summaryrefslogtreecommitdiffstats
path: root/lib/CodeGen/CGCall.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'lib/CodeGen/CGCall.cpp')
-rw-r--r--lib/CodeGen/CGCall.cpp2196
1 files changed, 2196 insertions, 0 deletions
diff --git a/lib/CodeGen/CGCall.cpp b/lib/CodeGen/CGCall.cpp
new file mode 100644
index 0000000..ea0b887
--- /dev/null
+++ b/lib/CodeGen/CGCall.cpp
@@ -0,0 +1,2196 @@
+//===----- CGCall.h - Encapsulate calling convention details ----*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// These classes wrap the information about a call or function
+// definition used to handle ABI compliancy.
+//
+//===----------------------------------------------------------------------===//
+
+#include "CGCall.h"
+#include "CodeGenFunction.h"
+#include "CodeGenModule.h"
+#include "clang/Basic/TargetInfo.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/Decl.h"
+#include "clang/AST/DeclCXX.h"
+#include "clang/AST/DeclObjC.h"
+#include "clang/AST/RecordLayout.h"
+#include "llvm/ADT/StringExtras.h"
+#include "llvm/Attributes.h"
+#include "llvm/Support/CallSite.h"
+#include "llvm/Support/MathExtras.h"
+#include "llvm/Target/TargetData.h"
+
+#include "ABIInfo.h"
+
+using namespace clang;
+using namespace CodeGen;
+
+/***/
+
+// FIXME: Use iterator and sidestep silly type array creation.
+
+const
+CGFunctionInfo &CodeGenTypes::getFunctionInfo(const FunctionNoProtoType *FTNP) {
+ return getFunctionInfo(FTNP->getResultType(),
+ llvm::SmallVector<QualType, 16>());
+}
+
+const
+CGFunctionInfo &CodeGenTypes::getFunctionInfo(const FunctionProtoType *FTP) {
+ llvm::SmallVector<QualType, 16> ArgTys;
+ // FIXME: Kill copy.
+ for (unsigned i = 0, e = FTP->getNumArgs(); i != e; ++i)
+ ArgTys.push_back(FTP->getArgType(i));
+ return getFunctionInfo(FTP->getResultType(), ArgTys);
+}
+
+const CGFunctionInfo &CodeGenTypes::getFunctionInfo(const CXXMethodDecl *MD) {
+ llvm::SmallVector<QualType, 16> ArgTys;
+ // Add the 'this' pointer unless this is a static method.
+ if (MD->isInstance())
+ ArgTys.push_back(MD->getThisType(Context));
+
+ const FunctionProtoType *FTP = MD->getType()->getAsFunctionProtoType();
+ for (unsigned i = 0, e = FTP->getNumArgs(); i != e; ++i)
+ ArgTys.push_back(FTP->getArgType(i));
+ return getFunctionInfo(FTP->getResultType(), ArgTys);
+}
+
+const CGFunctionInfo &CodeGenTypes::getFunctionInfo(const FunctionDecl *FD) {
+ if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
+ if (MD->isInstance())
+ return getFunctionInfo(MD);
+
+ const FunctionType *FTy = FD->getType()->getAsFunctionType();
+ if (const FunctionProtoType *FTP = dyn_cast<FunctionProtoType>(FTy))
+ return getFunctionInfo(FTP);
+ return getFunctionInfo(cast<FunctionNoProtoType>(FTy));
+}
+
+const CGFunctionInfo &CodeGenTypes::getFunctionInfo(const ObjCMethodDecl *MD) {
+ llvm::SmallVector<QualType, 16> ArgTys;
+ ArgTys.push_back(MD->getSelfDecl()->getType());
+ ArgTys.push_back(Context.getObjCSelType());
+ // FIXME: Kill copy?
+ for (ObjCMethodDecl::param_iterator i = MD->param_begin(),
+ e = MD->param_end(); i != e; ++i)
+ ArgTys.push_back((*i)->getType());
+ return getFunctionInfo(MD->getResultType(), ArgTys);
+}
+
+const CGFunctionInfo &CodeGenTypes::getFunctionInfo(QualType ResTy,
+ const CallArgList &Args) {
+ // FIXME: Kill copy.
+ llvm::SmallVector<QualType, 16> ArgTys;
+ for (CallArgList::const_iterator i = Args.begin(), e = Args.end();
+ i != e; ++i)
+ ArgTys.push_back(i->second);
+ return getFunctionInfo(ResTy, ArgTys);
+}
+
+const CGFunctionInfo &CodeGenTypes::getFunctionInfo(QualType ResTy,
+ const FunctionArgList &Args) {
+ // FIXME: Kill copy.
+ llvm::SmallVector<QualType, 16> ArgTys;
+ for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
+ i != e; ++i)
+ ArgTys.push_back(i->second);
+ return getFunctionInfo(ResTy, ArgTys);
+}
+
+const CGFunctionInfo &CodeGenTypes::getFunctionInfo(QualType ResTy,
+ const llvm::SmallVector<QualType, 16> &ArgTys) {
+ // Lookup or create unique function info.
+ llvm::FoldingSetNodeID ID;
+ CGFunctionInfo::Profile(ID, ResTy, ArgTys.begin(), ArgTys.end());
+
+ void *InsertPos = 0;
+ CGFunctionInfo *FI = FunctionInfos.FindNodeOrInsertPos(ID, InsertPos);
+ if (FI)
+ return *FI;
+
+ // Construct the function info.
+ FI = new CGFunctionInfo(ResTy, ArgTys);
+ FunctionInfos.InsertNode(FI, InsertPos);
+
+ // Compute ABI information.
+ getABIInfo().computeInfo(*FI, getContext());
+
+ return *FI;
+}
+
+/***/
+
+ABIInfo::~ABIInfo() {}
+
+void ABIArgInfo::dump() const {
+ fprintf(stderr, "(ABIArgInfo Kind=");
+ switch (TheKind) {
+ case Direct:
+ fprintf(stderr, "Direct");
+ break;
+ case Ignore:
+ fprintf(stderr, "Ignore");
+ break;
+ case Coerce:
+ fprintf(stderr, "Coerce Type=");
+ getCoerceToType()->print(llvm::errs());
+ break;
+ case Indirect:
+ fprintf(stderr, "Indirect Align=%d", getIndirectAlign());
+ break;
+ case Expand:
+ fprintf(stderr, "Expand");
+ break;
+ }
+ fprintf(stderr, ")\n");
+}
+
+/***/
+
+static bool isEmptyRecord(ASTContext &Context, QualType T);
+
+/// isEmptyField - Return true iff a the field is "empty", that is it
+/// is an unnamed bit-field or an (array of) empty record(s).
+static bool isEmptyField(ASTContext &Context, const FieldDecl *FD) {
+ if (FD->isUnnamedBitfield())
+ return true;
+
+ QualType FT = FD->getType();
+ // Constant arrays of empty records count as empty, strip them off.
+ while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT))
+ FT = AT->getElementType();
+
+ return isEmptyRecord(Context, FT);
+}
+
+/// isEmptyRecord - Return true iff a structure contains only empty
+/// fields. Note that a structure with a flexible array member is not
+/// considered empty.
+static bool isEmptyRecord(ASTContext &Context, QualType T) {
+ const RecordType *RT = T->getAsRecordType();
+ if (!RT)
+ return 0;
+ const RecordDecl *RD = RT->getDecl();
+ if (RD->hasFlexibleArrayMember())
+ return false;
+ for (RecordDecl::field_iterator i = RD->field_begin(Context),
+ e = RD->field_end(Context); i != e; ++i)
+ if (!isEmptyField(Context, *i))
+ return false;
+ return true;
+}
+
+/// isSingleElementStruct - Determine if a structure is a "single
+/// element struct", i.e. it has exactly one non-empty field or
+/// exactly one field which is itself a single element
+/// struct. Structures with flexible array members are never
+/// considered single element structs.
+///
+/// \return The field declaration for the single non-empty field, if
+/// it exists.
+static const Type *isSingleElementStruct(QualType T, ASTContext &Context) {
+ const RecordType *RT = T->getAsStructureType();
+ if (!RT)
+ return 0;
+
+ const RecordDecl *RD = RT->getDecl();
+ if (RD->hasFlexibleArrayMember())
+ return 0;
+
+ const Type *Found = 0;
+ for (RecordDecl::field_iterator i = RD->field_begin(Context),
+ e = RD->field_end(Context); i != e; ++i) {
+ const FieldDecl *FD = *i;
+ QualType FT = FD->getType();
+
+ // Ignore empty fields.
+ if (isEmptyField(Context, FD))
+ continue;
+
+ // If we already found an element then this isn't a single-element
+ // struct.
+ if (Found)
+ return 0;
+
+ // Treat single element arrays as the element.
+ while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
+ if (AT->getSize().getZExtValue() != 1)
+ break;
+ FT = AT->getElementType();
+ }
+
+ if (!CodeGenFunction::hasAggregateLLVMType(FT)) {
+ Found = FT.getTypePtr();
+ } else {
+ Found = isSingleElementStruct(FT, Context);
+ if (!Found)
+ return 0;
+ }
+ }
+
+ return Found;
+}
+
+static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) {
+ if (!Ty->getAsBuiltinType() && !Ty->isPointerType())
+ return false;
+
+ uint64_t Size = Context.getTypeSize(Ty);
+ return Size == 32 || Size == 64;
+}
+
+static bool areAllFields32Or64BitBasicType(const RecordDecl *RD,
+ ASTContext &Context) {
+ for (RecordDecl::field_iterator i = RD->field_begin(Context),
+ e = RD->field_end(Context); i != e; ++i) {
+ const FieldDecl *FD = *i;
+
+ if (!is32Or64BitBasicType(FD->getType(), Context))
+ return false;
+
+ // FIXME: Reject bit-fields wholesale; there are two problems, we don't know
+ // how to expand them yet, and the predicate for telling if a bitfield still
+ // counts as "basic" is more complicated than what we were doing previously.
+ if (FD->isBitField())
+ return false;
+ }
+
+ return true;
+}
+
+namespace {
+/// DefaultABIInfo - The default implementation for ABI specific
+/// details. This implementation provides information which results in
+/// self-consistent and sensible LLVM IR generation, but does not
+/// conform to any particular ABI.
