summaryrefslogtreecommitdiffstats
path: root/lib/CodeGen/BranchFolding.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'lib/CodeGen/BranchFolding.cpp')
-rw-r--r--lib/CodeGen/BranchFolding.cpp1204
1 files changed, 1204 insertions, 0 deletions
diff --git a/lib/CodeGen/BranchFolding.cpp b/lib/CodeGen/BranchFolding.cpp
new file mode 100644
index 0000000..2635303
--- /dev/null
+++ b/lib/CodeGen/BranchFolding.cpp
@@ -0,0 +1,1204 @@
+//===-- BranchFolding.cpp - Fold machine code branch instructions ---------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This pass forwards branches to unconditional branches to make them branch
+// directly to the target block. This pass often results in dead MBB's, which
+// it then removes.
+//
+// Note that this pass must be run after register allocation, it cannot handle
+// SSA form.
+//
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "branchfolding"
+#include "llvm/CodeGen/Passes.h"
+#include "llvm/CodeGen/MachineModuleInfo.h"
+#include "llvm/CodeGen/MachineFunctionPass.h"
+#include "llvm/CodeGen/MachineJumpTableInfo.h"
+#include "llvm/CodeGen/RegisterScavenging.h"
+#include "llvm/Target/TargetInstrInfo.h"
+#include "llvm/Target/TargetMachine.h"
+#include "llvm/Target/TargetRegisterInfo.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/ADT/SmallSet.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/ADT/STLExtras.h"
+#include <algorithm>
+using namespace llvm;
+
+STATISTIC(NumDeadBlocks, "Number of dead blocks removed");
+STATISTIC(NumBranchOpts, "Number of branches optimized");
+STATISTIC(NumTailMerge , "Number of block tails merged");
+static cl::opt<cl::boolOrDefault> FlagEnableTailMerge("enable-tail-merge",
+ cl::init(cl::BOU_UNSET), cl::Hidden);
+// Throttle for huge numbers of predecessors (compile speed problems)
+static cl::opt<unsigned>
+TailMergeThreshold("tail-merge-threshold",
+ cl::desc("Max number of predecessors to consider tail merging"),
+ cl::init(150), cl::Hidden);
+
+namespace {
+ struct VISIBILITY_HIDDEN BranchFolder : public MachineFunctionPass {
+ static char ID;
+ explicit BranchFolder(bool defaultEnableTailMerge) :
+ MachineFunctionPass(&ID) {
+ switch (FlagEnableTailMerge) {
+ case cl::BOU_UNSET: EnableTailMerge = defaultEnableTailMerge; break;
+ case cl::BOU_TRUE: EnableTailMerge = true; break;
+ case cl::BOU_FALSE: EnableTailMerge = false; break;
+ }
+ }
+
+ virtual bool runOnMachineFunction(MachineFunction &MF);
+ virtual const char *getPassName() const { return "Control Flow Optimizer"; }
+ const TargetInstrInfo *TII;
+ MachineModuleInfo *MMI;
+ bool MadeChange;
+ private:
+ // Tail Merging.
+ bool EnableTailMerge;
+ bool TailMergeBlocks(MachineFunction &MF);
+ bool TryMergeBlocks(MachineBasicBlock* SuccBB,
+ MachineBasicBlock* PredBB);
+ void ReplaceTailWithBranchTo(MachineBasicBlock::iterator OldInst,
+ MachineBasicBlock *NewDest);
+ MachineBasicBlock *SplitMBBAt(MachineBasicBlock &CurMBB,
+ MachineBasicBlock::iterator BBI1);
+ unsigned ComputeSameTails(unsigned CurHash, unsigned minCommonTailLength);
+ void RemoveBlocksWithHash(unsigned CurHash, MachineBasicBlock* SuccBB,
+ MachineBasicBlock* PredBB);
+ unsigned CreateCommonTailOnlyBlock(MachineBasicBlock *&PredBB,
+ unsigned maxCommonTailLength);
+
+ typedef std::pair<unsigned,MachineBasicBlock*> MergePotentialsElt;
+ typedef std::vector<MergePotentialsElt>::iterator MPIterator;
+ std::vector<MergePotentialsElt> MergePotentials;
+
+ typedef std::pair<MPIterator, MachineBasicBlock::iterator> SameTailElt;
+ std::vector<SameTailElt> SameTails;
+
+ const TargetRegisterInfo *RegInfo;
+ RegScavenger *RS;
+ // Branch optzn.
+ bool OptimizeBranches(MachineFunction &MF);
+ void OptimizeBlock(MachineBasicBlock *MBB);
+ void RemoveDeadBlock(MachineBasicBlock *MBB);
+ bool OptimizeImpDefsBlock(MachineBasicBlock *MBB);
+
+ bool CanFallThrough(MachineBasicBlock *CurBB);
+ bool CanFallThrough(MachineBasicBlock *CurBB, bool BranchUnAnalyzable,
+ MachineBasicBlock *TBB, MachineBasicBlock *FBB,
+ const SmallVectorImpl<MachineOperand> &Cond);
+ };
+ char BranchFolder::ID = 0;
+}
+
+FunctionPass *llvm::createBranchFoldingPass(bool DefaultEnableTailMerge) {
+ return new BranchFolder(DefaultEnableTailMerge); }
+
+/// RemoveDeadBlock - Remove the specified dead machine basic block from the
+/// function, updating the CFG.
+void BranchFolder::RemoveDeadBlock(MachineBasicBlock *MBB) {
+ assert(MBB->pred_empty() && "MBB must be dead!");
+ DOUT << "\nRemoving MBB: " << *MBB;
+
+ MachineFunction *MF = MBB->getParent();
+ // drop all successors.
+ while (!MBB->succ_empty())
+ MBB->removeSuccessor(MBB->succ_end()-1);
+
+ // If there are any labels in the basic block, unregister them from
+ // MachineModuleInfo.
+ if (MMI && !MBB->empty()) {
+ for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end();
+ I != E; ++I) {
+ if (I->isLabel())
+ // The label ID # is always operand #0, an immediate.
+ MMI->InvalidateLabel(I->getOperand(0).getImm());
+ }
+ }
+
+ // Remove the block.
+ MF->erase(MBB);
+}
+
+/// OptimizeImpDefsBlock - If a basic block is just a bunch of implicit_def
+/// followed by terminators, and if the implicitly defined registers are not
+/// used by the terminators, remove those implicit_def's. e.g.
+/// BB1:
+/// r0 = implicit_def
+/// r1 = implicit_def
+/// br
+/// This block can be optimized away later if the implicit instructions are
+/// removed.
