summaryrefslogtreecommitdiffstats
path: root/lib/Checker/RegionStore.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'lib/Checker/RegionStore.cpp')
-rw-r--r--lib/Checker/RegionStore.cpp1905
1 files changed, 1905 insertions, 0 deletions
diff --git a/lib/Checker/RegionStore.cpp b/lib/Checker/RegionStore.cpp
new file mode 100644
index 0000000..f70105a
--- /dev/null
+++ b/lib/Checker/RegionStore.cpp
@@ -0,0 +1,1905 @@
+//== RegionStore.cpp - Field-sensitive store model --------------*- C++ -*--==//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines a basic region store model. In this model, we do have field
+// sensitivity. But we assume nothing about the heap shape. So recursive data
+// structures are largely ignored. Basically we do 1-limiting analysis.
+// Parameter pointers are assumed with no aliasing. Pointee objects of
+// parameters are created lazily.
+//
+//===----------------------------------------------------------------------===//
+#include "clang/Checker/PathSensitive/MemRegion.h"
+#include "clang/Analysis/AnalysisContext.h"
+#include "clang/Checker/PathSensitive/GRState.h"
+#include "clang/Checker/PathSensitive/GRStateTrait.h"
+#include "clang/Analysis/Analyses/LiveVariables.h"
+#include "clang/Analysis/Support/Optional.h"
+#include "clang/Basic/TargetInfo.h"
+#include "clang/AST/CharUnits.h"
+
+#include "llvm/ADT/ImmutableMap.h"
+#include "llvm/ADT/ImmutableList.h"
+#include "llvm/Support/raw_ostream.h"
+
+using namespace clang;
+
+#define USE_EXPLICIT_COMPOUND 0
+
+//===----------------------------------------------------------------------===//
+// Representation of binding keys.
+//===----------------------------------------------------------------------===//
+
+namespace {
+class BindingKey {
+public:
+ enum Kind { Direct = 0x0, Default = 0x1 };
+private:
+ llvm ::PointerIntPair<const MemRegion*, 1> P;
+ uint64_t Offset;
+
+ explicit BindingKey(const MemRegion *r, uint64_t offset, Kind k)
+ : P(r, (unsigned) k), Offset(offset) { assert(r); }
+public:
+
+ bool isDefault() const { return P.getInt() == Default; }
+ bool isDirect() const { return P.getInt() == Direct; }
+
+ const MemRegion *getRegion() const { return P.getPointer(); }
+ uint64_t getOffset() const { return Offset; }
+
+ void Profile(llvm::FoldingSetNodeID& ID) const {
+ ID.AddPointer(P.getOpaqueValue());
+ ID.AddInteger(Offset);
+ }
+
+ static BindingKey Make(const MemRegion *R, Kind k);
+
+ bool operator<(const BindingKey &X) const {
+ if (P.getOpaqueValue() < X.P.getOpaqueValue())
+ return true;
+ if (P.getOpaqueValue() > X.P.getOpaqueValue())
+ return false;
+ return Offset < X.Offset;
+ }
+
+ bool operator==(const BindingKey &X) const {
+ return P.getOpaqueValue() == X.P.getOpaqueValue() &&
+ Offset == X.Offset;
+ }
+};
+} // end anonymous namespace
+
+namespace llvm {
+ static inline
+ llvm::raw_ostream& operator<<(llvm::raw_ostream& os, BindingKey K) {
+ os << '(' << K.getRegion() << ',' << K.getOffset()
+ << ',' << (K.isDirect() ? "direct" : "default")
+ << ')';
+ return os;
+ }
+} // end llvm namespace
+
+//===----------------------------------------------------------------------===//
+// Actual Store type.
+//===----------------------------------------------------------------------===//
+
+typedef llvm::ImmutableMap<BindingKey, SVal> RegionBindings;
+
+//===----------------------------------------------------------------------===//
+// Fine-grained control of RegionStoreManager.
+//===----------------------------------------------------------------------===//
+
+namespace {
+struct minimal_features_tag {};
+struct maximal_features_tag {};
+
+class RegionStoreFeatures {
+ bool SupportsFields;
+ bool SupportsRemaining;
+
+public:
+ RegionStoreFeatures(minimal_features_tag) :
+ SupportsFields(false), SupportsRemaining(false) {}
+
+ RegionStoreFeatures(maximal_features_tag) :
+ SupportsFields(true), SupportsRemaining(false) {}
+
+ void enableFields(bool t) { SupportsFields = t; }
+
+ bool supportsFields() const { return SupportsFields; }
+ bool supportsRemaining() const { return SupportsRemaining; }
+};
+}
+
+//===----------------------------------------------------------------------===//
+// Region "Extents"
+//===----------------------------------------------------------------------===//
+//
+// MemRegions represent chunks of memory with a size (their "extent"). This
+// GDM entry tracks the extents for regions. Extents are in bytes.
+//
+namespace { class RegionExtents {}; }
+static int RegionExtentsIndex = 0;
+namespace clang {
+ template<> struct GRStateTrait<RegionExtents>
+ : public GRStatePartialTrait<llvm::ImmutableMap<const MemRegion*, SVal> > {
+ static void* GDMIndex() { return &RegionExtentsIndex; }
+ };
+}
+
+//===----------------------------------------------------------------------===//
+// Utility functions.
+//===----------------------------------------------------------------------===//
+
+static bool IsAnyPointerOrIntptr(QualType ty, ASTContext &Ctx) {
+ if (ty->isAnyPointerType())
+ return true;
+
+ return ty->isIntegerType() && ty->isScalarType() &&
+ Ctx.getTypeSize(ty) == Ctx.getTypeSize(Ctx.VoidPtrTy);
+}
+
+//===----------------------------------------------------------------------===//
+// Main RegionStore logic.
+//===----------------------------------------------------------------------===//
+
+namespace {
+
+class RegionStoreSubRegionMap : public SubRegionMap {
+public:
+ typedef llvm::ImmutableSet<const MemRegion*> Set;
+ typedef llvm::DenseMap<const MemRegion*, Set> Map;
+private:
+ Set::Factory F;
+ Map M;
+public:
+ bool add(const MemRegion* Parent, const MemRegion* SubRegion) {
+ Map::iterator I = M.find(Parent);
+
+ if (I == M.end()) {
+ M.insert(std::make_pair(Parent, F.Add(F.GetEmptySet(), SubRegion)));
+ return true;
+ }
+
+ I->second = F.Add(I->second, SubRegion);
+ return false;
+ }
+
+ void process(llvm::SmallVectorImpl<const SubRegion*> &WL, const SubRegion *R);
+
+ ~RegionStoreSubRegionMap() {}
+
+ const Set *getSubRegions(const MemRegion *Parent) const {
+ Map::const_iterator I = M.find(Parent);
+ return I == M.end() ? NULL : &I->second;
+ }
+
+ bool iterSubRegions(const MemRegion* Parent, Visitor& V) const {
+ Map::const_iterator I = M.find(Parent);
+
+ if (I == M.end())
+ return true;
+
+ Set S = I->second;
+ for (Set::iterator SI=S.begin(),SE=S.end(); SI != SE; ++SI) {
+ if (!V.Visit(Parent, *SI))
+ return false;
+ }
+
+ return true;
+ }
+};
+
+
+class RegionStoreManager : public StoreManager {
+ const RegionStoreFeatures Features;
+ RegionBindings::Factory RBFactory;
+
+ typedef llvm::DenseMap<Store, RegionStoreSubRegionMap*> SMCache;
+ SMCache SC;
+
+public:
+ RegionStoreManager(GRStateManager& mgr, const RegionStoreFeatures &f)
+ : StoreManager(mgr),
+ Features(f),
+ RBFactory(mgr.getAllocator()) {}
+
+ virtual ~RegionStoreManager() {
+ for (SMCache::iterator I = SC.begin(), E = SC.end(); I != E; ++I)
+ delete (*I).second;
+ }
+
+ SubRegionMap *getSubRegionMap(Store store) {
+ return getRegionStoreSubRegionMap(store);
+ }
+
+ RegionStoreSubRegionMap *getRegionStoreSubRegionMap(Store store);
+
+ Optional<SVal> getBinding(RegionBindings B, const MemRegion *R);
+ Optional<SVal> getDirectBinding(RegionBindings B, const MemRegion *R);
+ /// getDefaultBinding - Returns an SVal* representing an optional default
+ /// binding associated with a region and its subregions.
+ Optional<SVal> getDefaultBinding(RegionBindings B, const MemRegion *R);
+
+ /// setImplicitDefaultValue - Set the default binding for the provided
+ /// MemRegion to the value implicitly defined for compound literals when
+ /// the value is not specified.
+ Store setImplicitDefaultValue(Store store, const MemRegion *R, QualType T);
+
+ /// ArrayToPointer - Emulates the "decay" of an array to a pointer
+ /// type. 'Array' represents the lvalue of the array being decayed
+ /// to a pointer, and the returned SVal represents the decayed
+ /// version of that lvalue (i.e., a pointer to the first element of
+ /// the array). This is called by GRExprEngine when evaluating
+ /// casts from arrays to pointers.
+ SVal ArrayToPointer(Loc Array);
+
+ SVal EvalBinOp(BinaryOperator::Opcode Op,Loc L, NonLoc R, QualType resultTy);
+
+ Store getInitialStore(const LocationContext *InitLoc) {
+ return RBFactory.GetEmptyMap().getRoot();
+ }
+
+ //===-------------------------------------------------------------------===//
+ // Binding values to regions.
