5), emit this as a
+ // select instead of as control flow. We can only do this if it is cheap and
+ // safe to evaluate the LHS and RHS unconditionally.
+ if (E->getLHS() && isCheapEnoughToEvaluateUnconditionally(E->getLHS()) &&
+ isCheapEnoughToEvaluateUnconditionally(E->getRHS())) {
+ llvm::Value *CondV = CGF.EvaluateExprAsBool(E->getCond());
+ llvm::Value *LHS = Visit(E->getLHS());
+ llvm::Value *RHS = Visit(E->getRHS());
+ return Builder.CreateSelect(CondV, LHS, RHS, "cond");
+ }
+
+
+ llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
+ llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
+ llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
+ Value *CondVal = 0;
+
+ // If we don't have the GNU missing condition extension, emit a branch on
+ // bool the normal way.
+ if (E->getLHS()) {
+ // Otherwise, just use EmitBranchOnBoolExpr to get small and simple code for
+ // the branch on bool.
+ CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock);
+ } else {
+ // Otherwise, for the ?: extension, evaluate the conditional and then
+ // convert it to bool the hard way. We do this explicitly because we need
+ // the unconverted value for the missing middle value of the ?:.
+ CondVal = CGF.EmitScalarExpr(E->getCond());
+
+ // In some cases, EmitScalarConversion will delete the "CondVal" expression
+ // if there are no extra uses (an optimization). Inhibit this by making an
+ // extra dead use, because we're going to add a use of CondVal later. We
+ // don't use the builder for this, because we don't want it to get optimized
+ // away. This leaves dead code, but the ?: extension isn't common.
+ new llvm::BitCastInst(CondVal, CondVal->getType(), "dummy?:holder",
+ Builder.GetInsertBlock());
+
+ Value *CondBoolVal =
+ CGF.EmitScalarConversion(CondVal, E->getCond()->getType(),
+ CGF.getContext().BoolTy);
+ Builder.CreateCondBr(CondBoolVal, LHSBlock, RHSBlock);
+ }
+
+ CGF.EmitBlock(LHSBlock);
+
+ // Handle the GNU extension for missing LHS.
+ Value *LHS;
+ if (E->getLHS())
+ LHS = Visit(E->getLHS());
+ else // Perform promotions, to handle cases like "short ?: int"
+ LHS = EmitScalarConversion(CondVal, E->getCond()->getType(), E->getType());
+
+ LHSBlock = Builder.GetInsertBlock();
+ CGF.EmitBranch(ContBlock);
+
+ CGF.EmitBlock(RHSBlock);
+
+ Value *RHS = Visit(E->getRHS());
+ RHSBlock = Builder.GetInsertBlock();
+ CGF.EmitBranch(ContBlock);
+
+ CGF.EmitBlock(ContBlock);
+
+ if (!LHS || !RHS) {
+ assert(E->getType()->isVoidType() && "Non-void value should have a value");
+ return 0;
+ }
+
+ // Create a PHI node for the real part.
+ llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), "cond");
+ PN->reserveOperandSpace(2);
+ PN->addIncoming(LHS, LHSBlock);
+ PN->addIncoming(RHS, RHSBlock);
+ return PN;
+}
+
+Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) {
+ return Visit(E->getChosenSubExpr(CGF.getContext()));
+}
+
+Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
+ llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr());
+ llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType());
+
+ // If EmitVAArg fails, we fall back to the LLVM instruction.
+ if (!ArgPtr)
+ return Builder.CreateVAArg(ArgValue, ConvertType(VE->getType()));
+
+ // FIXME Volatility.
+ return Builder.CreateLoad(ArgPtr);
+}
+
+Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *BE) {
+ return CGF.BuildBlockLiteralTmp(BE);
+}
+
+//===----------------------------------------------------------------------===//
+// Entry Point into this File
+//===----------------------------------------------------------------------===//
+
+/// EmitScalarExpr - Emit the computation of the specified expression of
+/// scalar type, ignoring the result.
+Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) {
+ assert(E && !hasAggregateLLVMType(E->getType()) &&
+ "Invalid scalar expression to emit");
+
+ return ScalarExprEmitter(*this, IgnoreResultAssign)
+ .Visit(const_cast<Expr*>(E));
+}
+
+/// EmitScalarConversion - Emit a conversion from the specified type to the
+/// specified destination type, both of which are LLVM scalar types.
+Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy,
+ QualType DstTy) {
+ assert(!hasAggregateLLVMType(SrcTy) && !hasAggregateLLVMType(DstTy) &&
+ "Invalid scalar expression to emit");
+ return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy);
+}
+
+/// EmitComplexToScalarConversion - Emit a conversion from the specified
+/// complex type to the specified destination type, where the destination
+/// type is an LLVM scalar type.
+Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src,
+ QualType SrcTy,
+ QualType DstTy) {
+ assert(SrcTy->isAnyComplexType() && !hasAggregateLLVMType(DstTy) &&
+ "Invalid complex -> scalar conversion");
+ return ScalarExprEmitter(*this).EmitComplexToScalarConversion(Src, SrcTy,
+ DstTy);
+}
+
+Value *CodeGenFunction::EmitShuffleVector(Value* V1, Value *V2, ...) {
+ assert(V1->getType() == V2->getType() &&
+ "Vector operands must be of the same type");
+ unsigned NumElements =
+ cast<llvm::VectorType>(V1->getType())->getNumElements();
+
+ va_list va;
+ va_start(va, V2);
+
+ llvm::SmallVector<llvm::Constant*, 16> Args;
+ for (unsigned i = 0; i < NumElements; i++) {
+ int n = va_arg(va, int);
+ assert(n >= 0 && n < (int)NumElements * 2 &&
+ "Vector shuffle index out of bounds!");
+ Args.push_back(llvm::ConstantInt::get(llvm::Type::Int32Ty, n));
+ }
+
+ const char *Name = va_arg(va, const char *);
+ va_end(va);
+
+ llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], NumElements);
+
+ return Builder.CreateShuffleVector(V1, V2, Mask, Name);
+}
+
+llvm::Value *CodeGenFunction::EmitVector(llvm::Value * const *Vals,
+ unsigned NumVals, bool isSplat) {
+ llvm::Value *Vec
+ = llvm::UndefValue::get(llvm::VectorType::get(Vals[0]->getType(), NumVals));
+
+ for (unsigned i = 0, e = NumVals; i != e; ++i) {
+ llvm::Value *Val = isSplat ? Vals[0] : Vals[i];
+ llvm::Value *Idx = llvm::ConstantInt::get(llvm::Type::Int32Ty, i);
+ Vec = Builder.CreateInsertElement(Vec, Val, Idx, "tmp");
+ }
+
+ return Vec;
+}
OpenPOWER on IntegriCloud