+bool BranchFolder::OptimizeImpDefsBlock(MachineBasicBlock *MBB) {
+ SmallSet<unsigned, 4> ImpDefRegs;
+ MachineBasicBlock::iterator I = MBB->begin();
+ while (I != MBB->end()) {
+ if (I->getOpcode() != TargetInstrInfo::IMPLICIT_DEF)
+ break;
+ unsigned Reg = I->getOperand(0).getReg();
+ ImpDefRegs.insert(Reg);
+ for (const unsigned *SubRegs = RegInfo->getSubRegisters(Reg);
+ unsigned SubReg = *SubRegs; ++SubRegs)
+ ImpDefRegs.insert(SubReg);
+ ++I;
+ }
+ if (ImpDefRegs.empty())
+ return false;
+
+ MachineBasicBlock::iterator FirstTerm = I;
+ while (I != MBB->end()) {
+ if (!TII->isUnpredicatedTerminator(I))
+ return false;
+ // See if it uses any of the implicitly defined registers.
+ for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
+ MachineOperand &MO = I->getOperand(i);
+ if (!MO.isReg() || !MO.isUse())
+ continue;
+ unsigned Reg = MO.getReg();
+ if (ImpDefRegs.count(Reg))
+ return false;
+ }
+ ++I;
+ }
+
+ I = MBB->begin();
+ while (I != FirstTerm) {
+ MachineInstr *ImpDefMI = &*I;
+ ++I;
+ MBB->erase(ImpDefMI);
+ }
+
+ return true;
+}
+
+bool BranchFolder::runOnMachineFunction(MachineFunction &MF) {
+ TII = MF.getTarget().getInstrInfo();
+ if (!TII) return false;
+
+ RegInfo = MF.getTarget().getRegisterInfo();
+
+ // Fix CFG. The later algorithms expect it to be right.
+ bool EverMadeChange = false;
+ for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; I++) {
+ MachineBasicBlock *MBB = I, *TBB = 0, *FBB = 0;
+ SmallVector<MachineOperand, 4> Cond;
+ if (!TII->AnalyzeBranch(*MBB, TBB, FBB, Cond, true))
+ EverMadeChange |= MBB->CorrectExtraCFGEdges(TBB, FBB, !Cond.empty());
+ EverMadeChange |= OptimizeImpDefsBlock(MBB);
+ }
+
+ RS = RegInfo->requiresRegisterScavenging(MF) ? new RegScavenger() : NULL;
+
+ MMI = getAnalysisIfAvailable<MachineModuleInfo>();
+
+ bool MadeChangeThisIteration = true;
+ while (MadeChangeThisIteration) {
+ MadeChangeThisIteration = false;
+ MadeChangeThisIteration |= TailMergeBlocks(MF);
+ MadeChangeThisIteration |= OptimizeBranches(MF);
+ EverMadeChange |= MadeChangeThisIteration;
+ }
+
+ // See if any jump tables have become mergable or dead as the code generator
+ // did its thing.
+ MachineJumpTableInfo *JTI = MF.getJumpTableInfo();
+ const std::vector<MachineJumpTableEntry> &JTs = JTI->getJumpTables();
+ if (!JTs.empty()) {
+ // Figure out how these jump tables should be merged.
+ std::vector<unsigned> JTMapping;
+ JTMapping.reserve(JTs.size());
+
+ // We always keep the 0th jump table.
+ JTMapping.push_back(0);
+
+ // Scan the jump tables, seeing if there are any duplicates. Note that this
+ // is N^2, which should be fixed someday.
+ for (unsigned i = 1, e = JTs.size(); i != e; ++i)
+ JTMapping.push_back(JTI->getJumpTableIndex(JTs[i].MBBs));
+
+ // If a jump table was merge with another one, walk the function rewriting
+ // references to jump tables to reference the new JT ID's. Keep track of
+ // whether we see a jump table idx, if not, we can delete the JT.
+ BitVector JTIsLive(JTs.size());
+ for (MachineFunction::iterator BB = MF.begin(), E = MF.end();
+ BB != E; ++BB) {
+ for (MachineBasicBlock::iterator I = BB->begin(), E = BB->end();
+ I != E; ++I)
+ for (unsigned op = 0, e = I->getNumOperands(); op != e; ++op) {
+ MachineOperand &Op = I->getOperand(op);
+ if (!Op.isJTI()) continue;
+ unsigned NewIdx = JTMapping[Op.getIndex()];
+ Op.setIndex(NewIdx);
+
+ // Remember that this JT is live.
+ JTIsLive.set(NewIdx);
+ }
+ }
+
+ // Finally, remove dead jump tables. This happens either because the
+ // indirect jump was unreachable (and thus deleted) or because the jump
+ // table was merged with some other one.
+ for (unsigned i = 0, e = JTIsLive.size(); i != e; ++i)
+ if (!JTIsLive.test(i)) {
+ JTI->RemoveJumpTable(i);
+ EverMadeChange = true;
+ }
+ }
+
+ delete RS;
+ return EverMadeChange;
+}
+
+//===----------------------------------------------------------------------===//
+// Tail Merging of Blocks
+//===----------------------------------------------------------------------===//
+
+/// HashMachineInstr - Compute a hash value for MI and its operands.
+static unsigned HashMachineInstr(const MachineInstr *MI) {
+ unsigned Hash = MI->getOpcode();
+ for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
+ const MachineOperand &Op = MI->getOperand(i);
+
+ // Merge in bits from the operand if easy.
+ unsigned OperandHash = 0;
+ switch (Op.getType()) {
+ case MachineOperand::MO_Register: OperandHash = Op.getReg(); break;
+ case MachineOperand::MO_Immediate: OperandHash = Op.getImm(); break;
+ case MachineOperand::MO_MachineBasicBlock:
+ OperandHash = Op.getMBB()->getNumber();
+ break;
+ case MachineOperand::MO_FrameIndex:
+ case MachineOperand::MO_ConstantPoolIndex:
+ case MachineOperand::MO_JumpTableIndex:
+ OperandHash = Op.getIndex();
+ break;
+ case MachineOperand::MO_GlobalAddress:
+ case MachineOperand::MO_ExternalSymbol:
+ // Global address / external symbol are too hard, don't bother, but do
+ // pull in the offset.
+ OperandHash = Op.getOffset();
+ break;
+ default: break;
+ }
+
+ Hash += ((OperandHash << 3) | Op.getType()) << (i&31);
+ }
+ return Hash;
+}
+
+/// HashEndOfMBB - Hash the last few instructions in the MBB. For blocks
+/// with no successors, we hash two instructions, because cross-jumping
+/// only saves code when at least two instructions are removed (since a
+/// branch must be inserted). For blocks with a successor, one of the
+/// two blocks to be tail-merged will end with a branch already, so
+/// it gains to cross-jump even for one instruction.
