summaryrefslogtreecommitdiffstats
path: root/lib/Bitcode/Writer/BitcodeWriter.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'lib/Bitcode/Writer/BitcodeWriter.cpp')
-rw-r--r--lib/Bitcode/Writer/BitcodeWriter.cpp1449
1 files changed, 1449 insertions, 0 deletions
diff --git a/lib/Bitcode/Writer/BitcodeWriter.cpp b/lib/Bitcode/Writer/BitcodeWriter.cpp
new file mode 100644
index 0000000..bfc029c
--- /dev/null
+++ b/lib/Bitcode/Writer/BitcodeWriter.cpp
@@ -0,0 +1,1449 @@
+//===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// Bitcode writer implementation.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Bitcode/ReaderWriter.h"
+#include "llvm/Bitcode/BitstreamWriter.h"
+#include "llvm/Bitcode/LLVMBitCodes.h"
+#include "ValueEnumerator.h"
+#include "llvm/Constants.h"
+#include "llvm/DerivedTypes.h"
+#include "llvm/InlineAsm.h"
+#include "llvm/Instructions.h"
+#include "llvm/MDNode.h"
+#include "llvm/Module.h"
+#include "llvm/TypeSymbolTable.h"
+#include "llvm/ValueSymbolTable.h"
+#include "llvm/Support/MathExtras.h"
+#include "llvm/Support/Streams.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/System/Program.h"
+using namespace llvm;
+
+/// These are manifest constants used by the bitcode writer. They do not need to
+/// be kept in sync with the reader, but need to be consistent within this file.
+enum {
+ CurVersion = 0,
+
+ // VALUE_SYMTAB_BLOCK abbrev id's.
+ VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
+ VST_ENTRY_7_ABBREV,
+ VST_ENTRY_6_ABBREV,
+ VST_BBENTRY_6_ABBREV,
+
+ // CONSTANTS_BLOCK abbrev id's.
+ CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
+ CONSTANTS_INTEGER_ABBREV,
+ CONSTANTS_CE_CAST_Abbrev,
+ CONSTANTS_NULL_Abbrev,
+
+ // FUNCTION_BLOCK abbrev id's.
+ FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
+ FUNCTION_INST_BINOP_ABBREV,
+ FUNCTION_INST_CAST_ABBREV,
+ FUNCTION_INST_RET_VOID_ABBREV,
+ FUNCTION_INST_RET_VAL_ABBREV,
+ FUNCTION_INST_UNREACHABLE_ABBREV
+};
+
+
+static unsigned GetEncodedCastOpcode(unsigned Opcode) {
+ switch (Opcode) {
+ default: assert(0 && "Unknown cast instruction!");
+ case Instruction::Trunc : return bitc::CAST_TRUNC;
+ case Instruction::ZExt : return bitc::CAST_ZEXT;
+ case Instruction::SExt : return bitc::CAST_SEXT;
+ case Instruction::FPToUI : return bitc::CAST_FPTOUI;
+ case Instruction::FPToSI : return bitc::CAST_FPTOSI;
+ case Instruction::UIToFP : return bitc::CAST_UITOFP;
+ case Instruction::SIToFP : return bitc::CAST_SITOFP;
+ case Instruction::FPTrunc : return bitc::CAST_FPTRUNC;
+ case Instruction::FPExt : return bitc::CAST_FPEXT;
+ case Instruction::PtrToInt: return bitc::CAST_PTRTOINT;
+ case Instruction::IntToPtr: return bitc::CAST_INTTOPTR;
+ case Instruction::BitCast : return bitc::CAST_BITCAST;
+ }
+}
+
+static unsigned GetEncodedBinaryOpcode(unsigned Opcode) {
+ switch (Opcode) {
+ default: assert(0 && "Unknown binary instruction!");
+ case Instruction::Add: return bitc::BINOP_ADD;
+ case Instruction::Sub: return bitc::BINOP_SUB;
+ case Instruction::Mul: return bitc::BINOP_MUL;
+ case Instruction::UDiv: return bitc::BINOP_UDIV;
+ case Instruction::FDiv:
+ case Instruction::SDiv: return bitc::BINOP_SDIV;
+ case Instruction::URem: return bitc::BINOP_UREM;
+ case Instruction::FRem:
+ case Instruction::SRem: return bitc::BINOP_SREM;
+ case Instruction::Shl: return bitc::BINOP_SHL;
+ case Instruction::LShr: return bitc::BINOP_LSHR;
+ case Instruction::AShr: return bitc::BINOP_ASHR;
+ case Instruction::And: return bitc::BINOP_AND;
+ case Instruction::Or: return bitc::BINOP_OR;
+ case Instruction::Xor: return bitc::BINOP_XOR;
+ }
+}
+
+
+
+static void WriteStringRecord(unsigned Code, const std::string &Str,
+ unsigned AbbrevToUse, BitstreamWriter &Stream) {
+ SmallVector<unsigned, 64> Vals;
+
+ // Code: [strchar x N]
+ for (unsigned i = 0, e = Str.size(); i != e; ++i)
+ Vals.push_back(Str[i]);
+
+ // Emit the finished record.
+ Stream.EmitRecord(Code, Vals, AbbrevToUse);
+}
+
+// Emit information about parameter attributes.
+static void WriteAttributeTable(const ValueEnumerator &VE,
+ BitstreamWriter &Stream) {
+ const std::vector<AttrListPtr> &Attrs = VE.getAttributes();
+ if (Attrs.empty()) return;
+
+ Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3);
+
+ SmallVector<uint64_t, 64> Record;
+ for (unsigned i = 0, e = Attrs.size(); i != e; ++i) {
+ const AttrListPtr &A = Attrs[i];
+ for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i) {
+ const AttributeWithIndex &PAWI = A.getSlot(i);
+ Record.push_back(PAWI.Index);
+
+ // FIXME: remove in LLVM 3.0
+ // Store the alignment in the bitcode as a 16-bit raw value instead of a
+ // 5-bit log2 encoded value. Shift the bits above the alignment up by
+ // 11 bits.
+ uint64_t FauxAttr = PAWI.Attrs & 0xffff;
+ if (PAWI.Attrs & Attribute::Alignment)
+ FauxAttr |= (1ull<<16)<<(((PAWI.Attrs & Attribute::Alignment)-1) >> 16);
+ FauxAttr |= (PAWI.Attrs & (0x3FFull << 21)) << 11;
+
+ Record.push_back(FauxAttr);
+ }
+
+ Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record);
+ Record.clear();
+ }
+
+ Stream.ExitBlock();
+}
+
+/// WriteTypeTable - Write out the type table for a module.
+static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) {
+ const ValueEnumerator::TypeList &TypeList = VE.getTypes();
+
+ Stream.EnterSubblock(bitc::TYPE_BLOCK_ID, 4 /*count from # abbrevs */);
+ SmallVector<uint64_t, 64> TypeVals;
+
+ // Abbrev for TYPE_CODE_POINTER.
+ BitCodeAbbrev *Abbv = new BitCodeAbbrev();
+ Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
+ Log2_32_Ceil(VE.getTypes().size()+1)));
+ Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0
+ unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv);
+
+ // Abbrev for TYPE_CODE_FUNCTION.