+ //===-------------------------------------------------------------------===//
+
+ Store InvalidateRegion(Store store, const MemRegion *R, const Expr *E,
+ unsigned Count, InvalidatedSymbols *IS) {
+ return RegionStoreManager::InvalidateRegions(store, &R, &R+1, E, Count, IS);
+ }
+
+ Store InvalidateRegions(Store store,
+ const MemRegion * const *Begin,
+ const MemRegion * const *End,
+ const Expr *E, unsigned Count,
+ InvalidatedSymbols *IS);
+
+public: // Made public for helper classes.
+
+ void RemoveSubRegionBindings(RegionBindings &B, const MemRegion *R,
+ RegionStoreSubRegionMap &M);
+
+ RegionBindings Add(RegionBindings B, BindingKey K, SVal V);
+
+ RegionBindings Add(RegionBindings B, const MemRegion *R,
+ BindingKey::Kind k, SVal V);
+
+ const SVal *Lookup(RegionBindings B, BindingKey K);
+ const SVal *Lookup(RegionBindings B, const MemRegion *R, BindingKey::Kind k);
+
+ RegionBindings Remove(RegionBindings B, BindingKey K);
+ RegionBindings Remove(RegionBindings B, const MemRegion *R,
+ BindingKey::Kind k);
+
+ RegionBindings Remove(RegionBindings B, const MemRegion *R) {
+ return Remove(Remove(B, R, BindingKey::Direct), R, BindingKey::Default);
+ }
+
+ Store Remove(Store store, BindingKey K);
+
+public: // Part of public interface to class.
+
+ Store Bind(Store store, Loc LV, SVal V);
+
+ Store BindCompoundLiteral(Store store, const CompoundLiteralExpr* CL,
+ const LocationContext *LC, SVal V);
+
+ Store BindDecl(Store store, const VarRegion *VR, SVal InitVal);
+
+ Store BindDeclWithNoInit(Store store, const VarRegion *) {
+ return store;
+ }
+
+ /// BindStruct - Bind a compound value to a structure.
+ Store BindStruct(Store store, const TypedRegion* R, SVal V);
+
+ Store BindArray(Store store, const TypedRegion* R, SVal V);
+
+ /// KillStruct - Set the entire struct to unknown.
+ Store KillStruct(Store store, const TypedRegion* R);
+
+ Store Remove(Store store, Loc LV);
+
+
+ //===------------------------------------------------------------------===//
+ // Loading values from regions.
+ //===------------------------------------------------------------------===//
+
+ /// The high level logic for this method is this:
+ /// Retrieve (L)
+ /// if L has binding
+ /// return L's binding
+ /// else if L is in killset
+ /// return unknown
+ /// else
+ /// if L is on stack or heap
+ /// return undefined
+ /// else
+ /// return symbolic
+ SVal Retrieve(Store store, Loc L, QualType T = QualType());
+
+ SVal RetrieveElement(Store store, const ElementRegion *R);
+
+ SVal RetrieveField(Store store, const FieldRegion *R);
+
+ SVal RetrieveObjCIvar(Store store, const ObjCIvarRegion *R);
+
+ SVal RetrieveVar(Store store, const VarRegion *R);
+
+ SVal RetrieveLazySymbol(const TypedRegion *R);
+
+ SVal RetrieveFieldOrElementCommon(Store store, const TypedRegion *R,
+ QualType Ty, const MemRegion *superR);
+
+ /// Retrieve the values in a struct and return a CompoundVal, used when doing
+ /// struct copy:
+ /// struct s x, y;
+ /// x = y;
+ /// y's value is retrieved by this method.
+ SVal RetrieveStruct(Store store, const TypedRegion* R);
+
+ SVal RetrieveArray(Store store, const TypedRegion* R);
+
+ /// Get the state and region whose binding this region R corresponds to.
+ std::pair<Store, const MemRegion*>
+ GetLazyBinding(RegionBindings B, const MemRegion *R);
+
+ Store CopyLazyBindings(nonloc::LazyCompoundVal V, Store store,
+ const TypedRegion *R);
+
+ const ElementRegion *GetElementZeroRegion(const MemRegion *R, QualType T);
+
+ //===------------------------------------------------------------------===//
+ // State pruning.
+ //===------------------------------------------------------------------===//
+
+ /// RemoveDeadBindings - Scans the RegionStore of 'state' for dead values.
+ /// It returns a new Store with these values removed.
+ Store RemoveDeadBindings(Store store, Stmt* Loc, SymbolReaper& SymReaper,
+ llvm::SmallVectorImpl<const MemRegion*>& RegionRoots);
+
+ const GRState *EnterStackFrame(const GRState *state,
+ const StackFrameContext *frame);
+
+ //===------------------------------------------------------------------===//
+ // Region "extents".
+ //===------------------------------------------------------------------===//
+
+ const GRState *setExtent(const GRState *state,const MemRegion* R,SVal Extent);
+ DefinedOrUnknownSVal getSizeInElements(const GRState *state,
+ const MemRegion* R, QualType EleTy);
+
+ //===------------------------------------------------------------------===//
+ // Utility methods.
+ //===------------------------------------------------------------------===//
+
+ static inline RegionBindings GetRegionBindings(Store store) {
+ return RegionBindings(static_cast<const RegionBindings::TreeTy*>(store));
+ }
+
+ void print(Store store, llvm::raw_ostream& Out, const char* nl,
+ const char *sep);
+
+ void iterBindings(Store store, BindingsHandler& f) {
+ // FIXME: Implement.
+ }
+
+ // FIXME: Remove.
+ BasicValueFactory& getBasicVals() {
+ return StateMgr.getBasicVals();
+ }
+
+ // FIXME: Remove.
+ ASTContext& getContext() { return StateMgr.getContext(); }
+};
+
+} // end anonymous namespace
+
+//===----------------------------------------------------------------------===//
+// RegionStore creation.
+//===----------------------------------------------------------------------===//
+
+StoreManager *clang::CreateRegionStoreManager(GRStateManager& StMgr) {
+ RegionStoreFeatures F = maximal_features_tag();
+ return new RegionStoreManager(StMgr, F);
+}
+
+StoreManager *clang::CreateFieldsOnlyRegionStoreManager(GRStateManager &StMgr) {
+ RegionStoreFeatures F = minimal_features_tag();
+ F.enableFields(true);
+ return new RegionStoreManager(StMgr, F);
+}
+
+void
+RegionStoreSubRegionMap::process(llvm::SmallVectorImpl<const SubRegion*> &WL,
+ const SubRegion *R) {
+ const MemRegion *superR = R->getSuperRegion();
+ if (add(superR, R))
+ if (const SubRegion *sr = dyn_cast<SubRegion>(superR))
+ WL.push_back(sr);
+}
+
+RegionStoreSubRegionMap*
+RegionStoreManager::getRegionStoreSubRegionMap(Store store) {
+ RegionBindings B = GetRegionBindings(store);
+ RegionStoreSubRegionMap *M = new RegionStoreSubRegionMap();
+
+ llvm::SmallVector<const SubRegion*, 10> WL;
+
+ for (RegionBindings::iterator I=B.begin(), E=B.end(); I!=E; ++I)
+ if (const SubRegion *R = dyn_cast<SubRegion>(I.getKey().getRegion()))
+ M->process(WL, R);
+
+ // We also need to record in the subregion map "intermediate" regions that
+ // don't have direct bindings but are super regions of those that do.
+ while (!WL.empty()) {
+ const SubRegion *R = WL.back();
+ WL.pop_back();
+ M->process(WL, R);
+ }
+
+ return M;
+}
+
+//===----------------------------------------------------------------------===//
+// Binding invalidation.
+//===----------------------------------------------------------------------===//
+
+void RegionStoreManager::RemoveSubRegionBindings(RegionBindings &B,
+ const MemRegion *R,
+ RegionStoreSubRegionMap &M) {
+
+ if (const RegionStoreSubRegionMap::Set *S = M.getSubRegions(R))
+ for (RegionStoreSubRegionMap::Set::iterator I = S->begin(), E = S->end();
+ I != E; ++I)
+ RemoveSubRegionBindings(B, *I, M);
+
+ B = Remove(B, R);
+}
+
+namespace {
+class InvalidateRegionsWorker {
+ typedef BumpVector<BindingKey> RegionCluster;
+ typedef llvm::DenseMap<const MemRegion *, RegionCluster *> ClusterMap;
+ typedef llvm::SmallVector<std::pair<const MemRegion *,RegionCluster*>, 10>
+ WorkList;
+
+ BumpVectorContext BVC;
+ ClusterMap ClusterM;
+ WorkList WL;
+
+ RegionStoreManager &RM;
+ StoreManager::InvalidatedSymbols *IS;
+ ASTContext &Ctx;
+ ValueManager &ValMgr;
+
+public:
+ InvalidateRegionsWorker(RegionStoreManager &rm,
+ StoreManager::InvalidatedSymbols *is,
+ ASTContext &ctx, ValueManager &valMgr)
+ : RM(rm), IS(is), Ctx(ctx), ValMgr(valMgr) {}
+
+ Store InvalidateRegions(Store store, const MemRegion * const *I,
+ const MemRegion * const *E,
+ const Expr *Ex, unsigned Count);
+
+private:
+ void AddToWorkList(BindingKey K);
+ void AddToWorkList(const MemRegion *R);
+ void AddToCluster(BindingKey K);
+ RegionCluster **getCluster(const MemRegion *R);
+ void VisitBinding(SVal V);
+};
+}
+
+void InvalidateRegionsWorker::AddToCluster(BindingKey K) {
+ const MemRegion *R = K.getRegion();
+ const MemRegion *baseR = R->getBaseRegion();
+ RegionCluster **CPtr = getCluster(baseR);
+ assert(*CPtr);
+ (*CPtr)->push_back(K, BVC);
+}
+
+void InvalidateRegionsWorker::AddToWorkList(BindingKey K) {
+ AddToWorkList(K.getRegion());
+}
+
+void InvalidateRegionsWorker::AddToWorkList(const MemRegion *R) {
+ const MemRegion *baseR = R->getBaseRegion();
+ RegionCluster **CPtr = getCluster(baseR);
+ if (RegionCluster *C = *CPtr) {
+ WL.push_back(std::make_pair(baseR, C));
+ *CPtr = NULL;
+ }
+}
+
+InvalidateRegionsWorker::RegionCluster **
+InvalidateRegionsWorker::getCluster(const MemRegion *R) {
+ RegionCluster *&CRef = ClusterM[R];
+ if (!CRef) {
+ void *Mem = BVC.getAllocator().Allocate<RegionCluster>();
+ CRef = new (Mem) RegionCluster(BVC, 10);
+ }
+ return &CRef;
+}
+
+void InvalidateRegionsWorker::VisitBinding(SVal V) {
+ // A symbol? Mark it touched by the invalidation.