+
+static unsigned HashEndOfMBB(const MachineBasicBlock *MBB,
+ unsigned minCommonTailLength) {
+ MachineBasicBlock::const_iterator I = MBB->end();
+ if (I == MBB->begin())
+ return 0; // Empty MBB.
+
+ --I;
+ unsigned Hash = HashMachineInstr(I);
+
+ if (I == MBB->begin() || minCommonTailLength == 1)
+ return Hash; // Single instr MBB.
+
+ --I;
+ // Hash in the second-to-last instruction.
+ Hash ^= HashMachineInstr(I) << 2;
+ return Hash;
+}
+
+/// ComputeCommonTailLength - Given two machine basic blocks, compute the number
+/// of instructions they actually have in common together at their end. Return
+/// iterators for the first shared instruction in each block.
+static unsigned ComputeCommonTailLength(MachineBasicBlock *MBB1,
+ MachineBasicBlock *MBB2,
+ MachineBasicBlock::iterator &I1,
+ MachineBasicBlock::iterator &I2) {
+ I1 = MBB1->end();
+ I2 = MBB2->end();
+
+ unsigned TailLen = 0;
+ while (I1 != MBB1->begin() && I2 != MBB2->begin()) {
+ --I1; --I2;
+ if (!I1->isIdenticalTo(I2) ||
+ // FIXME: This check is dubious. It's used to get around a problem where
+ // people incorrectly expect inline asm directives to remain in the same
+ // relative order. This is untenable because normal compiler
+ // optimizations (like this one) may reorder and/or merge these
+ // directives.
+ I1->getOpcode() == TargetInstrInfo::INLINEASM) {
+ ++I1; ++I2;
+ break;
+ }
+ ++TailLen;
+ }
+ return TailLen;
+}
+
+/// ReplaceTailWithBranchTo - Delete the instruction OldInst and everything
+/// after it, replacing it with an unconditional branch to NewDest. This
+/// returns true if OldInst's block is modified, false if NewDest is modified.
+void BranchFolder::ReplaceTailWithBranchTo(MachineBasicBlock::iterator OldInst,
+ MachineBasicBlock *NewDest) {
+ MachineBasicBlock *OldBB = OldInst->getParent();
+
+ // Remove all the old successors of OldBB from the CFG.
+ while (!OldBB->succ_empty())
+ OldBB->removeSuccessor(OldBB->succ_begin());
+
+ // Remove all the dead instructions from the end of OldBB.
+ OldBB->erase(OldInst, OldBB->end());
+
+ // If OldBB isn't immediately before OldBB, insert a branch to it.
+ if (++MachineFunction::iterator(OldBB) != MachineFunction::iterator(NewDest))
+ TII->InsertBranch(*OldBB, NewDest, 0, SmallVector<MachineOperand, 0>());
+ OldBB->addSuccessor(NewDest);
+ ++NumTailMerge;
+}
+
+/// SplitMBBAt - Given a machine basic block and an iterator into it, split the
+/// MBB so that the part before the iterator falls into the part starting at the
+/// iterator. This returns the new MBB.
+MachineBasicBlock *BranchFolder::SplitMBBAt(MachineBasicBlock &CurMBB,
+ MachineBasicBlock::iterator BBI1) {
+ MachineFunction &MF = *CurMBB.getParent();
+
+ // Create the fall-through block.
+ MachineFunction::iterator MBBI = &CurMBB;
+ MachineBasicBlock *NewMBB =MF.CreateMachineBasicBlock(CurMBB.getBasicBlock());
+ CurMBB.getParent()->insert(++MBBI, NewMBB);
+
+ // Move all the successors of this block to the specified block.
+ NewMBB->transferSuccessors(&CurMBB);
+
+ // Add an edge from CurMBB to NewMBB for the fall-through.
+ CurMBB.addSuccessor(NewMBB);
+
+ // Splice the code over.
+ NewMBB->splice(NewMBB->end(), &CurMBB, BBI1, CurMBB.end());
+
+ // For targets that use the register scavenger, we must maintain LiveIns.
+ if (RS) {
+ RS->enterBasicBlock(&CurMBB);
+ if (!CurMBB.empty())
+ RS->forward(prior(CurMBB.end()));
+ BitVector RegsLiveAtExit(RegInfo->getNumRegs());
+ RS->getRegsUsed(RegsLiveAtExit, false);
+ for (unsigned int i=0, e=RegInfo->getNumRegs(); i!=e; i++)
+ if (RegsLiveAtExit[i])
+ NewMBB->addLiveIn(i);
+ }
+
+ return NewMBB;
+}
+
+/// EstimateRuntime - Make a rough estimate for how long it will take to run
+/// the specified code.
+static unsigned EstimateRuntime(MachineBasicBlock::iterator I,
+ MachineBasicBlock::iterator E) {
+ unsigned Time = 0;
+ for (; I != E; ++I) {
+ const TargetInstrDesc &TID = I->getDesc();
+ if (TID.isCall())
+ Time += 10;
+ else if (TID.mayLoad() || TID.mayStore())
+ Time += 2;
+ else
+ ++Time;
+ }
+ return Time;
+}
+
+// CurMBB needs to add an unconditional branch to SuccMBB (we removed these
+// branches temporarily for tail merging). In the case where CurMBB ends
+// with a conditional branch to the next block, optimize by reversing the
+// test and conditionally branching to SuccMBB instead.
+
+static void FixTail(MachineBasicBlock* CurMBB, MachineBasicBlock *SuccBB,
+ const TargetInstrInfo *TII) {
+ MachineFunction *MF = CurMBB->getParent();
+ MachineFunction::iterator I = next(MachineFunction::iterator(CurMBB));
+ MachineBasicBlock *TBB = 0, *FBB = 0;
+ SmallVector<MachineOperand, 4> Cond;
+ if (I != MF->end() &&
+ !TII->AnalyzeBranch(*CurMBB, TBB, FBB, Cond, true)) {
+ MachineBasicBlock *NextBB = I;
+ if (TBB == NextBB && !Cond.empty() && !FBB) {
+ if (!TII->ReverseBranchCondition(Cond)) {
+ TII->RemoveBranch(*CurMBB);
+ TII->InsertBranch(*CurMBB, SuccBB, NULL, Cond);
+ return;
+ }
+ }
+ }
+ TII->InsertBranch(*CurMBB, SuccBB, NULL, SmallVector<MachineOperand, 0>());
+}
+
+static bool MergeCompare(const std::pair<unsigned,MachineBasicBlock*> &p,
+ const std::pair<unsigned,MachineBasicBlock*> &q) {
+ if (p.first < q.first)
+ return true;
+ else if (p.first > q.first)
+ return false;
+ else if (p.second->getNumber() < q.second->getNumber())
+ return true;
+ else if (p.second->getNumber() > q.second->getNumber())
+ return false;
+ else {
+ // _GLIBCXX_DEBUG checks strict weak ordering, which involves comparing
+ // an object with itself.