+ Abbv = new BitCodeAbbrev();
+ Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg
+ Abbv->Add(BitCodeAbbrevOp(0)); // FIXME: DEAD value, remove in LLVM 3.0
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
+ Log2_32_Ceil(VE.getTypes().size()+1)));
+ unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv);
+
+ // Abbrev for TYPE_CODE_STRUCT.
+ Abbv = new BitCodeAbbrev();
+ Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
+ Log2_32_Ceil(VE.getTypes().size()+1)));
+ unsigned StructAbbrev = Stream.EmitAbbrev(Abbv);
+
+ // Abbrev for TYPE_CODE_ARRAY.
+ Abbv = new BitCodeAbbrev();
+ Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
+ Log2_32_Ceil(VE.getTypes().size()+1)));
+ unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv);
+
+ // Emit an entry count so the reader can reserve space.
+ TypeVals.push_back(TypeList.size());
+ Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals);
+ TypeVals.clear();
+
+ // Loop over all of the types, emitting each in turn.
+ for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
+ const Type *T = TypeList[i].first;
+ int AbbrevToUse = 0;
+ unsigned Code = 0;
+
+ switch (T->getTypeID()) {
+ default: assert(0 && "Unknown type!");
+ case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break;
+ case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break;
+ case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break;
+ case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break;
+ case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break;
+ case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break;
+ case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break;
+ case Type::OpaqueTyID: Code = bitc::TYPE_CODE_OPAQUE; break;
+ case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break;
+ case Type::IntegerTyID:
+ // INTEGER: [width]
+ Code = bitc::TYPE_CODE_INTEGER;
+ TypeVals.push_back(cast<IntegerType>(T)->getBitWidth());
+ break;
+ case Type::PointerTyID: {
+ const PointerType *PTy = cast<PointerType>(T);
+ // POINTER: [pointee type, address space]
+ Code = bitc::TYPE_CODE_POINTER;
+ TypeVals.push_back(VE.getTypeID(PTy->getElementType()));
+ unsigned AddressSpace = PTy->getAddressSpace();
+ TypeVals.push_back(AddressSpace);
+ if (AddressSpace == 0) AbbrevToUse = PtrAbbrev;
+ break;
+ }
+ case Type::FunctionTyID: {
+ const FunctionType *FT = cast<FunctionType>(T);
+ // FUNCTION: [isvararg, attrid, retty, paramty x N]
+ Code = bitc::TYPE_CODE_FUNCTION;
+ TypeVals.push_back(FT->isVarArg());
+ TypeVals.push_back(0); // FIXME: DEAD: remove in llvm 3.0
+ TypeVals.push_back(VE.getTypeID(FT->getReturnType()));
+ for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i)
+ TypeVals.push_back(VE.getTypeID(FT->getParamType(i)));
+ AbbrevToUse = FunctionAbbrev;
+ break;
+ }
+ case Type::StructTyID: {
+ const StructType *ST = cast<StructType>(T);
+ // STRUCT: [ispacked, eltty x N]
+ Code = bitc::TYPE_CODE_STRUCT;
+ TypeVals.push_back(ST->isPacked());
+ // Output all of the element types.
+ for (StructType::element_iterator I = ST->element_begin(),
+ E = ST->element_end(); I != E; ++I)
+ TypeVals.push_back(VE.getTypeID(*I));
+ AbbrevToUse = StructAbbrev;
+ break;
+ }
+ case Type::ArrayTyID: {
+ const ArrayType *AT = cast<ArrayType>(T);
+ // ARRAY: [numelts, eltty]
+ Code = bitc::TYPE_CODE_ARRAY;
+ TypeVals.push_back(AT->getNumElements());
+ TypeVals.push_back(VE.getTypeID(AT->getElementType()));
+ AbbrevToUse = ArrayAbbrev;
+ break;
+ }
+ case Type::VectorTyID: {
+ const VectorType *VT = cast<VectorType>(T);
+ // VECTOR [numelts, eltty]
+ Code = bitc::TYPE_CODE_VECTOR;
+ TypeVals.push_back(VT->getNumElements());
+ TypeVals.push_back(VE.getTypeID(VT->getElementType()));
+ break;
+ }
+ }
+
+ // Emit the finished record.
+ Stream.EmitRecord(Code, TypeVals, AbbrevToUse);
+ TypeVals.clear();
+ }
+
+ Stream.ExitBlock();
+}
+
+static unsigned getEncodedLinkage(const GlobalValue *GV) {
+ switch (GV->getLinkage()) {
+ default: assert(0 && "Invalid linkage!");
+ case GlobalValue::GhostLinkage: // Map ghost linkage onto external.
+ case GlobalValue::ExternalLinkage: return 0;
+ case GlobalValue::WeakAnyLinkage: return 1;
+ case GlobalValue::AppendingLinkage: return 2;
+ case GlobalValue::InternalLinkage: return 3;
+ case GlobalValue::LinkOnceAnyLinkage: return 4;
+ case GlobalValue::DLLImportLinkage: return 5;
+ case GlobalValue::DLLExportLinkage: return 6;
+ case GlobalValue::ExternalWeakLinkage: return 7;
+ case GlobalValue::CommonLinkage: return 8;
+ case GlobalValue::PrivateLinkage: return 9;
+ case GlobalValue::WeakODRLinkage: return 10;
+ case GlobalValue::LinkOnceODRLinkage: return 11;
+ case GlobalValue::AvailableExternallyLinkage: return 12;
+ }
+}
+
+static unsigned getEncodedVisibility(const GlobalValue *GV) {
+ switch (GV->getVisibility()) {
+ default: assert(0 && "Invalid visibility!");
+ case GlobalValue::DefaultVisibility: return 0;
+ case GlobalValue::HiddenVisibility: return 1;
+ case GlobalValue::ProtectedVisibility: return 2;
+ }
+}
+
+// Emit top-level description of module, including target triple, inline asm,
+// descriptors for global variables, and function prototype info.
+static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE,
+ BitstreamWriter &Stream) {
+ // Emit the list of dependent libraries for the Module.
+ for (Module::lib_iterator I = M->lib_begin(), E = M->lib_end(); I != E; ++I)
+ WriteStringRecord(bitc::MODULE_CODE_DEPLIB, *I, 0/*TODO*/, Stream);
+
+ // Emit various pieces of data attached to a module.
+ if (!M->getTargetTriple().empty())
+ WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(),
+ 0/*TODO*/, Stream);
+ if (!M->getDataLayout().empty())
+ WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, M->getDataLayout(),
+ 0/*TODO*/, Stream);
+ if (!M->getModuleInlineAsm().empty())
+ WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(),
+ 0/*TODO*/, Stream);
+
+ // Emit information about sections and GC, computing how many there are. Also
+ // compute the maximum alignment value.
+ std::map<std::string, unsigned> SectionMap;
+ std::map<std::string, unsigned> GCMap;
+ unsigned MaxAlignment = 0;
+ unsigned MaxGlobalType = 0;
+ for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end();
+ GV != E; ++GV) {
+ MaxAlignment = std::max(MaxAlignment, GV->getAlignment());
+ MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV->getType()));
+
+ if (!GV->hasSection()) continue;
+ // Give section names unique ID's.