+class DefaultABIInfo : public ABIInfo {
+ ABIArgInfo classifyReturnType(QualType RetTy,
+ ASTContext &Context) const;
+
+ ABIArgInfo classifyArgumentType(QualType RetTy,
+ ASTContext &Context) const;
+
+ virtual void computeInfo(CGFunctionInfo &FI, ASTContext &Context) const {
+ FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), Context);
+ for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
+ it != ie; ++it)
+ it->info = classifyArgumentType(it->type, Context);
+ }
+
+ virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
+ CodeGenFunction &CGF) const;
+};
+
+/// X86_32ABIInfo - The X86-32 ABI information.
+class X86_32ABIInfo : public ABIInfo {
+ ASTContext &Context;
+ bool IsDarwin;
+
+ static bool isRegisterSize(unsigned Size) {
+ return (Size == 8 || Size == 16 || Size == 32 || Size == 64);
+ }
+
+ static bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context);
+
+public:
+ ABIArgInfo classifyReturnType(QualType RetTy,
+ ASTContext &Context) const;
+
+ ABIArgInfo classifyArgumentType(QualType RetTy,
+ ASTContext &Context) const;
+
+ virtual void computeInfo(CGFunctionInfo &FI, ASTContext &Context) const {
+ FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), Context);
+ for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
+ it != ie; ++it)
+ it->info = classifyArgumentType(it->type, Context);
+ }
+
+ virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
+ CodeGenFunction &CGF) const;
+
+ X86_32ABIInfo(ASTContext &Context, bool d)
+ : ABIInfo(), Context(Context), IsDarwin(d) {}
+};
+}
+
+
+/// shouldReturnTypeInRegister - Determine if the given type should be
+/// passed in a register (for the Darwin ABI).
+bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty,
+ ASTContext &Context) {
+ uint64_t Size = Context.getTypeSize(Ty);
+
+ // Type must be register sized.
+ if (!isRegisterSize(Size))
+ return false;
+
+ if (Ty->isVectorType()) {
+ // 64- and 128- bit vectors inside structures are not returned in
+ // registers.
+ if (Size == 64 || Size == 128)
+ return false;
+
+ return true;
+ }
+
+ // If this is a builtin, pointer, or complex type, it is ok.
+ if (Ty->getAsBuiltinType() || Ty->isPointerType() || Ty->isAnyComplexType())
+ return true;
+
+ // Arrays are treated like records.
+ if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty))
+ return shouldReturnTypeInRegister(AT->getElementType(), Context);
+
+ // Otherwise, it must be a record type.
+ const RecordType *RT = Ty->getAsRecordType();
+ if (!RT) return false;
+
+ // Structure types are passed in register if all fields would be
+ // passed in a register.
+ for (RecordDecl::field_iterator i = RT->getDecl()->field_begin(Context),
+ e = RT->getDecl()->field_end(Context); i != e; ++i) {
+ const FieldDecl *FD = *i;
+
+ // Empty fields are ignored.
+ if (isEmptyField(Context, FD))
+ continue;
+
+ // Check fields recursively.
+ if (!shouldReturnTypeInRegister(FD->getType(), Context))
+ return false;
+ }
+
+ return true;
+}
+
+ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy,
+ ASTContext &Context) const {
+ if (RetTy->isVoidType()) {
+ return ABIArgInfo::getIgnore();
+ } else if (const VectorType *VT = RetTy->getAsVectorType()) {
+ // On Darwin, some vectors are returned in registers.
+ if (IsDarwin) {
+ uint64_t Size = Context.getTypeSize(RetTy);
+
+ // 128-bit vectors are a special case; they are returned in
+ // registers and we need to make sure to pick a type the LLVM
+ // backend will like.
+ if (Size == 128)
+ return ABIArgInfo::getCoerce(llvm::VectorType::get(llvm::Type::Int64Ty,
+ 2));
+
+ // Always return in register if it fits in a general purpose
+ // register, or if it is 64 bits and has a single element.
+ if ((Size == 8 || Size == 16 || Size == 32) ||
+ (Size == 64 && VT->getNumElements() == 1))
+ return ABIArgInfo::getCoerce(llvm::IntegerType::get(Size));
+
+ return ABIArgInfo::getIndirect(0);
+ }
+
+ return ABIArgInfo::getDirect();
+ } else if (CodeGenFunction::hasAggregateLLVMType(RetTy)) {
+ // Structures with flexible arrays are always indirect.
+ if (const RecordType *RT = RetTy->getAsStructureType())
+ if (RT->getDecl()->hasFlexibleArrayMember())
+ return ABIArgInfo::getIndirect(0);
+
+ // Outside of Darwin, structs and unions are always indirect.
+ if (!IsDarwin && !RetTy->isAnyComplexType())
+ return ABIArgInfo::getIndirect(0);
+
+ // Classify "single element" structs as their element type.
+ if (const Type *SeltTy = isSingleElementStruct(RetTy, Context)) {
+ if (const BuiltinType *BT = SeltTy->getAsBuiltinType()) {
+ if (BT->isIntegerType()) {
+ // We need to use the size of the structure, padding
+ // bit-fields can adjust that to be larger than the single
+ // element type.
+ uint64_t Size = Context.getTypeSize(RetTy);
+ return ABIArgInfo::getCoerce(llvm::IntegerType::get((unsigned) Size));
+ } else if (BT->getKind() == BuiltinType::Float) {
+ assert(Context.getTypeSize(RetTy) == Context.getTypeSize(SeltTy) &&
+ "Unexpect single element structure size!");
+ return ABIArgInfo::getCoerce(llvm::Type::FloatTy);
+ } else if (BT->getKind() == BuiltinType::Double) {
+ assert(Context.getTypeSize(RetTy) == Context.getTypeSize(SeltTy) &&
+ "Unexpect single element structure size!");
+ return ABIArgInfo::getCoerce(llvm::Type::DoubleTy);
+ }
+ } else if (SeltTy->isPointerType()) {
+ // FIXME: It would be really nice if this could come out as the proper
+ // pointer type.
+ llvm::Type *PtrTy =
+ llvm::PointerType::getUnqual(llvm::Type::Int8Ty);
+ return ABIArgInfo::getCoerce(PtrTy);
+ } else if (SeltTy->isVectorType()) {
+ // 64- and 128-bit vectors are never returned in a
+ // register when inside a structure.
+ uint64_t Size = Context.getTypeSize(RetTy);
+ if (Size == 64 || Size == 128)
+ return ABIArgInfo::getIndirect(0);
+
+ return classifyReturnType(QualType(SeltTy, 0), Context);
+ }
+ }
+
+ // Small structures which are register sized are generally returned
+ // in a register.
+ if (X86_32ABIInfo::shouldReturnTypeInRegister(RetTy, Context)) {
+ uint64_t Size = Context.getTypeSize(RetTy);
+ return ABIArgInfo::getCoerce(llvm::IntegerType::get(Size));
+ }
+
+ return ABIArgInfo::getIndirect(0);
+ } else {
+ return ABIArgInfo::getDirect();
+ }
+}
+
+ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty,
+ ASTContext &Context) const {
+ // FIXME: Set alignment on indirect arguments.
+ if (CodeGenFunction::hasAggregateLLVMType(Ty)) {
+ // Structures with flexible arrays are always indirect.
+ if (const RecordType *RT = Ty->getAsStructureType())
+ if (RT->getDecl()->hasFlexibleArrayMember())
+ return ABIArgInfo::getIndirect(0);
+
+ // Ignore empty structs.
+ uint64_t Size = Context.getTypeSize(Ty);
+ if (Ty->isStructureType() && Size == 0)
+ return ABIArgInfo::getIgnore();
+
+ // Expand structs with size <= 128-bits which consist only of
+ // basic types (int, long long, float, double, xxx*). This is
+ // non-recursive and does not ignore empty fields.
+ if (const RecordType *RT = Ty->getAsStructureType()) {
+ if (Context.getTypeSize(Ty) <= 4*32 &&
+ areAllFields32Or64BitBasicType(RT->getDecl(), Context))
+ return ABIArgInfo::getExpand();
+ }
+
+ return ABIArgInfo::getIndirect(0);
+ } else {
+ return ABIArgInfo::getDirect();
+ }
+}
+
+llvm::Value *X86_32ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
+ CodeGenFunction &CGF) const {
+ const llvm::Type *BP = llvm::PointerType::getUnqual(llvm::Type::Int8Ty);
+ const llvm::Type *BPP = llvm::PointerType::getUnqual(BP);
+
+ CGBuilderTy &Builder = CGF.Builder;
+ llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
+ "ap");
+ llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
+ llvm::Type *PTy =
+ llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
+ llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
+
+ uint64_t Offset =
+ llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 4);
+ llvm::Value *NextAddr =
+ Builder.CreateGEP(Addr,
+ llvm::ConstantInt::get(llvm::Type::Int32Ty, Offset),
+ "ap.next");
+ Builder.CreateStore(NextAddr, VAListAddrAsBPP);
+
+ return AddrTyped;
+}
+
+namespace {
+/// X86_64ABIInfo - The X86_64 ABI information.
+class X86_64ABIInfo : public ABIInfo {
+ enum Class {
+ Integer = 0,
+ SSE,
+ SSEUp,
+ X87,
+ X87Up,
+ ComplexX87,
+ NoClass,
+ Memory
+ };
+
+ /// merge - Implement the X86_64 ABI merging algorithm.
+ ///
+ /// Merge an accumulating classification \arg Accum with a field
+ /// classification \arg Field.
+ ///
+ /// \param Accum - The accumulating classification. This should
+ /// always be either NoClass or the result of a previous merge
+ /// call. In addition, this should never be Memory (the caller
+ /// should just return Memory for the aggregate).
+ Class merge(Class Accum, Class Field) const;
+
+ /// classify - Determine the x86_64 register classes in which the
+ /// given type T should be passed.
+ ///
+ /// \param Lo - The classification for the parts of the type
+ /// residing in the low word of the containing object.
+ ///
+ /// \param Hi - The classification for the parts of the type
+ /// residing in the high word of the containing object.
+ ///
+ /// \param OffsetBase - The bit offset of this type in the
+ /// containing object. Some parameters are classified different
+ /// depending on whether they straddle an eightbyte boundary.
+ ///
+ /// If a word is unused its result will be NoClass; if a type should
+ /// be passed in Memory then at least the classification of \arg Lo
+ /// will be Memory.
+ ///
+ /// The \arg Lo class will be NoClass iff the argument is ignored.
+ ///
+ /// If the \arg Lo class is ComplexX87, then the \arg Hi class will
+ /// also be ComplexX87.