+#ifndef _GLIBCXX_DEBUG
+ assert(0 && "Predecessor appears twice");
+#endif
+ return false;
+ }
+}
+
+/// ComputeSameTails - Look through all the blocks in MergePotentials that have
+/// hash CurHash (guaranteed to match the last element). Build the vector
+/// SameTails of all those that have the (same) largest number of instructions
+/// in common of any pair of these blocks. SameTails entries contain an
+/// iterator into MergePotentials (from which the MachineBasicBlock can be
+/// found) and a MachineBasicBlock::iterator into that MBB indicating the
+/// instruction where the matching code sequence begins.
+/// Order of elements in SameTails is the reverse of the order in which
+/// those blocks appear in MergePotentials (where they are not necessarily
+/// consecutive).
+unsigned BranchFolder::ComputeSameTails(unsigned CurHash,
+ unsigned minCommonTailLength) {
+ unsigned maxCommonTailLength = 0U;
+ SameTails.clear();
+ MachineBasicBlock::iterator TrialBBI1, TrialBBI2;
+ MPIterator HighestMPIter = prior(MergePotentials.end());
+ for (MPIterator CurMPIter = prior(MergePotentials.end()),
+ B = MergePotentials.begin();
+ CurMPIter!=B && CurMPIter->first==CurHash;
+ --CurMPIter) {
+ for (MPIterator I = prior(CurMPIter); I->first==CurHash ; --I) {
+ unsigned CommonTailLen = ComputeCommonTailLength(
+ CurMPIter->second,
+ I->second,
+ TrialBBI1, TrialBBI2);
+ // If we will have to split a block, there should be at least
+ // minCommonTailLength instructions in common; if not, at worst
+ // we will be replacing a fallthrough into the common tail with a
+ // branch, which at worst breaks even with falling through into
+ // the duplicated common tail, so 1 instruction in common is enough.
+ // We will always pick a block we do not have to split as the common
+ // tail if there is one.
+ // (Empty blocks will get forwarded and need not be considered.)
+ if (CommonTailLen >= minCommonTailLength ||
+ (CommonTailLen > 0 &&
+ (TrialBBI1==CurMPIter->second->begin() ||
+ TrialBBI2==I->second->begin()))) {
+ if (CommonTailLen > maxCommonTailLength) {
+ SameTails.clear();
+ maxCommonTailLength = CommonTailLen;
+ HighestMPIter = CurMPIter;
+ SameTails.push_back(std::make_pair(CurMPIter, TrialBBI1));
+ }
+ if (HighestMPIter == CurMPIter &&
+ CommonTailLen == maxCommonTailLength)
+ SameTails.push_back(std::make_pair(I, TrialBBI2));
+ }
+ if (I==B)
+ break;
+ }
+ }
+ return maxCommonTailLength;
+}
+
+/// RemoveBlocksWithHash - Remove all blocks with hash CurHash from
+/// MergePotentials, restoring branches at ends of blocks as appropriate.
+void BranchFolder::RemoveBlocksWithHash(unsigned CurHash,
+ MachineBasicBlock* SuccBB,
+ MachineBasicBlock* PredBB) {
+ MPIterator CurMPIter, B;
+ for (CurMPIter = prior(MergePotentials.end()), B = MergePotentials.begin();
+ CurMPIter->first==CurHash;
+ --CurMPIter) {
+ // Put the unconditional branch back, if we need one.
+ MachineBasicBlock *CurMBB = CurMPIter->second;
+ if (SuccBB && CurMBB != PredBB)
+ FixTail(CurMBB, SuccBB, TII);
+ if (CurMPIter==B)
+ break;
+ }
+ if (CurMPIter->first!=CurHash)
+ CurMPIter++;
+ MergePotentials.erase(CurMPIter, MergePotentials.end());
+}
+
+/// CreateCommonTailOnlyBlock - None of the blocks to be tail-merged consist
+/// only of the common tail. Create a block that does by splitting one.
+unsigned BranchFolder::CreateCommonTailOnlyBlock(MachineBasicBlock *&PredBB,
+ unsigned maxCommonTailLength) {
+ unsigned i, commonTailIndex;
+ unsigned TimeEstimate = ~0U;
+ for (i=0, commonTailIndex=0; i<SameTails.size(); i++) {
+ // Use PredBB if possible; that doesn't require a new branch.
+ if (SameTails[i].first->second==PredBB) {
+ commonTailIndex = i;
+ break;
+ }
+ // Otherwise, make a (fairly bogus) choice based on estimate of
+ // how long it will take the various blocks to execute.
+ unsigned t = EstimateRuntime(SameTails[i].first->second->begin(),
+ SameTails[i].second);
+ if (t<=TimeEstimate) {
+ TimeEstimate = t;
+ commonTailIndex = i;
+ }
+ }
+
+ MachineBasicBlock::iterator BBI = SameTails[commonTailIndex].second;
+ MachineBasicBlock *MBB = SameTails[commonTailIndex].first->second;
+
+ DOUT << "\nSplitting " << MBB->getNumber() << ", size " <<
+ maxCommonTailLength;
+
+ MachineBasicBlock *newMBB = SplitMBBAt(*MBB, BBI);
+ SameTails[commonTailIndex].first->second = newMBB;
+ SameTails[commonTailIndex].second = newMBB->begin();
+ // If we split PredBB, newMBB is the new predecessor.
+ if (PredBB==MBB)
+ PredBB = newMBB;
+
+ return commonTailIndex;
+}
+
+// See if any of the blocks in MergePotentials (which all have a common single
+// successor, or all have no successor) can be tail-merged. If there is a
+// successor, any blocks in MergePotentials that are not tail-merged and
+// are not immediately before Succ must have an unconditional branch to
+// Succ added (but the predecessor/successor lists need no adjustment).
+// The lone predecessor of Succ that falls through into Succ,
+// if any, is given in PredBB.
+
+bool BranchFolder::TryMergeBlocks(MachineBasicBlock *SuccBB,
+ MachineBasicBlock* PredBB) {
+ // It doesn't make sense to save a single instruction since tail merging
+ // will add a jump.
+ // FIXME: Ask the target to provide the threshold?