+ if (IS)
+ if (SymbolRef Sym = V.getAsSymbol())
+ IS->insert(Sym);
+
+ if (const MemRegion *R = V.getAsRegion()) {
+ AddToWorkList(R);
+ return;
+ }
+
+ // Is it a LazyCompoundVal? All references get invalidated as well.
+ if (const nonloc::LazyCompoundVal *LCS =
+ dyn_cast<nonloc::LazyCompoundVal>(&V)) {
+
+ const MemRegion *LazyR = LCS->getRegion();
+ RegionBindings B = RegionStoreManager::GetRegionBindings(LCS->getStore());
+
+ for (RegionBindings::iterator RI = B.begin(), RE = B.end(); RI != RE; ++RI){
+ const MemRegion *baseR = RI.getKey().getRegion();
+ if (cast<SubRegion>(baseR)->isSubRegionOf(LazyR))
+ VisitBinding(RI.getData());
+ }
+
+ return;
+ }
+}
+
+Store InvalidateRegionsWorker::InvalidateRegions(Store store,
+ const MemRegion * const *I,
+ const MemRegion * const *E,
+ const Expr *Ex, unsigned Count)
+{
+ RegionBindings B = RegionStoreManager::GetRegionBindings(store);
+
+ // Scan the entire store and make the region clusters.
+ for (RegionBindings::iterator RI = B.begin(), RE = B.end(); RI != RE; ++RI) {
+ AddToCluster(RI.getKey());
+ if (const MemRegion *R = RI.getData().getAsRegion()) {
+ // Generate a cluster, but don't add the region to the cluster
+ // if there aren't any bindings.
+ getCluster(R->getBaseRegion());
+ }
+ }
+
+ // Add the cluster for I .. E to a worklist.
+ for ( ; I != E; ++I)
+ AddToWorkList(*I);
+
+ while (!WL.empty()) {
+ const MemRegion *baseR;
+ RegionCluster *C;
+ llvm::tie(baseR, C) = WL.back();
+ WL.pop_back();
+
+ for (RegionCluster::iterator I = C->begin(), E = C->end(); I != E; ++I) {
+ BindingKey K = *I;
+
+ // Get the old binding. Is it a region? If so, add it to the worklist.
+ if (const SVal *V = RM.Lookup(B, K))
+ VisitBinding(*V);
+
+ B = RM.Remove(B, K);
+ }
+
+ // Now inspect the base region.
+
+ if (IS) {
+ // Symbolic region? Mark that symbol touched by the invalidation.
+ if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(baseR))
+ IS->insert(SR->getSymbol());
+ }
+
+ // BlockDataRegion? If so, invalidate captured variables that are passed
+ // by reference.
+ if (const BlockDataRegion *BR = dyn_cast<BlockDataRegion>(baseR)) {
+ for (BlockDataRegion::referenced_vars_iterator
+ BI = BR->referenced_vars_begin(), BE = BR->referenced_vars_end() ;
+ BI != BE; ++BI) {
+ const VarRegion *VR = *BI;
+ const VarDecl *VD = VR->getDecl();
+ if (VD->getAttr<BlocksAttr>() || !VD->hasLocalStorage())
+ AddToWorkList(VR);
+ }
+ continue;
+ }
+
+ if (isa<AllocaRegion>(baseR) || isa<SymbolicRegion>(baseR)) {
+ // Invalidate the region by setting its default value to
+ // conjured symbol. The type of the symbol is irrelavant.
+ DefinedOrUnknownSVal V = ValMgr.getConjuredSymbolVal(baseR, Ex, Ctx.IntTy,
+ Count);
+ B = RM.Add(B, baseR, BindingKey::Default, V);
+ continue;
+ }
+
+ if (!baseR->isBoundable())
+ continue;
+
+ const TypedRegion *TR = cast<TypedRegion>(baseR);
+ QualType T = TR->getValueType(Ctx);
+
+ // Invalidate the binding.
+ if (const RecordType *RT = T->getAsStructureType()) {
+ const RecordDecl *RD = RT->getDecl()->getDefinition();
+ // No record definition. There is nothing we can do.
+ if (!RD) {
+ B = RM.Remove(B, baseR);
+ continue;
+ }
+
+ // Invalidate the region by setting its default value to
+ // conjured symbol. The type of the symbol is irrelavant.
+ DefinedOrUnknownSVal V = ValMgr.getConjuredSymbolVal(baseR, Ex, Ctx.IntTy,
+ Count);
+ B = RM.Add(B, baseR, BindingKey::Default, V);
+ continue;
+ }
+
+ if (const ArrayType *AT = Ctx.getAsArrayType(T)) {
+ // Set the default value of the array to conjured symbol.
+ DefinedOrUnknownSVal V =
+ ValMgr.getConjuredSymbolVal(baseR, Ex, AT->getElementType(), Count);
+ B = RM.Add(B, baseR, BindingKey::Default, V);
+ continue;
+ }
+
+ DefinedOrUnknownSVal V = ValMgr.getConjuredSymbolVal(baseR, Ex, T, Count);
+ assert(SymbolManager::canSymbolicate(T) || V.isUnknown());
+ B = RM.Add(B, baseR, BindingKey::Direct, V);
+ }
+
+ // Create a new state with the updated bindings.
+ return B.getRoot();
+}
+
+Store RegionStoreManager::InvalidateRegions(Store store,
+ const MemRegion * const *I,
+ const MemRegion * const *E,
+ const Expr *Ex, unsigned Count,
+ InvalidatedSymbols *IS) {
+ InvalidateRegionsWorker W(*this, IS, getContext(),
+ StateMgr.getValueManager());
+ return W.InvalidateRegions(store, I, E, Ex, Count);
+}
+
+//===----------------------------------------------------------------------===//
+// Extents for regions.
+//===----------------------------------------------------------------------===//
+
+DefinedOrUnknownSVal RegionStoreManager::getSizeInElements(const GRState *state,
+ const MemRegion *R,
+ QualType EleTy) {
+
+ switch (R->getKind()) {
+ case MemRegion::CXXThisRegionKind:
+ assert(0 && "Cannot get size of 'this' region");
+ case MemRegion::GenericMemSpaceRegionKind:
+ case MemRegion::StackLocalsSpaceRegionKind:
+ case MemRegion::StackArgumentsSpaceRegionKind:
+ case MemRegion::HeapSpaceRegionKind:
+ case MemRegion::GlobalsSpaceRegionKind:
+ case MemRegion::UnknownSpaceRegionKind:
+ assert(0 && "Cannot index into a MemSpace");
+ return UnknownVal();
+
+ case MemRegion::FunctionTextRegionKind:
+ case MemRegion::BlockTextRegionKind:
+ case MemRegion::BlockDataRegionKind:
+ // Technically this can happen if people do funny things with casts.
+ return UnknownVal();
+
+ // Not yet handled.
+ case MemRegion::AllocaRegionKind:
+ case MemRegion::CompoundLiteralRegionKind:
+ case MemRegion::ElementRegionKind:
+ case MemRegion::FieldRegionKind:
+ case MemRegion::ObjCIvarRegionKind:
+ case MemRegion::CXXObjectRegionKind:
+ return UnknownVal();
+
+ case MemRegion::SymbolicRegionKind: {
+ const SVal *Size = state->get<RegionExtents>(R);
+ if (!Size)
+ return UnknownVal();
+ const nonloc::ConcreteInt *CI = dyn_cast<nonloc::ConcreteInt>(Size);
+ if (!CI)
+ return UnknownVal();
+
+ CharUnits RegionSize =
+ CharUnits::fromQuantity(CI->getValue().getSExtValue());
+ CharUnits EleSize = getContext().getTypeSizeInChars(EleTy);
+ assert(RegionSize % EleSize == 0);
+
+ return ValMgr.makeIntVal(RegionSize / EleSize, false);
+ }
+
+ case MemRegion::StringRegionKind: {
+ const StringLiteral* Str = cast<StringRegion>(R)->getStringLiteral();
+ // We intentionally made the size value signed because it participates in
+ // operations with signed indices.