+ void classify(QualType T, ASTContext &Context, uint64_t OffsetBase,
+ Class &Lo, Class &Hi) const;
+
+ /// getCoerceResult - Given a source type \arg Ty and an LLVM type
+ /// to coerce to, chose the best way to pass Ty in the same place
+ /// that \arg CoerceTo would be passed, but while keeping the
+ /// emitted code as simple as possible.
+ ///
+ /// FIXME: Note, this should be cleaned up to just take an enumeration of all
+ /// the ways we might want to pass things, instead of constructing an LLVM
+ /// type. This makes this code more explicit, and it makes it clearer that we
+ /// are also doing this for correctness in the case of passing scalar types.
+ ABIArgInfo getCoerceResult(QualType Ty,
+ const llvm::Type *CoerceTo,
+ ASTContext &Context) const;
+
+ /// getIndirectResult - Give a source type \arg Ty, return a suitable result
+ /// such that the argument will be passed in memory.
+ ABIArgInfo getIndirectResult(QualType Ty,
+ ASTContext &Context) const;
+
+ ABIArgInfo classifyReturnType(QualType RetTy,
+ ASTContext &Context) const;
+
+ ABIArgInfo classifyArgumentType(QualType Ty,
+ ASTContext &Context,
+ unsigned &neededInt,
+ unsigned &neededSSE) const;
+
+public:
+ virtual void computeInfo(CGFunctionInfo &FI, ASTContext &Context) const;
+
+ virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
+ CodeGenFunction &CGF) const;
+};
+}
+
+X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum,
+ Class Field) const {
+ // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is
+ // classified recursively so that always two fields are
+ // considered. The resulting class is calculated according to
+ // the classes of the fields in the eightbyte:
+ //
+ // (a) If both classes are equal, this is the resulting class.
+ //
+ // (b) If one of the classes is NO_CLASS, the resulting class is
+ // the other class.
+ //
+ // (c) If one of the classes is MEMORY, the result is the MEMORY
+ // class.
+ //
+ // (d) If one of the classes is INTEGER, the result is the
+ // INTEGER.
+ //
+ // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class,
+ // MEMORY is used as class.
+ //
+ // (f) Otherwise class SSE is used.
+
+ // Accum should never be memory (we should have returned) or
+ // ComplexX87 (because this cannot be passed in a structure).
+ assert((Accum != Memory && Accum != ComplexX87) &&
+ "Invalid accumulated classification during merge.");
+ if (Accum == Field || Field == NoClass)
+ return Accum;
+ else if (Field == Memory)
+ return Memory;
+ else if (Accum == NoClass)
+ return Field;
+ else if (Accum == Integer || Field == Integer)
+ return Integer;
+ else if (Field == X87 || Field == X87Up || Field == ComplexX87 ||
+ Accum == X87 || Accum == X87Up)
+ return Memory;
+ else
+ return SSE;
+}
+
+void X86_64ABIInfo::classify(QualType Ty,
+ ASTContext &Context,
+ uint64_t OffsetBase,
+ Class &Lo, Class &Hi) const {
+ // FIXME: This code can be simplified by introducing a simple value class for
+ // Class pairs with appropriate constructor methods for the various
+ // situations.
+
+ // FIXME: Some of the split computations are wrong; unaligned vectors
+ // shouldn't be passed in registers for example, so there is no chance they
+ // can straddle an eightbyte. Verify & simplify.
+
+ Lo = Hi = NoClass;
+
+ Class &Current = OffsetBase < 64 ? Lo : Hi;
+ Current = Memory;
+
+ if (const BuiltinType *BT = Ty->getAsBuiltinType()) {
+ BuiltinType::Kind k = BT->getKind();
+
+ if (k == BuiltinType::Void) {
+ Current = NoClass;
+ } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) {
+ Lo = Integer;
+ Hi = Integer;
+ } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) {
+ Current = Integer;
+ } else if (k == BuiltinType::Float || k == BuiltinType::Double) {
+ Current = SSE;
+ } else if (k == BuiltinType::LongDouble) {
+ Lo = X87;
+ Hi = X87Up;
+ }
+ // FIXME: _Decimal32 and _Decimal64 are SSE.
+ // FIXME: _float128 and _Decimal128 are (SSE, SSEUp).
+ } else if (const EnumType *ET = Ty->getAsEnumType()) {
+ // Classify the underlying integer type.
+ classify(ET->getDecl()->getIntegerType(), Context, OffsetBase, Lo, Hi);
+ } else if (Ty->hasPointerRepresentation()) {
+ Current = Integer;
+ } else if (const VectorType *VT = Ty->getAsVectorType()) {
+ uint64_t Size = Context.getTypeSize(VT);
+ if (Size == 32) {
+ // gcc passes all <4 x char>, <2 x short>, <1 x int>, <1 x
+ // float> as integer.
+ Current = Integer;
+
+ // If this type crosses an eightbyte boundary, it should be
+ // split.
+ uint64_t EB_Real = (OffsetBase) / 64;
+ uint64_t EB_Imag = (OffsetBase + Size - 1) / 64;
+ if (EB_Real != EB_Imag)
+ Hi = Lo;
+ } else if (Size == 64) {
+ // gcc passes <1 x double> in memory. :(
+ if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double))
+ return;
+
+ // gcc passes <1 x long long> as INTEGER.
+ if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::LongLong))
+ Current = Integer;
+ else
+ Current = SSE;
+
+ // If this type crosses an eightbyte boundary, it should be
+ // split.
+ if (OffsetBase && OffsetBase != 64)
+ Hi = Lo;
+ } else if (Size == 128) {
+ Lo = SSE;
+ Hi = SSEUp;
+ }
+ } else if (const ComplexType *CT = Ty->getAsComplexType()) {
+ QualType ET = Context.getCanonicalType(CT->getElementType());
+
+ uint64_t Size = Context.getTypeSize(Ty);
+ if (ET->isIntegralType()) {
+ if (Size <= 64)
+ Current = Integer;
+ else if (Size <= 128)
+ Lo = Hi = Integer;
+ } else if (ET == Context.FloatTy)
+ Current = SSE;
+ else if (ET == Context.DoubleTy)
+ Lo = Hi = SSE;
+ else if (ET == Context.LongDoubleTy)
+ Current = ComplexX87;
+
+ // If this complex type crosses an eightbyte boundary then it
+ // should be split.
+ uint64_t EB_Real = (OffsetBase) / 64;
+ uint64_t EB_Imag = (OffsetBase + Context.getTypeSize(ET)) / 64;
+ if (Hi == NoClass && EB_Real != EB_Imag)
+ Hi = Lo;
+ } else if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
+ // Arrays are treated like structures.
+
+ uint64_t Size = Context.getTypeSize(Ty);
+
+ // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
+ // than two eightbytes, ..., it has class MEMORY.
+ if (Size > 128)
+ return;
+
+ // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned
+ // fields, it has class MEMORY.
+ //
+ // Only need to check alignment of array base.
+ if (OffsetBase % Context.getTypeAlign(AT->getElementType()))
+ return;
+
+ // Otherwise implement simplified merge. We could be smarter about
+ // this, but it isn't worth it and would be harder to verify.
+ Current = NoClass;
+ uint64_t EltSize = Context.getTypeSize(AT->getElementType());
+ uint64_t ArraySize = AT->getSize().getZExtValue();
+ for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) {
+ Class FieldLo, FieldHi;
+ classify(AT->getElementType(), Context, Offset, FieldLo, FieldHi);
+ Lo = merge(Lo, FieldLo);
+ Hi = merge(Hi, FieldHi);
+ if (Lo == Memory || Hi == Memory)
+ break;
+ }
+
+ // Do post merger cleanup (see below). Only case we worry about is Memory.
+ if (Hi == Memory)
+ Lo = Memory;
+ assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification.");
+ } else if (const RecordType *RT = Ty->getAsRecordType()) {
+ uint64_t Size = Context.getTypeSize(Ty);
+
+ // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
+ // than two eightbytes, ..., it has class MEMORY.
+ if (Size > 128)
+ return;
+
+ const RecordDecl *RD = RT->getDecl();
+
+ // Assume variable sized types are passed in memory.
+ if (RD->hasFlexibleArrayMember())
+ return;
+
+ const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
+
+ // Reset Lo class, this will be recomputed.
+ Current = NoClass;
+ unsigned idx = 0;
+ for (RecordDecl::field_iterator i = RD->field_begin(Context),
+ e = RD->field_end(Context); i != e; ++i, ++idx) {
+ uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
+ bool BitField = i->isBitField();
+
+ // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned
+ // fields, it has class MEMORY.
+ //
+ // Note, skip this test for bit-fields, see below.
+ if (!BitField && Offset % Context.getTypeAlign(i->getType())) {
+ Lo = Memory;
+ return;
+ }
+
+ // Classify this field.
+ //
+ // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate
+ // exceeds a single eightbyte, each is classified
+ // separately. Each eightbyte gets initialized to class
+ // NO_CLASS.
+ Class FieldLo, FieldHi;
+
+ // Bit-fields require special handling, they do not force the
+ // structure to be passed in memory even if unaligned, and
+ // therefore they can straddle an eightbyte.
+ if (BitField) {
+ // Ignore padding bit-fields.
+ if (i->isUnnamedBitfield())
+ continue;
+
+ uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
+ uint64_t Size = i->getBitWidth()->EvaluateAsInt(Context).getZExtValue();
+
+ uint64_t EB_Lo = Offset / 64;
+ uint64_t EB_Hi = (Offset + Size - 1) / 64;
+ FieldLo = FieldHi = NoClass;
+ if (EB_Lo) {
+ assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes.");
+ FieldLo = NoClass;
+ FieldHi = Integer;
+ } else {
+ FieldLo = Integer;
+ FieldHi = EB_Hi ? Integer : NoClass;
+ }
+ } else
+ classify(i->getType(), Context, Offset, FieldLo, FieldHi);
+ Lo = merge(Lo, FieldLo);
+ Hi = merge(Hi, FieldHi);
+ if (Lo == Memory || Hi == Memory)
+ break;
+ }
+
+ // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done:
+ //
+ // (a) If one of the classes is MEMORY, the whole argument is
+ // passed in memory.
+ //
+ // (b) If SSEUP is not preceeded by SSE, it is converted to SSE.
+
+ // The first of these conditions is guaranteed by how we implement
+ // the merge (just bail).
+ //
+ // The second condition occurs in the case of unions; for example
+ // union { _Complex double; unsigned; }.