+ unsigned &Entry = SectionMap[GV->getSection()];
+ if (Entry != 0) continue;
+ WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV->getSection(),
+ 0/*TODO*/, Stream);
+ Entry = SectionMap.size();
+ }
+ for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) {
+ MaxAlignment = std::max(MaxAlignment, F->getAlignment());
+ if (F->hasSection()) {
+ // Give section names unique ID's.
+ unsigned &Entry = SectionMap[F->getSection()];
+ if (!Entry) {
+ WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F->getSection(),
+ 0/*TODO*/, Stream);
+ Entry = SectionMap.size();
+ }
+ }
+ if (F->hasGC()) {
+ // Same for GC names.
+ unsigned &Entry = GCMap[F->getGC()];
+ if (!Entry) {
+ WriteStringRecord(bitc::MODULE_CODE_GCNAME, F->getGC(),
+ 0/*TODO*/, Stream);
+ Entry = GCMap.size();
+ }
+ }
+ }
+
+ // Emit abbrev for globals, now that we know # sections and max alignment.
+ unsigned SimpleGVarAbbrev = 0;
+ if (!M->global_empty()) {
+ // Add an abbrev for common globals with no visibility or thread localness.
+ BitCodeAbbrev *Abbv = new BitCodeAbbrev();
+ Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
+ Log2_32_Ceil(MaxGlobalType+1)));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // Constant.
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer.
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // Linkage.
+ if (MaxAlignment == 0) // Alignment.
+ Abbv->Add(BitCodeAbbrevOp(0));
+ else {
+ unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1;
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
+ Log2_32_Ceil(MaxEncAlignment+1)));
+ }
+ if (SectionMap.empty()) // Section.
+ Abbv->Add(BitCodeAbbrevOp(0));
+ else
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
+ Log2_32_Ceil(SectionMap.size()+1)));
+ // Don't bother emitting vis + thread local.
+ SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv);
+ }
+
+ // Emit the global variable information.
+ SmallVector<unsigned, 64> Vals;
+ for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end();
+ GV != E; ++GV) {
+ unsigned AbbrevToUse = 0;
+
+ // GLOBALVAR: [type, isconst, initid,
+ // linkage, alignment, section, visibility, threadlocal]
+ Vals.push_back(VE.getTypeID(GV->getType()));
+ Vals.push_back(GV->isConstant());
+ Vals.push_back(GV->isDeclaration() ? 0 :
+ (VE.getValueID(GV->getInitializer()) + 1));
+ Vals.push_back(getEncodedLinkage(GV));
+ Vals.push_back(Log2_32(GV->getAlignment())+1);
+ Vals.push_back(GV->hasSection() ? SectionMap[GV->getSection()] : 0);
+ if (GV->isThreadLocal() ||
+ GV->getVisibility() != GlobalValue::DefaultVisibility) {
+ Vals.push_back(getEncodedVisibility(GV));
+ Vals.push_back(GV->isThreadLocal());
+ } else {
+ AbbrevToUse = SimpleGVarAbbrev;
+ }
+
+ Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse);
+ Vals.clear();
+ }
+
+ // Emit the function proto information.
+ for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) {
+ // FUNCTION: [type, callingconv, isproto, paramattr,
+ // linkage, alignment, section, visibility, gc]
+ Vals.push_back(VE.getTypeID(F->getType()));
+ Vals.push_back(F->getCallingConv());
+ Vals.push_back(F->isDeclaration());
+ Vals.push_back(getEncodedLinkage(F));
+ Vals.push_back(VE.getAttributeID(F->getAttributes()));
+ Vals.push_back(Log2_32(F->getAlignment())+1);
+ Vals.push_back(F->hasSection() ? SectionMap[F->getSection()] : 0);
+ Vals.push_back(getEncodedVisibility(F));
+ Vals.push_back(F->hasGC() ? GCMap[F->getGC()] : 0);
+
+ unsigned AbbrevToUse = 0;
+ Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse);
+ Vals.clear();
+ }
+
+
+ // Emit the alias information.
+ for (Module::const_alias_iterator AI = M->alias_begin(), E = M->alias_end();
+ AI != E; ++AI) {
+ Vals.push_back(VE.getTypeID(AI->getType()));
+ Vals.push_back(VE.getValueID(AI->getAliasee()));
+ Vals.push_back(getEncodedLinkage(AI));
+ Vals.push_back(getEncodedVisibility(AI));
+ unsigned AbbrevToUse = 0;
+ Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse);
+ Vals.clear();
+ }
+}
+
+
+static void WriteConstants(unsigned FirstVal, unsigned LastVal,
+ const ValueEnumerator &VE,
+ BitstreamWriter &Stream, bool isGlobal) {
+ if (FirstVal == LastVal) return;
+
+ Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4);
+
+ unsigned AggregateAbbrev = 0;
+ unsigned String8Abbrev = 0;
+ unsigned CString7Abbrev = 0;
+ unsigned CString6Abbrev = 0;
+ unsigned MDString8Abbrev = 0;
+ unsigned MDString6Abbrev = 0;
+ // If this is a constant pool for the module, emit module-specific abbrevs.
+ if (isGlobal) {
+ // Abbrev for CST_CODE_AGGREGATE.
+ BitCodeAbbrev *Abbv = new BitCodeAbbrev();
+ Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1)));
+ AggregateAbbrev = Stream.EmitAbbrev(Abbv);
+
+ // Abbrev for CST_CODE_STRING.
+ Abbv = new BitCodeAbbrev();
+ Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
+ String8Abbrev = Stream.EmitAbbrev(Abbv);
+ // Abbrev for CST_CODE_CSTRING.
+ Abbv = new BitCodeAbbrev();
+ Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
+ CString7Abbrev = Stream.EmitAbbrev(Abbv);
+ // Abbrev for CST_CODE_CSTRING.
+ Abbv = new BitCodeAbbrev();
+ Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
+ CString6Abbrev = Stream.EmitAbbrev(Abbv);
+
+ // Abbrev for CST_CODE_MDSTRING.
+ Abbv = new BitCodeAbbrev();
+ Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_MDSTRING));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
+ MDString8Abbrev = Stream.EmitAbbrev(Abbv);
+ // Abbrev for CST_CODE_MDSTRING.
+ Abbv = new BitCodeAbbrev();
+ Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_MDSTRING));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
+ MDString6Abbrev = Stream.EmitAbbrev(Abbv);
+ }
+
+ SmallVector<uint64_t, 64> Record;
+
+ const ValueEnumerator::ValueList &Vals = VE.getValues();
+ const Type *LastTy = 0;
+ for (unsigned i = FirstVal; i != LastVal; ++i) {
+ const Value *V = Vals[i].first;
+ // If we need to switch types, do so now.
+ if (V->getType() != LastTy) {
+ LastTy = V->getType();
+ Record.push_back(VE.getTypeID(LastTy));
+ Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record,
+ CONSTANTS_SETTYPE_ABBREV);
+ Record.clear();
+ }
+
+ if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
+ Record.push_back(unsigned(IA->hasSideEffects()));
+
+ // Add the asm string.
+ const std::string &AsmStr = IA->getAsmString();
+ Record.push_back(AsmStr.size());
+ for (unsigned i = 0, e = AsmStr.size(); i != e; ++i)
+ Record.push_back(AsmStr[i]);
+
+ // Add the constraint string.
