diff options
Diffstat (limited to 'lib/AsmParser/LLParser.cpp')
-rw-r--r-- | lib/AsmParser/LLParser.cpp | 3279 |
1 files changed, 3279 insertions, 0 deletions
diff --git a/lib/AsmParser/LLParser.cpp b/lib/AsmParser/LLParser.cpp new file mode 100644 index 0000000..8db4c71 --- /dev/null +++ b/lib/AsmParser/LLParser.cpp @@ -0,0 +1,3279 @@ +//===-- LLParser.cpp - Parser Class ---------------------------------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file defines the parser class for .ll files. +// +//===----------------------------------------------------------------------===// + +#include "LLParser.h" +#include "llvm/AutoUpgrade.h" +#include "llvm/CallingConv.h" +#include "llvm/Constants.h" +#include "llvm/DerivedTypes.h" +#include "llvm/InlineAsm.h" +#include "llvm/Instructions.h" +#include "llvm/MDNode.h" +#include "llvm/Module.h" +#include "llvm/ValueSymbolTable.h" +#include "llvm/ADT/SmallPtrSet.h" +#include "llvm/ADT/StringExtras.h" +#include "llvm/Support/raw_ostream.h" +using namespace llvm; + +namespace llvm { + /// ValID - Represents a reference of a definition of some sort with no type. + /// There are several cases where we have to parse the value but where the + /// type can depend on later context. This may either be a numeric reference + /// or a symbolic (%var) reference. This is just a discriminated union. + struct ValID { + enum { + t_LocalID, t_GlobalID, // ID in UIntVal. + t_LocalName, t_GlobalName, // Name in StrVal. + t_APSInt, t_APFloat, // Value in APSIntVal/APFloatVal. + t_Null, t_Undef, t_Zero, // No value. + t_EmptyArray, // No value: [] + t_Constant, // Value in ConstantVal. + t_InlineAsm // Value in StrVal/StrVal2/UIntVal. + } Kind; + + LLParser::LocTy Loc; + unsigned UIntVal; + std::string StrVal, StrVal2; + APSInt APSIntVal; + APFloat APFloatVal; + Constant *ConstantVal; + ValID() : APFloatVal(0.0) {} + }; +} + +/// Run: module ::= toplevelentity* +bool LLParser::Run() { + // Prime the lexer. + Lex.Lex(); + + return ParseTopLevelEntities() || + ValidateEndOfModule(); +} + +/// ValidateEndOfModule - Do final validity and sanity checks at the end of the +/// module. +bool LLParser::ValidateEndOfModule() { + if (!ForwardRefTypes.empty()) + return Error(ForwardRefTypes.begin()->second.second, + "use of undefined type named '" + + ForwardRefTypes.begin()->first + "'"); + if (!ForwardRefTypeIDs.empty()) + return Error(ForwardRefTypeIDs.begin()->second.second, + "use of undefined type '%" + + utostr(ForwardRefTypeIDs.begin()->first) + "'"); + + if (!ForwardRefVals.empty()) + return Error(ForwardRefVals.begin()->second.second, + "use of undefined value '@" + ForwardRefVals.begin()->first + + "'"); + + if (!ForwardRefValIDs.empty()) + return Error(ForwardRefValIDs.begin()->second.second, + "use of undefined value '@" + + utostr(ForwardRefValIDs.begin()->first) + "'"); + + // Look for intrinsic functions and CallInst that need to be upgraded + for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) + UpgradeCallsToIntrinsic(FI++); // must be post-increment, as we remove + + return false; +} + +//===----------------------------------------------------------------------===// +// Top-Level Entities +//===----------------------------------------------------------------------===// + +bool LLParser::ParseTopLevelEntities() { + while (1) { + switch (Lex.getKind()) { + default: return TokError("expected top-level entity"); + case lltok::Eof: return false; + //case lltok::kw_define: + case lltok::kw_declare: if (ParseDeclare()) return true; break; + case lltok::kw_define: if (ParseDefine()) return true; break; + case lltok::kw_module: if (ParseModuleAsm()) return true; break; + case lltok::kw_target: if (ParseTargetDefinition()) return true; break; + case lltok::kw_deplibs: if (ParseDepLibs()) return true; break; + case lltok::kw_type: if (ParseUnnamedType()) return true; break; + case lltok::StringConstant: // FIXME: REMOVE IN LLVM 3.0 + case lltok::LocalVar: if (ParseNamedType()) return true; break; + case lltok::GlobalVar: if (ParseNamedGlobal()) return true; break; + + // The Global variable production with no name can have many different + // optional leading prefixes, the production is: + // GlobalVar ::= OptionalLinkage OptionalVisibility OptionalThreadLocal + // OptionalAddrSpace ('constant'|'global') ... + case lltok::kw_private: // OptionalLinkage + case lltok::kw_internal: // OptionalLinkage + case lltok::kw_weak: // OptionalLinkage + case lltok::kw_weak_odr: // OptionalLinkage + case lltok::kw_linkonce: // OptionalLinkage + case lltok::kw_linkonce_odr: // OptionalLinkage + case lltok::kw_appending: // OptionalLinkage + case lltok::kw_dllexport: // OptionalLinkage + case lltok::kw_common: // OptionalLinkage + case lltok::kw_dllimport: // OptionalLinkage + case lltok::kw_extern_weak: // OptionalLinkage + case lltok::kw_external: { // OptionalLinkage + unsigned Linkage, Visibility; + if (ParseOptionalLinkage(Linkage) || + ParseOptionalVisibility(Visibility) || + ParseGlobal("", 0, Linkage, true, Visibility)) + return true; + break; + } + case lltok::kw_default: // OptionalVisibility + case lltok::kw_hidden: // OptionalVisibility + case lltok::kw_protected: { // OptionalVisibility + unsigned Visibility; + if (ParseOptionalVisibility(Visibility) || + ParseGlobal("", 0, 0, false, Visibility)) + return true; + break; + } + + case lltok::kw_thread_local: // OptionalThreadLocal + case lltok::kw_addrspace: // OptionalAddrSpace + case lltok::kw_constant: // GlobalType + case lltok::kw_global: // GlobalType + if (ParseGlobal("", 0, 0, false, 0)) return true; + break; + } + } +} + + +/// toplevelentity +/// ::= 'module' 'asm' STRINGCONSTANT +bool LLParser::ParseModuleAsm() { + assert(Lex.getKind() == lltok::kw_module); + Lex.Lex(); + + std::string AsmStr; + if (ParseToken(lltok::kw_asm, "expected 'module asm'") || + ParseStringConstant(AsmStr)) return true; + + const std::string &AsmSoFar = M->getModuleInlineAsm(); + if (AsmSoFar.empty()) + M->setModuleInlineAsm(AsmStr); + else + M->setModuleInlineAsm(AsmSoFar+"\n"+AsmStr); + return false; +} + +/// toplevelentity +/// ::= 'target' 'triple' '=' STRINGCONSTANT +/// ::= 'target' 'datalayout' '=' STRINGCONSTANT +bool LLParser::ParseTargetDefinition() { + assert(Lex.getKind() == lltok::kw_target); + std::string Str; + switch (Lex.Lex()) { + default: return TokError("unknown target property"); + case lltok::kw_triple: + Lex.Lex(); + if (ParseToken(lltok::equal, "expected '=' after target triple") || + ParseStringConstant(Str)) + return true; + M->setTargetTriple(Str); + return false; + case lltok::kw_datalayout: + Lex.Lex(); + if (ParseToken(lltok::equal, "expected '=' after target datalayout") || + ParseStringConstant(Str)) + return true; + M->setDataLayout(Str); + return false; + } +} + +/// toplevelentity +/// ::= 'deplibs' '=' '[' ']' +/// ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']' +bool LLParser::ParseDepLibs() { + assert(Lex.getKind() == lltok::kw_deplibs); + Lex.Lex(); + if (ParseToken(lltok::equal, "expected '=' after deplibs") || + ParseToken(lltok::lsquare, "expected '=' after deplibs")) + return true; + + if (EatIfPresent(lltok::rsquare)) + return false; + + std::string Str; + if (ParseStringConstant(Str)) return true; + M->addLibrary(Str); + + while (EatIfPresent(lltok::comma)) { + if (ParseStringConstant(Str)) return true; + M->addLibrary(Str); + } + + return ParseToken(lltok::rsquare, "expected ']' at end of list"); +} + +/// toplevelentity +/// ::= 'type' type +bool LLParser::ParseUnnamedType() { + assert(Lex.getKind() == lltok::kw_type); + LocTy TypeLoc = Lex.getLoc(); + Lex.Lex(); // eat kw_type + + PATypeHolder Ty(Type::VoidTy); + if (ParseType(Ty)) return true; + + unsigned TypeID = NumberedTypes.size(); + + // See if this type was previously referenced. + std::map<unsigned, std::pair<PATypeHolder, LocTy> >::iterator + FI = ForwardRefTypeIDs.find(TypeID); + if (FI != ForwardRefTypeIDs.end()) { + if (FI->second.first.get() == Ty) + return Error(TypeLoc, "self referential type is invalid"); + + cast<DerivedType>(FI->second.first.get())->refineAbstractTypeTo(Ty); + Ty = FI->second.first.get(); + ForwardRefTypeIDs.erase(FI); + } + + NumberedTypes.push_back(Ty); + + return false; +} + +/// toplevelentity +/// ::= LocalVar '=' 'type' type +bool LLParser::ParseNamedType() { + std::string Name = Lex.getStrVal(); + LocTy NameLoc = Lex.getLoc(); + Lex.Lex(); // eat LocalVar. + + PATypeHolder Ty(Type::VoidTy); + + if (ParseToken(lltok::equal, "expected '=' after name") || + ParseToken(lltok::kw_type, "expected 'type' after name") || + ParseType(Ty)) + return true; + + // Set the type name, checking for conflicts as we do so. + bool AlreadyExists = M->addTypeName(Name, Ty); + if (!AlreadyExists) return false; + + // See if this type is a forward reference. We need to eagerly resolve + // types to allow recursive type redefinitions below. + std::map<std::string, std::pair<PATypeHolder, LocTy> >::iterator + FI = ForwardRefTypes.find(Name); + if (FI != ForwardRefTypes.end()) { + if (FI->second.first.get() == Ty) + return Error(NameLoc, "self referential type is invalid"); + + cast<DerivedType>(FI->second.first.get())->refineAbstractTypeTo(Ty); + Ty = FI->second.first.get(); + ForwardRefTypes.erase(FI); + } + + // Inserting a name that is already defined, get the existing name. + const Type *Existing = M->getTypeByName(Name); + assert(Existing && "Conflict but no matching type?!"); + + // Otherwise, this is an attempt to redefine a type. That's okay if + // the redefinition is identical to the original. + // FIXME: REMOVE REDEFINITIONS IN LLVM 3.0 + if (Existing == Ty) return false; + + // Any other kind of (non-equivalent) redefinition is an error. + return Error(NameLoc, "redefinition of type named '" + Name + "' of type '" + + Ty->getDescription() + "'"); +} + + +/// toplevelentity +/// ::= 'declare' FunctionHeader +bool LLParser::ParseDeclare() { + assert(Lex.getKind() == lltok::kw_declare); + Lex.Lex(); + + Function *F; + return ParseFunctionHeader(F, false); +} + +/// toplevelentity +/// ::= 'define' FunctionHeader '{' ... +bool LLParser::ParseDefine() { + assert(Lex.getKind() == lltok::kw_define); + Lex.Lex(); + + Function *F; + return ParseFunctionHeader(F, true) || + ParseFunctionBody(*F); +} + +/// ParseGlobalType +/// ::= 'constant' +/// ::= 'global' +bool LLParser::ParseGlobalType(bool &IsConstant) { + if (Lex.getKind() == lltok::kw_constant) + IsConstant = true; + else if (Lex.getKind() == lltok::kw_global) + IsConstant = false; + else { + IsConstant = false; + return TokError("expected 'global' or 'constant'"); + } + Lex.Lex(); + return false; +} + +/// ParseNamedGlobal: +/// GlobalVar '=' OptionalVisibility ALIAS ... +/// GlobalVar '=' OptionalLinkage OptionalVisibility ... -> global variable +bool LLParser::ParseNamedGlobal() { + assert(Lex.getKind() == lltok::GlobalVar); + LocTy NameLoc = Lex.getLoc(); + std::string Name = Lex.getStrVal(); + Lex.Lex(); + + bool HasLinkage; + unsigned Linkage, Visibility; + if (ParseToken(lltok::equal, "expected '=' in global variable") || + ParseOptionalLinkage(Linkage, HasLinkage) || + ParseOptionalVisibility(Visibility)) + return true; + + if (HasLinkage || Lex.getKind() != lltok::kw_alias) + return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility); + return ParseAlias(Name, NameLoc, Visibility); +} + +/// ParseAlias: +/// ::= GlobalVar '=' OptionalVisibility 'alias' OptionalLinkage Aliasee +/// Aliasee +/// ::= TypeAndValue +/// ::= 'bitcast' '(' TypeAndValue 'to' Type ')' +/// ::= 'getelementptr' '(' ... ')' +/// +/// Everything through visibility has already been parsed. +/// +bool LLParser::ParseAlias(const std::string &Name, LocTy NameLoc, + unsigned Visibility) { + assert(Lex.getKind() == lltok::kw_alias); + Lex.Lex(); + unsigned Linkage; + LocTy LinkageLoc = Lex.getLoc(); + if (ParseOptionalLinkage(Linkage)) + return true; + + if (Linkage != GlobalValue::ExternalLinkage && + Linkage != GlobalValue::WeakAnyLinkage && + Linkage != GlobalValue::WeakODRLinkage && + Linkage != GlobalValue::InternalLinkage && + Linkage != GlobalValue::PrivateLinkage) + return Error(LinkageLoc, "invalid linkage type for alias"); + + Constant *Aliasee; + LocTy AliaseeLoc = Lex.getLoc(); + if (Lex.getKind() != lltok::kw_bitcast && + Lex.getKind() != lltok::kw_getelementptr) { + if (ParseGlobalTypeAndValue(Aliasee)) return true; + } else { + // The bitcast dest type is not present, it is implied by the dest type. + ValID ID; + if (ParseValID(ID)) return true; + if (ID.Kind != ValID::t_Constant) + return Error(AliaseeLoc, "invalid aliasee"); + Aliasee = ID.ConstantVal; + } + + if (!isa<PointerType>(Aliasee->getType())) + return Error(AliaseeLoc, "alias must have pointer type"); + + // Okay, create the alias but do not insert it into the module yet. + GlobalAlias* GA = new GlobalAlias(Aliasee->getType(), + (GlobalValue::LinkageTypes)Linkage, Name, + Aliasee); + GA->setVisibility((GlobalValue::VisibilityTypes)Visibility); + + // See if this value already exists in the symbol table. If so, it is either + // a redefinition or a definition of a forward reference. + if (GlobalValue *Val = + cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name))) { + // See if this was a redefinition. If so, there is no entry in + // ForwardRefVals. + std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator + I = ForwardRefVals.find(Name); + if (I == ForwardRefVals.end()) + return Error(NameLoc, "redefinition of global named '@" + Name + "'"); + + // Otherwise, this was a definition of forward ref. Verify that types + // agree. + if (Val->getType() != GA->getType()) + return Error(NameLoc, + "forward reference and definition of alias have different types"); + + // If they agree, just RAUW the old value with the alias and remove the + // forward ref info. + Val->replaceAllUsesWith(GA); + Val->eraseFromParent(); + ForwardRefVals.erase(I); + } + + // Insert into the module, we know its name won't collide now. + M->getAliasList().push_back(GA); + assert(GA->getNameStr() == Name && "Should not be a name conflict!"); + + return false; +} + +/// ParseGlobal +/// ::= GlobalVar '=' OptionalLinkage OptionalVisibility OptionalThreadLocal +/// OptionalAddrSpace GlobalType Type Const +/// ::= OptionalLinkage OptionalVisibility OptionalThreadLocal +/// OptionalAddrSpace GlobalType Type Const +/// +/// Everything through visibility has been parsed already. +/// +bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc, + unsigned Linkage, bool HasLinkage, + unsigned Visibility) { + unsigned AddrSpace; + bool ThreadLocal, IsConstant; + LocTy TyLoc; + + PATypeHolder Ty(Type::VoidTy); + if (ParseOptionalToken(lltok::kw_thread_local, ThreadLocal) || + ParseOptionalAddrSpace(AddrSpace) || + ParseGlobalType(IsConstant) || + ParseType(Ty, TyLoc)) + return true; + + // If the linkage is specified and is external, then no initializer is + // present. + Constant *Init = 0; + if (!HasLinkage || (Linkage != GlobalValue::DLLImportLinkage && + Linkage != GlobalValue::ExternalWeakLinkage && + Linkage != GlobalValue::ExternalLinkage)) { + if (ParseGlobalValue(Ty, Init)) + return true; + } + + if (isa<FunctionType>(Ty) || Ty == Type::LabelTy) + return Error(TyLoc, "invalid type for global variable"); + + GlobalVariable *GV = 0; + + // See if the global was forward referenced, if so, use the global. + if (!Name.empty()) { + if ((GV = M->getGlobalVariable(Name, true)) && + !ForwardRefVals.erase(Name)) + return Error(NameLoc, "redefinition of global '@" + Name + "'"); + } else { + std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator + I = ForwardRefValIDs.find(NumberedVals.size()); + if (I != ForwardRefValIDs.end()) { + GV = cast<GlobalVariable>(I->second.first); + ForwardRefValIDs.erase(I); + } + } + + if (GV == 0) { + GV = new GlobalVariable(Ty, false, GlobalValue::ExternalLinkage, 0, Name, + M, false, AddrSpace); + } else { + if (GV->getType()->getElementType() != Ty) + return Error(TyLoc, + "forward reference and definition of global have different types"); + + // Move the forward-reference to the correct spot in the module. + M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV); + } + + if (Name.empty()) + NumberedVals.push_back(GV); + + // Set the parsed properties on the global. + if (Init) + GV->setInitializer(Init); + GV->setConstant(IsConstant); + GV->setLinkage((GlobalValue::LinkageTypes)Linkage); + GV->setVisibility((GlobalValue::VisibilityTypes)Visibility); + GV->setThreadLocal(ThreadLocal); + + // Parse attributes on the global. + while (Lex.getKind() == lltok::comma) { + Lex.Lex(); + + if (Lex.getKind() == lltok::kw_section) { + Lex.Lex(); + GV->setSection(Lex.getStrVal()); + if (ParseToken(lltok::StringConstant, "expected global section string")) + return true; + } else if (Lex.getKind() == lltok::kw_align) { + unsigned Alignment; + if (ParseOptionalAlignment(Alignment)) return true; + GV->setAlignment(Alignment); + } else { + TokError("unknown global variable property!"); + } + } + + return false; +} + + +//===----------------------------------------------------------------------===// +// GlobalValue Reference/Resolution Routines. +//===----------------------------------------------------------------------===// + +/// GetGlobalVal - Get a value with the specified name or ID, creating a +/// forward reference record if needed. This can return null if the value +/// exists but does not have the right type. +GlobalValue *LLParser::GetGlobalVal(const std::string &Name, const Type *Ty, + LocTy Loc) { + const PointerType *PTy = dyn_cast<PointerType>(Ty); + if (PTy == 0) { + Error(Loc, "global variable reference must have pointer type"); + return 0; + } + + // Look this name up in the normal function symbol table. + GlobalValue *Val = + cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name)); + + // If this is a forward reference for the value, see if we already created a + // forward ref record. + if (Val == 0) { + std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator + I = ForwardRefVals.find(Name); + if (I != ForwardRefVals.end()) + Val = I->second.first; + } + + // If we have the value in the symbol table or fwd-ref table, return it. + if (Val) { + if (Val->getType() == Ty) return Val; + Error(Loc, "'@" + Name + "' defined with type '" + + Val->getType()->getDescription() + "'"); + return 0; + } + + // Otherwise, create a new forward reference for this value and remember it. + GlobalValue *FwdVal; + if (const FunctionType *FT = dyn_cast<FunctionType>(PTy->getElementType())) { + // Function types can return opaque but functions can't. + if (isa<OpaqueType>(FT->getReturnType())) { + Error(Loc, "function may not return opaque type"); + return 0; + } + + FwdVal = Function::Create(FT, GlobalValue::ExternalWeakLinkage, Name, M); + } else { + FwdVal = new GlobalVariable(PTy->getElementType(), false, + GlobalValue::ExternalWeakLinkage, 0, Name, M); + } + + ForwardRefVals[Name] = std::make_pair(FwdVal, Loc); + return FwdVal; +} + +GlobalValue *LLParser::GetGlobalVal(unsigned ID, const Type *Ty, LocTy Loc) { + const PointerType *PTy = dyn_cast<PointerType>(Ty); + if (PTy == 0) { + Error(Loc, "global variable reference must have pointer type"); + return 0; + } + + GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : 0; + + // If this is a forward reference for the value, see if we already created a + // forward ref record. + if (Val == 0) { + std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator + I = ForwardRefValIDs.find(ID); + if (I != ForwardRefValIDs.end()) + Val = I->second.first; + } + + // If we have the value in the symbol table or fwd-ref table, return it. + if (Val) { + if (Val->getType() == Ty) return Val; + Error(Loc, "'@" + utostr(ID) + "' defined with type '" + + Val->getType()->getDescription() + "'"); + return 0; + } + + // Otherwise, create a new forward reference for this value and remember it. + GlobalValue *FwdVal; + if (const FunctionType *FT = dyn_cast<FunctionType>(PTy->getElementType())) { + // Function types can return opaque but functions can't. + if (isa<OpaqueType>(FT->getReturnType())) { + Error(Loc, "function may not return opaque type"); + return 0; + } + FwdVal = Function::Create(FT, GlobalValue::ExternalWeakLinkage, "", M); + } else { + FwdVal = new GlobalVariable(PTy->getElementType(), false, + GlobalValue::ExternalWeakLinkage, 0, "", M); + } + + ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc); + return FwdVal; +} + + +//===----------------------------------------------------------------------===// +// Helper Routines. +//===----------------------------------------------------------------------===// + +/// ParseToken - If the current token has the specified kind, eat it and return +/// success. Otherwise, emit the specified error and return failure. +bool LLParser::ParseToken(lltok::Kind T, const char *ErrMsg) { + if (Lex.getKind() != T) + return TokError(ErrMsg); + Lex.Lex(); + return false; +} + +/// ParseStringConstant +/// ::= StringConstant +bool LLParser::ParseStringConstant(std::string &Result) { + if (Lex.getKind() != lltok::StringConstant) + return TokError("expected string constant"); + Result = Lex.getStrVal(); + Lex.Lex(); + return false; +} + +/// ParseUInt32 +/// ::= uint32 +bool LLParser::ParseUInt32(unsigned &Val) { + if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) + return TokError("expected integer"); + uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1); + if (Val64 != unsigned(Val64)) + return TokError("expected 32-bit integer (too large)"); + Val = Val64; + Lex.Lex(); + return false; +} + + +/// ParseOptionalAddrSpace +/// := /*empty*/ +/// := 'addrspace' '(' uint32 ')' +bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace) { + AddrSpace = 0; + if (!EatIfPresent(lltok::kw_addrspace)) + return false; + return ParseToken(lltok::lparen, "expected '(' in address space") || + ParseUInt32(AddrSpace) || + ParseToken(lltok::rparen, "expected ')' in address space"); +} + +/// ParseOptionalAttrs - Parse a potentially empty attribute list. AttrKind +/// indicates what kind of attribute list this is: 0: function arg, 1: result, +/// 2: function attr. +/// 3: function arg after value: FIXME: REMOVE IN LLVM 3.0 +bool LLParser::ParseOptionalAttrs(unsigned &Attrs, unsigned AttrKind) { + Attrs = Attribute::None; + LocTy AttrLoc = Lex.getLoc(); + + while (1) { + switch (Lex.getKind()) { + case lltok::kw_sext: + case lltok::kw_zext: + // Treat these as signext/zeroext if they occur in the argument list after + // the value, as in "call i8 @foo(i8 10 sext)". If they occur before the + // value, as in "call i8 @foo(i8 sext (" then it is part of a constant + // expr. + // FIXME: REMOVE THIS IN LLVM 3.0 + if (AttrKind == 3) { + if (Lex.getKind() == lltok::kw_sext) + Attrs |= Attribute::SExt; + else + Attrs |= Attribute::ZExt; + break; + } + // FALL THROUGH. + default: // End of attributes. + if (AttrKind != 2 && (Attrs & Attribute::FunctionOnly)) + return Error(AttrLoc, "invalid use of function-only attribute"); + + if (AttrKind != 0 && AttrKind != 3 && (Attrs & Attribute::ParameterOnly)) + return Error(AttrLoc, "invalid use of parameter-only attribute"); + + return false; + case lltok::kw_zeroext: Attrs |= Attribute::ZExt; break; + case lltok::kw_signext: Attrs |= Attribute::SExt; break; + case lltok::kw_inreg: Attrs |= Attribute::InReg; break; + case lltok::kw_sret: Attrs |= Attribute::StructRet; break; + case lltok::kw_noalias: Attrs |= Attribute::NoAlias; break; + case lltok::kw_nocapture: Attrs |= Attribute::NoCapture; break; + case lltok::kw_byval: Attrs |= Attribute::ByVal; break; + case lltok::kw_nest: Attrs |= Attribute::Nest; break; + + case lltok::kw_noreturn: Attrs |= Attribute::NoReturn; break; + case lltok::kw_nounwind: Attrs |= Attribute::NoUnwind; break; + case lltok::kw_noinline: Attrs |= Attribute::NoInline; break; + case lltok::kw_readnone: Attrs |= Attribute::ReadNone; break; + case lltok::kw_readonly: Attrs |= Attribute::ReadOnly; break; + case lltok::kw_alwaysinline: Attrs |= Attribute::AlwaysInline; break; + case lltok::kw_optsize: Attrs |= Attribute::OptimizeForSize; break; + case lltok::kw_ssp: Attrs |= Attribute::StackProtect; break; + case lltok::kw_sspreq: Attrs |= Attribute::StackProtectReq; break; + + + case lltok::kw_align: { + unsigned Alignment; + if (ParseOptionalAlignment(Alignment)) + return true; + Attrs |= Attribute::constructAlignmentFromInt(Alignment); + continue; + } + } + Lex.Lex(); + } +} + +/// ParseOptionalLinkage +/// ::= /*empty*/ +/// ::= 'private' +/// ::= 'internal' +/// ::= 'weak' +/// ::= 'weak_odr' +/// ::= 'linkonce' +/// ::= 'linkonce_odr' +/// ::= 'appending' +/// ::= 'dllexport' +/// ::= 'common' +/// ::= 'dllimport' +/// ::= 'extern_weak' +/// ::= 'external' +bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage) { + HasLinkage = false; + switch (Lex.getKind()) { + default: Res = GlobalValue::ExternalLinkage; return false; + case lltok::kw_private: Res = GlobalValue::PrivateLinkage; break; + case lltok::kw_internal: Res = GlobalValue::InternalLinkage; break; + case lltok::kw_weak: Res = GlobalValue::WeakAnyLinkage; break; + case lltok::kw_weak_odr: Res = GlobalValue::WeakODRLinkage; break; + case lltok::kw_linkonce: Res = GlobalValue::LinkOnceAnyLinkage; break; + case lltok::kw_linkonce_odr: Res = GlobalValue::LinkOnceODRLinkage; break; + case lltok::kw_available_externally: + Res = GlobalValue::AvailableExternallyLinkage; + break; + case lltok::kw_appending: Res = GlobalValue::AppendingLinkage; break; + case lltok::kw_dllexport: Res = GlobalValue::DLLExportLinkage; break; + case lltok::kw_common: Res = GlobalValue::CommonLinkage; break; + case lltok::kw_dllimport: Res = GlobalValue::DLLImportLinkage; break; + case lltok::kw_extern_weak: Res = GlobalValue::ExternalWeakLinkage; break; + case lltok::kw_external: Res = GlobalValue::ExternalLinkage; break; + } + Lex.Lex(); + HasLinkage = true; + return false; +} + +/// ParseOptionalVisibility +/// ::= /*empty*/ +/// ::= 'default' +/// ::= 'hidden' +/// ::= 'protected' +/// +bool LLParser::ParseOptionalVisibility(unsigned &Res) { + switch (Lex.getKind()) { + default: Res = GlobalValue::DefaultVisibility; return false; + case lltok::kw_default: Res = GlobalValue::DefaultVisibility; break; + case lltok::kw_hidden: Res = GlobalValue::HiddenVisibility; break; + case lltok::kw_protected: Res = GlobalValue::ProtectedVisibility; break; + } + Lex.Lex(); + return false; +} + +/// ParseOptionalCallingConv +/// ::= /*empty*/ +/// ::= 'ccc' +/// ::= 'fastcc' +/// ::= 'coldcc' +/// ::= 'x86_stdcallcc' +/// ::= 'x86_fastcallcc' +/// ::= 'cc' UINT +/// +bool LLParser::ParseOptionalCallingConv(unsigned &CC) { + switch (Lex.getKind()) { + default: CC = CallingConv::C; return false; + case lltok::kw_ccc: CC = CallingConv::C; break; + case lltok::kw_fastcc: CC = CallingConv::Fast; break; + case lltok::kw_coldcc: CC = CallingConv::Cold; break; + case lltok::kw_x86_stdcallcc: CC = CallingConv::X86_StdCall; break; + case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break; + case lltok::kw_cc: Lex.Lex(); return ParseUInt32(CC); + } + Lex.Lex(); + return false; +} + +/// ParseOptionalAlignment +/// ::= /* empty */ +/// ::= 'align' 4 +bool LLParser::ParseOptionalAlignment(unsigned &Alignment) { + Alignment = 0; + if (!EatIfPresent(lltok::kw_align)) + return false; + LocTy AlignLoc = Lex.getLoc(); + if (ParseUInt32(Alignment)) return true; + if (!isPowerOf2_32(Alignment)) + return Error(AlignLoc, "alignment is not a power of two"); + return false; +} + +/// ParseOptionalCommaAlignment +/// ::= /* empty */ +/// ::= ',' 'align' 4 +bool LLParser::ParseOptionalCommaAlignment(unsigned &Alignment) { + Alignment = 0; + if (!EatIfPresent(lltok::comma)) + return false; + return ParseToken(lltok::kw_align, "expected 'align'") || + ParseUInt32(Alignment); +} + +/// ParseIndexList +/// ::= (',' uint32)+ +bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices) { + if (Lex.getKind() != lltok::comma) + return TokError("expected ',' as start of index list"); + + while (EatIfPresent(lltok::comma)) { + unsigned Idx; + if (ParseUInt32(Idx)) return true; + Indices.push_back(Idx); + } + + return false; +} + +//===----------------------------------------------------------------------===// +// Type Parsing. +//===----------------------------------------------------------------------===// + +/// ParseType - Parse and resolve a full type. +bool LLParser::ParseType(PATypeHolder &Result, bool AllowVoid) { + LocTy TypeLoc = Lex.getLoc(); + if (ParseTypeRec(Result)) return true; + + // Verify no unresolved uprefs. + if (!UpRefs.empty()) + return Error(UpRefs.back().Loc, "invalid unresolved type up reference"); + + if (!AllowVoid && Result.get() == Type::VoidTy) + return Error(TypeLoc, "void type only allowed for function results"); + + return false; +} + +/// HandleUpRefs - Every time we finish a new layer of types, this function is +/// called. It loops through the UpRefs vector, which is a list of the +/// currently active types. For each type, if the up-reference is contained in +/// the newly completed type, we decrement the level count. When the level +/// count reaches zero, the up-referenced type is the type that is passed in: +/// thus we can complete the cycle. +/// +PATypeHolder LLParser::HandleUpRefs(const Type *ty) { + // If Ty isn't abstract, or if there are no up-references in it, then there is + // nothing to resolve here. + if (!ty->isAbstract() || UpRefs.empty()) return ty; + + PATypeHolder Ty(ty); +#if 0 + errs() << "Type '" << Ty->getDescription() + << "' newly formed. Resolving upreferences.\n" + << UpRefs.size() << " upreferences active!