+ if (Hi == Memory)
+ Lo = Memory;
+ if (Hi == SSEUp && Lo != SSE)
+ Hi = SSE;
+ }
+}
+
+ABIArgInfo X86_64ABIInfo::getCoerceResult(QualType Ty,
+ const llvm::Type *CoerceTo,
+ ASTContext &Context) const {
+ if (CoerceTo == llvm::Type::Int64Ty) {
+ // Integer and pointer types will end up in a general purpose
+ // register.
+ if (Ty->isIntegralType() || Ty->isPointerType())
+ return ABIArgInfo::getDirect();
+
+ } else if (CoerceTo == llvm::Type::DoubleTy) {
+ // FIXME: It would probably be better to make CGFunctionInfo only map using
+ // canonical types than to canonize here.
+ QualType CTy = Context.getCanonicalType(Ty);
+
+ // Float and double end up in a single SSE reg.
+ if (CTy == Context.FloatTy || CTy == Context.DoubleTy)
+ return ABIArgInfo::getDirect();
+
+ }
+
+ return ABIArgInfo::getCoerce(CoerceTo);
+}
+
+ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty,
+ ASTContext &Context) const {
+ // If this is a scalar LLVM value then assume LLVM will pass it in the right
+ // place naturally.
+ if (!CodeGenFunction::hasAggregateLLVMType(Ty))
+ return ABIArgInfo::getDirect();
+
+ // FIXME: Set alignment correctly.
+ return ABIArgInfo::getIndirect(0);
+}
+
+ABIArgInfo X86_64ABIInfo::classifyReturnType(QualType RetTy,
+ ASTContext &Context) const {
+ // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the
+ // classification algorithm.
+ X86_64ABIInfo::Class Lo, Hi;
+ classify(RetTy, Context, 0, Lo, Hi);
+
+ // Check some invariants.
+ assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
+ assert((Lo != NoClass || Hi == NoClass) && "Invalid null classification.");
+ assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
+
+ const llvm::Type *ResType = 0;
+ switch (Lo) {
+ case NoClass:
+ return ABIArgInfo::getIgnore();
+
+ case SSEUp:
+ case X87Up:
+ assert(0 && "Invalid classification for lo word.");
+
+ // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via
+ // hidden argument.
+ case Memory:
+ return getIndirectResult(RetTy, Context);
+
+ // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next
+ // available register of the sequence %rax, %rdx is used.
+ case Integer:
+ ResType = llvm::Type::Int64Ty; break;
+
+ // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next
+ // available SSE register of the sequence %xmm0, %xmm1 is used.
+ case SSE:
+ ResType = llvm::Type::DoubleTy; break;
+
+ // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is
+ // returned on the X87 stack in %st0 as 80-bit x87 number.
+ case X87:
+ ResType = llvm::Type::X86_FP80Ty; break;
+
+ // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real
+ // part of the value is returned in %st0 and the imaginary part in
+ // %st1.
+ case ComplexX87:
+ assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification.");
+ ResType = llvm::StructType::get(llvm::Type::X86_FP80Ty,
+ llvm::Type::X86_FP80Ty,
+ NULL);
+ break;
+ }
+
+ switch (Hi) {
+ // Memory was handled previously and X87 should
+ // never occur as a hi class.
+ case Memory:
+ case X87:
+ assert(0 && "Invalid classification for hi word.");
+
+ case ComplexX87: // Previously handled.
+ case NoClass: break;
+
+ case Integer:
+ ResType = llvm::StructType::get(ResType, llvm::Type::Int64Ty, NULL);
+ break;
+ case SSE:
+ ResType = llvm::StructType::get(ResType, llvm::Type::DoubleTy, NULL);
+ break;
+
+ // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte
+ // is passed in the upper half of the last used SSE register.
+ //
+ // SSEUP should always be preceeded by SSE, just widen.
+ case SSEUp:
+ assert(Lo == SSE && "Unexpected SSEUp classification.");
+ ResType = llvm::VectorType::get(llvm::Type::DoubleTy, 2);
+ break;
+
+ // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is
+ // returned together with the previous X87 value in %st0.
+ case X87Up:
+ // If X87Up is preceeded by X87, we don't need to do
+ // anything. However, in some cases with unions it may not be
+ // preceeded by X87. In such situations we follow gcc and pass the
+ // extra bits in an SSE reg.
+ if (Lo != X87)
+ ResType = llvm::StructType::get(ResType, llvm::Type::DoubleTy, NULL);
+ break;
+ }
+
+ return getCoerceResult(RetTy, ResType, Context);
+}
+
+ABIArgInfo X86_64ABIInfo::classifyArgumentType(QualType Ty, ASTContext &Context,
+ unsigned &neededInt,
+ unsigned &neededSSE) const {
+ X86_64ABIInfo::Class Lo, Hi;
+ classify(Ty, Context, 0, Lo, Hi);
+
+ // Check some invariants.
+ // FIXME: Enforce these by construction.
+ assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
+ assert((Lo != NoClass || Hi == NoClass) && "Invalid null classification.");
+ assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
+
+ neededInt = 0;
+ neededSSE = 0;
+ const llvm::Type *ResType = 0;
+ switch (Lo) {
+ case NoClass:
+ return ABIArgInfo::getIgnore();
+
+ // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument
+ // on the stack.
+ case Memory:
+
+ // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or
+ // COMPLEX_X87, it is passed in memory.
+ case X87:
+ case ComplexX87:
+ return getIndirectResult(Ty, Context);
+
+ case SSEUp:
+ case X87Up:
+ assert(0 && "Invalid classification for lo word.");
+
+ // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next
+ // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8
+ // and %r9 is used.
+ case Integer:
+ ++neededInt;
+ ResType = llvm::Type::Int64Ty;
+ break;
+
+ // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next
+ // available SSE register is used, the registers are taken in the
+ // order from %xmm0 to %xmm7.
+ case SSE:
+ ++neededSSE;
+ ResType = llvm::Type::DoubleTy;
+ break;
+ }
+
+ switch (Hi) {
+ // Memory was handled previously, ComplexX87 and X87 should
+ // never occur as hi classes, and X87Up must be preceed by X87,
+ // which is passed in memory.
+ case Memory:
+ case X87:
+ case ComplexX87:
+ assert(0 && "Invalid classification for hi word.");
+ break;
+
+ case NoClass: break;
+ case Integer:
+ ResType = llvm::StructType::get(ResType, llvm::Type::Int64Ty, NULL);
+ ++neededInt;
+ break;
+
+ // X87Up generally doesn't occur here (long double is passed in
+ // memory), except in situations involving unions.
+ case X87Up:
+ case SSE:
+ ResType = llvm::StructType::get(ResType, llvm::Type::DoubleTy, NULL);
+ ++neededSSE;
+ break;
+
+ // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the
+ // eightbyte is passed in the upper half of the last used SSE
+ // register.
+ case SSEUp:
+ assert(Lo == SSE && "Unexpected SSEUp classification.");
+ ResType = llvm::VectorType::get(llvm::Type::DoubleTy, 2);
+ break;
+ }
+
+ return getCoerceResult(Ty, ResType, Context);
+}
+
+void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI, ASTContext &Context) const {
+ FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), Context);
+
+ // Keep track of the number of assigned registers.
+ unsigned freeIntRegs = 6, freeSSERegs = 8;
+
+ // If the return value is indirect, then the hidden argument is consuming one
+ // integer register.
+ if (FI.getReturnInfo().isIndirect())
+ --freeIntRegs;
+
+ // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers
+ // get assigned (in left-to-right order) for passing as follows...
+ for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
+ it != ie; ++it) {
+ unsigned neededInt, neededSSE;
+ it->info = classifyArgumentType(it->type, Context, neededInt, neededSSE);
+
+ // AMD64-ABI 3.2.3p3: If there are no registers available for any
+ // eightbyte of an argument, the whole argument is passed on the
+ // stack. If registers have already been assigned for some
+ // eightbytes of such an argument, the assignments get reverted.
+ if (freeIntRegs >= neededInt && freeSSERegs >= neededSSE) {
+ freeIntRegs -= neededInt;
+ freeSSERegs -= neededSSE;
+ } else {
+ it->info = getIndirectResult(it->type, Context);
+ }
+ }
+}
+
+static llvm::Value *EmitVAArgFromMemory(llvm::Value *VAListAddr,
+ QualType Ty,
+ CodeGenFunction &CGF) {
+ llvm::Value *overflow_arg_area_p =
+ CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p");
+ llvm::Value *overflow_arg_area =
+ CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area");
+
+ // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16
+ // byte boundary if alignment needed by type exceeds 8 byte boundary.
+ uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8;
+ if (Align > 8) {
+ // Note that we follow the ABI & gcc here, even though the type
+ // could in theory have an alignment greater than 16. This case
+ // shouldn't ever matter in practice.
+
+ // overflow_arg_area = (overflow_arg_area + 15) & ~15;
+ llvm::Value *Offset = llvm::ConstantInt::get(llvm::Type::Int32Ty, 15);
+ overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset);
+ llvm::Value *AsInt = CGF.Builder.CreatePtrToInt(overflow_arg_area,
+ llvm::Type::Int64Ty);
+ llvm::Value *Mask = llvm::ConstantInt::get(llvm::Type::Int64Ty, ~15LL);
+ overflow_arg_area =
+ CGF.Builder.CreateIntToPtr(CGF.Builder.CreateAnd(AsInt, Mask),
+ overflow_arg_area->getType(),
+ "overflow_arg_area.align");
+ }
+
+ // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area.
+ const llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
+ llvm::Value *Res =
+ CGF.Builder.CreateBitCast(overflow_arg_area,
+ llvm::PointerType::getUnqual(LTy));
+
+ // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to:
+ // l->overflow_arg_area + sizeof(type).
+ // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to
+ // an 8 byte boundary.
+
+ uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8;
+ llvm::Value *Offset = llvm::ConstantInt::get(llvm::Type::Int32Ty,
+ (SizeInBytes + 7) & ~7);
+ overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset,
+ "overflow_arg_area.next");
+ CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p);
+
+ // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type.
+ return Res;
+}
+
+llvm::Value *X86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
+ CodeGenFunction &CGF) const {
+ // Assume that va_list type is correct; should be pointer to LLVM type:
+ // struct {
+ // i32 gp_offset;
+ // i32 fp_offset;
+ // i8* overflow_arg_area;
+ // i8* reg_save_area;
+ // };
+ unsigned neededInt, neededSSE;
+ ABIArgInfo AI = classifyArgumentType(Ty, CGF.getContext(),
+ neededInt, neededSSE);
+
+ // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed
+ // in the registers. If not go to step 7.