+ const std::string &ConstraintStr = IA->getConstraintString();
+ Record.push_back(ConstraintStr.size());
+ for (unsigned i = 0, e = ConstraintStr.size(); i != e; ++i)
+ Record.push_back(ConstraintStr[i]);
+ Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record);
+ Record.clear();
+ continue;
+ }
+ const Constant *C = cast<Constant>(V);
+ unsigned Code = -1U;
+ unsigned AbbrevToUse = 0;
+ if (C->isNullValue()) {
+ Code = bitc::CST_CODE_NULL;
+ } else if (isa<UndefValue>(C)) {
+ Code = bitc::CST_CODE_UNDEF;
+ } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) {
+ if (IV->getBitWidth() <= 64) {
+ int64_t V = IV->getSExtValue();
+ if (V >= 0)
+ Record.push_back(V << 1);
+ else
+ Record.push_back((-V << 1) | 1);
+ Code = bitc::CST_CODE_INTEGER;
+ AbbrevToUse = CONSTANTS_INTEGER_ABBREV;
+ } else { // Wide integers, > 64 bits in size.
+ // We have an arbitrary precision integer value to write whose
+ // bit width is > 64. However, in canonical unsigned integer
+ // format it is likely that the high bits are going to be zero.
+ // So, we only write the number of active words.
+ unsigned NWords = IV->getValue().getActiveWords();
+ const uint64_t *RawWords = IV->getValue().getRawData();
+ for (unsigned i = 0; i != NWords; ++i) {
+ int64_t V = RawWords[i];
+ if (V >= 0)
+ Record.push_back(V << 1);
+ else
+ Record.push_back((-V << 1) | 1);
+ }
+ Code = bitc::CST_CODE_WIDE_INTEGER;
+ }
+ } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
+ Code = bitc::CST_CODE_FLOAT;
+ const Type *Ty = CFP->getType();
+ if (Ty == Type::FloatTy || Ty == Type::DoubleTy) {
+ Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
+ } else if (Ty == Type::X86_FP80Ty) {
+ // api needed to prevent premature destruction
+ // bits are not in the same order as a normal i80 APInt, compensate.
+ APInt api = CFP->getValueAPF().bitcastToAPInt();
+ const uint64_t *p = api.getRawData();
+ Record.push_back((p[1] << 48) | (p[0] >> 16));
+ Record.push_back(p[0] & 0xffffLL);
+ } else if (Ty == Type::FP128Ty || Ty == Type::PPC_FP128Ty) {
+ APInt api = CFP->getValueAPF().bitcastToAPInt();
+ const uint64_t *p = api.getRawData();
+ Record.push_back(p[0]);
+ Record.push_back(p[1]);
+ } else {
+ assert (0 && "Unknown FP type!");
+ }
+ } else if (isa<ConstantArray>(C) && cast<ConstantArray>(C)->isString()) {
+ // Emit constant strings specially.
+ unsigned NumOps = C->getNumOperands();
+ // If this is a null-terminated string, use the denser CSTRING encoding.
+ if (C->getOperand(NumOps-1)->isNullValue()) {
+ Code = bitc::CST_CODE_CSTRING;
+ --NumOps; // Don't encode the null, which isn't allowed by char6.
+ } else {
+ Code = bitc::CST_CODE_STRING;
+ AbbrevToUse = String8Abbrev;
+ }
+ bool isCStr7 = Code == bitc::CST_CODE_CSTRING;
+ bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING;
+ for (unsigned i = 0; i != NumOps; ++i) {
+ unsigned char V = cast<ConstantInt>(C->getOperand(i))->getZExtValue();
+ Record.push_back(V);
+ isCStr7 &= (V & 128) == 0;
+ if (isCStrChar6)
+ isCStrChar6 = BitCodeAbbrevOp::isChar6(V);
+ }
+
+ if (isCStrChar6)
+ AbbrevToUse = CString6Abbrev;
+ else if (isCStr7)
+ AbbrevToUse = CString7Abbrev;
+ } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(V) ||
+ isa<ConstantVector>(V)) {
+ Code = bitc::CST_CODE_AGGREGATE;
+ for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i)
+ Record.push_back(VE.getValueID(C->getOperand(i)));
+ AbbrevToUse = AggregateAbbrev;
+ } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
+ switch (CE->getOpcode()) {
+ default:
+ if (Instruction::isCast(CE->getOpcode())) {
+ Code = bitc::CST_CODE_CE_CAST;
+ Record.push_back(GetEncodedCastOpcode(CE->getOpcode()));
+ Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
+ Record.push_back(VE.getValueID(C->getOperand(0)));
+ AbbrevToUse = CONSTANTS_CE_CAST_Abbrev;
+ } else {
+ assert(CE->getNumOperands() == 2 && "Unknown constant expr!");
+ Code = bitc::CST_CODE_CE_BINOP;
+ Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode()));
+ Record.push_back(VE.getValueID(C->getOperand(0)));
+ Record.push_back(VE.getValueID(C->getOperand(1)));
+ }
+ break;
+ case Instruction::GetElementPtr:
+ Code = bitc::CST_CODE_CE_GEP;
+ for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) {
+ Record.push_back(VE.getTypeID(C->getOperand(i)->getType()));
+ Record.push_back(VE.getValueID(C->getOperand(i)));
+ }
+ break;
+ case Instruction::Select:
+ Code = bitc::CST_CODE_CE_SELECT;
+ Record.push_back(VE.getValueID(C->getOperand(0)));
+ Record.push_back(VE.getValueID(C->getOperand(1)));
+ Record.push_back(VE.getValueID(C->getOperand(2)));
+ break;
+ case Instruction::ExtractElement:
+ Code = bitc::CST_CODE_CE_EXTRACTELT;
+ Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
+ Record.push_back(VE.getValueID(C->getOperand(0)));
+ Record.push_back(VE.getValueID(C->getOperand(1)));
+ break;
+ case Instruction::InsertElement:
+ Code = bitc::CST_CODE_CE_INSERTELT;
+ Record.push_back(VE.getValueID(C->getOperand(0)));
+ Record.push_back(VE.getValueID(C->getOperand(1)));
+ Record.push_back(VE.getValueID(C->getOperand(2)));
+ break;
+ case Instruction::ShuffleVector:
+ // If the return type and argument types are the same, this is a
+ // standard shufflevector instruction. If the types are different,
+ // then the shuffle is widening or truncating the input vectors, and
+ // the argument type must also be encoded.