+ return ValMgr.makeIntVal(Str->getByteLength()+1, false);
+ }
+
+ case MemRegion::VarRegionKind: {
+ const VarRegion* VR = cast<VarRegion>(R);
+ // Get the type of the variable.
+ QualType T = VR->getDesugaredValueType(getContext());
+
+ // FIXME: Handle variable-length arrays.
+ if (isa<VariableArrayType>(T))
+ return UnknownVal();
+
+ if (const ConstantArrayType* CAT = dyn_cast<ConstantArrayType>(T)) {
+ // return the size as signed integer.
+ return ValMgr.makeIntVal(CAT->getSize(), false);
+ }
+
+ // Clients can use ordinary variables as if they were arrays. These
+ // essentially are arrays of size 1.
+ return ValMgr.makeIntVal(1, false);
+ }
+ }
+
+ assert(0 && "Unreachable");
+ return UnknownVal();
+}
+
+const GRState *RegionStoreManager::setExtent(const GRState *state,
+ const MemRegion *region,
+ SVal extent) {
+ return state->set<RegionExtents>(region, extent);
+}
+
+//===----------------------------------------------------------------------===//
+// Location and region casting.
+//===----------------------------------------------------------------------===//
+
+/// ArrayToPointer - Emulates the "decay" of an array to a pointer
+/// type. 'Array' represents the lvalue of the array being decayed
+/// to a pointer, and the returned SVal represents the decayed
+/// version of that lvalue (i.e., a pointer to the first element of
+/// the array). This is called by GRExprEngine when evaluating casts
+/// from arrays to pointers.
+SVal RegionStoreManager::ArrayToPointer(Loc Array) {
+ if (!isa<loc::MemRegionVal>(Array))
+ return UnknownVal();
+
+ const MemRegion* R = cast<loc::MemRegionVal>(&Array)->getRegion();
+ const TypedRegion* ArrayR = dyn_cast<TypedRegion>(R);
+
+ if (!ArrayR)
+ return UnknownVal();
+
+ // Strip off typedefs from the ArrayRegion's ValueType.
+ QualType T = ArrayR->getValueType(getContext()).getDesugaredType();
+ ArrayType *AT = cast<ArrayType>(T);
+ T = AT->getElementType();
+
+ SVal ZeroIdx = ValMgr.makeZeroArrayIndex();
+ return loc::MemRegionVal(MRMgr.getElementRegion(T, ZeroIdx, ArrayR,
+ getContext()));
+}
+
+//===----------------------------------------------------------------------===//
+// Pointer arithmetic.
+//===----------------------------------------------------------------------===//
+
+SVal RegionStoreManager::EvalBinOp(BinaryOperator::Opcode Op, Loc L, NonLoc R,
+ QualType resultTy) {
+ // Assume the base location is MemRegionVal.
+ if (!isa<loc::MemRegionVal>(L))
+ return UnknownVal();
+
+ const MemRegion* MR = cast<loc::MemRegionVal>(L).getRegion();
+ const ElementRegion *ER = 0;
+
+ switch (MR->getKind()) {
+ case MemRegion::SymbolicRegionKind: {
+ const SymbolicRegion *SR = cast<SymbolicRegion>(MR);
+ SymbolRef Sym = SR->getSymbol();
+ QualType T = Sym->getType(getContext());
+ QualType EleTy;
+
+ if (const PointerType *PT = T->getAs<PointerType>())
+ EleTy = PT->getPointeeType();
+ else
+ EleTy = T->getAs<ObjCObjectPointerType>()->getPointeeType();
+
+ SVal ZeroIdx = ValMgr.makeZeroArrayIndex();
+ ER = MRMgr.getElementRegion(EleTy, ZeroIdx, SR, getContext());
+ break;
+ }
+ case MemRegion::AllocaRegionKind: {
+ const AllocaRegion *AR = cast<AllocaRegion>(MR);
+ QualType T = getContext().CharTy; // Create an ElementRegion of bytes.
+ QualType EleTy = T->getAs<PointerType>()->getPointeeType();
+ SVal ZeroIdx = ValMgr.makeZeroArrayIndex();
+ ER = MRMgr.getElementRegion(EleTy, ZeroIdx, AR, getContext());
+ break;
+ }
+
+ case MemRegion::ElementRegionKind: {
+ ER = cast<ElementRegion>(MR);
+ break;
+ }
+
+ // Not yet handled.
+ case MemRegion::VarRegionKind:
+ case MemRegion::StringRegionKind: {
+
+ }
+ // Fall-through.
+ case MemRegion::CompoundLiteralRegionKind:
+ case MemRegion::FieldRegionKind:
+ case MemRegion::ObjCIvarRegionKind:
+ case MemRegion::CXXObjectRegionKind:
+ return UnknownVal();
+
+ case MemRegion::FunctionTextRegionKind:
+ case MemRegion::BlockTextRegionKind:
+ case MemRegion::BlockDataRegionKind:
+ // Technically this can happen if people do funny things with casts.
+ return UnknownVal();
+
+ case MemRegion::CXXThisRegionKind:
+ assert(0 &&
+ "Cannot perform pointer arithmetic on implicit argument 'this'");
+ case MemRegion::GenericMemSpaceRegionKind:
+ case MemRegion::StackLocalsSpaceRegionKind:
+ case MemRegion::StackArgumentsSpaceRegionKind:
+ case MemRegion::HeapSpaceRegionKind:
+ case MemRegion::GlobalsSpaceRegionKind:
+ case MemRegion::UnknownSpaceRegionKind:
+ assert(0 && "Cannot perform pointer arithmetic on a MemSpace");
+ return UnknownVal();
+ }
+
+ SVal Idx = ER->getIndex();
+ nonloc::ConcreteInt* Base = dyn_cast<nonloc::ConcreteInt>(&Idx);
+
+ // For now, only support:
+ // (a) concrete integer indices that can easily be resolved
+ // (b) 0 + symbolic index
+ if (Base) {
+ if (nonloc::ConcreteInt *Offset = dyn_cast<nonloc::ConcreteInt>(&R)) {
+ // FIXME: Should use SValuator here.
+ SVal NewIdx =
+ Base->evalBinOp(ValMgr, Op,
+ cast<nonloc::ConcreteInt>(ValMgr.convertToArrayIndex(*Offset)));
+ const MemRegion* NewER =
+ MRMgr.getElementRegion(ER->getElementType(), NewIdx,
+ ER->getSuperRegion(), getContext());
+ return ValMgr.makeLoc(NewER);
+ }
+ if (0 == Base->getValue()) {
+ const MemRegion* NewER =
+ MRMgr.getElementRegion(ER->getElementType(), R,
+ ER->getSuperRegion(), getContext());
+ return ValMgr.makeLoc(NewER);
+ }
+ }
+
+ return UnknownVal();
+}
+
+//===----------------------------------------------------------------------===//
+// Loading values from regions.
+//===----------------------------------------------------------------------===//
+
+Optional<SVal> RegionStoreManager::getDirectBinding(RegionBindings B,
+ const MemRegion *R) {
+ if (const SVal *V = Lookup(B, R, BindingKey::Direct))
+ return *V;
+
+ return Optional<SVal>();
+}
+
+Optional<SVal> RegionStoreManager::getDefaultBinding(RegionBindings B,
+ const MemRegion *R) {
+ if (R->isBoundable())
+ if (const TypedRegion *TR = dyn_cast<TypedRegion>(R))
+ if (TR->getValueType(getContext())->isUnionType())
+ return UnknownVal();
+
+ if (const SVal *V = Lookup(B, R, BindingKey::Default))
+ return *V;
+
+ return Optional<SVal>();
+}
+
+Optional<SVal> RegionStoreManager::getBinding(RegionBindings B,
+ const MemRegion *R) {
+
+ if (Optional<SVal> V = getDirectBinding(B, R))
+ return V;
+
+ return getDefaultBinding(B, R);
+}
+
+static bool IsReinterpreted(QualType RTy, QualType UsedTy, ASTContext &Ctx) {
+ RTy = Ctx.getCanonicalType(RTy);
+ UsedTy = Ctx.getCanonicalType(UsedTy);
+
+ if (RTy == UsedTy)
+ return false;
+
+
+ // Recursively check the types. We basically want to see if a pointer value
+ // is ever reinterpreted as a non-pointer, e.g. void** and intptr_t*
+ // represents a reinterpretation.
+ if (Loc::IsLocType(RTy) && Loc::IsLocType(UsedTy)) {
+ const PointerType *PRTy = RTy->getAs<PointerType>();
+ const PointerType *PUsedTy = UsedTy->getAs<PointerType>();
+
+ return PUsedTy && PRTy &&
+ IsReinterpreted(PRTy->getPointeeType(),
+ PUsedTy->getPointeeType(), Ctx);
+ }
+
+ return true;
+}
+
+const ElementRegion *
+RegionStoreManager::GetElementZeroRegion(const MemRegion *R, QualType T) {
+ ASTContext &Ctx = getContext();
+ SVal idx = ValMgr.makeZeroArrayIndex();
+ assert(!T.isNull());
+ return MRMgr.getElementRegion(T, idx, R, Ctx);
+}
+
+SVal RegionStoreManager::Retrieve(Store store, Loc L, QualType T) {
+ assert(!isa<UnknownVal>(L) && "location unknown");
+ assert(!isa<UndefinedVal>(L) && "location undefined");
+
+ // FIXME: Is this even possible? Shouldn't this be treated as a null
+ // dereference at a higher level?