+ if (!neededInt && !neededSSE)
+ return EmitVAArgFromMemory(VAListAddr, Ty, CGF);
+
+ // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of
+ // general purpose registers needed to pass type and num_fp to hold
+ // the number of floating point registers needed.
+
+ // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into
+ // registers. In the case: l->gp_offset > 48 - num_gp * 8 or
+ // l->fp_offset > 304 - num_fp * 16 go to step 7.
+ //
+ // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of
+ // register save space).
+
+ llvm::Value *InRegs = 0;
+ llvm::Value *gp_offset_p = 0, *gp_offset = 0;
+ llvm::Value *fp_offset_p = 0, *fp_offset = 0;
+ if (neededInt) {
+ gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p");
+ gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset");
+ InRegs =
+ CGF.Builder.CreateICmpULE(gp_offset,
+ llvm::ConstantInt::get(llvm::Type::Int32Ty,
+ 48 - neededInt * 8),
+ "fits_in_gp");
+ }
+
+ if (neededSSE) {
+ fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p");
+ fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset");
+ llvm::Value *FitsInFP =
+ CGF.Builder.CreateICmpULE(fp_offset,
+ llvm::ConstantInt::get(llvm::Type::Int32Ty,
+ 176 - neededSSE * 16),
+ "fits_in_fp");
+ InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP;
+ }
+
+ llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
+ llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
+ llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
+ CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
+
+ // Emit code to load the value if it was passed in registers.
+
+ CGF.EmitBlock(InRegBlock);
+
+ // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with
+ // an offset of l->gp_offset and/or l->fp_offset. This may require
+ // copying to a temporary location in case the parameter is passed
+ // in different register classes or requires an alignment greater
+ // than 8 for general purpose registers and 16 for XMM registers.
+ //
+ // FIXME: This really results in shameful code when we end up needing to
+ // collect arguments from different places; often what should result in a
+ // simple assembling of a structure from scattered addresses has many more
+ // loads than necessary. Can we clean this up?
+ const llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
+ llvm::Value *RegAddr =
+ CGF.Builder.CreateLoad(CGF.Builder.CreateStructGEP(VAListAddr, 3),
+ "reg_save_area");
+ if (neededInt && neededSSE) {
+ // FIXME: Cleanup.
+ assert(AI.isCoerce() && "Unexpected ABI info for mixed regs");
+ const llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType());
+ llvm::Value *Tmp = CGF.CreateTempAlloca(ST);
+ assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs");
+ const llvm::Type *TyLo = ST->getElementType(0);
+ const llvm::Type *TyHi = ST->getElementType(1);
+ assert((TyLo->isFloatingPoint() ^ TyHi->isFloatingPoint()) &&
+ "Unexpected ABI info for mixed regs");
+ const llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo);
+ const llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi);
+ llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset);
+ llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset);
+ llvm::Value *RegLoAddr = TyLo->isFloatingPoint() ? FPAddr : GPAddr;
+ llvm::Value *RegHiAddr = TyLo->isFloatingPoint() ? GPAddr : FPAddr;
+ llvm::Value *V =
+ CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegLoAddr, PTyLo));
+ CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
+ V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegHiAddr, PTyHi));
+ CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
+
+ RegAddr = CGF.Builder.CreateBitCast(Tmp, llvm::PointerType::getUnqual(LTy));
+ } else if (neededInt) {
+ RegAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset);
+ RegAddr = CGF.Builder.CreateBitCast(RegAddr,
+ llvm::PointerType::getUnqual(LTy));
+ } else {
+ if (neededSSE == 1) {
+ RegAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset);
+ RegAddr = CGF.Builder.CreateBitCast(RegAddr,
+ llvm::PointerType::getUnqual(LTy));
+ } else {
+ assert(neededSSE == 2 && "Invalid number of needed registers!");
+ // SSE registers are spaced 16 bytes apart in the register save
+ // area, we need to collect the two eightbytes together.
+ llvm::Value *RegAddrLo = CGF.Builder.CreateGEP(RegAddr, fp_offset);
+ llvm::Value *RegAddrHi =
+ CGF.Builder.CreateGEP(RegAddrLo,
+ llvm::ConstantInt::get(llvm::Type::Int32Ty, 16));
+ const llvm::Type *DblPtrTy =
+ llvm::PointerType::getUnqual(llvm::Type::DoubleTy);
+ const llvm::StructType *ST = llvm::StructType::get(llvm::Type::DoubleTy,
+ llvm::Type::DoubleTy,
+ NULL);
+ llvm::Value *V, *Tmp = CGF.CreateTempAlloca(ST);
+ V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrLo,
+ DblPtrTy));
+ CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
+ V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrHi,
+ DblPtrTy));
+ CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
+ RegAddr = CGF.Builder.CreateBitCast(Tmp,
+ llvm::PointerType::getUnqual(LTy));
+ }
+ }
+
+ // AMD64-ABI 3.5.7p5: Step 5. Set:
+ // l->gp_offset = l->gp_offset + num_gp * 8
+ // l->fp_offset = l->fp_offset + num_fp * 16.
+ if (neededInt) {
+ llvm::Value *Offset = llvm::ConstantInt::get(llvm::Type::Int32Ty,
+ neededInt * 8);
+ CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset),
+ gp_offset_p);
+ }
+ if (neededSSE) {
+ llvm::Value *Offset = llvm::ConstantInt::get(llvm::Type::Int32Ty,
+ neededSSE * 16);
+ CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset),
+ fp_offset_p);
+ }
+ CGF.EmitBranch(ContBlock);
+
+ // Emit code to load the value if it was passed in memory.
+
+ CGF.EmitBlock(InMemBlock);
+ llvm::Value *MemAddr = EmitVAArgFromMemory(VAListAddr, Ty, CGF);
+
+ // Return the appropriate result.
+
+ CGF.EmitBlock(ContBlock);
+ llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(RegAddr->getType(),
+ "vaarg.addr");
+ ResAddr->reserveOperandSpace(2);
+ ResAddr->addIncoming(RegAddr, InRegBlock);
+ ResAddr->addIncoming(MemAddr, InMemBlock);
+
+ return ResAddr;
+}
+
+// ABI Info for PIC16
+class PIC16ABIInfo : public ABIInfo {
+ ABIArgInfo classifyReturnType(QualType RetTy,
+ ASTContext &Context) const;
+
+ ABIArgInfo classifyArgumentType(QualType RetTy,
+ ASTContext &Context) const;
+
+ virtual void computeInfo(CGFunctionInfo &FI, ASTContext &Context) const {
+ FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), Context);
+ for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
+ it != ie; ++it)
+ it->info = classifyArgumentType(it->type, Context);
+ }
+
+ virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
+ CodeGenFunction &CGF) const;
+
+};
+
+ABIArgInfo PIC16ABIInfo::classifyReturnType(QualType RetTy,
+ ASTContext &Context) const {
+ if (RetTy->isVoidType()) {
+ return ABIArgInfo::getIgnore();
+ } else {
+ return ABIArgInfo::getDirect();
+ }
+}
+
+ABIArgInfo PIC16ABIInfo::classifyArgumentType(QualType Ty,
+ ASTContext &Context) const {
+ return ABIArgInfo::getDirect();
+}
+
+llvm::Value *PIC16ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
+ CodeGenFunction &CGF) const {
+ return 0;
+}
+
+class ARMABIInfo : public ABIInfo {
+ ABIArgInfo classifyReturnType(QualType RetTy,
+ ASTContext &Context) const;
+
+ ABIArgInfo classifyArgumentType(QualType RetTy,
+ ASTContext &Context) const;
+
+ virtual void computeInfo(CGFunctionInfo &FI, ASTContext &Context) const;
+
+ virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
+ CodeGenFunction &CGF) const;
+};
+
+void ARMABIInfo::computeInfo(CGFunctionInfo &FI, ASTContext &Context) const {
+ FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), Context);
+ for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
+ it != ie; ++it) {
+ it->info = classifyArgumentType(it->type, Context);
+ }
+}
+
+ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty,
+ ASTContext &Context) const {
+ if (!CodeGenFunction::hasAggregateLLVMType(Ty)) {
+ return ABIArgInfo::getDirect();
+ }
+ // FIXME: This is kind of nasty... but there isn't much choice because the ARM
+ // backend doesn't support byval.
+ // FIXME: This doesn't handle alignment > 64 bits.
+ const llvm::Type* ElemTy;
+ unsigned SizeRegs;
+ if (Context.getTypeAlign(Ty) > 32) {
+ ElemTy = llvm::Type::Int64Ty;
+ SizeRegs = (Context.getTypeSize(Ty) + 63) / 64;
+ } else {
+ ElemTy = llvm::Type::Int32Ty;
+ SizeRegs = (Context.getTypeSize(Ty) + 31) / 32;
+ }
+ std::vector<const llvm::Type*> LLVMFields;
+ LLVMFields.push_back(llvm::ArrayType::get(ElemTy, SizeRegs));
+ const llvm::Type* STy = llvm::StructType::get(LLVMFields, true);
+ return ABIArgInfo::getCoerce(STy);
+}
+
+ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy,
+ ASTContext &Context) const {
+ if (RetTy->isVoidType()) {
+ return ABIArgInfo::getIgnore();
+ } else if (CodeGenFunction::hasAggregateLLVMType(RetTy)) {
+ // Aggregates <= 4 bytes are returned in r0; other aggregates
+ // are returned indirectly.
+ uint64_t Size = Context.getTypeSize(RetTy);
+ if (Size <= 32)
+ return ABIArgInfo::getCoerce(llvm::Type::Int32Ty);
+ return ABIArgInfo::getIndirect(0);
+ } else {
+ return ABIArgInfo::getDirect();
+ }
+}
+
+llvm::Value *ARMABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
+ CodeGenFunction &CGF) const {
+ // FIXME: Need to handle alignment
+ const llvm::Type *BP = llvm::PointerType::getUnqual(llvm::Type::Int8Ty);
+ const llvm::Type *BPP = llvm::PointerType::getUnqual(BP);
+
+ CGBuilderTy &Builder = CGF.Builder;
+ llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
+ "ap");
+ llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
+ llvm::Type *PTy =
+ llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
+ llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
+
+ uint64_t Offset =
+ llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 4);
+ llvm::Value *NextAddr =
+ Builder.CreateGEP(Addr,
+ llvm::ConstantInt::get(llvm::Type::Int32Ty, Offset),
+ "ap.next");
+ Builder.CreateStore(NextAddr, VAListAddrAsBPP);
+
+ return AddrTyped;
+}
+
+ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy,
+ ASTContext &Context) const {
+ if (RetTy->isVoidType()) {
+ return ABIArgInfo::getIgnore();
+ } else if (CodeGenFunction::hasAggregateLLVMType(RetTy)) {
+ return ABIArgInfo::getIndirect(0);
+ } else {
+ return ABIArgInfo::getDirect();
+ }
+}
+
+ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty,
+ ASTContext &Context) const {
+ if (CodeGenFunction::hasAggregateLLVMType(Ty)) {
+ return ABIArgInfo::getIndirect(0);
+ } else {
+ return ABIArgInfo::getDirect();
+ }
+}
+
+llvm::Value *DefaultABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
+ CodeGenFunction &CGF) const {
+ return 0;
+}
+
+const ABIInfo &CodeGenTypes::getABIInfo() const {
+ if (TheABIInfo)
+ return *TheABIInfo;
+
+ // For now we just cache this in the CodeGenTypes and don't bother
+ // to free it.