+ if (C->getType() == C->getOperand(0)->getType()) {
+ Code = bitc::CST_CODE_CE_SHUFFLEVEC;
+ } else {
+ Code = bitc::CST_CODE_CE_SHUFVEC_EX;
+ Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
+ }
+ Record.push_back(VE.getValueID(C->getOperand(0)));
+ Record.push_back(VE.getValueID(C->getOperand(1)));
+ Record.push_back(VE.getValueID(C->getOperand(2)));
+ break;
+ case Instruction::ICmp:
+ case Instruction::FCmp:
+ case Instruction::VICmp:
+ case Instruction::VFCmp:
+ if (isa<VectorType>(C->getOperand(0)->getType())
+ && (CE->getOpcode() == Instruction::ICmp
+ || CE->getOpcode() == Instruction::FCmp)) {
+ // compare returning vector of Int1Ty
+ assert(0 && "Unsupported constant!");
+ } else {
+ Code = bitc::CST_CODE_CE_CMP;
+ }
+ Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
+ Record.push_back(VE.getValueID(C->getOperand(0)));
+ Record.push_back(VE.getValueID(C->getOperand(1)));
+ Record.push_back(CE->getPredicate());
+ break;
+ }
+ } else if (const MDString *S = dyn_cast<MDString>(C)) {
+ Code = bitc::CST_CODE_MDSTRING;
+ AbbrevToUse = MDString6Abbrev;
+ for (unsigned i = 0, e = S->size(); i != e; ++i) {
+ char V = S->begin()[i];
+ Record.push_back(V);
+
+ if (!BitCodeAbbrevOp::isChar6(V))
+ AbbrevToUse = MDString8Abbrev;
+ }
+ } else if (const MDNode *N = dyn_cast<MDNode>(C)) {
+ Code = bitc::CST_CODE_MDNODE;
+ for (unsigned i = 0, e = N->getNumElements(); i != e; ++i) {
+ if (N->getElement(i)) {
+ Record.push_back(VE.getTypeID(N->getElement(i)->getType()));
+ Record.push_back(VE.getValueID(N->getElement(i)));
+ } else {
+ Record.push_back(VE.getTypeID(Type::VoidTy));
+ Record.push_back(0);
+ }
+ }
+ } else {
+ assert(0 && "Unknown constant!");
+ }
+ Stream.EmitRecord(Code, Record, AbbrevToUse);
+ Record.clear();
+ }
+
+ Stream.ExitBlock();
+}
+
+static void WriteModuleConstants(const ValueEnumerator &VE,
+ BitstreamWriter &Stream) {
+ const ValueEnumerator::ValueList &Vals = VE.getValues();
+
+ // Find the first constant to emit, which is the first non-globalvalue value.
+ // We know globalvalues have been emitted by WriteModuleInfo.
+ for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
+ if (!isa<GlobalValue>(Vals[i].first)) {
+ WriteConstants(i, Vals.size(), VE, Stream, true);
+ return;
+ }
+ }
+}
+
+/// PushValueAndType - The file has to encode both the value and type id for
+/// many values, because we need to know what type to create for forward
+/// references. However, most operands are not forward references, so this type
+/// field is not needed.
+///
+/// This function adds V's value ID to Vals. If the value ID is higher than the
+/// instruction ID, then it is a forward reference, and it also includes the
+/// type ID.
+static bool PushValueAndType(const Value *V, unsigned InstID,
+ SmallVector<unsigned, 64> &Vals,
+ ValueEnumerator &VE) {
+ unsigned ValID = VE.getValueID(V);
+ Vals.push_back(ValID);
+ if (ValID >= InstID) {
+ Vals.push_back(VE.getTypeID(V->getType()));
+ return true;
+ }
+ return false;
+}
+
+/// WriteInstruction - Emit an instruction to the specified stream.
+static void WriteInstruction(const Instruction &I, unsigned InstID,
+ ValueEnumerator &VE, BitstreamWriter &Stream,
+ SmallVector<unsigned, 64> &Vals) {
+ unsigned Code = 0;
+ unsigned AbbrevToUse = 0;
+ switch (I.getOpcode()) {
+ default:
+ if (Instruction::isCast(I.getOpcode())) {
+ Code = bitc::FUNC_CODE_INST_CAST;
+ if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
+ AbbrevToUse = FUNCTION_INST_CAST_ABBREV;
+ Vals.push_back(VE.getTypeID(I.getType()));
+ Vals.push_back(GetEncodedCastOpcode(I.getOpcode()));
+ } else {
+ assert(isa<BinaryOperator>(I) && "Unknown instruction!");
+ Code = bitc::FUNC_CODE_INST_BINOP;
+ if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
+ AbbrevToUse = FUNCTION_INST_BINOP_ABBREV;
+ Vals.push_back(VE.getValueID(I.getOperand(1)));
+ Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode()));
+ }
+ break;
+
+ case Instruction::GetElementPtr:
+ Code = bitc::FUNC_CODE_INST_GEP;
+ for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
+ PushValueAndType(I.getOperand(i), InstID, Vals, VE);
+ break;
+ case Instruction::ExtractValue: {
+ Code = bitc::FUNC_CODE_INST_EXTRACTVAL;
+ PushValueAndType(I.getOperand(0), InstID, Vals, VE);
+ const ExtractValueInst *EVI = cast<ExtractValueInst>(&I);
+ for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i)
+ Vals.push_back(*i);
+ break;
+ }
+ case Instruction::InsertValue: {
+ Code = bitc::FUNC_CODE_INST_INSERTVAL;
+ PushValueAndType(I.getOperand(0), InstID, Vals, VE);
+ PushValueAndType(I.getOperand(1), InstID, Vals, VE);
+ const InsertValueInst *IVI = cast<InsertValueInst>(&I);
+ for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i)
+ Vals.push_back(*i);
+ break;
+ }
+ case Instruction::Select:
+ Code = bitc::FUNC_CODE_INST_VSELECT;
+ PushValueAndType(I.getOperand(1), InstID, Vals, VE);
+ Vals.push_back(VE.getValueID(I.getOperand(2)));
+ PushValueAndType(I.getOperand(0), InstID, Vals, VE);
+ break;
+ case Instruction::ExtractElement:
+ Code = bitc::FUNC_CODE_INST_EXTRACTELT;
+ PushValueAndType(I.getOperand(0), InstID, Vals, VE);
+ Vals.push_back(VE.getValueID(I.getOperand(1)));
+ break;
+ case Instruction::InsertElement:
+ Code = bitc::FUNC_CODE_INST_INSERTELT;
+ PushValueAndType(I.getOperand(0), InstID, Vals, VE);
+ Vals.push_back(VE.getValueID(I.getOperand(1)));
+ Vals.push_back(VE.getValueID(I.getOperand(2)));
+ break;
+ case Instruction::ShuffleVector:
+ Code = bitc::FUNC_CODE_INST_SHUFFLEVEC;
+ PushValueAndType(I.getOperand(0), InstID, Vals, VE);
+ Vals.push_back(VE.getValueID(I.getOperand(1)));
+ Vals.push_back(VE.getValueID(I.getOperand(2)));
+ break;
+ case Instruction::ICmp:
+ case Instruction::FCmp:
+ case Instruction::VICmp:
+ case Instruction::VFCmp:
+ if (I.getOpcode() == Instruction::ICmp
+ || I.getOpcode() == Instruction::FCmp) {
+ // compare returning Int1Ty or vector of Int1Ty
+ Code = bitc::FUNC_CODE_INST_CMP2;
+ } else {
+ Code = bitc::FUNC_CODE_INST_CMP;
+ }
+ PushValueAndType(I.getOperand(0), InstID, Vals, VE);
+ Vals.push_back(VE.getValueID(I.getOperand(1)));
+ Vals.push_back(cast<CmpInst>(I).getPredicate());
+ break;
+
+ case Instruction::Ret:
+ {
+ Code = bitc::FUNC_CODE_INST_RET;
+ unsigned NumOperands = I.getNumOperands();
+ if (NumOperands == 0)
+ AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV;
+ else if (NumOperands == 1) {
+ if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
+ AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV;
+ } else {
+ for (unsigned i = 0, e = NumOperands; i != e; ++i)
+ PushValueAndType(I.getOperand(i), InstID, Vals, VE);
+ }
+ }
+ break;
+ case Instruction::Br:
+ {
+ Code = bitc::FUNC_CODE_INST_BR;
+ BranchInst &II(cast<BranchInst>(I));
+ Vals.push_back(VE.getValueID(II.getSuccessor(0)));
+ if (II.isConditional()) {
+ Vals.push_back(VE.getValueID(II.getSuccessor(1)));
+ Vals.push_back(VE.getValueID(II.getCondition()));
+ }
+ }
+ break;
+ case Instruction::Switch:
+ Code = bitc::FUNC_CODE_INST_SWITCH;
+ Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
+ for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
+ Vals.push_back(VE.getValueID(I.getOperand(i)));
+ break;
+ case Instruction::Invoke: {
+ const InvokeInst *II = cast<InvokeInst>(&I);
+ const Value *Callee(II->getCalledValue());
+ const PointerType *PTy = cast<PointerType>(Callee->getType());
+ const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
+ Code = bitc::FUNC_CODE_INST_INVOKE;
+
+ Vals.push_back(VE.getAttributeID(II->getAttributes()));
+ Vals.push_back(II->getCallingConv());
+ Vals.push_back(VE.getValueID(II->getNormalDest()));
+ Vals.push_back(VE.getValueID(II->getUnwindDest()));
+ PushValueAndType(Callee, InstID, Vals, VE);
+
+ // Emit value #'s for the fixed parameters.