+ unsigned minCommonTailLength = (SuccBB ? 1 : 2) + 1;
+ MadeChange = false;
+
+ DOUT << "\nTryMergeBlocks " << MergePotentials.size() << '\n';
+
+ // Sort by hash value so that blocks with identical end sequences sort
+ // together.
+ std::stable_sort(MergePotentials.begin(), MergePotentials.end(),MergeCompare);
+
+ // Walk through equivalence sets looking for actual exact matches.
+ while (MergePotentials.size() > 1) {
+ unsigned CurHash = prior(MergePotentials.end())->first;
+
+ // Build SameTails, identifying the set of blocks with this hash code
+ // and with the maximum number of instructions in common.
+ unsigned maxCommonTailLength = ComputeSameTails(CurHash,
+ minCommonTailLength);
+
+ // If we didn't find any pair that has at least minCommonTailLength
+ // instructions in common, remove all blocks with this hash code and retry.
+ if (SameTails.empty()) {
+ RemoveBlocksWithHash(CurHash, SuccBB, PredBB);
+ continue;
+ }
+
+ // If one of the blocks is the entire common tail (and not the entry
+ // block, which we can't jump to), we can treat all blocks with this same
+ // tail at once. Use PredBB if that is one of the possibilities, as that
+ // will not introduce any extra branches.
+ MachineBasicBlock *EntryBB = MergePotentials.begin()->second->
+ getParent()->begin();
+ unsigned int commonTailIndex, i;
+ for (commonTailIndex=SameTails.size(), i=0; i<SameTails.size(); i++) {
+ MachineBasicBlock *MBB = SameTails[i].first->second;
+ if (MBB->begin() == SameTails[i].second && MBB != EntryBB) {
+ commonTailIndex = i;
+ if (MBB==PredBB)
+ break;
+ }
+ }
+
+ if (commonTailIndex==SameTails.size()) {
+ // None of the blocks consist entirely of the common tail.
+ // Split a block so that one does.
+ commonTailIndex = CreateCommonTailOnlyBlock(PredBB, maxCommonTailLength);
+ }
+
+ MachineBasicBlock *MBB = SameTails[commonTailIndex].first->second;
+ // MBB is common tail. Adjust all other BB's to jump to this one.
+ // Traversal must be forwards so erases work.
+ DOUT << "\nUsing common tail " << MBB->getNumber() << " for ";
+ for (unsigned int i=0; i<SameTails.size(); ++i) {
+ if (commonTailIndex==i)
+ continue;
+ DOUT << SameTails[i].first->second->getNumber() << ",";
+ // Hack the end off BB i, making it jump to BB commonTailIndex instead.
+ ReplaceTailWithBranchTo(SameTails[i].second, MBB);
+ // BB i is no longer a predecessor of SuccBB; remove it from the worklist.
+ MergePotentials.erase(SameTails[i].first);
+ }
+ DOUT << "\n";
+ // We leave commonTailIndex in the worklist in case there are other blocks
+ // that match it with a smaller number of instructions.
+ MadeChange = true;
+ }
+ return MadeChange;
+}
+
+bool BranchFolder::TailMergeBlocks(MachineFunction &MF) {
+
+ if (!EnableTailMerge) return false;
+
+ MadeChange = false;
+
+ // First find blocks with no successors.
+ MergePotentials.clear();
+ for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I) {
+ if (I->succ_empty())
+ MergePotentials.push_back(std::make_pair(HashEndOfMBB(I, 2U), I));
+ }
+ // See if we can do any tail merging on those.
+ if (MergePotentials.size() < TailMergeThreshold &&
+ MergePotentials.size() >= 2)
+ MadeChange |= TryMergeBlocks(NULL, NULL);
+
+ // Look at blocks (IBB) with multiple predecessors (PBB).
+ // We change each predecessor to a canonical form, by
+ // (1) temporarily removing any unconditional branch from the predecessor
+ // to IBB, and
+ // (2) alter conditional branches so they branch to the other block
+ // not IBB; this may require adding back an unconditional branch to IBB
+ // later, where there wasn't one coming in. E.g.
+ // Bcc IBB
+ // fallthrough to QBB
+ // here becomes
+ // Bncc QBB
+ // with a conceptual B to IBB after that, which never actually exists.
+ // With those changes, we see whether the predecessors' tails match,
+ // and merge them if so. We change things out of canonical form and
+ // back to the way they were later in the process. (OptimizeBranches
+ // would undo some of this, but we can't use it, because we'd get into
+ // a compile-time infinite loop repeatedly doing and undoing the same
+ // transformations.)
+
+ for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I) {
+ if (I->pred_size() >= 2 && I->pred_size() < TailMergeThreshold) {
+ MachineBasicBlock *IBB = I;
+ MachineBasicBlock *PredBB = prior(I);
+ MergePotentials.clear();
+ for (MachineBasicBlock::pred_iterator P = I->pred_begin(),
+ E2 = I->pred_end();
+ P != E2; ++P) {
+ MachineBasicBlock* PBB = *P;
+ // Skip blocks that loop to themselves, can't tail merge these.
+ if (PBB==IBB)
+ continue;
+ MachineBasicBlock *TBB = 0, *FBB = 0;
+ SmallVector<MachineOperand, 4> Cond;
+ if (!TII->AnalyzeBranch(*PBB, TBB, FBB, Cond, true)) {
+ // Failing case: IBB is the target of a cbr, and
+ // we cannot reverse the branch.
+ SmallVector<MachineOperand, 4> NewCond(Cond);
+ if (!Cond.empty() && TBB==IBB) {
+ if (TII->ReverseBranchCondition(NewCond))
+ continue;
+ // This is the QBB case described above
+ if (!FBB)
+ FBB = next(MachineFunction::iterator(PBB));
+ }
+ // Failing case: the only way IBB can be reached from PBB is via
+ // exception handling. Happens for landing pads. Would be nice
+ // to have a bit in the edge so we didn't have to do all this.
+ if (IBB->isLandingPad()) {
+ MachineFunction::iterator IP = PBB; IP++;
+ MachineBasicBlock* PredNextBB = NULL;
+ if (IP!=MF.end())
+ PredNextBB = IP;
+ if (TBB==NULL) {
+ if (IBB!=PredNextBB) // fallthrough
+ continue;
+ } else if (FBB) {
+ if (TBB!=IBB && FBB!=IBB) // cbr then ubr
+ continue;
+ } else if (Cond.empty()) {
+ if (TBB!=IBB) // ubr
+ continue;
+ } else {
+ if (TBB!=IBB && IBB!=PredNextBB) // cbr
+ continue;
+ }
+ }
+ // Remove the unconditional branch at the end, if any.