+ const char *TargetPrefix = getContext().Target.getTargetPrefix();
+ if (strcmp(TargetPrefix, "x86") == 0) {
+ bool IsDarwin = strstr(getContext().Target.getTargetTriple(), "darwin");
+ switch (getContext().Target.getPointerWidth(0)) {
+ case 32:
+ return *(TheABIInfo = new X86_32ABIInfo(Context, IsDarwin));
+ case 64:
+ return *(TheABIInfo = new X86_64ABIInfo());
+ }
+ } else if (strcmp(TargetPrefix, "arm") == 0) {
+ // FIXME: Support for OABI?
+ return *(TheABIInfo = new ARMABIInfo());
+ } else if (strcmp(TargetPrefix, "pic16") == 0) {
+ return *(TheABIInfo = new PIC16ABIInfo());
+ }
+
+ return *(TheABIInfo = new DefaultABIInfo);
+}
+
+/***/
+
+CGFunctionInfo::CGFunctionInfo(QualType ResTy,
+ const llvm::SmallVector<QualType, 16> &ArgTys) {
+ NumArgs = ArgTys.size();
+ Args = new ArgInfo[1 + NumArgs];
+ Args[0].type = ResTy;
+ for (unsigned i = 0; i < NumArgs; ++i)
+ Args[1 + i].type = ArgTys[i];
+}
+
+/***/
+
+void CodeGenTypes::GetExpandedTypes(QualType Ty,
+ std::vector<const llvm::Type*> &ArgTys) {
+ const RecordType *RT = Ty->getAsStructureType();
+ assert(RT && "Can only expand structure types.");
+ const RecordDecl *RD = RT->getDecl();
+ assert(!RD->hasFlexibleArrayMember() &&
+ "Cannot expand structure with flexible array.");
+
+ for (RecordDecl::field_iterator i = RD->field_begin(Context),
+ e = RD->field_end(Context); i != e; ++i) {
+ const FieldDecl *FD = *i;
+ assert(!FD->isBitField() &&
+ "Cannot expand structure with bit-field members.");
+
+ QualType FT = FD->getType();
+ if (CodeGenFunction::hasAggregateLLVMType(FT)) {
+ GetExpandedTypes(FT, ArgTys);
+ } else {
+ ArgTys.push_back(ConvertType(FT));
+ }
+ }
+}
+
+llvm::Function::arg_iterator
+CodeGenFunction::ExpandTypeFromArgs(QualType Ty, LValue LV,
+ llvm::Function::arg_iterator AI) {
+ const RecordType *RT = Ty->getAsStructureType();
+ assert(RT && "Can only expand structure types.");
+
+ RecordDecl *RD = RT->getDecl();
+ assert(LV.isSimple() &&
+ "Unexpected non-simple lvalue during struct expansion.");
+ llvm::Value *Addr = LV.getAddress();
+ for (RecordDecl::field_iterator i = RD->field_begin(getContext()),
+ e = RD->field_end(getContext()); i != e; ++i) {
+ FieldDecl *FD = *i;
+ QualType FT = FD->getType();
+
+ // FIXME: What are the right qualifiers here?
+ LValue LV = EmitLValueForField(Addr, FD, false, 0);
+ if (CodeGenFunction::hasAggregateLLVMType(FT)) {
+ AI = ExpandTypeFromArgs(FT, LV, AI);
+ } else {
+ EmitStoreThroughLValue(RValue::get(AI), LV, FT);
+ ++AI;
+ }
+ }
+
+ return AI;
+}
+
+void
+CodeGenFunction::ExpandTypeToArgs(QualType Ty, RValue RV,
+ llvm::SmallVector<llvm::Value*, 16> &Args) {
+ const RecordType *RT = Ty->getAsStructureType();
+ assert(RT && "Can only expand structure types.");
+
+ RecordDecl *RD = RT->getDecl();
+ assert(RV.isAggregate() && "Unexpected rvalue during struct expansion");
+ llvm::Value *Addr = RV.getAggregateAddr();
+ for (RecordDecl::field_iterator i = RD->field_begin(getContext()),
+ e = RD->field_end(getContext()); i != e; ++i) {
+ FieldDecl *FD = *i;
+ QualType FT = FD->getType();
+
+ // FIXME: What are the right qualifiers here?
+ LValue LV = EmitLValueForField(Addr, FD, false, 0);
+ if (CodeGenFunction::hasAggregateLLVMType(FT)) {
+ ExpandTypeToArgs(FT, RValue::getAggregate(LV.getAddress()), Args);
+ } else {
+ RValue RV = EmitLoadOfLValue(LV, FT);
+ assert(RV.isScalar() &&
+ "Unexpected non-scalar rvalue during struct expansion.");
+ Args.push_back(RV.getScalarVal());
+ }
+ }
+}
+
+/// CreateCoercedLoad - Create a load from \arg SrcPtr interpreted as
+/// a pointer to an object of type \arg Ty.
+///
+/// This safely handles the case when the src type is smaller than the
+/// destination type; in this situation the values of bits which not
+/// present in the src are undefined.
+static llvm::Value *CreateCoercedLoad(llvm::Value *SrcPtr,
+ const llvm::Type *Ty,
+ CodeGenFunction &CGF) {
+ const llvm::Type *SrcTy =
+ cast<llvm::PointerType>(SrcPtr->getType())->getElementType();
+ uint64_t SrcSize = CGF.CGM.getTargetData().getTypeAllocSize(SrcTy);
+ uint64_t DstSize = CGF.CGM.getTargetData().getTypeAllocSize(Ty);
+
+ // If load is legal, just bitcast the src pointer.
+ if (SrcSize >= DstSize) {
+ // Generally SrcSize is never greater than DstSize, since this means we are
+ // losing bits. However, this can happen in cases where the structure has
+ // additional padding, for example due to a user specified alignment.
+ //
+ // FIXME: Assert that we aren't truncating non-padding bits when have access
+ // to that information.
+ llvm::Value *Casted =
+ CGF.Builder.CreateBitCast(SrcPtr, llvm::PointerType::getUnqual(Ty));
+ llvm::LoadInst *Load = CGF.Builder.CreateLoad(Casted);
+ // FIXME: Use better alignment / avoid requiring aligned load.
+ Load->setAlignment(1);
+ return Load;
+ } else {
+ // Otherwise do coercion through memory. This is stupid, but
+ // simple.
+ llvm::Value *Tmp = CGF.CreateTempAlloca(Ty);
+ llvm::Value *Casted =
+ CGF.Builder.CreateBitCast(Tmp, llvm::PointerType::getUnqual(SrcTy));
+ llvm::StoreInst *Store =
+ CGF.Builder.CreateStore(CGF.Builder.CreateLoad(SrcPtr), Casted);
+ // FIXME: Use better alignment / avoid requiring aligned store.
+ Store->setAlignment(1);
+ return CGF.Builder.CreateLoad(Tmp);
+ }
+}
+
+/// CreateCoercedStore - Create a store to \arg DstPtr from \arg Src,
+/// where the source and destination may have different types.
+///
+/// This safely handles the case when the src type is larger than the
+/// destination type; the upper bits of the src will be lost.
+static void CreateCoercedStore(llvm::Value *Src,
+ llvm::Value *DstPtr,
+ CodeGenFunction &CGF) {
+ const llvm::Type *SrcTy = Src->getType();
+ const llvm::Type *DstTy =
+ cast<llvm::PointerType>(DstPtr->getType())->getElementType();
+
+ uint64_t SrcSize = CGF.CGM.getTargetData().getTypeAllocSize(SrcTy);
+ uint64_t DstSize = CGF.CGM.getTargetData().getTypeAllocSize(DstTy);
+
+ // If store is legal, just bitcast the src pointer.
+ if (SrcSize >= DstSize) {
+ // Generally SrcSize is never greater than DstSize, since this means we are
+ // losing bits. However, this can happen in cases where the structure has
+ // additional padding, for example due to a user specified alignment.
+ //
+ // FIXME: Assert that we aren't truncating non-padding bits when have access
+ // to that information.
+ llvm::Value *Casted =
+ CGF.Builder.CreateBitCast(DstPtr, llvm::PointerType::getUnqual(SrcTy));
+ // FIXME: Use better alignment / avoid requiring aligned store.
+ CGF.Builder.CreateStore(Src, Casted)->setAlignment(1);
+ } else {
+ // Otherwise do coercion through memory. This is stupid, but
+ // simple.
+ llvm::Value *Tmp = CGF.CreateTempAlloca(SrcTy);
+ CGF.Builder.CreateStore(Src, Tmp);
+ llvm::Value *Casted =
+ CGF.Builder.CreateBitCast(Tmp, llvm::PointerType::getUnqual(DstTy));
+ llvm::LoadInst *Load = CGF.Builder.CreateLoad(Casted);
+ // FIXME: Use better alignment / avoid requiring aligned load.