+ for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
+ Vals.push_back(VE.getValueID(I.getOperand(i+3))); // fixed param.
+
+ // Emit type/value pairs for varargs params.
+ if (FTy->isVarArg()) {
+ for (unsigned i = 3+FTy->getNumParams(), e = I.getNumOperands();
+ i != e; ++i)
+ PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg
+ }
+ break;
+ }
+ case Instruction::Unwind:
+ Code = bitc::FUNC_CODE_INST_UNWIND;
+ break;
+ case Instruction::Unreachable:
+ Code = bitc::FUNC_CODE_INST_UNREACHABLE;
+ AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV;
+ break;
+
+ case Instruction::PHI:
+ Code = bitc::FUNC_CODE_INST_PHI;
+ Vals.push_back(VE.getTypeID(I.getType()));
+ for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
+ Vals.push_back(VE.getValueID(I.getOperand(i)));
+ break;
+
+ case Instruction::Malloc:
+ Code = bitc::FUNC_CODE_INST_MALLOC;
+ Vals.push_back(VE.getTypeID(I.getType()));
+ Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
+ Vals.push_back(Log2_32(cast<MallocInst>(I).getAlignment())+1);
+ break;
+
+ case Instruction::Free:
+ Code = bitc::FUNC_CODE_INST_FREE;
+ PushValueAndType(I.getOperand(0), InstID, Vals, VE);
+ break;
+
+ case Instruction::Alloca:
+ Code = bitc::FUNC_CODE_INST_ALLOCA;
+ Vals.push_back(VE.getTypeID(I.getType()));
+ Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
+ Vals.push_back(Log2_32(cast<AllocaInst>(I).getAlignment())+1);
+ break;
+
+ case Instruction::Load:
+ Code = bitc::FUNC_CODE_INST_LOAD;
+ if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) // ptr
+ AbbrevToUse = FUNCTION_INST_LOAD_ABBREV;
+
+ Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1);
+ Vals.push_back(cast<LoadInst>(I).isVolatile());
+ break;
+ case Instruction::Store:
+ Code = bitc::FUNC_CODE_INST_STORE2;
+ PushValueAndType(I.getOperand(1), InstID, Vals, VE); // ptrty + ptr
+ Vals.push_back(VE.getValueID(I.getOperand(0))); // val.
+ Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1);
+ Vals.push_back(cast<StoreInst>(I).isVolatile());
+ break;
+ case Instruction::Call: {
+ const PointerType *PTy = cast<PointerType>(I.getOperand(0)->getType());
+ const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
+
+ Code = bitc::FUNC_CODE_INST_CALL;
+
+ const CallInst *CI = cast<CallInst>(&I);
+ Vals.push_back(VE.getAttributeID(CI->getAttributes()));
+ Vals.push_back((CI->getCallingConv() << 1) | unsigned(CI->isTailCall()));
+ PushValueAndType(CI->getOperand(0), InstID, Vals, VE); // Callee
+
+ // Emit value #'s for the fixed parameters.
+ for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
+ Vals.push_back(VE.getValueID(I.getOperand(i+1))); // fixed param.
+
+ // Emit type/value pairs for varargs params.
+ if (FTy->isVarArg()) {
+ unsigned NumVarargs = I.getNumOperands()-1-FTy->getNumParams();
+ for (unsigned i = I.getNumOperands()-NumVarargs, e = I.getNumOperands();
+ i != e; ++i)
+ PushValueAndType(I.getOperand(i), InstID, Vals, VE); // varargs
+ }
+ break;
+ }
+ case Instruction::VAArg:
+ Code = bitc::FUNC_CODE_INST_VAARG;
+ Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty
+ Vals.push_back(VE.getValueID(I.getOperand(0))); // valist.
+ Vals.push_back(VE.getTypeID(I.getType())); // restype.
+ break;
+ }
+
+ Stream.EmitRecord(Code, Vals, AbbrevToUse);
+ Vals.clear();
+}
+
+// Emit names for globals/functions etc.
+static void WriteValueSymbolTable(const ValueSymbolTable &VST,
+ const ValueEnumerator &VE,
+ BitstreamWriter &Stream) {
+ if (VST.empty()) return;
+ Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
+
+ // FIXME: Set up the abbrev, we know how many values there are!
+ // FIXME: We know if the type names can use 7-bit ascii.
+ SmallVector<unsigned, 64> NameVals;
+
+ for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end();
+ SI != SE; ++SI) {
+
+ const ValueName &Name = *SI;
+
+ // Figure out the encoding to use for the name.
+ bool is7Bit = true;
+ bool isChar6 = true;
+ for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength();
+ C != E; ++C) {
+ if (isChar6)
+ isChar6 = BitCodeAbbrevOp::isChar6(*C);
+ if ((unsigned char)*C & 128) {
+ is7Bit = false;
+ break; // don't bother scanning the rest.
+ }
+ }
+
+ unsigned AbbrevToUse = VST_ENTRY_8_ABBREV;
+
+ // VST_ENTRY: [valueid, namechar x N]
+ // VST_BBENTRY: [bbid, namechar x N]
+ unsigned Code;
+ if (isa<BasicBlock>(SI->getValue())) {
+ Code = bitc::VST_CODE_BBENTRY;
+ if (isChar6)
+ AbbrevToUse = VST_BBENTRY_6_ABBREV;
+ } else {
+ Code = bitc::VST_CODE_ENTRY;
+ if (isChar6)
+ AbbrevToUse = VST_ENTRY_6_ABBREV;
+ else if (is7Bit)
+ AbbrevToUse = VST_ENTRY_7_ABBREV;
+ }
+
+ NameVals.push_back(VE.getValueID(SI->getValue()));
+ for (const char *P = Name.getKeyData(),
+ *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P)
+ NameVals.push_back((unsigned char)*P);
+
+ // Emit the finished record.
