diff options
Diffstat (limited to 'lib/Checker/RangeConstraintManager.cpp')
-rw-r--r-- | lib/Checker/RangeConstraintManager.cpp | 301 |
1 files changed, 191 insertions, 110 deletions
diff --git a/lib/Checker/RangeConstraintManager.cpp b/lib/Checker/RangeConstraintManager.cpp index c904c33..2a35d32 100644 --- a/lib/Checker/RangeConstraintManager.cpp +++ b/lib/Checker/RangeConstraintManager.cpp @@ -105,97 +105,69 @@ public: return ranges.isSingleton() ? ranges.begin()->getConcreteValue() : 0; } - /// AddEQ - Create a new RangeSet with the additional constraint that the - /// value be equal to V. - RangeSet AddEQ(BasicValueFactory &BV, Factory &F, const llvm::APSInt &V) { - // Search for a range that includes 'V'. If so, return a new RangeSet - // representing { [V, V] }. - for (PrimRangeSet::iterator i = begin(), e = end(); i!=e; ++i) - if (i->Includes(V)) - return RangeSet(F, V, V); - - return RangeSet(F); - } - - /// AddNE - Create a new RangeSet with the additional constraint that the - /// value be not be equal to V. - RangeSet AddNE(BasicValueFactory &BV, Factory &F, const llvm::APSInt &V) { - PrimRangeSet newRanges = ranges; - - // FIXME: We can perhaps enhance ImmutableSet to do this search for us - // in log(N) time using the sorted property of the internal AVL tree. - for (iterator i = begin(), e = end(); i != e; ++i) { - if (i->Includes(V)) { - // Remove the old range. - newRanges = F.Remove(newRanges, *i); - // Split the old range into possibly one or two ranges. - if (V != i->From()) - newRanges = F.Add(newRanges, Range(i->From(), BV.Sub1(V))); - if (V != i->To()) - newRanges = F.Add(newRanges, Range(BV.Add1(V), i->To())); - // All of the ranges are non-overlapping, so we can stop. +private: + void IntersectInRange(BasicValueFactory &BV, Factory &F, + const llvm::APSInt &Lower, + const llvm::APSInt &Upper, + PrimRangeSet &newRanges, + PrimRangeSet::iterator &i, + PrimRangeSet::iterator &e) const { + // There are six cases for each range R in the set: + // 1. R is entirely before the intersection range. + // 2. R is entirely after the intersection range. + // 3. R contains the entire intersection range. + // 4. R starts before the intersection range and ends in the middle. + // 5. R starts in the middle of the intersection range and ends after it. + // 6. R is entirely contained in the intersection range. + // These correspond to each of the conditions below. + for (/* i = begin(), e = end() */; i != e; ++i) { + if (i->To() < Lower) { + continue; + } + if (i->From() > Upper) { break; } - } - - return newRanges; - } - - /// AddNE - Create a new RangeSet with the additional constraint that the - /// value be less than V. - RangeSet AddLT(BasicValueFactory &BV, Factory &F, const llvm::APSInt &V) { - PrimRangeSet newRanges = F.GetEmptySet(); - - for (iterator i = begin(), e = end() ; i != e ; ++i) { - if (i->Includes(V) && i->From() < V) - newRanges = F.Add(newRanges, Range(i->From(), BV.Sub1(V))); - else if (i->To() < V) - newRanges = F.Add(newRanges, *i); - } - - return newRanges; - } - - RangeSet AddLE(BasicValueFactory &BV, Factory &F, const llvm::APSInt &V) { - PrimRangeSet newRanges = F.GetEmptySet(); - for (iterator i = begin(), e = end(); i != e; ++i) { - // Strictly we should test for includes *V + 1, but no harm is - // done by this formulation - if (i->Includes(V)) - newRanges = F.Add(newRanges, Range(i->From(), V)); - else if (i->To() <= V) - newRanges = F.Add(newRanges, *i); - } - - return newRanges; - } - - RangeSet AddGT(BasicValueFactory &BV, Factory &F, const llvm::APSInt &V) { - PrimRangeSet newRanges = F.GetEmptySet(); - - for (PrimRangeSet::iterator i = begin(), e = end(); i != e; ++i) { - if (i->Includes(V) && i->To() > V) - newRanges = F.Add(newRanges, Range(BV.Add1(V), i->To())); - else if (i->From() > V) - newRanges = F.Add(newRanges, *i); + if (i->Includes(Lower)) { + if (i->Includes(Upper)) { + newRanges = F.Add(newRanges, Range(BV.getValue(Lower), + BV.getValue(Upper))); + break; + } else + newRanges = F.Add(newRanges, Range(BV.getValue(Lower), i->To())); + } else { + if (i->Includes(Upper)) { + newRanges = F.Add(newRanges, Range(i->From(), BV.getValue(Upper))); + break; + } else + newRanges = F.Add(newRanges, *i); + } } - - return newRanges; } - RangeSet AddGE(BasicValueFactory &BV, Factory &F, const llvm::APSInt &V) { +public: + // Returns a set containing the values in the receiving set, intersected with + // the closed range [Lower, Upper]. Unlike the Range type, this range uses + // modular arithmetic, corresponding to the common treatment of C integer + // overflow. Thus, if the Lower bound is greater than the Upper bound, the + // range is taken to wrap around. This is equivalent to taking the + // intersection with the two ranges [Min, Upper] and [Lower, Max], + // or, alternatively, /removing/ all integers between Upper and Lower. + RangeSet Intersect(BasicValueFactory &BV, Factory &F, + const llvm::APSInt &Lower, + const llvm::APSInt &Upper) const { PrimRangeSet newRanges = F.GetEmptySet(); - for (PrimRangeSet::iterator i = begin(), e = end(); i != e; ++i) { - // Strictly we should test for includes *V - 1, but no harm is - // done by this formulation - if (i->Includes(V)) - newRanges = F.Add(newRanges, Range(V, i->To())); - else if (i->From() >= V) - newRanges = F.Add(newRanges, *i); + PrimRangeSet::iterator i = begin(), e = end(); + if (Lower <= Upper) + IntersectInRange(BV, F, Lower, Upper, newRanges, i, e); + else { + // The order of the next two statements is important! + // IntersectInRange() does not reset the iteration state for i and e. + // Therefore, the lower range most be handled first. + IntersectInRange(BV, F, BV.getMinValue(Upper), Upper, newRanges, i, e); + IntersectInRange(BV, F, Lower, BV.getMaxValue(Lower), newRanges, i, e); } - return newRanges; } @@ -237,23 +209,29 @@ public: RangeConstraintManager(GRSubEngine &subengine) : SimpleConstraintManager(subengine) {} - const GRState* AssumeSymNE(const GRState* St, SymbolRef sym, - const llvm::APSInt& V); + const GRState* AssumeSymNE(const GRState* state, SymbolRef sym, + const llvm::APSInt& Int, + const llvm::APSInt& Adjustment); - const GRState* AssumeSymEQ(const GRState* St, SymbolRef sym, - const llvm::APSInt& V); + const GRState* AssumeSymEQ(const GRState* state, SymbolRef sym, + const llvm::APSInt& Int, + const llvm::APSInt& Adjustment); - const GRState* AssumeSymLT(const GRState* St, SymbolRef sym, - const llvm::APSInt& V); + const GRState* AssumeSymLT(const GRState* state, SymbolRef sym, + const llvm::APSInt& Int, + const llvm::APSInt& Adjustment); - const GRState* AssumeSymGT(const GRState* St, SymbolRef sym, - const llvm::APSInt& V); + const GRState* AssumeSymGT(const GRState* state, SymbolRef sym, + const llvm::APSInt& Int, + const llvm::APSInt& Adjustment); - const GRState* AssumeSymGE(const GRState* St, SymbolRef sym, - const llvm::APSInt& V); + const GRState* AssumeSymGE(const GRState* state, SymbolRef sym, + const llvm::APSInt& Int, + const llvm::APSInt& Adjustment); - const GRState* AssumeSymLE(const GRState* St, SymbolRef sym, - const llvm::APSInt& V); + const GRState* AssumeSymLE(const GRState* state, SymbolRef sym, + const llvm::APSInt& Int, + const llvm::APSInt& Adjustment); const llvm::APSInt* getSymVal(const GRState* St, SymbolRef sym) const; @@ -303,10 +281,6 @@ RangeConstraintManager::RemoveDeadBindings(const GRState* state, return state->set<ConstraintRange>(CR); } -//===------------------------------------------------------------------------=== -// AssumeSymX methods: public interface for RangeConstraintManager. -//===------------------------------------------------------------------------===/ - RangeSet RangeConstraintManager::GetRange(const GRState *state, SymbolRef sym) { if (ConstraintRangeTy::data_type* V = state->get<ConstraintRange>(sym)) @@ -323,20 +297,127 @@ RangeConstraintManager::GetRange(const GRState *state, SymbolRef sym) { // AssumeSymX methods: public interface for RangeConstraintManager. //===------------------------------------------------------------------------===/ -#define AssumeX(OP)\ -const GRState*\ -RangeConstraintManager::AssumeSym ## OP(const GRState* state, SymbolRef sym,\ - const llvm::APSInt& V){\ - const RangeSet& R = GetRange(state, sym).Add##OP(state->getBasicVals(), F, V);\ - return !R.isEmpty() ? state->set<ConstraintRange>(sym, R) : NULL;\ +// The syntax for ranges