+ if (isa<loc::ConcreteInt>(L))
+ return UndefinedVal();
+
+ const MemRegion *MR = cast<loc::MemRegionVal>(L).getRegion();
+
+ if (isa<AllocaRegion>(MR) || isa<SymbolicRegion>(MR))
+ MR = GetElementZeroRegion(MR, T);
+
+ if (isa<CodeTextRegion>(MR))
+ return UnknownVal();
+
+ // FIXME: Perhaps this method should just take a 'const MemRegion*' argument
+ // instead of 'Loc', and have the other Loc cases handled at a higher level.
+ const TypedRegion *R = cast<TypedRegion>(MR);
+ QualType RTy = R->getValueType(getContext());
+
+ // FIXME: We should eventually handle funny addressing. e.g.:
+ //
+ // int x = ...;
+ // int *p = &x;
+ // char *q = (char*) p;
+ // char c = *q; // returns the first byte of 'x'.
+ //
+ // Such funny addressing will occur due to layering of regions.
+
+#if 0
+ ASTContext &Ctx = getContext();
+ if (!T.isNull() && IsReinterpreted(RTy, T, Ctx)) {
+ SVal ZeroIdx = ValMgr.makeZeroArrayIndex();
+ R = MRMgr.getElementRegion(T, ZeroIdx, R, Ctx);
+ RTy = T;
+ assert(Ctx.getCanonicalType(RTy) ==
+ Ctx.getCanonicalType(R->getValueType(Ctx)));
+ }
+#endif
+
+ if (RTy->isStructureType())
+ return RetrieveStruct(store, R);
+
+ // FIXME: Handle unions.
+ if (RTy->isUnionType())
+ return UnknownVal();
+
+ if (RTy->isArrayType())
+ return RetrieveArray(store, R);
+
+ // FIXME: handle Vector types.
+ if (RTy->isVectorType())
+ return UnknownVal();
+
+ if (const FieldRegion* FR = dyn_cast<FieldRegion>(R))
+ return CastRetrievedVal(RetrieveField(store, FR), FR, T, false);
+
+ if (const ElementRegion* ER = dyn_cast<ElementRegion>(R)) {
+ // FIXME: Here we actually perform an implicit conversion from the loaded
+ // value to the element type. Eventually we want to compose these values
+ // more intelligently. For example, an 'element' can encompass multiple
+ // bound regions (e.g., several bound bytes), or could be a subset of
+ // a larger value.
+ return CastRetrievedVal(RetrieveElement(store, ER), ER, T, false);
+ }
+
+ if (const ObjCIvarRegion *IVR = dyn_cast<ObjCIvarRegion>(R)) {
+ // FIXME: Here we actually perform an implicit conversion from the loaded
+ // value to the ivar type. What we should model is stores to ivars
+ // that blow past the extent of the ivar. If the address of the ivar is
+ // reinterpretted, it is possible we stored a different value that could
+ // fit within the ivar. Either we need to cast these when storing them
+ // or reinterpret them lazily (as we do here).
+ return CastRetrievedVal(RetrieveObjCIvar(store, IVR), IVR, T, false);
+ }
+
+ if (const VarRegion *VR = dyn_cast<VarRegion>(R)) {
+ // FIXME: Here we actually perform an implicit conversion from the loaded
+ // value to the variable type. What we should model is stores to variables
+ // that blow past the extent of the variable. If the address of the
+ // variable is reinterpretted, it is possible we stored a different value
+ // that could fit within the variable. Either we need to cast these when
+ // storing them or reinterpret them lazily (as we do here).
+ return CastRetrievedVal(RetrieveVar(store, VR), VR, T, false);
+ }
+
+ RegionBindings B = GetRegionBindings(store);
+ const SVal *V = Lookup(B, R, BindingKey::Direct);
+
+ // Check if the region has a binding.
+ if (V)
+ return *V;
+
+ // The location does not have a bound value. This means that it has
+ // the value it had upon its creation and/or entry to the analyzed
+ // function/method. These are either symbolic values or 'undefined'.
+ if (R->hasStackNonParametersStorage()) {
+ // All stack variables are considered to have undefined values
+ // upon creation. All heap allocated blocks are considered to
+ // have undefined values as well unless they are explicitly bound
+ // to specific values.
+ return UndefinedVal();
+ }
+
+ // All other values are symbolic.
+ return ValMgr.getRegionValueSymbolVal(R, RTy);
+}
+
+std::pair<Store, const MemRegion *>
+RegionStoreManager::GetLazyBinding(RegionBindings B, const MemRegion *R) {
+ if (Optional<SVal> OV = getDirectBinding(B, R))
+ if (const nonloc::LazyCompoundVal *V =
+ dyn_cast<nonloc::LazyCompoundVal>(OV.getPointer()))
+ return std::make_pair(V->getStore(), V->getRegion());
+
+ if (const ElementRegion *ER = dyn_cast<ElementRegion>(R)) {
+ const std::pair<Store, const MemRegion *> &X =
+ GetLazyBinding(B, ER->getSuperRegion());
+
+ if (X.second)
+ return std::make_pair(X.first,
+ MRMgr.getElementRegionWithSuper(ER, X.second));
+ }
+ else if (const FieldRegion *FR = dyn_cast<FieldRegion>(R)) {
+ const std::pair<Store, const MemRegion *> &X =
+ GetLazyBinding(B, FR->getSuperRegion());
+
+ if (X.second)
+ return std::make_pair(X.first,
+ MRMgr.getFieldRegionWithSuper(FR, X.second));
+ }
+ // The NULL MemRegion indicates an non-existent lazy binding. A NULL Store is
+ // possible for a valid lazy binding.
+ return std::make_pair((Store) 0, (const MemRegion *) 0);
+}
+
+SVal RegionStoreManager::RetrieveElement(Store store,
+ const ElementRegion* R) {
+ // Check if the region has a binding.
+ RegionBindings B = GetRegionBindings(store);
+ if (Optional<SVal> V = getDirectBinding(B, R))
+ return *V;
+
+ const MemRegion* superR = R->getSuperRegion();
+
+ // Check if the region is an element region of a string literal.
+ if (const StringRegion *StrR=dyn_cast<StringRegion>(superR)) {
+ // FIXME: Handle loads from strings where the literal is treated as
+ // an integer, e.g., *((unsigned int*)"hello")
+ ASTContext &Ctx = getContext();
+ QualType T = Ctx.getAsArrayType(StrR->getValueType(Ctx))->getElementType();
+ if (T != Ctx.getCanonicalType(R->getElementType()))
+ return UnknownVal();
+
+ const StringLiteral *Str = StrR->getStringLiteral();
+ SVal Idx = R->getIndex();
+ if (nonloc::ConcreteInt *CI = dyn_cast<nonloc::ConcreteInt>(&Idx)) {
+ int64_t i = CI->getValue().getSExtValue();
+ int64_t byteLength = Str->getByteLength();
+ if (i > byteLength) {
+ // Buffer overflow checking in GRExprEngine should handle this case,
+ // but we shouldn't rely on it to not overflow here if that checking
+ // is disabled.
+ return UnknownVal();
+ }
+ char c = (i == byteLength) ? '\0' : Str->getStrData()[i];
+ return ValMgr.makeIntVal(c, T);
+ }
+ }
+
+ // Check if the immediate super region has a direct binding.
+ if (Optional<SVal> V = getDirectBinding(B, superR)) {
+ if (SymbolRef parentSym = V->getAsSymbol())
+ return ValMgr.getDerivedRegionValueSymbolVal(parentSym, R);
+
+ if (V->isUnknownOrUndef())
+ return *V;
+
+ // Handle LazyCompoundVals for the immediate super region. Other cases
+ // are handled in 'RetrieveFieldOrElementCommon'.
+ if (const nonloc::LazyCompoundVal *LCV =
+ dyn_cast<nonloc::LazyCompoundVal>(V)) {
+
+ R = MRMgr.getElementRegionWithSuper(R, LCV->getRegion());
+ return RetrieveElement(LCV->getStore(), R);
+ }
+
+ // Other cases: give up.
+ return UnknownVal();
+ }
+
+ return RetrieveFieldOrElementCommon(store, R, R->getElementType(), superR);
+}
+
+SVal RegionStoreManager::RetrieveField(Store store,
+ const FieldRegion* R) {
+
+ // Check if the region has a binding.
+ RegionBindings B = GetRegionBindings(store);
+ if (Optional<SVal> V = getDirectBinding(B, R))
+ return *V;
+
+ QualType Ty = R->getValueType(getContext());
+ return RetrieveFieldOrElementCommon(store, R, Ty, R->getSuperRegion());
+}
+
+SVal RegionStoreManager::RetrieveFieldOrElementCommon(Store store,
+ const TypedRegion *R,
+ QualType Ty,
+ const MemRegion *superR) {
+
+ // At this point we have already checked in either RetrieveElement or
+ // RetrieveField if 'R' has a direct binding.
+
+ RegionBindings B = GetRegionBindings(store);
+
+ while (superR) {
+ if (const Optional<SVal> &D = getDefaultBinding(B, superR)) {
+ if (SymbolRef parentSym = D->getAsSymbol())
+ return ValMgr.getDerivedRegionValueSymbolVal(parentSym, R);
+
+ if (D->isZeroConstant())
+ return ValMgr.makeZeroVal(Ty);
+
+ if (D->isUnknown())
+ return *D;
+
+ assert(0 && "Unknown default value");
+ }
+
+ // If our super region is a field or element itself, walk up the region
+ // hierarchy to see if there is a default value installed in an ancestor.