+ Load->setAlignment(1);
+ CGF.Builder.CreateStore(Load, DstPtr);
+ }
+}
+
+/***/
+
+bool CodeGenModule::ReturnTypeUsesSret(const CGFunctionInfo &FI) {
+ return FI.getReturnInfo().isIndirect();
+}
+
+const llvm::FunctionType *
+CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI, bool IsVariadic) {
+ std::vector<const llvm::Type*> ArgTys;
+
+ const llvm::Type *ResultType = 0;
+
+ QualType RetTy = FI.getReturnType();
+ const ABIArgInfo &RetAI = FI.getReturnInfo();
+ switch (RetAI.getKind()) {
+ case ABIArgInfo::Expand:
+ assert(0 && "Invalid ABI kind for return argument");
+
+ case ABIArgInfo::Direct:
+ ResultType = ConvertType(RetTy);
+ break;
+
+ case ABIArgInfo::Indirect: {
+ assert(!RetAI.getIndirectAlign() && "Align unused on indirect return.");
+ ResultType = llvm::Type::VoidTy;
+ const llvm::Type *STy = ConvertType(RetTy);
+ ArgTys.push_back(llvm::PointerType::get(STy, RetTy.getAddressSpace()));
+ break;
+ }
+
+ case ABIArgInfo::Ignore:
+ ResultType = llvm::Type::VoidTy;
+ break;
+
+ case ABIArgInfo::Coerce:
+ ResultType = RetAI.getCoerceToType();
+ break;
+ }
+
+ for (CGFunctionInfo::const_arg_iterator it = FI.arg_begin(),
+ ie = FI.arg_end(); it != ie; ++it) {
+ const ABIArgInfo &AI = it->info;
+
+ switch (AI.getKind()) {
+ case ABIArgInfo::Ignore:
+ break;
+
+ case ABIArgInfo::Coerce:
+ ArgTys.push_back(AI.getCoerceToType());
+ break;
+
+ case ABIArgInfo::Indirect: {
+ // indirect arguments are always on the stack, which is addr space #0.
+ const llvm::Type *LTy = ConvertTypeForMem(it->type);
+ ArgTys.push_back(llvm::PointerType::getUnqual(LTy));
+ break;
+ }
+
+ case ABIArgInfo::Direct:
+ ArgTys.push_back(ConvertType(it->type));
+ break;
+
+ case ABIArgInfo::Expand:
+ GetExpandedTypes(it->type, ArgTys);
+ break;
+ }
+ }
+
+ return llvm::FunctionType::get(ResultType, ArgTys, IsVariadic);
+}
+
+void CodeGenModule::ConstructAttributeList(const CGFunctionInfo &FI,
+ const Decl *TargetDecl,
+ AttributeListType &PAL) {
+ unsigned FuncAttrs = 0;
+ unsigned RetAttrs = 0;
+
+ // FIXME: handle sseregparm someday...
+ if (TargetDecl) {
+ if (TargetDecl->hasAttr<NoThrowAttr>())
+ FuncAttrs |= llvm::Attribute::NoUnwind;
+ if (TargetDecl->hasAttr<NoReturnAttr>())
+ FuncAttrs |= llvm::Attribute::NoReturn;
+ if (TargetDecl->hasAttr<ConstAttr>())
+ FuncAttrs |= llvm::Attribute::ReadNone;
+ else if (TargetDecl->hasAttr<PureAttr>())
+ FuncAttrs |= llvm::Attribute::ReadOnly;
+ }
+
+ QualType RetTy = FI.getReturnType();
+ unsigned Index = 1;
+ const ABIArgInfo &RetAI = FI.getReturnInfo();
+ switch (RetAI.getKind()) {
+ case ABIArgInfo::Direct:
+ if (RetTy->isPromotableIntegerType()) {
+ if (RetTy->isSignedIntegerType()) {
+ RetAttrs |= llvm::Attribute::SExt;
+ } else if (RetTy->isUnsignedIntegerType()) {
+ RetAttrs |= llvm::Attribute::ZExt;
+ }
+ }
+ break;
+
+ case ABIArgInfo::Indirect:
+ PAL.push_back(llvm::AttributeWithIndex::get(Index,
+ llvm::Attribute::StructRet |
+ llvm::Attribute::NoAlias));
+ ++Index;
+ // sret disables readnone and readonly
+ FuncAttrs &= ~(llvm::Attribute::ReadOnly |
+ llvm::Attribute::ReadNone);
+ break;
+
+ case ABIArgInfo::Ignore:
+ case ABIArgInfo::Coerce:
+ break;
+
+ case ABIArgInfo::Expand:
+ assert(0 && "Invalid ABI kind for return argument");
+ }
+
+ if (RetAttrs)
+ PAL.push_back(llvm::AttributeWithIndex::get(0, RetAttrs));
+
+ // FIXME: we need to honour command line settings also...
+ // FIXME: RegParm should be reduced in case of nested functions and/or global
+ // register variable.
+ signed RegParm = 0;
+ if (TargetDecl)
+ if (const RegparmAttr *RegParmAttr = TargetDecl->getAttr<RegparmAttr>())
+ RegParm = RegParmAttr->getNumParams();
+
+ unsigned PointerWidth = getContext().Target.getPointerWidth(0);
+ for (CGFunctionInfo::const_arg_iterator it = FI.arg_begin(),
+ ie = FI.arg_end(); it != ie; ++it) {
+ QualType ParamType = it->type;
+ const ABIArgInfo &AI = it->info;
+ unsigned Attributes = 0;
+
+ switch (AI.getKind()) {
+ case ABIArgInfo::Coerce:
+ break;
+
+ case ABIArgInfo::Indirect:
+ Attributes |= llvm::Attribute::ByVal;
+ Attributes |=
+ llvm::Attribute::constructAlignmentFromInt(AI.getIndirectAlign());
+ // byval disables readnone and readonly.
+ FuncAttrs &= ~(llvm::Attribute::ReadOnly |
+ llvm::Attribute::ReadNone);
+ break;
+
+ case ABIArgInfo::Direct:
+ if (ParamType->isPromotableIntegerType()) {
+ if (ParamType->isSignedIntegerType()) {
+ Attributes |= llvm::Attribute::SExt;
+ } else if (ParamType->isUnsignedIntegerType()) {
+ Attributes |= llvm::Attribute::ZExt;
+ }
+ }
+ if (RegParm > 0 &&
+ (ParamType->isIntegerType() || ParamType->isPointerType())) {
+ RegParm -=
+ (Context.getTypeSize(ParamType) + PointerWidth - 1) / PointerWidth;
+ if (RegParm >= 0)
+ Attributes |= llvm::Attribute::InReg;
+ }
+ // FIXME: handle sseregparm someday...
+ break;
+
+ case ABIArgInfo::Ignore:
+ // Skip increment, no matching LLVM parameter.
+ continue;
+
+ case ABIArgInfo::Expand: {
+ std::vector<const llvm::Type*> Tys;
+ // FIXME: This is rather inefficient. Do we ever actually need to do
+ // anything here? The result should be just reconstructed on the other
+ // side, so extension should be a non-issue.
+ getTypes().GetExpandedTypes(ParamType, Tys);
+ Index += Tys.size();
+ continue;
+ }
+ }
+
+ if (Attributes)
+ PAL.push_back(llvm::AttributeWithIndex::get(Index, Attributes));
+ ++Index;
+ }
+ if (FuncAttrs)
+ PAL.push_back(llvm::AttributeWithIndex::get(~0, FuncAttrs));
+}
+
+void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI,
+ llvm::Function *Fn,
+ const FunctionArgList &Args) {
+ // FIXME: We no longer need the types from FunctionArgList; lift up and
+ // simplify.
+
+ // Emit allocs for param decls. Give the LLVM Argument nodes names.
+ llvm::Function::arg_iterator AI = Fn->arg_begin();
+
+ // Name the struct return argument.
+ if (CGM.ReturnTypeUsesSret(FI)) {
+ AI->setName("agg.result");
+ ++AI;
+ }
+
+ assert(FI.arg_size() == Args.size() &&
+ "Mismatch between function signature & arguments.");
+ CGFunctionInfo::const_arg_iterator info_it = FI.arg_begin();
+ for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
+ i != e; ++i, ++info_it) {
+ const VarDecl *Arg = i->first;
+ QualType Ty = info_it->type;
+ const ABIArgInfo &ArgI = info_it->info;
+
+ switch (ArgI.getKind()) {
+ case ABIArgInfo::Indirect: {
+ llvm::Value* V = AI;
+ if (hasAggregateLLVMType(Ty)) {
+ // Do nothing, aggregates and complex variables are accessed by
+ // reference.
+ } else {
+ // Load scalar value from indirect argument.
+ V = EmitLoadOfScalar(V, false, Ty);
+ if (!getContext().typesAreCompatible(Ty, Arg->getType())) {
+ // This must be a promotion, for something like
+ // "void a(x) short x; {..."
+ V = EmitScalarConversion(V, Ty, Arg->getType());
+ }
+ }
+ EmitParmDecl(*Arg, V);
+ break;
+ }
+
+ case ABIArgInfo::Direct: {
+ assert(AI != Fn->arg_end() && "Argument mismatch!");
+ llvm::Value* V = AI;
+ if (hasAggregateLLVMType(Ty)) {
+ // Create a temporary alloca to hold the argument; the rest of
+ // codegen expects to access aggregates & complex values by
+ // reference.
+ V = CreateTempAlloca(ConvertTypeForMem(Ty));
+ Builder.CreateStore(AI, V);
+ } else {
+ if (!getContext().typesAreCompatible(Ty, Arg->getType())) {
+ // This must be a promotion, for something like
+ // "void a(x) short x; {..."
+ V = EmitScalarConversion(V, Ty, Arg->getType());
+ }
+ }
+ EmitParmDecl(*Arg, V);
+ break;
+ }
+
+ case ABIArgInfo::Expand: {
+ // If this structure was expanded into multiple arguments then
+ // we need to create a temporary and reconstruct it from the
+ // arguments.
+ std::string Name = Arg->getNameAsString();
+ llvm::Value *Temp = CreateTempAlloca(ConvertTypeForMem(Ty),
+ (Name + ".addr").c_str());
+ // FIXME: What are the right qualifiers here?
+ llvm::Function::arg_iterator End =
+ ExpandTypeFromArgs(Ty, LValue::MakeAddr(Temp,0), AI);
+ EmitParmDecl(*Arg, Temp);
+
+ // Name the arguments used in expansion and increment AI.
+ unsigned Index = 0;
+ for (; AI != End; ++AI, ++Index)
+ AI->setName(Name + "." + llvm::utostr(Index));
+ continue;
+ }
+
+ case ABIArgInfo::Ignore:
+ // Initialize the local variable appropriately.
+ if (hasAggregateLLVMType(Ty)) {
+ EmitParmDecl(*Arg, CreateTempAlloca(ConvertTypeForMem(Ty)));
+ } else {
+ EmitParmDecl(*Arg, llvm::UndefValue::get(ConvertType(Arg->getType())));
+ }
+
+ // Skip increment, no matching LLVM parameter.