+ if (TBB && (Cond.empty() || FBB)) {
+ TII->RemoveBranch(*PBB);
+ if (!Cond.empty())
+ // reinsert conditional branch only, for now
+ TII->InsertBranch(*PBB, (TBB==IBB) ? FBB : TBB, 0, NewCond);
+ }
+ MergePotentials.push_back(std::make_pair(HashEndOfMBB(PBB, 1U), *P));
+ }
+ }
+ if (MergePotentials.size() >= 2)
+ MadeChange |= TryMergeBlocks(I, PredBB);
+ // Reinsert an unconditional branch if needed.
+ // The 1 below can occur as a result of removing blocks in TryMergeBlocks.
+ PredBB = prior(I); // this may have been changed in TryMergeBlocks
+ if (MergePotentials.size()==1 &&
+ MergePotentials.begin()->second != PredBB)
+ FixTail(MergePotentials.begin()->second, I, TII);
+ }
+ }
+ return MadeChange;
+}
+
+//===----------------------------------------------------------------------===//
+// Branch Optimization
+//===----------------------------------------------------------------------===//
+
+bool BranchFolder::OptimizeBranches(MachineFunction &MF) {
+ MadeChange = false;
+
+ // Make sure blocks are numbered in order
+ MF.RenumberBlocks();
+
+ for (MachineFunction::iterator I = ++MF.begin(), E = MF.end(); I != E; ) {
+ MachineBasicBlock *MBB = I++;
+ OptimizeBlock(MBB);
+
+ // If it is dead, remove it.
+ if (MBB->pred_empty()) {
+ RemoveDeadBlock(MBB);
+ MadeChange = true;
+ ++NumDeadBlocks;
+ }
+ }
+ return MadeChange;
+}
+
+
+/// CanFallThrough - Return true if the specified block (with the specified
+/// branch condition) can implicitly transfer control to the block after it by
+/// falling off the end of it. This should return false if it can reach the
+/// block after it, but it uses an explicit branch to do so (e.g. a table jump).
+///
+/// True is a conservative answer.
+///
+bool BranchFolder::CanFallThrough(MachineBasicBlock *CurBB,
+ bool BranchUnAnalyzable,
+ MachineBasicBlock *TBB,
+ MachineBasicBlock *FBB,
+ const SmallVectorImpl<MachineOperand> &Cond) {
+ MachineFunction::iterator Fallthrough = CurBB;
+ ++Fallthrough;
+ // If FallthroughBlock is off the end of the function, it can't fall through.
+ if (Fallthrough == CurBB->getParent()->end())
+ return false;
+
+ // If FallthroughBlock isn't a successor of CurBB, no fallthrough is possible.
+ if (!CurBB->isSuccessor(Fallthrough))
+ return false;
+
+ // If we couldn't analyze the branch, assume it could fall through.
+ if (BranchUnAnalyzable) return true;
+
+ // If there is no branch, control always falls through.
+ if (TBB == 0) return true;
+
+ // If there is some explicit branch to the fallthrough block, it can obviously
+ // reach, even though the branch should get folded to fall through implicitly.
+ if (MachineFunction::iterator(TBB) == Fallthrough ||
+ MachineFunction::iterator(FBB) == Fallthrough)
+ return true;
+
+ // If it's an unconditional branch to some block not the fall through, it
+ // doesn't fall through.
+ if (Cond.empty()) return false;
+
+ // Otherwise, if it is conditional and has no explicit false block, it falls
+ // through.
+ return FBB == 0;
+}
+
+/// CanFallThrough - Return true if the specified can implicitly transfer
+/// control to the block after it by falling off the end of it. This should
+/// return false if it can reach the block after it, but it uses an explicit
+/// branch to do so (e.g. a table jump).
+///
+/// True is a conservative answer.
+///
+bool BranchFolder::CanFallThrough(MachineBasicBlock *CurBB) {
+ MachineBasicBlock *TBB = 0, *FBB = 0;
+ SmallVector<MachineOperand, 4> Cond;
+ bool CurUnAnalyzable = TII->AnalyzeBranch(*CurBB, TBB, FBB, Cond, true);
+ return CanFallThrough(CurBB, CurUnAnalyzable, TBB, FBB, Cond);
+}
+
+/// IsBetterFallthrough - Return true if it would be clearly better to
+/// fall-through to MBB1 than to fall through into MBB2. This has to return
+/// a strict ordering, returning true for both (MBB1,MBB2) and (MBB2,MBB1) will
+/// result in infinite loops.
+static bool IsBetterFallthrough(MachineBasicBlock *MBB1,
+ MachineBasicBlock *MBB2) {
+ // Right now, we use a simple heuristic. If MBB2 ends with a call, and
+ // MBB1 doesn't, we prefer to fall through into MBB1. This allows us to
+ // optimize branches that branch to either a return block or an assert block
+ // into a fallthrough to the return.
+ if (MBB1->empty() || MBB2->empty()) return false;
+
+ // If there is a clear successor ordering we make sure that one block
+ // will fall through to the next
+ if (MBB1->isSuccessor(MBB2)) return true;
+ if (MBB2->isSuccessor(MBB1)) return false;
+
+ MachineInstr *MBB1I = --MBB1->end();
+ MachineInstr *MBB2I = --MBB2->end();
+ return MBB2I->getDesc().isCall() && !MBB1I->getDesc().isCall();
+}
+
+/// OptimizeBlock - Analyze and optimize control flow related to the specified
+/// block. This is never called on the entry block.
+void BranchFolder::OptimizeBlock(MachineBasicBlock *MBB) {
+ MachineFunction::iterator FallThrough = MBB;
+ ++FallThrough;
+
+ // If this block is empty, make everyone use its fall-through, not the block
+ // explicitly. Landing pads should not do this since the landing-pad table
+ // points to this block.
+ if (MBB->empty() && !MBB->isLandingPad()) {
+ // Dead block? Leave for cleanup later.
+ if (MBB->pred_empty()) return;
+
+ if (FallThrough == MBB->getParent()->end()) {
+ // TODO: Simplify preds to not branch here if possible!
+ } else {
+ // Rewrite all predecessors of the old block to go to the fallthrough
+ // instead.
+ while (!MBB->pred_empty()) {
+ MachineBasicBlock *Pred = *(MBB->pred_end()-1);
+ Pred->ReplaceUsesOfBlockWith(MBB, FallThrough);
+ }
+
+ // If MBB was the target of a jump table, update jump tables to go to the
+ // fallthrough instead.
+ MBB->getParent()->getJumpTableInfo()->
+ ReplaceMBBInJumpTables(MBB, FallThrough);
+ MadeChange = true;
+ }
+ return;
+ }
+
+ // Check to see if we can simplify the terminator of the block before this
+ // one.