+ if (isa<FieldRegion>(superR) || isa<ElementRegion>(superR)) {
+ superR = cast<SubRegion>(superR)->getSuperRegion();
+ continue;
+ }
+
+ break;
+ }
+
+ // Lazy binding?
+ Store lazyBindingStore = NULL;
+ const MemRegion *lazyBindingRegion = NULL;
+ llvm::tie(lazyBindingStore, lazyBindingRegion) = GetLazyBinding(B, R);
+
+ if (lazyBindingRegion) {
+ if (const ElementRegion *ER = dyn_cast<ElementRegion>(lazyBindingRegion))
+ return RetrieveElement(lazyBindingStore, ER);
+ return RetrieveField(lazyBindingStore,
+ cast<FieldRegion>(lazyBindingRegion));
+ }
+
+ if (R->hasStackNonParametersStorage()) {
+ if (isa<ElementRegion>(R)) {
+ // Currently we don't reason specially about Clang-style vectors. Check
+ // if superR is a vector and if so return Unknown.
+ if (const TypedRegion *typedSuperR = dyn_cast<TypedRegion>(superR)) {
+ if (typedSuperR->getValueType(getContext())->isVectorType())
+ return UnknownVal();
+ }
+ }
+
+ return UndefinedVal();
+ }
+
+ // All other values are symbolic.
+ return ValMgr.getRegionValueSymbolVal(R, Ty);
+}
+
+SVal RegionStoreManager::RetrieveObjCIvar(Store store, const ObjCIvarRegion* R){
+
+ // Check if the region has a binding.
+ RegionBindings B = GetRegionBindings(store);
+
+ if (Optional<SVal> V = getDirectBinding(B, R))
+ return *V;
+
+ const MemRegion *superR = R->getSuperRegion();
+
+ // Check if the super region has a default binding.
+ if (Optional<SVal> V = getDefaultBinding(B, superR)) {
+ if (SymbolRef parentSym = V->getAsSymbol())
+ return ValMgr.getDerivedRegionValueSymbolVal(parentSym, R);
+
+ // Other cases: give up.
+ return UnknownVal();
+ }
+
+ return RetrieveLazySymbol(R);
+}
+
+SVal RegionStoreManager::RetrieveVar(Store store, const VarRegion *R) {
+
+ // Check if the region has a binding.
+ RegionBindings B = GetRegionBindings(store);
+
+ if (Optional<SVal> V = getDirectBinding(B, R))
+ return *V;
+
+ // Lazily derive a value for the VarRegion.
+ const VarDecl *VD = R->getDecl();
+ QualType T = VD->getType();
+ const MemSpaceRegion *MS = R->getMemorySpace();
+
+ if (isa<UnknownSpaceRegion>(MS) ||
+ isa<StackArgumentsSpaceRegion>(MS))
+ return ValMgr.getRegionValueSymbolVal(R, T);
+
+ if (isa<GlobalsSpaceRegion>(MS)) {
+ if (VD->isFileVarDecl())
+ return ValMgr.getRegionValueSymbolVal(R, T);
+
+ if (T->isIntegerType())
+ return ValMgr.makeIntVal(0, T);
+ if (T->isPointerType())
+ return ValMgr.makeNull();
+
+ return UnknownVal();
+ }
+
+ return UndefinedVal();
+}
+
+SVal RegionStoreManager::RetrieveLazySymbol(const TypedRegion *R) {
+
+ QualType valTy = R->getValueType(getContext());
+
+ // All other values are symbolic.
+ return ValMgr.getRegionValueSymbolVal(R, valTy);
+}
+
+SVal RegionStoreManager::RetrieveStruct(Store store, const TypedRegion* R) {
+ QualType T = R->getValueType(getContext());
+ assert(T->isStructureType());
+
+ const RecordType* RT = T->getAsStructureType();
+ RecordDecl* RD = RT->getDecl();
+ assert(RD->isDefinition());
+ (void)RD;
+#if USE_EXPLICIT_COMPOUND
+ llvm::ImmutableList<SVal> StructVal = getBasicVals().getEmptySValList();
+
+ // FIXME: We shouldn't use a std::vector. If RecordDecl doesn't have a
+ // reverse iterator, we should implement one.
+ std::vector<FieldDecl *> Fields(RD->field_begin(), RD->field_end());
+
+ for (std::vector<FieldDecl *>::reverse_iterator Field = Fields.rbegin(),
+ FieldEnd = Fields.rend();
+ Field != FieldEnd; ++Field) {
+ FieldRegion* FR = MRMgr.getFieldRegion(*Field, R);
+ QualType FTy = (*Field)->getType();
+ SVal FieldValue = Retrieve(store, loc::MemRegionVal(FR), FTy).getSVal();
+ StructVal = getBasicVals().consVals(FieldValue, StructVal);
+ }
+
+ return ValMgr.makeCompoundVal(T, StructVal);
+#else
+ return ValMgr.makeLazyCompoundVal(store, R);
+#endif
+}
+
+SVal RegionStoreManager::RetrieveArray(Store store, const TypedRegion * R) {
+#if USE_EXPLICIT_COMPOUND
+ QualType T = R->getValueType(getContext());
+ ConstantArrayType* CAT = cast<ConstantArrayType>(T.getTypePtr());
+
+ llvm::ImmutableList<SVal> ArrayVal = getBasicVals().getEmptySValList();
+ uint64_t size = CAT->getSize().getZExtValue();
+ for (uint64_t i = 0; i < size; ++i) {
+ SVal Idx = ValMgr.makeArrayIndex(i);
+ ElementRegion* ER = MRMgr.getElementRegion(CAT->getElementType(), Idx, R,
+ getContext());
+ QualType ETy = ER->getElementType();
+ SVal ElementVal = Retrieve(store, loc::MemRegionVal(ER), ETy).getSVal();
+ ArrayVal = getBasicVals().consVals(ElementVal, ArrayVal);
+ }
+
+ return ValMgr.makeCompoundVal(T, ArrayVal);
+#else
+ assert(isa<ConstantArrayType>(R->getValueType(getContext())));
+ return ValMgr.makeLazyCompoundVal(store, R);
+#endif
+}
+
+//===----------------------------------------------------------------------===//
+// Binding values to regions.
+//===----------------------------------------------------------------------===//
+
+Store RegionStoreManager::Remove(Store store, Loc L) {
+ if (isa<loc::MemRegionVal>(L))
+ if (const MemRegion* R = cast<loc::MemRegionVal>(L).getRegion())
+ return Remove(GetRegionBindings(store), R).getRoot();
+
+ return store;
+}
+
+Store RegionStoreManager::Bind(Store store, Loc L, SVal V) {
+ if (isa<loc::ConcreteInt>(L))
+ return store;
+
+ // If we get here, the location should be a region.
+ const MemRegion *R = cast<loc::MemRegionVal>(L).getRegion();
+
+ // Check if the region is a struct region.
+ if (const TypedRegion* TR = dyn_cast<TypedRegion>(R))
+ if (TR->getValueType(getContext())->isStructureType())
+ return BindStruct(store, TR, V);
+
+ // Special case: the current region represents a cast and it and the super
+ // region both have pointer types or intptr_t types. If so, perform the
+ // bind to the super region.
+ // This is needed to support OSAtomicCompareAndSwap and friends or other
+ // loads that treat integers as pointers and vis versa.
+ if (const ElementRegion *ER = dyn_cast<ElementRegion>(R)) {
+ if (ER->getIndex().isZeroConstant()) {
+ if (const TypedRegion *superR =
+ dyn_cast<TypedRegion>(ER->getSuperRegion())) {
+ ASTContext &Ctx = getContext();
+ QualType superTy = superR->getValueType(Ctx);
+ QualType erTy = ER->getValueType(Ctx);
+
+ if (IsAnyPointerOrIntptr(superTy, Ctx) &&
+ IsAnyPointerOrIntptr(erTy, Ctx)) {
+ V = ValMgr.getSValuator().EvalCast(V, superTy, erTy);
+ return Bind(store, loc::MemRegionVal(superR), V);
+ }
+ // For now, just invalidate the fields of the struct/union/class.
+ // FIXME: Precisely handle the fields of the record.
+ if (superTy->isRecordType())
+ return InvalidateRegion(store, superR, NULL, 0, NULL);
+ }
+ }
+ }
+ else if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R)) {
+ // Binding directly to a symbolic region should be treated as binding
+ // to element 0.
+ QualType T = SR->getSymbol()->getType(getContext());
+
+ // FIXME: Is this the right way to handle symbols that are references?
+ if (const PointerType *PT = T->getAs<PointerType>())
+ T = PT->getPointeeType();
+ else
+ T = T->getAs<ReferenceType>()->getPointeeType();
+
+ R = GetElementZeroRegion(SR, T);
+ }
+
+ // Perform the binding.
+ RegionBindings B = GetRegionBindings(store);
+ return Add(B, R, BindingKey::Direct, V).getRoot();
+}
+
+Store RegionStoreManager::BindDecl(Store store, const VarRegion *VR,
+ SVal InitVal) {
+
+ QualType T = VR->getDecl()->getType();
+
+ if (T->isArrayType())
+ return BindArray(store, VR, InitVal);
+ if (T->isStructureType())
+ return BindStruct(store, VR, InitVal);
+
+ return Bind(store, ValMgr.makeLoc(VR), InitVal);
+}
+
+// FIXME: this method should be merged into Bind().