+ continue;
+
+ case ABIArgInfo::Coerce: {
+ assert(AI != Fn->arg_end() && "Argument mismatch!");
+ // FIXME: This is very wasteful; EmitParmDecl is just going to drop the
+ // result in a new alloca anyway, so we could just store into that
+ // directly if we broke the abstraction down more.
+ llvm::Value *V = CreateTempAlloca(ConvertTypeForMem(Ty), "coerce");
+ CreateCoercedStore(AI, V, *this);
+ // Match to what EmitParmDecl is expecting for this type.
+ if (!CodeGenFunction::hasAggregateLLVMType(Ty)) {
+ V = EmitLoadOfScalar(V, false, Ty);
+ if (!getContext().typesAreCompatible(Ty, Arg->getType())) {
+ // This must be a promotion, for something like
+ // "void a(x) short x; {..."
+ V = EmitScalarConversion(V, Ty, Arg->getType());
+ }
+ }
+ EmitParmDecl(*Arg, V);
+ break;
+ }
+ }
+
+ ++AI;
+ }
+ assert(AI == Fn->arg_end() && "Argument mismatch!");
+}
+
+void CodeGenFunction::EmitFunctionEpilog(const CGFunctionInfo &FI,
+ llvm::Value *ReturnValue) {
+ llvm::Value *RV = 0;
+
+ // Functions with no result always return void.
+ if (ReturnValue) {
+ QualType RetTy = FI.getReturnType();
+ const ABIArgInfo &RetAI = FI.getReturnInfo();
+
+ switch (RetAI.getKind()) {
+ case ABIArgInfo::Indirect:
+ if (RetTy->isAnyComplexType()) {
+ ComplexPairTy RT = LoadComplexFromAddr(ReturnValue, false);
+ StoreComplexToAddr(RT, CurFn->arg_begin(), false);
+ } else if (CodeGenFunction::hasAggregateLLVMType(RetTy)) {
+ EmitAggregateCopy(CurFn->arg_begin(), ReturnValue, RetTy);
+ } else {
+ EmitStoreOfScalar(Builder.CreateLoad(ReturnValue), CurFn->arg_begin(),
+ false, RetTy);
+ }
+ break;
+
+ case ABIArgInfo::Direct:
+ // The internal return value temp always will have
+ // pointer-to-return-type type.
+ RV = Builder.CreateLoad(ReturnValue);
+ break;
+
+ case ABIArgInfo::Ignore:
+ break;
+
+ case ABIArgInfo::Coerce:
+ RV = CreateCoercedLoad(ReturnValue, RetAI.getCoerceToType(), *this);
+ break;
+
+ case ABIArgInfo::Expand:
+ assert(0 && "Invalid ABI kind for return argument");
+ }
+ }
+
+ if (RV) {
+ Builder.CreateRet(RV);
+ } else {
+ Builder.CreateRetVoid();
+ }
+}
+
+RValue CodeGenFunction::EmitCallArg(const Expr *E, QualType ArgType) {
+ if (ArgType->isReferenceType())
+ return EmitReferenceBindingToExpr(E, ArgType);
+
+ return EmitAnyExprToTemp(E);
+}
+
+RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo,
+ llvm::Value *Callee,
+ const CallArgList &CallArgs,
+ const Decl *TargetDecl) {
+ // FIXME: We no longer need the types from CallArgs; lift up and simplify.
+ llvm::SmallVector<llvm::Value*, 16> Args;
+
+ // Handle struct-return functions by passing a pointer to the
+ // location that we would like to return into.
+ QualType RetTy = CallInfo.getReturnType();
+ const ABIArgInfo &RetAI = CallInfo.getReturnInfo();
+ if (CGM.ReturnTypeUsesSret(CallInfo)) {
+ // Create a temporary alloca to hold the result of the call. :(
+ Args.push_back(CreateTempAlloca(ConvertTypeForMem(RetTy)));
+ }
+
+ assert(CallInfo.arg_size() == CallArgs.size() &&
+ "Mismatch between function signature & arguments.");
+ CGFunctionInfo::const_arg_iterator info_it = CallInfo.arg_begin();
+ for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end();
+ I != E; ++I, ++info_it) {
+ const ABIArgInfo &ArgInfo = info_it->info;
+ RValue RV = I->first;
+
+ switch (ArgInfo.getKind()) {
+ case ABIArgInfo::Indirect:
+ if (RV.isScalar() || RV.isComplex()) {
+ // Make a temporary alloca to pass the argument.
+ Args.push_back(CreateTempAlloca(ConvertTypeForMem(I->second)));
+ if (RV.isScalar())
+ EmitStoreOfScalar(RV.getScalarVal(), Args.back(), false, I->second);
+ else
+ StoreComplexToAddr(RV.getComplexVal(), Args.back(), false);
+ } else {
+ Args.push_back(RV.getAggregateAddr());
+ }
+ break;
+
+ case ABIArgInfo::Direct:
+ if (RV.isScalar()) {
+ Args.push_back(RV.getScalarVal());
+ } else if (RV.isComplex()) {
+ llvm::Value *Tmp = llvm::UndefValue::get(ConvertType(I->second));
+ Tmp = Builder.CreateInsertValue(Tmp, RV.getComplexVal().first, 0);
+ Tmp = Builder.CreateInsertValue(Tmp, RV.getComplexVal().second, 1);
+ Args.push_back(Tmp);
+ } else {
+ Args.push_back(Builder.CreateLoad(RV.getAggregateAddr()));
+ }
+ break;
+
+ case ABIArgInfo::Ignore:
+ break;
+
+ case ABIArgInfo::Coerce: {
+ // FIXME: Avoid the conversion through memory if possible.
+ llvm::Value *SrcPtr;
+ if (RV.isScalar()) {
+ SrcPtr = CreateTempAlloca(ConvertTypeForMem(I->second), "coerce");
+ EmitStoreOfScalar(RV.getScalarVal(), SrcPtr, false, I->second);
+ } else if (RV.isComplex()) {
+ SrcPtr = CreateTempAlloca(ConvertTypeForMem(I->second), "coerce");
+ StoreComplexToAddr(RV.getComplexVal(), SrcPtr, false);
+ } else
+ SrcPtr = RV.getAggregateAddr();
+ Args.push_back(CreateCoercedLoad(SrcPtr, ArgInfo.getCoerceToType(),
+ *this));
+ break;
+ }
+
+ case ABIArgInfo::Expand:
+ ExpandTypeToArgs(I->second, RV, Args);
+ break;
+ }
+ }
+
+ llvm::BasicBlock *InvokeDest = getInvokeDest();
+ CodeGen::AttributeListType AttributeList;
+ CGM.ConstructAttributeList(CallInfo, TargetDecl, AttributeList);
+ llvm::AttrListPtr Attrs = llvm::AttrListPtr::get(AttributeList.begin(),
+ AttributeList.end());
+
+ llvm::CallSite CS;
+ if (!InvokeDest || (Attrs.getFnAttributes() & llvm::Attribute::NoUnwind)) {
+ CS = Builder.CreateCall(Callee, Args.data(), Args.data()+Args.size());
+ } else {
+ llvm::BasicBlock *Cont = createBasicBlock("invoke.cont");
+ CS = Builder.CreateInvoke(Callee, Cont, InvokeDest,
+ Args.data(), Args.data()+Args.size());
+ EmitBlock(Cont);
+ }
+
+ CS.setAttributes(Attrs);
+ if (const llvm::Function *F = dyn_cast<llvm::Function>(Callee->stripPointerCasts()))
+ CS.setCallingConv(F->getCallingConv());
+
+ // If the call doesn't return, finish the basic block and clear the
+ // insertion point; this allows the rest of IRgen to discard
+ // unreachable code.
+ if (CS.doesNotReturn()) {
+ Builder.CreateUnreachable();
+ Builder.ClearInsertionPoint();
+
+ // FIXME: For now, emit a dummy basic block because expr emitters in
+ // generally are not ready to handle emitting expressions at unreachable
+ // points.
+ EnsureInsertPoint();
+
+ // Return a reasonable RValue.
+ return GetUndefRValue(RetTy);
+ }
+
+ llvm::Instruction *CI = CS.getInstruction();
+ if (Builder.isNamePreserving() && CI->getType() != llvm::Type::VoidTy)
+ CI->setName("call");
+
+ switch (RetAI.getKind()) {
+ case ABIArgInfo::Indirect:
+ if (RetTy->isAnyComplexType())
+ return RValue::getComplex(LoadComplexFromAddr(Args[0], false));
+ if (CodeGenFunction::hasAggregateLLVMType(RetTy))
+ return RValue::getAggregate(Args[0]);
+ return RValue::get(EmitLoadOfScalar(Args[0], false, RetTy));
+
+ case ABIArgInfo::Direct:
+ if (RetTy->isAnyComplexType()) {
+ llvm::Value *Real = Builder.CreateExtractValue(CI, 0);
+ llvm::Value *Imag = Builder.CreateExtractValue(CI, 1);
+ return RValue::getComplex(std::make_pair(Real, Imag));
+ }
+ if (CodeGenFunction::hasAggregateLLVMType(RetTy)) {
+ llvm::Value *V = CreateTempAlloca(ConvertTypeForMem(RetTy), "agg.tmp");
+ Builder.CreateStore(CI, V);
+ return RValue::getAggregate(V);
+ }
+ return RValue::get(CI);
+
+ case ABIArgInfo::Ignore:
+ // If we are ignoring an argument that had a result, make sure to
+ // construct the appropriate return value for our caller.
+ return GetUndefRValue(RetTy);
+
+ case ABIArgInfo::Coerce: {
+ // FIXME: Avoid the conversion through memory if possible.
+ llvm::Value *V = CreateTempAlloca(ConvertTypeForMem(RetTy), "coerce");
+ CreateCoercedStore(CI, V, *this);
+ if (RetTy->isAnyComplexType())
+ return RValue::getComplex(LoadComplexFromAddr(V, false));
+ if (CodeGenFunction::hasAggregateLLVMType(RetTy))
+ return RValue::getAggregate(V);
+ return RValue::get(EmitLoadOfScalar(V, false, RetTy));
+ }
+
+ case ABIArgInfo::Expand:
+ assert(0 && "Invalid ABI kind for return argument");
+ }
+
+ assert(0 && "Unhandled ABIArgInfo::Kind");
+ return RValue::get(0);
+}
+
+/* VarArg handling */
+
+llvm::Value *CodeGenFunction::EmitVAArg(llvm::Value *VAListAddr, QualType Ty) {
+ return CGM.getTypes().getABIInfo().EmitVAArg(VAListAddr, Ty, *this);
+}
OpenPOWER on IntegriCloud