+ Stream.EmitRecord(Code, NameVals, AbbrevToUse);
+ NameVals.clear();
+ }
+ Stream.ExitBlock();
+}
+
+/// WriteFunction - Emit a function body to the module stream.
+static void WriteFunction(const Function &F, ValueEnumerator &VE,
+ BitstreamWriter &Stream) {
+ Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4);
+ VE.incorporateFunction(F);
+
+ SmallVector<unsigned, 64> Vals;
+
+ // Emit the number of basic blocks, so the reader can create them ahead of
+ // time.
+ Vals.push_back(VE.getBasicBlocks().size());
+ Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals);
+ Vals.clear();
+
+ // If there are function-local constants, emit them now.
+ unsigned CstStart, CstEnd;
+ VE.getFunctionConstantRange(CstStart, CstEnd);
+ WriteConstants(CstStart, CstEnd, VE, Stream, false);
+
+ // Keep a running idea of what the instruction ID is.
+ unsigned InstID = CstEnd;
+
+ // Finally, emit all the instructions, in order.
+ for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
+ for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
+ I != E; ++I) {
+ WriteInstruction(*I, InstID, VE, Stream, Vals);
+ if (I->getType() != Type::VoidTy)
+ ++InstID;
+ }
+
+ // Emit names for all the instructions etc.
+ WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream);
+
+ VE.purgeFunction();
+ Stream.ExitBlock();
+}
+
+/// WriteTypeSymbolTable - Emit a block for the specified type symtab.
+static void WriteTypeSymbolTable(const TypeSymbolTable &TST,
+ const ValueEnumerator &VE,
+ BitstreamWriter &Stream) {
+ if (TST.empty()) return;
+
+ Stream.EnterSubblock(bitc::TYPE_SYMTAB_BLOCK_ID, 3);
+
+ // 7-bit fixed width VST_CODE_ENTRY strings.
+ BitCodeAbbrev *Abbv = new BitCodeAbbrev();
+ Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
+ Log2_32_Ceil(VE.getTypes().size()+1)));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
+ unsigned V7Abbrev = Stream.EmitAbbrev(Abbv);
+
+ SmallVector<unsigned, 64> NameVals;
+
+ for (TypeSymbolTable::const_iterator TI = TST.begin(), TE = TST.end();
+ TI != TE; ++TI) {
+ // TST_ENTRY: [typeid, namechar x N]
+ NameVals.push_back(VE.getTypeID(TI->second));
+
+ const std::string &Str = TI->first;
+ bool is7Bit = true;
+ for (unsigned i = 0, e = Str.size(); i != e; ++i) {
+ NameVals.push_back((unsigned char)Str[i]);
+ if (Str[i] & 128)
+ is7Bit = false;
+ }
+
+ // Emit the finished record.
+ Stream.EmitRecord(bitc::VST_CODE_ENTRY, NameVals, is7Bit ? V7Abbrev : 0);
+ NameVals.clear();
+ }
+
+ Stream.ExitBlock();
+}
+
+// Emit blockinfo, which defines the standard abbreviations etc.
+static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) {
+ // We only want to emit block info records for blocks that have multiple
+ // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. Other
+ // blocks can defined their abbrevs inline.
+ Stream.EnterBlockInfoBlock(2);
+
+ { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings.
+ BitCodeAbbrev *Abbv = new BitCodeAbbrev();
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
+ if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
+ Abbv) != VST_ENTRY_8_ABBREV)
+ assert(0 && "Unexpected abbrev ordering!");
+ }
+
+ { // 7-bit fixed width VST_ENTRY strings.
+ BitCodeAbbrev *Abbv = new BitCodeAbbrev();
+ Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
+ if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
+ Abbv) != VST_ENTRY_7_ABBREV)
+ assert(0 && "Unexpected abbrev ordering!");
+ }
+ { // 6-bit char6 VST_ENTRY strings.
+ BitCodeAbbrev *Abbv = new BitCodeAbbrev();
+ Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
+ if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
+ Abbv) != VST_ENTRY_6_ABBREV)
+ assert(0 && "Unexpected abbrev ordering!");
+ }
+ { // 6-bit char6 VST_BBENTRY strings.
+ BitCodeAbbrev *Abbv = new BitCodeAbbrev();
+ Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
+ if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
+ Abbv) != VST_BBENTRY_6_ABBREV)
+ assert(0 && "Unexpected abbrev ordering!");
+ }
+
+
+
+ { // SETTYPE abbrev for CONSTANTS_BLOCK.
+ BitCodeAbbrev *Abbv = new BitCodeAbbrev();
+ Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
+ Log2_32_Ceil(VE.getTypes().size()+1)));
+ if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
+ Abbv) != CONSTANTS_SETTYPE_ABBREV)
+ assert(0 && "Unexpected abbrev ordering!");
+ }
+
+ { // INTEGER abbrev for CONSTANTS_BLOCK.
+ BitCodeAbbrev *Abbv = new BitCodeAbbrev();
+ Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
+ if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
+ Abbv) != CONSTANTS_INTEGER_ABBREV)
+ assert(0 && "Unexpected abbrev ordering!");
+ }
+
+ { // CE_CAST abbrev for CONSTANTS_BLOCK.
+ BitCodeAbbrev *Abbv = new BitCodeAbbrev();
+ Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid
+ Log2_32_Ceil(VE.getTypes().size()+1)));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id
+
+ if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
+ Abbv) != CONSTANTS_CE_CAST_Abbrev)
+ assert(0 && "Unexpected abbrev ordering!");
+ }
+ { // NULL abbrev for CONSTANTS_BLOCK.
+ BitCodeAbbrev *Abbv = new BitCodeAbbrev();
+ Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL));
+ if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
+ Abbv) != CONSTANTS_NULL_Abbrev)
+ assert(0 && "Unexpected abbrev ordering!");
+ }
+
+ // FIXME: This should only use space for first class types!
+
+ { // INST_LOAD abbrev for FUNCTION_BLOCK.
+ BitCodeAbbrev *Abbv = new BitCodeAbbrev();
+ Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile
+ if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
+ Abbv) != FUNCTION_INST_LOAD_ABBREV)
+ assert(0 && "Unexpected abbrev ordering!");
+ }
+ { // INST_BINOP abbrev for FUNCTION_BLOCK.
+ BitCodeAbbrev *Abbv = new BitCodeAbbrev();
+ Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
+ if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
+ Abbv) != FUNCTION_INST_BINOP_ABBREV)
+ assert(0 && "Unexpected abbrev ordering!");
+ }
+ { // INST_CAST abbrev for FUNCTION_BLOCK.
+ BitCodeAbbrev *Abbv = new BitCodeAbbrev();
+ Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty
+ Log2_32_Ceil(VE.getTypes().size()+1)));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
+ if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
+ Abbv) != FUNCTION_INST_CAST_ABBREV)
+ assert(0 && "Unexpected abbrev ordering!");
+ }
+
+ { // INST_RET abbrev for FUNCTION_BLOCK.
+ BitCodeAbbrev *Abbv = new BitCodeAbbrev();
+ Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
+ if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
+ Abbv) != FUNCTION_INST_RET_VOID_ABBREV)
+ assert(0 && "Unexpected abbrev ordering!");
+ }
+ { // INST_RET abbrev for FUNCTION_BLOCK.