+Store RegionStoreManager::BindCompoundLiteral(Store store,
+ const CompoundLiteralExpr *CL,
+ const LocationContext *LC,
+ SVal V) {
+ return Bind(store, loc::MemRegionVal(MRMgr.getCompoundLiteralRegion(CL, LC)),
+ V);
+}
+
+Store RegionStoreManager::setImplicitDefaultValue(Store store,
+ const MemRegion *R,
+ QualType T) {
+ RegionBindings B = GetRegionBindings(store);
+ SVal V;
+
+ if (Loc::IsLocType(T))
+ V = ValMgr.makeNull();
+ else if (T->isIntegerType())
+ V = ValMgr.makeZeroVal(T);
+ else if (T->isStructureType() || T->isArrayType()) {
+ // Set the default value to a zero constant when it is a structure
+ // or array. The type doesn't really matter.
+ V = ValMgr.makeZeroVal(ValMgr.getContext().IntTy);
+ }
+ else {
+ return store;
+ }
+
+ return Add(B, R, BindingKey::Default, V).getRoot();
+}
+
+Store RegionStoreManager::BindArray(Store store, const TypedRegion* R,
+ SVal Init) {
+
+ ASTContext &Ctx = getContext();
+ const ArrayType *AT =
+ cast<ArrayType>(Ctx.getCanonicalType(R->getValueType(Ctx)));
+ QualType ElementTy = AT->getElementType();
+ Optional<uint64_t> Size;
+
+ if (const ConstantArrayType* CAT = dyn_cast<ConstantArrayType>(AT))
+ Size = CAT->getSize().getZExtValue();
+
+ // Check if the init expr is a StringLiteral.
+ if (isa<loc::MemRegionVal>(Init)) {
+ const MemRegion* InitR = cast<loc::MemRegionVal>(Init).getRegion();
+ const StringLiteral* S = cast<StringRegion>(InitR)->getStringLiteral();
+ const char* str = S->getStrData();
+ unsigned len = S->getByteLength();
+ unsigned j = 0;
+
+ // Copy bytes from the string literal into the target array. Trailing bytes
+ // in the array that are not covered by the string literal are initialized
+ // to zero.
+
+ // We assume that string constants are bound to
+ // constant arrays.
+ uint64_t size = Size.getValue();
+
+ for (uint64_t i = 0; i < size; ++i, ++j) {
+ if (j >= len)
+ break;
+
+ SVal Idx = ValMgr.makeArrayIndex(i);
+ const ElementRegion* ER = MRMgr.getElementRegion(ElementTy, Idx, R,
+ getContext());
+
+ SVal V = ValMgr.makeIntVal(str[j], sizeof(char)*8, true);
+ store = Bind(store, loc::MemRegionVal(ER), V);
+ }
+
+ return store;
+ }
+
+ // Handle lazy compound values.
+ if (nonloc::LazyCompoundVal *LCV = dyn_cast<nonloc::LazyCompoundVal>(&Init))
+ return CopyLazyBindings(*LCV, store, R);
+
+ // Remaining case: explicit compound values.
+
+ if (Init.isUnknown())
+ return setImplicitDefaultValue(store, R, ElementTy);
+
+ nonloc::CompoundVal& CV = cast<nonloc::CompoundVal>(Init);
+ nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end();
+ uint64_t i = 0;
+
+ for (; Size.hasValue() ? i < Size.getValue() : true ; ++i, ++VI) {
+ // The init list might be shorter than the array length.
+ if (VI == VE)
+ break;
+
+ SVal Idx = ValMgr.makeArrayIndex(i);
+ const ElementRegion *ER = MRMgr.getElementRegion(ElementTy, Idx, R, getContext());
+
+ if (ElementTy->isStructureType())
+ store = BindStruct(store, ER, *VI);
+ else
+ store = Bind(store, ValMgr.makeLoc(ER), *VI);
+ }
+
+ // If the init list is shorter than the array length, set the
+ // array default value.
+ if (Size.hasValue() && i < Size.getValue())
+ store = setImplicitDefaultValue(store, R, ElementTy);
+
+ return store;
+}
+
+Store RegionStoreManager::BindStruct(Store store, const TypedRegion* R,
+ SVal V) {
+
+ if (!Features.supportsFields())
+ return store;
+
+ QualType T = R->getValueType(getContext());
+ assert(T->isStructureType());
+
+ const RecordType* RT = T->getAs<RecordType>();
+ RecordDecl* RD = RT->getDecl();
+
+ if (!RD->isDefinition())
+ return store;
+
+ // Handle lazy compound values.
+ if (const nonloc::LazyCompoundVal *LCV=dyn_cast<nonloc::LazyCompoundVal>(&V))
+ return CopyLazyBindings(*LCV, store, R);
+
+ // We may get non-CompoundVal accidentally due to imprecise cast logic.
+ // Ignore them and kill the field values.
+ if (V.isUnknown() || !isa<nonloc::CompoundVal>(V))
+ return KillStruct(store, R);
+
+ nonloc::CompoundVal& CV = cast<nonloc::CompoundVal>(V);
+ nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end();
+
+ RecordDecl::field_iterator FI, FE;
+
+ for (FI = RD->field_begin(), FE = RD->field_end(); FI != FE; ++FI, ++VI) {
+
+ if (VI == VE)
+ break;
+
+ QualType FTy = (*FI)->getType();
+ const FieldRegion* FR = MRMgr.getFieldRegion(*FI, R);
+
+ if (FTy->isArrayType())
+ store = BindArray(store, FR, *VI);
+ else if (FTy->isStructureType())
+ store = BindStruct(store, FR, *VI);
+ else
+ store = Bind(store, ValMgr.makeLoc(FR), *VI);
+ }
+
+ // There may be fewer values in the initialize list than the fields of struct.
+ if (FI != FE) {
+ RegionBindings B = GetRegionBindings(store);
+ B = Add(B, R, BindingKey::Default, ValMgr.makeIntVal(0, false));
+ store = B.getRoot();
+ }
+
+ return store;
+}
+
+Store RegionStoreManager::KillStruct(Store store, const TypedRegion* R) {
+ RegionBindings B = GetRegionBindings(store);
+ llvm::OwningPtr<RegionStoreSubRegionMap>
+ SubRegions(getRegionStoreSubRegionMap(store));
+ RemoveSubRegionBindings(B, R, *SubRegions);
+
+ // Set the default value of the struct region to "unknown".
+ return Add(B, R, BindingKey::Default, UnknownVal()).getRoot();
+}
+
+Store RegionStoreManager::CopyLazyBindings(nonloc::LazyCompoundVal V,
+ Store store, const TypedRegion *R) {
+
+ // Nuke the old bindings stemming from R.
+ RegionBindings B = GetRegionBindings(store);
+
+ llvm::OwningPtr<RegionStoreSubRegionMap>
+ SubRegions(getRegionStoreSubRegionMap(store));
+
+ // B and DVM are updated after the call to RemoveSubRegionBindings.
+ RemoveSubRegionBindings(B, R, *SubRegions.get());
+
+ // Now copy the bindings. This amounts to just binding 'V' to 'R'. This
+ // results in a zero-copy algorithm.
+ return Add(B, R, BindingKey::Direct, V).getRoot();
+}
+
+//===----------------------------------------------------------------------===//
+// "Raw" retrievals and bindings.
+//===----------------------------------------------------------------------===//
+
+BindingKey BindingKey::Make(const MemRegion *R, Kind k) {
+ if (const ElementRegion *ER = dyn_cast<ElementRegion>(R)) {
+ const RegionRawOffset &O = ER->getAsRawOffset();
+
+ if (O.getRegion())
+ return BindingKey(O.getRegion(), O.getByteOffset(), k);
+
+ // FIXME: There are some ElementRegions for which we cannot compute
+ // raw offsets yet, including regions with symbolic offsets.
+ }
+
+ return BindingKey(R, 0, k);
+}
+
+RegionBindings RegionStoreManager::Add(RegionBindings B, BindingKey K, SVal V) {
+ return RBFactory.Add(B, K, V);
+}
+
+RegionBindings RegionStoreManager::Add(RegionBindings B, const MemRegion *R,
+ BindingKey::Kind k, SVal V) {
+ return Add(B, BindingKey::Make(R, k), V);
+}
+
+const SVal *RegionStoreManager::Lookup(RegionBindings B, BindingKey K) {
+ return B.lookup(K);
+}
+
+const SVal *RegionStoreManager::Lookup(RegionBindings B,
+ const MemRegion *R,
+ BindingKey::Kind k) {
+ return Lookup(B, BindingKey::Make(R, k));
+}
+
+RegionBindings RegionStoreManager::Remove(RegionBindings B, BindingKey K) {
+ return RBFactory.Remove(B, K);
+}
+
+RegionBindings RegionStoreManager::Remove(RegionBindings B, const MemRegion *R,
+ BindingKey::Kind k){
+ return Remove(B, BindingKey::Make(R, k));
+}
+
+Store RegionStoreManager::Remove(Store store, BindingKey K) {
+ RegionBindings B = GetRegionBindings(store);
+ return Remove(B, K).getRoot();
+}
+
+//===----------------------------------------------------------------------===//
+// State pruning.