\n"; +#endif + + // If we find any resolvable upreferences (i.e., those whose NestingLevel goes + // to zero), we resolve them all together before we resolve them to Ty. At + // the end of the loop, if there is anything to resolve to Ty, it will be in + // this variable. + OpaqueType *TypeToResolve = 0; + + for (unsigned i = 0; i != UpRefs.size(); ++i) { + // Determine if 'Ty' directly contains this up-references 'LastContainedTy'. + bool ContainsType = + std::find(Ty->subtype_begin(), Ty->subtype_end(), + UpRefs[i].LastContainedTy) != Ty->subtype_end(); + +#if 0 + errs() << " UR#" << i << " - TypeContains(" << Ty->getDescription() << ", " + << UpRefs[i].LastContainedTy->getDescription() << ") = " + << (ContainsType ? "true" : "false") + << " level=" << UpRefs[i].NestingLevel << "\n"; +#endif + if (!ContainsType) + continue; + + // Decrement level of upreference + unsigned Level = --UpRefs[i].NestingLevel; + UpRefs[i].LastContainedTy = Ty; + + // If the Up-reference has a non-zero level, it shouldn't be resolved yet. + if (Level != 0) + continue; + +#if 0 + errs() << " * Resolving upreference for " << UpRefs[i].UpRefTy << "\n"; +#endif + if (!TypeToResolve) + TypeToResolve = UpRefs[i].UpRefTy; + else + UpRefs[i].UpRefTy->refineAbstractTypeTo(TypeToResolve); + UpRefs.erase(UpRefs.begin()+i); // Remove from upreference list. + --i; // Do not skip the next element. + } + + if (TypeToResolve) + TypeToResolve->refineAbstractTypeTo(Ty); + + return Ty; +} + + +/// ParseTypeRec - The recursive function used to process the internal +/// implementation details of types. +bool LLParser::ParseTypeRec(PATypeHolder &Result) { + switch (Lex.getKind()) { + default: + return TokError("expected type"); + case lltok::Type: + // TypeRec ::= 'float' | 'void' (etc) + Result = Lex.getTyVal(); + Lex.Lex(); + break; + case lltok::kw_opaque: + // TypeRec ::= 'opaque' + Result = OpaqueType::get(); + Lex.Lex(); + break; + case lltok::lbrace: + // TypeRec ::= '{' ... '}' + if (ParseStructType(Result, false)) + return true; + break; + case lltok::lsquare: + // TypeRec ::= '[' ... ']' + Lex.Lex(); // eat the lsquare. + if (ParseArrayVectorType(Result, false)) + return true; + break; + case lltok::less: // Either vector or packed struct. + // TypeRec ::= '<' ... '>' + Lex.Lex(); + if (Lex.getKind() == lltok::lbrace) { + if (ParseStructType(Result, true) || + ParseToken(lltok::greater, "expected '>' at end of packed struct")) + return true; + } else if (ParseArrayVectorType(Result, true)) + return true; + break; + case lltok::LocalVar: + case lltok::StringConstant: // FIXME: REMOVE IN LLVM 3.0 + // TypeRec ::= %foo + if (const Type *T = M->getTypeByName(Lex.getStrVal())) { + Result = T; + } else { + Result = OpaqueType::get(); + ForwardRefTypes.insert(std::make_pair(Lex.getStrVal(), + std::make_pair(Result, + Lex.getLoc()))); + M->addTypeName(Lex.getStrVal(), Result.get()); + } + Lex.Lex(); + break; + + case lltok::LocalVarID: + // TypeRec ::= %4 + if (Lex.getUIntVal() < NumberedTypes.size()) + Result = NumberedTypes[Lex.getUIntVal()]; + else { + std::map<unsigned, std::pair<PATypeHolder, LocTy> >::iterator + I = ForwardRefTypeIDs.find(Lex.getUIntVal()); + if (I != ForwardRefTypeIDs.end()) + Result = I->second.first; + else { + Result = OpaqueType::get(); + ForwardRefTypeIDs.insert(std::make_pair(Lex.getUIntVal(), + std::make_pair(Result, + Lex.getLoc()))); + } + } + Lex.Lex(); + break; + case lltok::backslash: { + // TypeRec ::= '\' 4 + Lex.Lex(); + unsigned Val; + if (ParseUInt32(Val)) return true; + OpaqueType *OT = OpaqueType::get(); // Use temporary placeholder. + UpRefs.push_back(UpRefRecord(Lex.getLoc(), Val, OT)); + Result = OT; + break; + } + } + + // Parse the type suffixes. + while (1) { + switch (Lex.getKind()) { + // End of type. + default: return false; + + // TypeRec ::= TypeRec '*' + case lltok::star: + if (Result.get() == Type::LabelTy) + return TokError("basic block pointers are invalid"); + if (Result.get() == Type::VoidTy) + return TokError("pointers to void are invalid; use i8* instead"); + Result = HandleUpRefs(PointerType::getUnqual(Result.get())); + Lex.Lex(); + break; + + // TypeRec ::= TypeRec 'addrspace' '(' uint32 ')' '*' + case lltok::kw_addrspace: { + if (Result.get() == Type::LabelTy) + return TokError("basic block pointers are invalid"); + if (Result.get() == Type::VoidTy) + return TokError("pointers to void are invalid; use i8* instead"); + unsigned AddrSpace; + if (ParseOptionalAddrSpace(AddrSpace) || + ParseToken(lltok::star, "expected '*' in address space")) + return true; + + Result = HandleUpRefs(PointerType::get(Result.get(), AddrSpace)); + break; + } + + /// Types '(' ArgTypeListI ')' OptFuncAttrs + case lltok::lparen: + if (ParseFunctionType(Result)) + return true; + break; + } + } +} + +/// ParseParameterList +/// ::= '(' ')' +/// ::= '(' Arg (',' Arg)* ')' +/// Arg +/// ::= Type OptionalAttributes Value OptionalAttributes +bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList, + PerFunctionState &PFS) { + if (ParseToken(lltok::lparen, "expected '(' in call")) + return true; + + while (Lex.getKind() != lltok::rparen) { + // If this isn't the first argument, we need a comma. + if (!ArgList.empty() && + ParseToken(lltok::comma, "expected ',' in argument list")) + return true; + + // Parse the argument. + LocTy ArgLoc; + PATypeHolder ArgTy(Type::VoidTy); + unsigned ArgAttrs1, ArgAttrs2; + Value *V; + if (ParseType(ArgTy, ArgLoc) || + ParseOptionalAttrs(ArgAttrs1, 0) || + ParseValue(ArgTy, V, PFS) || + // FIXME: Should not allow attributes after the argument, remove this in + // LLVM 3.0. + ParseOptionalAttrs(ArgAttrs2, 3)) + return true; + ArgList.push_back(ParamInfo(ArgLoc, V, ArgAttrs1|ArgAttrs2)); + } + + Lex.Lex(); // Lex the ')'. + return false; +} + + + +/// ParseArgumentList - Parse the argument list for a function type or function +/// prototype. If 'inType' is true then we are parsing a FunctionType. +/// ::= '(' ArgTypeListI ')' +/// ArgTypeListI +/// ::= /*empty*/ +/// ::= '...' +/// ::= ArgTypeList ',' '...' +/// ::= ArgType (',' ArgType)* +/// +bool LLParser::ParseArgumentList(std::vector<ArgInfo> &ArgList, + bool &isVarArg, bool inType) { + isVarArg = false; + assert(Lex.getKind() == lltok::lparen); + Lex.Lex(); // eat the (. + + if (Lex.getKind() == lltok::rparen) { + // empty + } else if (Lex.getKind() == lltok::dotdotdot) { + isVarArg = true; + Lex.Lex(); + } else { + LocTy TypeLoc = Lex.getLoc(); + PATypeHolder ArgTy(Type::VoidTy); + unsigned Attrs; + std::string Name; + + // If we're parsing a type, use ParseTypeRec, because we allow recursive + // types (such as a function returning a pointer to itself). If parsing a + // function prototype, we require fully resolved types. + if ((inType ? ParseTypeRec(ArgTy) : ParseType(ArgTy)) || + ParseOptionalAttrs(Attrs, 0)) return true; + + if (ArgTy == Type::VoidTy) + return Error(TypeLoc, "argument can not have void type"); + + if (Lex.getKind() == lltok::LocalVar || + Lex.getKind() == lltok::StringConstant) { // FIXME: REMOVE IN LLVM 3.0 + Name = Lex.getStrVal(); + Lex.Lex(); + } + + if (!ArgTy->isFirstClassType() && !isa<OpaqueType>(ArgTy)) + return Error(TypeLoc, "invalid type for function argument"); + + ArgList.push_back(ArgInfo(TypeLoc, ArgTy, Attrs, Name)); + + while (EatIfPresent(lltok::comma)) { + // Handle ... at end of arg list. + if (EatIfPresent(lltok::dotdotdot)) { + isVarArg = true; + break; + } + + // Otherwise must be an argument type. + TypeLoc = Lex.getLoc(); + if ((inType ? ParseTypeRec(ArgTy) : ParseType(ArgTy)) || + ParseOptionalAttrs(Attrs, 0)) return true; + + if (ArgTy == Type::VoidTy) + return Error(TypeLoc, "argument can not have void type"); + + if (Lex.getKind() == lltok::LocalVar || + Lex.getKind() == lltok::StringConstant) { // FIXME: REMOVE IN LLVM 3.0 + Name = Lex.getStrVal(); + Lex.Lex(); + } else { + Name = ""; + } + + if (!ArgTy->isFirstClassType() && !isa<OpaqueType>(ArgTy)) + return Error(TypeLoc, "invalid type for function argument"); + + ArgList.push_back(ArgInfo(TypeLoc, ArgTy, Attrs, Name)); + } + } + + return ParseToken(lltok::rparen, "expected ')' at end of argument list"); +} + +/// ParseFunctionType +/// ::= Type ArgumentList OptionalAttrs +bool LLParser::ParseFunctionType(PATypeHolder &Result) { + assert(Lex.getKind() == lltok::lparen); + + if (!FunctionType::isValidReturnType(Result)) + return TokError("invalid function return type"); + + std::vector<ArgInfo> ArgList; + bool isVarArg; + unsigned Attrs; + if (ParseArgumentList(ArgList, isVarArg, true) || + // FIXME: Allow, but ignore attributes on function types! + // FIXME: Remove in LLVM 3.0 + ParseOptionalAttrs(Attrs, 2)) + return true; + + // Reject names on the arguments lists. + for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { + if (!ArgList[i].Name.empty()) + return Error(ArgList[i].Loc, "argument name invalid in function type"); + if (!ArgList[i].Attrs != 0) { + // Allow but ignore attributes on function types; this permits + // auto-upgrade. + // FIXME: REJECT ATTRIBUTES ON FUNCTION TYPES in LLVM 3.0 + } + } + + std::vector<const Type*> ArgListTy; + for (unsigned i = 0, e = ArgList.size(); i != e; ++i) + ArgListTy.push_back(ArgList[i].Type); + + Result = HandleUpRefs(FunctionType::get(Result.get(), ArgListTy, isVarArg)); + return false; +} + +/// ParseStructType: Handles packed and unpacked types. </> parsed elsewhere. +/// TypeRec +/// ::= '{' '}' +/// ::= '{' TypeRec (',' TypeRec)* '}' +/// ::= '<' '{' '}' '>' +/// ::= '<' '{' TypeRec (',' TypeRec)* '}' '>' +bool LLParser::ParseStructType(PATypeHolder &Result, bool Packed) { + assert(Lex.getKind() == lltok::lbrace); + Lex.Lex(); // Consume the '{' + + if (EatIfPresent(lltok::rbrace)) { + Result = StructType::get(std::vector<const Type*>(), Packed); + return false; + } + + std::vector<PATypeHolder> ParamsList; + LocTy EltTyLoc = Lex.getLoc(); + if (ParseTypeRec(Result)) return true; + ParamsList.push_back(Result); + + if (Result == Type::VoidTy) + return Error(EltTyLoc, "struct element can not have void type"); + + while (EatIfPresent(lltok::comma)) { + EltTyLoc = Lex.getLoc(); + if (ParseTypeRec(Result)) return true; + + if (Result == Type::VoidTy) + return Error(EltTyLoc, "struct element can not have void type"); + + ParamsList.push_back(Result); + } + + if (ParseToken(lltok::rbrace, "expected '}' at end of struct")) + return true; + + std::vector<const Type*> ParamsListTy; + for (unsigned i = 0, e = ParamsList.size(); i != e; ++i) + ParamsListTy.push_back(ParamsList[i].get()); + Result = HandleUpRefs(StructType::get(ParamsListTy, Packed)); + return false; +} + +/// ParseArrayVectorType - Parse an array or vector type, assuming the first +/// token has already been consumed. +/// TypeRec +/// ::= '[' APSINTVAL 'x' Types ']' +/// ::= '<' APSINTVAL 'x' Types '>' +bool LLParser::ParseArrayVectorType(PATypeHolder &Result, bool isVector) { + if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() || + Lex.getAPSIntVal().getBitWidth() > 64) + return TokError("expected number in address space"); + + LocTy SizeLoc = Lex.getLoc(); + uint64_t Size = Lex.getAPSIntVal().getZExtValue(); + Lex.Lex(); + + if (ParseToken(lltok::kw_x, "expected 'x' after element count")) + return true; + + LocTy TypeLoc = Lex.getLoc(); + PATypeHolder EltTy(Type::VoidTy); + if (ParseTypeRec(EltTy)) return true; + + if (EltTy == Type::VoidTy) + return Error(TypeLoc, "array and vector element type cannot be void"); + + if (ParseToken(isVector ? lltok::greater : lltok::rsquare, + "expected end of sequential type")) + return true; + + if (isVector) { + if (Size == 0) + return Error(SizeLoc, "zero element vector is illegal"); + if ((unsigned)Size != Size) + return Error(SizeLoc, "size too large for vector"); + if (!EltTy->isFloatingPoint() && !EltTy->isInteger()) + return Error(TypeLoc, "vector element type must be fp or integer"); + Result = VectorType::get(EltTy, unsigned(Size)); + } else { + if (!EltTy->isFirstClassType() && !isa<OpaqueType>(EltTy)) + return Error(TypeLoc, "invalid array element type"); + Result = HandleUpRefs(ArrayType::get(EltTy, Size)); + } + return false; +} + +//===----------------------------------------------------------------------===// +// Function Semantic Analysis. +//===----------------------------------------------------------------------===// + +LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f) + : P(p), F(f) { + + // Insert unnamed arguments into the NumberedVals list. + for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end(); + AI != E; ++AI) + if (!AI->hasName()) + NumberedVals.push_back(AI); +} + +LLParser::PerFunctionState::~PerFunctionState() { + // If there were any forward referenced non-basicblock values, delete them. + for (std::map<std::string, std::pair<Value*, LocTy> >::iterator + I = ForwardRefVals.begin(), E = ForwardRefVals.end(); I != E; ++I) + if (!isa<BasicBlock>(I->second.first)) { + I->second.first->replaceAllUsesWith(UndefValue::get(I->second.first + ->getType())); + delete I->second.first; + I->second.first = 0; + } + + for (std::map<unsigned, std::pair<Value*, LocTy> >::iterator + I = ForwardRefValIDs.begin(), E = ForwardRefValIDs.end(); I != E; ++I) + if (!isa<BasicBlock>(I->second.first)) { + I->second.first->replaceAllUsesWith(UndefValue::get(I->second.first + ->getType())); + delete I->second.first; + I->second.first = 0; + } +} + +bool LLParser::PerFunctionState::VerifyFunctionComplete() { + if (!ForwardRefVals.empty()) + return P.Error(ForwardRefVals.begin()->second.second, + "use of undefined value '%" + ForwardRefVals.begin()->first + + "'"); + if (!ForwardRefValIDs.empty()) + return P.Error(ForwardRefValIDs.begin()->second.second, + "use of undefined value '%" + + utostr(ForwardRefValIDs.begin()->first) + "'"); + return false; +} + + +/// GetVal - Get a value with the specified name or ID, creating a +/// forward reference record if needed. This can return null if the value +/// exists but does not have the right type. +Value *LLParser::PerFunctionState::GetVal(const std::string &Name, + const Type *Ty, LocTy Loc) { + // Look this name up in the normal function symbol table. + Value *Val = F.getValueSymbolTable().lookup(Name); + + // If this is a forward reference for the value, see if we already created a + // forward ref record. + if (Val == 0) { + std::map<std::string, std::pair<Value*, LocTy> >::iterator + I = ForwardRefVals.find(Name); + if (I != ForwardRefVals.end()) + Val = I->second.first; + } + + // If we have the value in the symbol table or fwd-ref table, return it. + if (Val) { + if (Val->getType() == Ty) return Val; + if (Ty == Type::LabelTy) + P.Error(Loc, "'%" + Name + "' is not a basic block"); + else + P.Error(Loc, "'%" + Name + "' defined with type '" + + Val->getType()->getDescription() + "'"); + return 0; + } + + // Don't make placeholders with invalid type. + if (!Ty->isFirstClassType() && !isa<OpaqueType>(Ty) && Ty != Type::LabelTy) { + P.Error(Loc, "invalid use of a non-first-class type"); + return 0; + } + + // Otherwise, create a new forward reference for this value and remember it. + Value *FwdVal; + if (Ty == Type::LabelTy) + FwdVal = BasicBlock::Create(Name, &F); + else + FwdVal = new Argument(Ty, Name); + + ForwardRefVals[Name] = std::make_pair(FwdVal, Loc); + return FwdVal; +} + +Value *LLParser::PerFunctionState::GetVal(unsigned ID, const Type *Ty, + LocTy Loc) { + // Look this name up in the normal function symbol table. + Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : 0; + + // If this is a forward reference for the value, see if we already created a + // forward ref record. + if (Val == 0) { + std::map<unsigned, std::pair<Value*, LocTy> >::iterator + I = ForwardRefValIDs.find(ID); + if (I != ForwardRefValIDs.end()) + Val = I->second.first; + } + + // If we have the value in the symbol table or fwd-ref table, return it. + if (Val) { + if (Val->getType() == Ty) return Val; + if (Ty == Type::LabelTy) + P.Error(Loc, "'%" + utostr(ID) + "' is not a basic block"); + else + P.Error(Loc, "'%" + utostr(ID) + "' defined with type '" + + Val->getType()->getDescription() + "'"); + return 0; + } + + if (!Ty->isFirstClassType() && !isa<OpaqueType>(Ty) && Ty != Type::LabelTy) { + P.Error(Loc, "invalid use of a non-first-class type"); + return 0; + } + + // Otherwise, create a new forward reference for this value and remember it. + Value *FwdVal; + if (Ty == Type::LabelTy) + FwdVal = BasicBlock::Create("", &F); + else + FwdVal = new Argument(Ty); + + ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc); + return FwdVal; +} + +/// SetInstName - After an instruction is parsed and inserted into its +/// basic block, this installs its name. +bool LLParser::PerFunctionState::SetInstName(int NameID, + const std::string &NameStr, + LocTy NameLoc, Instruction *Inst) { + // If this instruction has void type, it cannot have a name or ID specified. + if (Inst->getType() == Type::VoidTy) { + if (NameID != -1 || !NameStr.empty()) + return P.Error(NameLoc, "instructions returning void cannot have a name"); + return false; + } + + // If this was a numbered instruction, verify that the instruction is the + // expected value and resolve any forward references. + if (NameStr.empty()) { + // If neither a name nor an ID was specified, just use the next ID. + if (NameID == -1) + NameID = NumberedVals.size(); + + if (unsigned(NameID) != NumberedVals.size()) + return P.Error(NameLoc, "instruction expected to be numbered '%" + + utostr(NumberedVals.size()) + "'"); + + std::map<unsigned, std::pair<Value*, LocTy> >::iterator FI = + ForwardRefValIDs.find(NameID); + if (FI != ForwardRefValIDs.end()) { + if (FI->second.first->getType() != Inst->getType()) + return P.Error(NameLoc, "instruction forward referenced with type '" + + FI->second.first->getType()->getDescription() + "'"); + FI->second.first->replaceAllUsesWith(Inst); + ForwardRefValIDs.erase(FI); + } + + NumberedVals.push_back(Inst); + return false; + } + + // Otherwise, the instruction had a name. Resolve forward refs and set it. + std::map<std::string, std::pair<Value*, LocTy> >::iterator + FI = ForwardRefVals.find(NameStr); + if (FI != ForwardRefVals.end()) { + if (FI->second.first->getType() != Inst->getType()) + return P.Error(NameLoc, "instruction forward referenced with type '" + + FI->second.first->getType()->getDescription() + "'"); + FI->second.first->replaceAllUsesWith(Inst); + ForwardRefVals.erase(FI); + } + + // Set the name on the instruction. + Inst->setName(NameStr); + + if (Inst->getNameStr() != NameStr) + return P.Error(NameLoc, "multiple definition of local value named '" + + NameStr + "'"); + return false; +} + +/// GetBB - Get a basic block with the specified name or ID, creating a +/// forward reference record if needed. +BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name, + LocTy Loc) { + return cast_or_null<BasicBlock>(GetVal(Name, Type::LabelTy, Loc)); +} + +BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) { + return cast_or_null<BasicBlock>(GetVal(ID, Type::LabelTy, Loc)); +} + +/// DefineBB - Define the specified basic block, which is either named or +/// unnamed. If there is an error, this returns null otherwise it returns +/// the block being defined. +BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name, + LocTy Loc) { + BasicBlock *BB; + if (Name.empty()) + BB = GetBB(NumberedVals.size(), Loc); + else + BB = GetBB(Name, Loc); + if (BB == 0) return 0; // Already diagnosed error. + + // Move the block to the end of the function. Forward ref'd blocks are + // inserted wherever they happen to be referenced. + F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB); + + // Remove the block from forward ref sets. + if (Name.empty()) { + ForwardRefValIDs.erase(NumberedVals.size()); + NumberedVals.push_back(BB); + } else { + // BB forward references are already in the function symbol table. + ForwardRefVals.erase(Name); + } + + return BB; +} + +//===----------------------------------------------------------------------===// +// Constants. +//===----------------------------------------------------------------------===// + +/// ParseValID - Parse an abstract value that doesn't necessarily have a +/// type implied. For example, if we parse "4" we don't know what integer type +/// it has. The value will later be combined with its type and checked for +/// sanity. +bool LLParser::ParseValID(ValID &ID) { + ID.Loc = Lex.getLoc(); + switch (Lex.getKind()) { + default: return TokError("expected value token"); + case lltok::GlobalID: // @42 + ID.UIntVal = Lex.getUIntVal(); + ID.Kind = ValID::t_GlobalID; + break; + case lltok::GlobalVar: // @foo + ID.StrVal = Lex.getStrVal(); + ID.Kind = ValID::t_GlobalName; + break; + case lltok::LocalVarID: // %42 + ID.UIntVal = Lex.getUIntVal(); + ID.Kind = ValID::t_LocalID; + break; + case lltok::LocalVar: // %foo + case lltok::StringConstant: // "foo" - FIXME: REMOVE IN LLVM 3.0 + ID.StrVal = Lex.getStrVal(); + ID.Kind = ValID::t_LocalName; + break; + case lltok::Metadata: { // !