below is mathematical, using [x, y] for closed ranges +// and (x, y) for open ranges. These ranges are modular, corresponding with +// a common treatment of C integer overflow. This means that these methods +// do not have to worry about overflow; RangeSet::Intersect can handle such a +// "wraparound" range. +// As an example, the range [UINT_MAX-1, 3) contains five values: UINT_MAX-1, +// UINT_MAX, 0, 1, and 2. + +const GRState* +RangeConstraintManager::AssumeSymNE(const GRState* state, SymbolRef sym, + const llvm::APSInt& Int, + const llvm::APSInt& Adjustment) { + BasicValueFactory &BV = state->getBasicVals(); + + llvm::APSInt Lower = Int-Adjustment; + llvm::APSInt Upper = Lower; + --Lower; + ++Upper; + + // [Int-Adjustment+1, Int-Adjustment-1] + // Notice that the lower bound is greater than the upper bound. + RangeSet New = GetRange(state, sym).Intersect(BV, F, Upper, Lower); + return New.isEmpty() ? NULL : state->set<ConstraintRange>(sym, New); } -AssumeX(EQ) -AssumeX(NE) -AssumeX(LT) -AssumeX(GT) -AssumeX(LE) -AssumeX(GE) +const GRState* +RangeConstraintManager::AssumeSymEQ(const GRState* state, SymbolRef sym, + const llvm::APSInt& Int, + const llvm::APSInt& Adjustment) { + // [Int-Adjustment, Int-Adjustment] + BasicValueFactory &BV = state->getBasicVals(); + llvm::APSInt AdjInt = Int-Adjustment; + RangeSet New = GetRange(state, sym).Intersect(BV, F, AdjInt, AdjInt); + return New.isEmpty() ? NULL : state->set<ConstraintRange>(sym, New); +} + +const GRState* +RangeConstraintManager::AssumeSymLT(const GRState* state, SymbolRef sym, + const llvm::APSInt& Int, + const llvm::APSInt& Adjustment) { + BasicValueFactory &BV = state->getBasicVals(); + + QualType T = state->getSymbolManager().getType(sym); + const llvm::APSInt &Min = BV.getMinValue(T); + + // Special case for Int == Min. This is always false. + if (Int == Min) + return NULL; + + llvm::APSInt Lower = Min-Adjustment; + llvm::APSInt Upper = Int-Adjustment; + --Upper; + + RangeSet New = GetRange(state, sym).Intersect(BV, F, Lower, Upper); + return New.isEmpty() ? NULL : state->set<ConstraintRange>(sym, New); +} + +const GRState* +RangeConstraintManager::AssumeSymGT(const GRState* state, SymbolRef sym, + const llvm::APSInt& Int, + const llvm::APSInt& Adjustment) { + BasicValueFactory &BV = state->getBasicVals(); + + QualType T = state->getSymbolManager().getType(sym); + const llvm::APSInt &Max = BV.getMaxValue(T); + + // Special case for Int == Max. This is always false. + if (Int == Max) + return NULL; + + llvm::APSInt Lower = Int-Adjustment; + llvm::APSInt Upper = Max-Adjustment; + ++Lower; + + RangeSet New = GetRange(state, sym).Intersect(BV, F, Lower, Upper); + return New.isEmpty() ? NULL : state->set<ConstraintRange>(sym, New); +} + +const GRState* +RangeConstraintManager::AssumeSymGE(const GRState* state, SymbolRef sym, + const llvm::APSInt& Int, + const llvm::APSInt& Adjustment) { + BasicValueFactory &BV = state->getBasicVals(); + + QualType T = state->getSymbolManager().getType(sym); + const llvm::APSInt &Min = BV.getMinValue(T); + + // Special case for Int == Min. This is always feasible. + if (Int == Min) + return state; + + const llvm::APSInt &Max = BV.getMaxValue(T); + + llvm::APSInt Lower = Int-Adjustment; + llvm::APSInt Upper = Max-Adjustment; + + RangeSet New = GetRange(state, sym).Intersect(BV, F, Lower, Upper); + return New.isEmpty() ? NULL : state->set<ConstraintRange>(sym, New); +} + +const GRState* +RangeConstraintManager::AssumeSymLE(const GRState* state, SymbolRef sym, + const llvm::APSInt& Int, + const llvm::APSInt& Adjustment) { + BasicValueFactory &BV = state->getBasicVals(); + + QualType T = state->getSymbolManager().getType(sym); + const llvm::APSInt &Max = BV.getMaxValue(T); + + // Special case for Int == Max. This is always feasible. + if (Int == Max) + return state; + + const llvm::APSInt &Min = BV.getMinValue(T); + + llvm::APSInt Lower = Min-Adjustment; + llvm::APSInt Upper = Int-Adjustment; + + RangeSet New = GetRange(state, sym).Intersect(BV, F, Lower, Upper); + return New.isEmpty() ? NULL : state->set<ConstraintRange>(sym, New); +} //===------------------------------------------------------------------------=== // Pretty-printing. |