+ BitCodeAbbrev *Abbv = new BitCodeAbbrev();
+ Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID
+ if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
+ Abbv) != FUNCTION_INST_RET_VAL_ABBREV)
+ assert(0 && "Unexpected abbrev ordering!");
+ }
+ { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK.
+ BitCodeAbbrev *Abbv = new BitCodeAbbrev();
+ Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE));
+ if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
+ Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV)
+ assert(0 && "Unexpected abbrev ordering!");
+ }
+
+ Stream.ExitBlock();
+}
+
+
+/// WriteModule - Emit the specified module to the bitstream.
+static void WriteModule(const Module *M, BitstreamWriter &Stream) {
+ Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
+
+ // Emit the version number if it is non-zero.
+ if (CurVersion) {
+ SmallVector<unsigned, 1> Vals;
+ Vals.push_back(CurVersion);
+ Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals);
+ }
+
+ // Analyze the module, enumerating globals, functions, etc.
+ ValueEnumerator VE(M);
+
+ // Emit blockinfo, which defines the standard abbreviations etc.
+ WriteBlockInfo(VE, Stream);
+
+ // Emit information about parameter attributes.
+ WriteAttributeTable(VE, Stream);
+
+ // Emit information describing all of the types in the module.
+ WriteTypeTable(VE, Stream);
+
+ // Emit top-level description of module, including target triple, inline asm,
+ // descriptors for global variables, and function prototype info.
+ WriteModuleInfo(M, VE, Stream);
+
+ // Emit constants.
+ WriteModuleConstants(VE, Stream);
+
+ // If we have any aggregate values in the value table, purge them - these can
+ // only be used to initialize global variables. Doing so makes the value
+ // namespace smaller for code in functions.
+ int NumNonAggregates = VE.PurgeAggregateValues();
+ if (NumNonAggregates != -1) {
+ SmallVector<unsigned, 1> Vals;
+ Vals.push_back(NumNonAggregates);
+ Stream.EmitRecord(bitc::MODULE_CODE_PURGEVALS, Vals);
+ }
+
+ // Emit function bodies.
+ for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I)
+ if (!I->isDeclaration())
+ WriteFunction(*I, VE, Stream);
+
+ // Emit the type symbol table information.
+ WriteTypeSymbolTable(M->getTypeSymbolTable(), VE, Stream);
+
+ // Emit names for globals/functions etc.
+ WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream);
+
+ Stream.ExitBlock();
+}
+
+/// EmitDarwinBCHeader - If generating a bc file on darwin, we have to emit a
+/// header and trailer to make it compatible with the system archiver. To do
+/// this we emit the following header, and then emit a trailer that pads the
+/// file out to be a multiple of 16 bytes.
+///
+/// struct bc_header {
+/// uint32_t Magic; // 0x0B17C0DE
+/// uint32_t Version; // Version, currently always 0.
+/// uint32_t BitcodeOffset; // Offset to traditional bitcode file.
+/// uint32_t BitcodeSize; // Size of traditional bitcode file.
+/// uint32_t CPUType; // CPU specifier.
+/// ... potentially more later ...
+/// };
+enum {
+ DarwinBCSizeFieldOffset = 3*4, // Offset to bitcode_size.
+ DarwinBCHeaderSize = 5*4
+};
+
+static void EmitDarwinBCHeader(BitstreamWriter &Stream,
+ const std::string &TT) {
+ unsigned CPUType = ~0U;
+
+ // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*. The CPUType is a
+ // magic number from /usr/include/mach/machine.h. It is ok to reproduce the
+ // specific constants here because they are implicitly part of the Darwin ABI.
+ enum {
+ DARWIN_CPU_ARCH_ABI64 = 0x01000000,
+ DARWIN_CPU_TYPE_X86 = 7,
+ DARWIN_CPU_TYPE_POWERPC = 18
+ };
+
+ if (TT.find("x86_64-") == 0)
+ CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64;
+ else if (TT.size() >= 5 && TT[0] == 'i' && TT[2] == '8' && TT[3] == '6' &&
+ TT[4] == '-' && TT[1] - '3' < 6)
+ CPUType = DARWIN_CPU_TYPE_X86;
+ else if (TT.find("powerpc-") == 0)
+ CPUType = DARWIN_CPU_TYPE_POWERPC;
+ else if (TT.find("powerpc64-") == 0)
+ CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64;
+
+ // Traditional Bitcode starts after header.
+ unsigned BCOffset = DarwinBCHeaderSize;
+
+ Stream.Emit(0x0B17C0DE, 32);
+ Stream.Emit(0 , 32); // Version.
+ Stream.Emit(BCOffset , 32);
+ Stream.Emit(0 , 32); // Filled in later.
+ Stream.Emit(CPUType , 32);
+}
+
+/// EmitDarwinBCTrailer - Emit the darwin epilog after the bitcode file and
+/// finalize the header.
+static void EmitDarwinBCTrailer(BitstreamWriter &Stream, unsigned BufferSize) {
+ // Update the size field in the header.
+ Stream.BackpatchWord(DarwinBCSizeFieldOffset, BufferSize-DarwinBCHeaderSize);
+
+ // If the file is not a multiple of 16 bytes, insert dummy padding.
+ while (BufferSize & 15) {
+ Stream.Emit(0, 8);
+ ++BufferSize;
+ }
+}
+
+
+/// WriteBitcodeToFile - Write the specified module to the specified output
+/// stream.
+void llvm::WriteBitcodeToFile(const Module *M, std::ostream &Out) {
+ raw_os_ostream RawOut(Out);
+ // If writing to stdout, set binary mode.
+ if (llvm::cout == Out)
+ sys::Program::ChangeStdoutToBinary();
+ WriteBitcodeToFile(M, RawOut);
+}
+
+/// WriteBitcodeToFile - Write the specified module to the specified output
+/// stream.
+void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out) {
+ std::vector<unsigned char> Buffer;
+ BitstreamWriter Stream(Buffer);
+
+ Buffer.reserve(256*1024);
+
+ WriteBitcodeToStream( M, Stream );
+
+ // If writing to stdout, set binary mode.
+ if (&llvm::outs() == &Out)
+ sys::Program::ChangeStdoutToBinary();
+
+ // Write the generated bitstream to "Out".
+ Out.write((char*)&Buffer.front(), Buffer.size());
+
+ // Make sure it hits disk now.
+ Out.flush();
+}
+
+/// WriteBitcodeToStream - Write the specified module to the specified output
+/// stream.
+void llvm::WriteBitcodeToStream(const Module *M, BitstreamWriter &Stream) {
+ // If this is darwin, emit a file header and trailer if needed.
+ bool isDarwin = M->getTargetTriple().find("-darwin") != std::string::npos;
+ if (isDarwin)
+ EmitDarwinBCHeader(Stream, M->getTargetTriple());
+
+ // Emit the file header.
+ Stream.Emit((unsigned)'B', 8);
+ Stream.Emit((unsigned)'C', 8);
+ Stream.Emit(0x0, 4);
+ Stream.Emit(0xC, 4);
+ Stream.Emit(0xE, 4);
+ Stream.Emit(0xD, 4);
+
+ // Emit the module.
+ WriteModule(M, Stream);
+
+ if (isDarwin)
+ EmitDarwinBCTrailer(Stream, Stream.getBuffer().size());
+}
OpenPOWER on IntegriCloud