+ MachineBasicBlock &PrevBB = *prior(MachineFunction::iterator(MBB));
+
+ MachineBasicBlock *PriorTBB = 0, *PriorFBB = 0;
+ SmallVector<MachineOperand, 4> PriorCond;
+ bool PriorUnAnalyzable =
+ TII->AnalyzeBranch(PrevBB, PriorTBB, PriorFBB, PriorCond, true);
+ if (!PriorUnAnalyzable) {
+ // If the CFG for the prior block has extra edges, remove them.
+ MadeChange |= PrevBB.CorrectExtraCFGEdges(PriorTBB, PriorFBB,
+ !PriorCond.empty());
+
+ // If the previous branch is conditional and both conditions go to the same
+ // destination, remove the branch, replacing it with an unconditional one or
+ // a fall-through.
+ if (PriorTBB && PriorTBB == PriorFBB) {
+ TII->RemoveBranch(PrevBB);
+ PriorCond.clear();
+ if (PriorTBB != MBB)
+ TII->InsertBranch(PrevBB, PriorTBB, 0, PriorCond);
+ MadeChange = true;
+ ++NumBranchOpts;
+ return OptimizeBlock(MBB);
+ }
+
+ // If the previous branch *only* branches to *this* block (conditional or
+ // not) remove the branch.
+ if (PriorTBB == MBB && PriorFBB == 0) {
+ TII->RemoveBranch(PrevBB);
+ MadeChange = true;
+ ++NumBranchOpts;
+ return OptimizeBlock(MBB);
+ }
+
+ // If the prior block branches somewhere else on the condition and here if
+ // the condition is false, remove the uncond second branch.
+ if (PriorFBB == MBB) {
+ TII->RemoveBranch(PrevBB);
+ TII->InsertBranch(PrevBB, PriorTBB, 0, PriorCond);
+ MadeChange = true;
+ ++NumBranchOpts;
+ return OptimizeBlock(MBB);
+ }
+
+ // If the prior block branches here on true and somewhere else on false, and
+ // if the branch condition is reversible, reverse the branch to create a
+ // fall-through.
+ if (PriorTBB == MBB) {
+ SmallVector<MachineOperand, 4> NewPriorCond(PriorCond);
+ if (!TII->ReverseBranchCondition(NewPriorCond)) {
+ TII->RemoveBranch(PrevBB);
+ TII->InsertBranch(PrevBB, PriorFBB, 0, NewPriorCond);
+ MadeChange = true;
+ ++NumBranchOpts;
+ return OptimizeBlock(MBB);
+ }
+ }
+
+ // If this block doesn't fall through (e.g. it ends with an uncond branch or
+ // has no successors) and if the pred falls through into this block, and if
+ // it would otherwise fall through into the block after this, move this
+ // block to the end of the function.
+ //
+ // We consider it more likely that execution will stay in the function (e.g.
+ // due to loops) than it is to exit it. This asserts in loops etc, moving
+ // the assert condition out of the loop body.
+ if (!PriorCond.empty() && PriorFBB == 0 &&
+ MachineFunction::iterator(PriorTBB) == FallThrough &&
+ !CanFallThrough(MBB)) {
+ bool DoTransform = true;
+
+ // We have to be careful that the succs of PredBB aren't both no-successor
+ // blocks. If neither have successors and if PredBB is the second from
+ // last block in the function, we'd just keep swapping the two blocks for
+ // last. Only do the swap if one is clearly better to fall through than
+ // the other.
+ if (FallThrough == --MBB->getParent()->end() &&
+ !IsBetterFallthrough(PriorTBB, MBB))
+ DoTransform = false;
+
+ // We don't want to do this transformation if we have control flow like:
+ // br cond BB2
+ // BB1:
+ // ..
+ // jmp BBX
+ // BB2:
+ // ..
+ // ret
+ //
+ // In this case, we could actually be moving the return block *into* a
+ // loop!
+ if (DoTransform && !MBB->succ_empty() &&
+ (!CanFallThrough(PriorTBB) || PriorTBB->empty()))
+ DoTransform = false;
+
+
+ if (DoTransform) {
+ // Reverse the branch so we will fall through on the previous true cond.
+ SmallVector<MachineOperand, 4> NewPriorCond(PriorCond);
+ if (!TII->ReverseBranchCondition(NewPriorCond)) {
+ DOUT << "\nMoving MBB: " << *MBB;
+ DOUT << "To make fallthrough to: " << *PriorTBB << "\n";
+
+ TII->RemoveBranch(PrevBB);
+ TII->InsertBranch(PrevBB, MBB, 0, NewPriorCond);
+
+ // Move this block to the end of the function.
+ MBB->moveAfter(--MBB->getParent()->end());
+ MadeChange = true;
+ ++NumBranchOpts;
+ return;
+ }
+ }
+ }
+ }
+
+ // Analyze the branch in the current block.
+ MachineBasicBlock *CurTBB = 0, *CurFBB = 0;
+ SmallVector<MachineOperand, 4> CurCond;
+ bool CurUnAnalyzable= TII->AnalyzeBranch(*MBB, CurTBB, CurFBB, CurCond, true);
+ if (!CurUnAnalyzable) {
+ // If the CFG for the prior block has extra edges, remove them.
+ MadeChange |= MBB->CorrectExtraCFGEdges(CurTBB, CurFBB, !CurCond.empty());
+
+ // If this is a two-way branch, and the FBB branches to this block, reverse
+ // the condition so the single-basic-block loop is faster. Instead of:
+ // Loop: xxx; jcc Out; jmp Loop
+ // we want:
+ // Loop: xxx; jncc Loop; jmp Out
+ if (CurTBB && CurFBB && CurFBB == MBB && CurTBB != MBB) {
+ SmallVector<MachineOperand, 4> NewCond(CurCond);
+ if (!TII->ReverseBranchCondition(NewCond)) {
+ TII->RemoveBranch(*MBB);
+ TII->InsertBranch(*MBB, CurFBB, CurTBB, NewCond);
+ MadeChange = true;
+ ++NumBranchOpts;
+ return OptimizeBlock(MBB);
+ }
+ }
+
+
+ // If this branch is the only thing in its block, see if we can forward
+ // other blocks across it.
+ if (CurTBB && CurCond.empty() && CurFBB == 0 &&
+ MBB->begin()->getDesc().isBranch() && CurTBB != MBB) {
+ // This block may contain just an unconditional branch. Because there can
+ // be 'non-branch terminators' in the block, try removing the branch and
+ // then seeing if the block is empty.