+//===----------------------------------------------------------------------===//
+
+Store RegionStoreManager::RemoveDeadBindings(Store store, Stmt* Loc,
+ SymbolReaper& SymReaper,
+ llvm::SmallVectorImpl<const MemRegion*>& RegionRoots)
+{
+ typedef std::pair<Store, const MemRegion *> RBDNode;
+
+ RegionBindings B = GetRegionBindings(store);
+
+ // The backmap from regions to subregions.
+ llvm::OwningPtr<RegionStoreSubRegionMap>
+ SubRegions(getRegionStoreSubRegionMap(store));
+
+ // Do a pass over the regions in the store. For VarRegions we check if
+ // the variable is still live and if so add it to the list of live roots.
+ // For other regions we populate our region backmap.
+ llvm::SmallVector<const MemRegion*, 10> IntermediateRoots;
+
+ // Scan the direct bindings for "intermediate" roots.
+ for (RegionBindings::iterator I = B.begin(), E = B.end(); I != E; ++I) {
+ const MemRegion *R = I.getKey().getRegion();
+ IntermediateRoots.push_back(R);
+ }
+
+ // Process the "intermediate" roots to find if they are referenced by
+ // real roots.
+ llvm::SmallVector<RBDNode, 10> WorkList;
+ llvm::SmallVector<RBDNode, 10> Postponed;
+
+ llvm::DenseSet<const MemRegion*> IntermediateVisited;
+
+ while (!IntermediateRoots.empty()) {
+ const MemRegion* R = IntermediateRoots.back();
+ IntermediateRoots.pop_back();
+
+ if (IntermediateVisited.count(R))
+ continue;
+ IntermediateVisited.insert(R);
+
+ if (const VarRegion* VR = dyn_cast<VarRegion>(R)) {
+ if (SymReaper.isLive(Loc, VR))
+ WorkList.push_back(std::make_pair(store, VR));
+ continue;
+ }
+
+ if (const SymbolicRegion* SR = dyn_cast<SymbolicRegion>(R)) {
+ llvm::SmallVectorImpl<RBDNode> &Q =
+ SymReaper.isLive(SR->getSymbol()) ? WorkList : Postponed;
+
+ Q.push_back(std::make_pair(store, SR));
+
+ continue;
+ }
+
+ // Add the super region for R to the worklist if it is a subregion.
+ if (const SubRegion* superR =
+ dyn_cast<SubRegion>(cast<SubRegion>(R)->getSuperRegion()))
+ IntermediateRoots.push_back(superR);
+ }
+
+ // Enqueue the RegionRoots onto WorkList.
+ for (llvm::SmallVectorImpl<const MemRegion*>::iterator I=RegionRoots.begin(),
+ E=RegionRoots.end(); I!=E; ++I) {
+ WorkList.push_back(std::make_pair(store, *I));
+ }
+ RegionRoots.clear();
+
+ llvm::DenseSet<RBDNode> Visited;
+
+tryAgain:
+ while (!WorkList.empty()) {
+ RBDNode N = WorkList.back();
+ WorkList.pop_back();
+
+ // Have we visited this node before?
+ if (Visited.count(N))
+ continue;
+ Visited.insert(N);
+
+ const MemRegion *R = N.second;
+ Store store_N = N.first;
+
+ // Enqueue subregions.
+ RegionStoreSubRegionMap *M;
+
+ if (store == store_N)
+ M = SubRegions.get();
+ else {
+ RegionStoreSubRegionMap *& SM = SC[store_N];
+ if (!SM)
+ SM = getRegionStoreSubRegionMap(store_N);
+ M = SM;
+ }
+
+ if (const RegionStoreSubRegionMap::Set *S = M->getSubRegions(R))
+ for (RegionStoreSubRegionMap::Set::iterator I = S->begin(), E = S->end();
+ I != E; ++I)
+ WorkList.push_back(std::make_pair(store_N, *I));
+
+ // Enqueue the super region.
+ if (const SubRegion *SR = dyn_cast<SubRegion>(R)) {
+ const MemRegion *superR = SR->getSuperRegion();
+ if (!isa<MemSpaceRegion>(superR)) {
+ // If 'R' is a field or an element, we want to keep the bindings
+ // for the other fields and elements around. The reason is that
+ // pointer arithmetic can get us to the other fields or elements.
+ assert(isa<FieldRegion>(R) || isa<ElementRegion>(R)
+ || isa<ObjCIvarRegion>(R));
+ WorkList.push_back(std::make_pair(store_N, superR));
+ }
+ }
+
+ // Mark the symbol for any live SymbolicRegion as "live". This means we
+ // should continue to track that symbol.
+ if (const SymbolicRegion *SymR = dyn_cast<SymbolicRegion>(R))
+ SymReaper.markLive(SymR->getSymbol());
+
+ // For BlockDataRegions, enqueue the VarRegions for variables marked
+ // with __block (passed-by-reference).
+ // via BlockDeclRefExprs.
+ if (const BlockDataRegion *BD = dyn_cast<BlockDataRegion>(R)) {
+ for (BlockDataRegion::referenced_vars_iterator
+ RI = BD->referenced_vars_begin(), RE = BD->referenced_vars_end();
+ RI != RE; ++RI) {
+ if ((*RI)->getDecl()->getAttr<BlocksAttr>())
+ WorkList.push_back(std::make_pair(store_N, *RI));
+ }
+ // No possible data bindings on a BlockDataRegion. Continue to the
+ // next region in the worklist.
+ continue;
+ }
+
+ RegionBindings B_N = GetRegionBindings(store_N);
+
+ // Get the data binding for R (if any).
+ Optional<SVal> V = getBinding(B_N, R);
+
+ if (V) {
+ // Check for lazy bindings.
+ if (const nonloc::LazyCompoundVal *LCV =
+ dyn_cast<nonloc::LazyCompoundVal>(V.getPointer())) {
+
+ const LazyCompoundValData *D = LCV->getCVData();
+ WorkList.push_back(std::make_pair(D->getStore(), D->getRegion()));
+ }
+ else {
+ // Update the set of live symbols.
+ for (SVal::symbol_iterator SI=V->symbol_begin(), SE=V->symbol_end();
+ SI!=SE;++SI)
+ SymReaper.markLive(*SI);
+
+ // If V is a region, then add it to the worklist.
+ if (const MemRegion *RX = V->getAsRegion())
+ WorkList.push_back(std::make_pair(store_N, RX));
+ }
+ }
+ }
+
+ // See if any postponed SymbolicRegions are actually live now, after
+ // having done a scan.
+ for (llvm::SmallVectorImpl<RBDNode>::iterator I = Postponed.begin(),
+ E = Postponed.end() ; I != E ; ++I) {
+ if (const SymbolicRegion *SR = cast_or_null<SymbolicRegion>(I->second)) {
+ if (SymReaper.isLive(SR->getSymbol())) {
+ WorkList.push_back(*I);
+ I->second = NULL;
+ }
+ }
+ }
+
+ if (!WorkList.empty())
+ goto tryAgain;
+
+ // We have now scanned the store, marking reachable regions and symbols
+ // as live. We now remove all the regions that are dead from the store
+ // as well as update DSymbols with the set symbols that are now dead.
+ Store new_store = store;
+ for (RegionBindings::iterator I = B.begin(), E = B.end(); I != E; ++I) {
+ const MemRegion* R = I.getKey().getRegion();
+ // If this region live? Is so, none of its symbols are dead.
+ if (Visited.count(std::make_pair(store, R)))
+ continue;
+
+ // Remove this dead region from the store.
+ new_store = Remove(new_store, I.getKey());
+
+ // Mark all non-live symbols that this region references as dead.
+ if (const SymbolicRegion* SymR = dyn_cast<SymbolicRegion>(R))
+ SymReaper.maybeDead(SymR->getSymbol());
+
+ SVal X = I.getData();
+ SVal::symbol_iterator SI = X.symbol_begin(), SE = X.symbol_end();
+ for (; SI != SE; ++SI)
+ SymReaper.maybeDead(*SI);
+ }
+
+ return new_store;
+}
+
+GRState const *RegionStoreManager::EnterStackFrame(GRState const *state,
+ StackFrameContext const *frame) {
+ FunctionDecl const *FD = cast<FunctionDecl>(frame->getDecl());
+ CallExpr const *CE = cast<CallExpr>(frame->getCallSite());
+
+ FunctionDecl::param_const_iterator PI = FD->param_begin();
+
+ CallExpr::const_arg_iterator AI = CE->arg_begin(), AE = CE->arg_end();
+
+ // Copy the arg expression value to the arg variables.
+ Store store = state->getStore();
+ for (; AI != AE; ++AI, ++PI) {
+ SVal ArgVal = state->getSVal(*AI);
+ store = Bind(store, ValMgr.makeLoc(MRMgr.getVarRegion(*PI, frame)), ArgVal);
+ }
+
+ return state->makeWithStore(store);
+}
+
+//===----------------------------------------------------------------------===//
+// Utility methods.
+//===----------------------------------------------------------------------===//
+
+void RegionStoreManager::print(Store store, llvm::raw_ostream& OS,
+ const char* nl, const char *sep) {
+ RegionBindings B = GetRegionBindings(store);
+ OS << "Store (direct and default bindings):" << nl;
+
+ for (RegionBindings::iterator I = B.begin(), E = B.end(); I != E; ++I)
+ OS << ' ' << I.getKey() << " : " << I.getData() << nl;
+}
OpenPOWER on IntegriCloud