+ TII->RemoveBranch(*MBB);
+
+ // If this block is just an unconditional branch to CurTBB, we can
+ // usually completely eliminate the block. The only case we cannot
+ // completely eliminate the block is when the block before this one
+ // falls through into MBB and we can't understand the prior block's branch
+ // condition.
+ if (MBB->empty()) {
+ bool PredHasNoFallThrough = TII->BlockHasNoFallThrough(PrevBB);
+ if (PredHasNoFallThrough || !PriorUnAnalyzable ||
+ !PrevBB.isSuccessor(MBB)) {
+ // If the prior block falls through into us, turn it into an
+ // explicit branch to us to make updates simpler.
+ if (!PredHasNoFallThrough && PrevBB.isSuccessor(MBB) &&
+ PriorTBB != MBB && PriorFBB != MBB) {
+ if (PriorTBB == 0) {
+ assert(PriorCond.empty() && PriorFBB == 0 &&
+ "Bad branch analysis");
+ PriorTBB = MBB;
+ } else {
+ assert(PriorFBB == 0 && "Machine CFG out of date!");
+ PriorFBB = MBB;
+ }
+ TII->RemoveBranch(PrevBB);
+ TII->InsertBranch(PrevBB, PriorTBB, PriorFBB, PriorCond);
+ }
+
+ // Iterate through all the predecessors, revectoring each in-turn.
+ size_t PI = 0;
+ bool DidChange = false;
+ bool HasBranchToSelf = false;
+ while(PI != MBB->pred_size()) {
+ MachineBasicBlock *PMBB = *(MBB->pred_begin() + PI);
+ if (PMBB == MBB) {
+ // If this block has an uncond branch to itself, leave it.
+ ++PI;
+ HasBranchToSelf = true;
+ } else {
+ DidChange = true;
+ PMBB->ReplaceUsesOfBlockWith(MBB, CurTBB);
+ // If this change resulted in PMBB ending in a conditional
+ // branch where both conditions go to the same destination,
+ // change this to an unconditional branch (and fix the CFG).
+ MachineBasicBlock *NewCurTBB = 0, *NewCurFBB = 0;
+ SmallVector<MachineOperand, 4> NewCurCond;
+ bool NewCurUnAnalyzable = TII->AnalyzeBranch(*PMBB, NewCurTBB,
+ NewCurFBB, NewCurCond, true);
+ if (!NewCurUnAnalyzable && NewCurTBB && NewCurTBB == NewCurFBB) {
+ TII->RemoveBranch(*PMBB);
+ NewCurCond.clear();
+ TII->InsertBranch(*PMBB, NewCurTBB, 0, NewCurCond);
+ MadeChange = true;
+ ++NumBranchOpts;
+ PMBB->CorrectExtraCFGEdges(NewCurTBB, NewCurFBB, false);
+ }
+ }
+ }
+
+ // Change any jumptables to go to the new MBB.
+ MBB->getParent()->getJumpTableInfo()->
+ ReplaceMBBInJumpTables(MBB, CurTBB);
+ if (DidChange) {
+ ++NumBranchOpts;
+ MadeChange = true;
+ if (!HasBranchToSelf) return;
+ }
+ }
+ }
+
+ // Add the branch back if the block is more than just an uncond branch.
+ TII->InsertBranch(*MBB, CurTBB, 0, CurCond);
+ }
+ }
+
+ // If the prior block doesn't fall through into this block, and if this
+ // block doesn't fall through into some other block, see if we can find a
+ // place to move this block where a fall-through will happen.
+ if (!CanFallThrough(&PrevBB, PriorUnAnalyzable,
+ PriorTBB, PriorFBB, PriorCond)) {
+ // Now we know that there was no fall-through into this block, check to
+ // see if it has a fall-through into its successor.
+ bool CurFallsThru = CanFallThrough(MBB, CurUnAnalyzable, CurTBB, CurFBB,
+ CurCond);
+
+ if (!MBB->isLandingPad()) {
+ // Check all the predecessors of this block. If one of them has no fall
+ // throughs, move this block right after it.
+ for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
+ E = MBB->pred_end(); PI != E; ++PI) {
+ // Analyze the branch at the end of the pred.
+ MachineBasicBlock *PredBB = *PI;
+ MachineFunction::iterator PredFallthrough = PredBB; ++PredFallthrough;
+ if (PredBB != MBB && !CanFallThrough(PredBB)
+ && (!CurFallsThru || !CurTBB || !CurFBB)
+ && (!CurFallsThru || MBB->getNumber() >= PredBB->getNumber())) {
+ // If the current block doesn't fall through, just move it.
+ // If the current block can fall through and does not end with a
+ // conditional branch, we need to append an unconditional jump to
+ // the (current) next block. To avoid a possible compile-time
+ // infinite loop, move blocks only backward in this case.
+ // Also, if there are already 2 branches here, we cannot add a third;
+ // this means we have the case
+ // Bcc next
+ // B elsewhere
+ // next:
+ if (CurFallsThru) {
+ MachineBasicBlock *NextBB = next(MachineFunction::iterator(MBB));
+ CurCond.clear();
+ TII->InsertBranch(*MBB, NextBB, 0, CurCond);
+ }
+ MBB->moveAfter(PredBB);
+ MadeChange = true;
+ return OptimizeBlock(MBB);
+ }
+ }
+ }
+
+ if (!CurFallsThru) {
+ // Check all successors to see if we can move this block before it.
+ for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
+ E = MBB->succ_end(); SI != E; ++SI) {
+ // Analyze the branch at the end of the block before the succ.
+ MachineBasicBlock *SuccBB = *SI;
+ MachineFunction::iterator SuccPrev = SuccBB; --SuccPrev;
+ std::vector<MachineOperand> SuccPrevCond;
+
+ // If this block doesn't already fall-through to that successor, and if
+ // the succ doesn't already have a block that can fall through into it,
+ // and if the successor isn't an EH destination, we can arrange for the
+ // fallthrough to happen.
+ if (SuccBB != MBB && !CanFallThrough(SuccPrev) &&
+ !SuccBB->isLandingPad()) {
+ MBB->moveBefore(SuccBB);
+ MadeChange = true;
+ return OptimizeBlock(MBB);
+ }
+ }
+
+ // Okay, there is no really great place to put this block. If, however,
+ // the block before this one would be a fall-through if this block were
+ // removed, move this block to the end of the function.
+ if (FallThrough != MBB->getParent()->end() &&
+ PrevBB.isSuccessor(FallThrough)) {
+ MBB->moveAfter(--MBB->getParent()->end());
+ MadeChange = true;
+ return;
+ }
+ }
+ }
+}
OpenPOWER on IntegriCloud