{...} MDNode, !"foo" MDString + ID.Kind = ValID::t_Constant; + Lex.Lex(); + if (Lex.getKind() == lltok::lbrace) { + SmallVector<Value*, 16> Elts; + if (ParseMDNodeVector(Elts) || + ParseToken(lltok::rbrace, "expected end of metadata node")) + return true; + + ID.ConstantVal = MDNode::get(Elts.data(), Elts.size()); + return false; + } + + // MDString: + // ::= '!' STRINGCONSTANT + std::string Str; + if (ParseStringConstant(Str)) return true; + + ID.ConstantVal = MDString::get(Str.data(), Str.data() + Str.size()); + return false; + } + case lltok::APSInt: + ID.APSIntVal = Lex.getAPSIntVal(); + ID.Kind = ValID::t_APSInt; + break; + case lltok::APFloat: + ID.APFloatVal = Lex.getAPFloatVal(); + ID.Kind = ValID::t_APFloat; + break; + case lltok::kw_true: + ID.ConstantVal = ConstantInt::getTrue(); + ID.Kind = ValID::t_Constant; + break; + case lltok::kw_false: + ID.ConstantVal = ConstantInt::getFalse(); + ID.Kind = ValID::t_Constant; + break; + case lltok::kw_null: ID.Kind = ValID::t_Null; break; + case lltok::kw_undef: ID.Kind = ValID::t_Undef; break; + case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break; + + case lltok::lbrace: { + // ValID ::= '{' ConstVector '}' + Lex.Lex(); + SmallVector<Constant*, 16> Elts; + if (ParseGlobalValueVector(Elts) || + ParseToken(lltok::rbrace, "expected end of struct constant")) + return true; + + ID.ConstantVal = ConstantStruct::get(Elts.data(), Elts.size(), false); + ID.Kind = ValID::t_Constant; + return false; + } + case lltok::less: { + // ValID ::= '<' ConstVector '>' --> Vector. + // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct. + Lex.Lex(); + bool isPackedStruct = EatIfPresent(lltok::lbrace); + + SmallVector<Constant*, 16> Elts; + LocTy FirstEltLoc = Lex.getLoc(); + if (ParseGlobalValueVector(Elts) || + (isPackedStruct && + ParseToken(lltok::rbrace, "expected end of packed struct")) || + ParseToken(lltok::greater, "expected end of constant")) + return true; + + if (isPackedStruct) { + ID.ConstantVal = ConstantStruct::get(Elts.data(), Elts.size(), true); + ID.Kind = ValID::t_Constant; + return false; + } + + if (Elts.empty()) + return Error(ID.Loc, "constant vector must not be empty"); + + if (!Elts[0]->getType()->isInteger() && + !Elts[0]->getType()->isFloatingPoint()) + return Error(FirstEltLoc, + "vector elements must have integer or floating point type"); + + // Verify that all the vector elements have the same type. + for (unsigned i = 1, e = Elts.size(); i != e; ++i) + if (Elts[i]->getType() != Elts[0]->getType()) + return Error(FirstEltLoc, + "vector element #" + utostr(i) + + " is not of type '" + Elts[0]->getType()->getDescription()); + + ID.ConstantVal = ConstantVector::get(Elts.data(), Elts.size()); + ID.Kind = ValID::t_Constant; + return false; + } + case lltok::lsquare: { // Array Constant + Lex.Lex(); + SmallVector<Constant*, 16> Elts; + LocTy FirstEltLoc = Lex.getLoc(); + if (ParseGlobalValueVector(Elts) || + ParseToken(lltok::rsquare, "expected end of array constant")) + return true; + + // Handle empty element. + if (Elts.empty()) { + // Use undef instead of an array because it's inconvenient to determine + // the element type at this point, there being no elements to examine. + ID.Kind = ValID::t_EmptyArray; + return false; + } + + if (!Elts[0]->getType()->isFirstClassType()) + return Error(FirstEltLoc, "invalid array element type: " + + Elts[0]->getType()->getDescription()); + + ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size()); + + // Verify all elements are correct type! + for (unsigned i = 0, e = Elts.size(); i != e; ++i) { + if (Elts[i]->getType() != Elts[0]->getType()) + return Error(FirstEltLoc, + "array element #" + utostr(i) + + " is not of type '" +Elts[0]->getType()->getDescription()); + } + + ID.ConstantVal = ConstantArray::get(ATy, Elts.data(), Elts.size()); + ID.Kind = ValID::t_Constant; + return false; + } + case lltok::kw_c: // c "foo" + Lex.Lex(); + ID.ConstantVal = ConstantArray::get(Lex.getStrVal(), false); + if (ParseToken(lltok::StringConstant, "expected string")) return true; + ID.Kind = ValID::t_Constant; + return false; + + case lltok::kw_asm: { + // ValID ::= 'asm' SideEffect? STRINGCONSTANT ',' STRINGCONSTANT + bool HasSideEffect; + Lex.Lex(); + if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) || + ParseStringConstant(ID.StrVal) || + ParseToken(lltok::comma, "expected comma in inline asm expression") || + ParseToken(lltok::StringConstant, "expected constraint string")) + return true; + ID.StrVal2 = Lex.getStrVal(); + ID.UIntVal = HasSideEffect; + ID.Kind = ValID::t_InlineAsm; + return false; + } + + case lltok::kw_trunc: + case lltok::kw_zext: + case lltok::kw_sext: + case lltok::kw_fptrunc: + case lltok::kw_fpext: + case lltok::kw_bitcast: + case lltok::kw_uitofp: + case lltok::kw_sitofp: + case lltok::kw_fptoui: + case lltok::kw_fptosi: + case lltok::kw_inttoptr: + case lltok::kw_ptrtoint: { + unsigned Opc = Lex.getUIntVal(); + PATypeHolder DestTy(Type::VoidTy); + Constant *SrcVal; + Lex.Lex(); + if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") || + ParseGlobalTypeAndValue(SrcVal) || + ParseToken(lltok::kw_to, "expected 'to' int constantexpr cast") || + ParseType(DestTy) || + ParseToken(lltok::rparen, "expected ')' at end of constantexpr cast")) + return true; + if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy)) + return Error(ID.Loc, "invalid cast opcode for cast from '" + + SrcVal->getType()->getDescription() + "' to '" + + DestTy->getDescription() + "'"); + ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc, SrcVal, + DestTy); + ID.Kind = ValID::t_Constant; + return false; + } + case lltok::kw_extractvalue: { + Lex.Lex(); + Constant *Val; + SmallVector<unsigned, 4> Indices; + if (ParseToken(lltok::lparen, "expected '(' in extractvalue constantexpr")|| + ParseGlobalTypeAndValue(Val) || + ParseIndexList(Indices) || + ParseToken(lltok::rparen, "expected ')' in extractvalue constantexpr")) + return true; + if (!isa<StructType>(Val->getType()) && !isa<ArrayType>(Val->getType())) + return Error(ID.Loc, "extractvalue operand must be array or struct"); + if (!ExtractValueInst::getIndexedType(Val->getType(), Indices.begin(), + Indices.end())) + return Error(ID.Loc, "invalid indices for extractvalue"); + ID.ConstantVal = + ConstantExpr::getExtractValue(Val, Indices.data(), Indices.size()); + ID.Kind = ValID::t_Constant; + return false; + } + case lltok::kw_insertvalue: { + Lex.Lex(); + Constant *Val0, *Val1; + SmallVector<unsigned, 4> Indices; + if (ParseToken(lltok::lparen, "expected '(' in insertvalue constantexpr")|| + ParseGlobalTypeAndValue(Val0) || + ParseToken(lltok::comma, "expected comma in insertvalue constantexpr")|| + ParseGlobalTypeAndValue(Val1) || + ParseIndexList(Indices) || + ParseToken(lltok::rparen, "expected ')' in insertvalue constantexpr")) + return true; + if (!isa<StructType>(Val0->getType()) && !isa<ArrayType>(Val0->getType())) + return Error(ID.Loc, "extractvalue operand must be array or struct"); + if (!ExtractValueInst::getIndexedType(Val0->getType(), Indices.begin(), + Indices.end())) + return Error(ID.Loc, "invalid indices for insertvalue"); + ID.ConstantVal = + ConstantExpr::getInsertValue(Val0, Val1, Indices.data(), Indices.size()); + ID.Kind = ValID::t_Constant; + return false; + } + case lltok::kw_icmp: + case lltok::kw_fcmp: + case lltok::kw_vicmp: + case lltok::kw_vfcmp: { + unsigned PredVal, Opc = Lex.getUIntVal(); + Constant *Val0, *Val1; + Lex.Lex(); + if (ParseCmpPredicate(PredVal, Opc) || + ParseToken(lltok::lparen, "expected '(' in compare constantexpr") || + ParseGlobalTypeAndValue(Val0) || + ParseToken(lltok::comma, "expected comma in compare constantexpr") || + ParseGlobalTypeAndValue(Val1) || + ParseToken(lltok::rparen, "expected ')' in compare constantexpr")) + return true; + + if (Val0->getType() != Val1->getType()) + return Error(ID.Loc, "compare operands must have the same type"); + + CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal; + + if (Opc == Instruction::FCmp) { + if (!Val0->getType()->isFPOrFPVector()) + return Error(ID.Loc, "fcmp requires floating point operands"); + ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1); + } else if (Opc == Instruction::ICmp) { + if (!Val0->getType()->isIntOrIntVector() && + !isa<PointerType>(Val0->getType())) + return Error(ID.Loc, "icmp requires pointer or integer operands"); + ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1); + } else if (Opc == Instruction::VFCmp) { + // FIXME: REMOVE VFCMP Support + if (!Val0->getType()->isFPOrFPVector() || + !isa<VectorType>(Val0->getType())) + return Error(ID.Loc, "vfcmp requires vector floating point operands"); + ID.ConstantVal = ConstantExpr::getVFCmp(Pred, Val0, Val1); + } else if (Opc == Instruction::VICmp) { + // FIXME: REMOVE VICMP Support + if (!Val0->getType()->isIntOrIntVector() || + !isa<VectorType>(Val0->getType())) + return Error(ID.Loc, "vicmp requires vector floating point operands"); + ID.ConstantVal = ConstantExpr::getVICmp(Pred, Val0, Val1); + } + ID.Kind = ValID::t_Constant; + return false; + } + + // Binary Operators. + case lltok::kw_add: + case lltok::kw_sub: + case lltok::kw_mul: + case lltok::kw_udiv: + case lltok::kw_sdiv: + case lltok::kw_fdiv: + case lltok::kw_urem: + case lltok::kw_srem: + case lltok::kw_frem: { + unsigned Opc = Lex.getUIntVal(); + Constant *Val0, *Val1; + Lex.Lex(); + if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") || + ParseGlobalTypeAndValue(Val0) || + ParseToken(lltok::comma, "expected comma in binary constantexpr") || + ParseGlobalTypeAndValue(Val1) || + ParseToken(lltok::rparen, "expected ')' in binary constantexpr")) + return true; + if (Val0->getType() != Val1->getType()) + return Error(ID.Loc, "operands of constexpr must have same type"); + if (!Val0->getType()->isIntOrIntVector() && + !Val0->getType()->isFPOrFPVector()) + return Error(ID.Loc,"constexpr requires integer, fp, or vector operands"); + ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1); + ID.Kind = ValID::t_Constant; + return false; + } + + // Logical Operations + case lltok::kw_shl: + case lltok::kw_lshr: + case lltok::kw_ashr: + case lltok::kw_and: + case lltok::kw_or: + case lltok::kw_xor: { + unsigned Opc = Lex.getUIntVal(); + Constant *Val0, *Val1; + Lex.Lex(); + if (ParseToken(lltok::lparen, "expected '(' in logical constantexpr") || + ParseGlobalTypeAndValue(Val0) || + ParseToken(lltok::comma, "expected comma in logical constantexpr") || + ParseGlobalTypeAndValue(Val1) || + ParseToken(lltok::rparen, "expected ')' in logical constantexpr")) + return true; + if (Val0->getType() != Val1->getType()) + return Error(ID.Loc, "operands of constexpr must have same type"); + if (!Val0->getType()->isIntOrIntVector()) + return Error(ID.Loc, + "constexpr requires integer or integer vector operands"); + ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1); + ID.Kind = ValID::t_Constant; + return false; + } + + case lltok::kw_getelementptr: + case lltok::kw_shufflevector: + case lltok::kw_insertelement: + case lltok::kw_extractelement: + case lltok::kw_select: { + unsigned Opc = Lex.getUIntVal(); + SmallVector<Constant*, 16> Elts; + Lex.Lex(); + if (ParseToken(lltok::lparen, "expected '(' in constantexpr") || + ParseGlobalValueVector(Elts) || + ParseToken(lltok::rparen, "expected ')' in constantexpr")) + return true; + + if (Opc == Instruction::GetElementPtr) { + if (Elts.size() == 0 || !isa<PointerType>(Elts[0]->getType())) + return Error(ID.Loc, "getelementptr requires pointer operand"); + + if (!GetElementPtrInst::getIndexedType(Elts[0]->getType(), + (Value**)&Elts[1], Elts.size()-1)) + return Error(ID.Loc, "invalid indices for getelementptr"); + ID.ConstantVal = ConstantExpr::getGetElementPtr(Elts[0], + &Elts[1], Elts.size()-1); + } else if (Opc == Instruction::Select) { + if (Elts.size() != 3) + return Error(ID.Loc, "expected three operands to select"); + if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1], + Elts[2])) + return Error(ID.Loc, Reason); + ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]); + } else if (Opc == Instruction::ShuffleVector) { + if (Elts.size() != 3) + return Error(ID.Loc, "expected three operands to shufflevector"); + if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2])) + return Error(ID.Loc, "invalid operands to shufflevector"); + ID.ConstantVal = ConstantExpr::getShuffleVector(Elts[0], Elts[1],Elts[2]); + } else if (Opc == Instruction::ExtractElement) { + if (Elts.size() != 2) + return Error(ID.Loc, "expected two operands to extractelement"); + if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1])) + return Error(ID.Loc, "invalid extractelement operands"); + ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]); + } else { + assert(Opc == Instruction::InsertElement && "Unknown opcode"); + if (Elts.size() != 3) + return Error(ID.Loc, "expected three operands to insertelement"); + if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2])) + return Error(ID.Loc, "invalid insertelement operands"); + ID.ConstantVal = ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]); + } + + ID.Kind = ValID::t_Constant; + return false; + } + } + + Lex.Lex(); + return false; +} + +/// ParseGlobalValue - Parse a global value with the specified type. +bool LLParser::ParseGlobalValue(const Type *Ty, Constant *&V) { + V = 0; + ValID ID; + return ParseValID(ID) || + ConvertGlobalValIDToValue(Ty, ID, V); +} + +/// ConvertGlobalValIDToValue - Apply a type to a ValID to get a fully resolved +/// constant. +bool LLParser::ConvertGlobalValIDToValue(const Type *Ty, ValID &ID, + Constant *&V) { + if (isa<FunctionType>(Ty)) + return Error(ID.Loc, "functions are not values, refer to them as pointers"); + + switch (ID.Kind) { + default: assert(0 && "Unknown ValID!"); + case ValID::t_LocalID: + case ValID::t_LocalName: + return Error(ID.Loc, "invalid use of function-local name"); + case ValID::t_InlineAsm: + return Error(ID.Loc, "inline asm can only be an operand of call/invoke"); + case ValID::t_GlobalName: + V = GetGlobalVal(ID.StrVal, Ty, ID.Loc); + return V == 0; + case ValID::t_GlobalID: + V = GetGlobalVal(ID.UIntVal, Ty, ID.Loc); + return V == 0; + case ValID::t_APSInt: + if (!isa<IntegerType>(Ty)) + return Error(ID.Loc, "integer constant must have integer type"); + ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits()); + V = ConstantInt::get(ID.APSIntVal); + return false; + case ValID::t_APFloat: + if (!Ty->isFloatingPoint() || + !ConstantFP::isValueValidForType(Ty, ID.APFloatVal)) + return Error(ID.Loc, "floating point constant invalid for type"); + + // The lexer has no type info, so builds all float and double FP constants + // as double. Fix this here. Long double does not need this. + if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble && + Ty == Type::FloatTy) { + bool Ignored; + ID.APFloatVal.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven, + &Ignored); + } + V = ConstantFP::get(ID.APFloatVal); + + if (V->getType() != Ty) + return Error(ID.Loc, "floating point constant does not have type '" + + Ty->getDescription() + "'"); + + return false; + case ValID::t_Null: + if (!isa<PointerType>(Ty)) + return Error(ID.Loc, "null must be a pointer type"); + V = ConstantPointerNull::get(cast<PointerType>(Ty)); + return false; + case ValID::t_Undef: + // FIXME: LabelTy should not be a first-class type. + if ((!Ty->isFirstClassType() || Ty == Type::LabelTy) && + !isa<OpaqueType>(Ty)) + return Error(ID.Loc, "invalid type for undef constant"); + V = UndefValue::get(Ty); + return false; + case ValID::t_EmptyArray: + if (!isa<ArrayType>(Ty) || cast<ArrayType>(Ty)->getNumElements() != 0) + return Error(ID.Loc, "invalid empty array initializer"); + V = UndefValue::get(Ty); + return false; + case ValID::t_Zero: + // FIXME: LabelTy should not be a first-class type. + if (!Ty->isFirstClassType() || Ty == Type::LabelTy) + return Error(ID.Loc, "invalid type for null constant"); + V = Constant::getNullValue(Ty); + return false; + case ValID::t_Constant: + if (ID.ConstantVal->getType() != Ty) + return Error(ID.Loc, "constant expression type mismatch"); + V = ID.ConstantVal; + return false; + } +} + +bool LLParser::ParseGlobalTypeAndValue(Constant *&V) { + PATypeHolder Type(Type::VoidTy); + return ParseType(Type) || + ParseGlobalValue(Type, V); +} + +/// ParseGlobalValueVector +/// ::= /*empty*/ +/// ::= TypeAndValue (',' TypeAndValue)* +bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant*> &Elts) { + // Empty list. + if (Lex.getKind() == lltok::rbrace || + Lex.getKind() == lltok::rsquare || + Lex.getKind() == lltok::greater || + Lex.getKind() == lltok::rparen) + return false; + + Constant *C; + if (ParseGlobalTypeAndValue(C)) return true; + Elts.push_back(C); + + while (EatIfPresent(lltok::comma)) { + if (ParseGlobalTypeAndValue(C)) return true; + Elts.push_back(C); + } + + return false; +} + + +//===----------------------------------------------------------------------===// +// Function Parsing. +//===----------------------------------------------------------------------===// + +bool LLParser::ConvertValIDToValue(const Type *Ty, ValID &ID, Value *&V, + PerFunctionState &PFS) { + if (ID.Kind == ValID::t_LocalID) + V = PFS.GetVal(ID.UIntVal, Ty, ID.Loc); + else if (ID.Kind == ValID::t_LocalName) + V = PFS.GetVal(ID.StrVal, Ty, ID.Loc); + else if (ID.Kind == ValID::t_InlineAsm) { + const PointerType *PTy = dyn_cast<PointerType>(Ty); + const FunctionType *FTy = + PTy ? dyn_cast<FunctionType>(PTy->getElementType()) : 0; + if (!FTy || !InlineAsm::Verify(FTy, ID.StrVal2)) + return Error(ID.Loc, "invalid type for inline asm constraint string"); + V = InlineAsm::get(FTy, ID.StrVal, ID.StrVal2, ID.UIntVal); + return false; + } else { + Constant *C; + if (ConvertGlobalValIDToValue(Ty, ID, C)) return true; + V = C; + return false; + } + + return V == 0; +} + +bool LLParser::ParseValue(const Type *Ty, Value *&V, PerFunctionState &PFS) { + V = 0; + ValID ID; + return ParseValID(ID) || + ConvertValIDToValue(Ty, ID, V, PFS); +} + +bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState &PFS) { + PATypeHolder T(Type::VoidTy); + return ParseType(T) || + ParseValue(T, V, PFS); +} + +/// FunctionHeader +/// ::= OptionalLinkage OptionalVisibility OptionalCallingConv OptRetAttrs +/// Type GlobalName '(' ArgList ')' OptFuncAttrs OptSection +/// OptionalAlign OptGC +bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) { + // Parse the linkage. + LocTy LinkageLoc = Lex.getLoc(); + unsigned Linkage; + + unsigned Visibility, CC, RetAttrs; + PATypeHolder RetType(Type::VoidTy); + LocTy RetTypeLoc = Lex.getLoc(); + if (ParseOptionalLinkage(Linkage) || + ParseOptionalVisibility(Visibility) || + ParseOptionalCallingConv(CC) || + ParseOptionalAttrs(RetAttrs, 1) || + ParseType(RetType, RetTypeLoc, true /*void allowed*/)) + return true; + + // Verify that the linkage is ok. + switch ((GlobalValue::LinkageTypes)Linkage) { + case GlobalValue::ExternalLinkage: + break; // always ok. + case GlobalValue::DLLImportLinkage: + case GlobalValue::ExternalWeakLinkage: + if (isDefine) + return Error(LinkageLoc, "invalid linkage for function definition"); + break; + case GlobalValue::PrivateLinkage: + case GlobalValue::InternalLinkage: + case GlobalValue::AvailableExternallyLinkage: + case GlobalValue::LinkOnceAnyLinkage: + case GlobalValue::LinkOnceODRLinkage: + case GlobalValue::WeakAnyLinkage: + case GlobalValue::WeakODRLinkage: + case GlobalValue::DLLExportLinkage: + if (!isDefine) + return Error(LinkageLoc, "invalid linkage for function declaration"); + break; + case GlobalValue::AppendingLinkage: + case GlobalValue::GhostLinkage: + case GlobalValue::CommonLinkage: + return Error(LinkageLoc, "invalid function linkage type"); + } + + if (!FunctionType::isValidReturnType(RetType) || + isa<OpaqueType>(RetType)) + return Error(RetTypeLoc, "invalid function return type"); + + LocTy NameLoc = Lex.getLoc(); + + std::string FunctionName; + if (Lex.getKind() == lltok::GlobalVar) { + FunctionName = Lex.getStrVal(); + } else if (Lex.getKind() == lltok::GlobalID) { // @42 is ok. + unsigned NameID = Lex.getUIntVal(); + + if (NameID != NumberedVals.size()) + return TokError("function expected to be numbered '%" + + utostr(NumberedVals.size()) + "'"); + } else { + return TokError("expected function name"); + } + + Lex.Lex(); + + if (Lex.getKind() != lltok::lparen) + return TokError("expected '(' in function argument list"); + + std::vector<ArgInfo> ArgList; + bool isVarArg; + unsigned FuncAttrs; + std::string Section; + unsigned Alignment; + std::string GC; + + if (ParseArgumentList(ArgList, isVarArg, false) || + ParseOptionalAttrs(FuncAttrs, 2) || + (EatIfPresent(lltok::kw_section) && + ParseStringConstant(Section)) || + ParseOptionalAlignment(Alignment) || + (EatIfPresent(lltok::kw_gc) && + ParseStringConstant(GC))) + return true; + + // If the alignment was parsed as an attribute, move to the alignment field. + if (FuncAttrs & Attribute::Alignment) { + Alignment = Attribute::getAlignmentFromAttrs(FuncAttrs); + FuncAttrs &= ~Attribute::Alignment; + } + + // Okay, if we got here, the function is syntactically valid. Convert types + // and do semantic checks. + std::vector<const Type*> ParamTypeList; + SmallVector<AttributeWithIndex, 8> Attrs; + // FIXME : In 3.0, stop accepting zext, sext and inreg as optional function + // attributes. + unsigned ObsoleteFuncAttrs = Attribute::ZExt|Attribute::SExt|Attribute::InReg; + if (FuncAttrs & ObsoleteFuncAttrs) { + RetAttrs |= FuncAttrs & ObsoleteFuncAttrs; + FuncAttrs &= ~ObsoleteFuncAttrs; + } + + if (RetAttrs != Attribute::None) + Attrs.push_back(AttributeWithIndex::get(0, RetAttrs)); + + for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { + ParamTypeList.push_back(ArgList[i].Type); + if (ArgList[i].Attrs != Attribute::None) + Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs)); + } + + if (FuncAttrs != Attribute::None) + Attrs.push_back(AttributeWithIndex::get(~0, FuncAttrs)); + + AttrListPtr PAL = AttrListPtr::get(Attrs.begin(), Attrs.end()); + + if (PAL.paramHasAttr(1, Attribute::StructRet) && + RetType != Type::VoidTy) + return Error(RetTypeLoc, "functions with 'sret' argument must return void"); + + const FunctionType *FT = FunctionType::get(RetType, ParamTypeList, isVarArg); + const PointerType *PFT = PointerType::getUnqual(FT); + + Fn = 0; + if (!FunctionName.empty()) { + // If this was a definition of a forward reference, remove the definition + // from the forward reference table and fill in the forward ref. + std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator FRVI = + ForwardRefVals.find(FunctionName); + if (FRVI != ForwardRefVals.end()) { + Fn = M->getFunction(FunctionName); + ForwardRefVals.erase(FRVI); + } else if ((Fn = M->getFunction(FunctionName))) { + // If this function already exists in the symbol table, then it is + // multiply defined. We accept a few cases for old backwards compat. + // FIXME: Remove this stuff for LLVM 3.0. + if (Fn->getType() != PFT || Fn->getAttributes() != PAL || + (!Fn->isDeclaration() && isDefine)) { + // If the redefinition has different type or different attributes, + // reject it. If both have bodies, reject it. + return Error(NameLoc, "invalid redefinition of function '" + + FunctionName + "'"); + } else if (Fn->isDeclaration()) { + // Make sure to strip off any argument names so we can't get conflicts. + for (Function::arg_iterator AI = Fn->arg_begin(), AE = Fn->arg_end(); + AI != AE; ++AI) + AI->setName(""); + } + } + + } else if (FunctionName.empty()) { + // If this is a definition of a forward referenced function, make sure the + // types agree. + std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator I + = ForwardRefValIDs.find(NumberedVals.size()); + if (I != ForwardRefValIDs.end()) { + Fn = cast<Function>(I->second.first); + if (Fn->getType() != PFT) + return Error(NameLoc, "type of definition and forward reference of '@" + + utostr(NumberedVals.size()) +"' disagree"); + ForwardRefValIDs.erase(I); + } + } + + if (Fn == 0) + Fn = Function::Create(FT, GlobalValue::ExternalLinkage, FunctionName, M); + else // Move the forward-reference to the correct spot in the module. + M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn); + + if (FunctionName.empty()) + NumberedVals.push_back(Fn); + + Fn->setLinkage((GlobalValue::LinkageTypes)Linkage); + Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility); + Fn->setCallingConv(CC); + Fn->setAttributes(PAL); + Fn->setAlignment(Alignment); + Fn->setSection(Section); + if (!GC.empty()) Fn->setGC(GC.c_str()); + + // Add all of the arguments we parsed to the function. + Function::arg_iterator ArgIt = Fn->arg_begin(); + for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) { + // If the argument has a name, insert it into the argument symbol table. + if (ArgList[i].Name.empty()) continue; + + // Set the name, if it conflicted, it will be auto-renamed. + ArgIt->setName(ArgList[i].Name); + + if (ArgIt->getNameStr() != ArgList[i].Name) + return Error(ArgList[i].Loc, "redefinition of argument '%" + + ArgList[i].Name + "'"); + } + + return false; +} + + +/// ParseFunctionBody +/// ::= '{' BasicBlock+ '}' +/// ::= 'begin' BasicBlock+ 'end' // FIXME: remove in LLVM 3.0 +/// +bool LLParser::ParseFunctionBody(Function &Fn) { + if (Lex.getKind() != lltok::lbrace && Lex.getKind() != lltok::kw_begin) + return TokError("expected '{' in function body"); + Lex.Lex(); // eat the {. + + PerFunctionState PFS(*this, Fn); + + while (Lex.getKind() != lltok::rbrace && Lex.getKind() != lltok::kw_end) + if (ParseBasicBlock(PFS)) return true; + + // Eat the }. + Lex.Lex(); + + // Verify function is ok. + return PFS.VerifyFunctionComplete(); +} + +/// ParseBasicBlock +/// ::= LabelStr? Instruction* +bool LLParser::ParseBasicBlock(PerFunctionState &PFS) { + // If this basic block starts out with a name, remember it. + std::string Name; + LocTy NameLoc = Lex.getLoc(); + if (Lex.getKind() == lltok::LabelStr) { + Name = Lex.getStrVal(); + Lex.Lex(); + } + + BasicBlock *BB = PFS.DefineBB(Name, NameLoc); + if (BB == 0) return true; + + std::string NameStr; + + // Parse the instructions in this block until we get a terminator. + Instruction *Inst; + do { + // This instruction may have three possibilities for a name: a) none + // specified, b) name specified "%foo =", c) number specified: "%4 =". + LocTy NameLoc = Lex.getLoc(); + int NameID = -1; + NameStr = ""; + + if (Lex.getKind() == lltok::LocalVarID) { + NameID = Lex.getUIntVal(); + Lex.Lex(); + if (ParseToken(lltok::equal, "expected '=' after instruction id")) + return true; + } else if (Lex.getKind() == lltok::LocalVar || + // FIXME: REMOVE IN LLVM 3.0 + Lex.getKind() == lltok::StringConstant) { + NameStr = Lex.getStrVal(); + Lex.Lex(); + if (ParseToken(lltok::equal, "expected '=' after instruction name")) + return true; + } + + if (ParseInstruction(Inst, BB, PFS)) return true; + + BB->getInstList().push_back(Inst); + + // Set the name on the instruction. + if (PFS.SetInstName(NameID, NameStr, NameLoc, Inst)) return true; + } while (!isa<TerminatorInst>(Inst)); + + return false; +} + +//===----------------------------------------------------------------------===// +// Instruction Parsing. +//===----------------------------------------------------------------------===// + +/// ParseInstruction - Parse one of the many different instructions. +/// +bool LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB, + PerFunctionState &PFS) { + lltok::Kind Token = Lex.getKind(); + if (Token == lltok::Eof) + return TokError("found end of file when expecting more instructions"); + LocTy Loc = Lex.getLoc(); + unsigned KeywordVal = Lex.getUIntVal(); + Lex.Lex(); // Eat the keyword. + + switch (Token) { + default: return Error(Loc, "expected instruction opcode"); + // Terminator Instructions. + case lltok::kw_unwind: Inst = new UnwindInst(); return false; + case lltok::kw_unreachable: Inst = new UnreachableInst(); return false; + case lltok::kw_ret: return ParseRet(Inst, BB, PFS); + case lltok::kw_br: return ParseBr(Inst, PFS); + case lltok::kw_switch: return ParseSwitch(Inst, PFS); + case lltok::kw_invoke: return ParseInvoke(Inst, PFS); + // Binary Operators. + case lltok::kw_add: + case lltok::kw_sub: + case lltok::kw_mul: return ParseArithmetic(Inst, PFS, KeywordVal, 0); + + case lltok::kw_udiv: + case lltok::kw_sdiv: + case lltok::kw_urem: + case lltok::kw_srem: return ParseArithmetic(Inst, PFS, KeywordVal, 1); + case lltok::kw_fdiv: + case lltok::kw_frem: return ParseArithmetic(Inst, PFS, KeywordVal, 2); + case lltok::kw_shl: + case lltok::kw_lshr: + case lltok::kw_ashr: + case lltok::kw_and: + case lltok::kw_or: + case lltok::kw_xor: return ParseLogical(Inst, PFS, KeywordVal); + case lltok::kw_icmp: + case lltok::kw_fcmp: + case lltok::kw_vicmp: + case lltok::kw_vfcmp: return ParseCompare(Inst, PFS, KeywordVal); + // Casts. + case lltok::kw_trunc: + case lltok::kw_zext: + case lltok::kw_sext: + case lltok::kw_fptrunc: + case lltok::kw_fpext: + case lltok::kw_bitcast: + case lltok::kw_uitofp: + case lltok::kw_sitofp: + case lltok::kw_fptoui: + case lltok::kw_fptosi: + case lltok::kw_inttoptr: + case lltok::kw_ptrtoint: return ParseCast(Inst, PFS, KeywordVal); + // Other. + case lltok::kw_select: return ParseSelect(Inst, PFS); + case lltok::kw_va_arg: return ParseVA_Arg(Inst, PFS); + case lltok::kw_extractelement: return ParseExtractElement(Inst, PFS); + case lltok::kw_insertelement: return ParseInsertElement(Inst, PFS); + case lltok::kw_shufflevector: return ParseShuffleVector(Inst, PFS); + case lltok::kw_phi: return ParsePHI(Inst, PFS); + case lltok::kw_call: return ParseCall(Inst, PFS, false); + case lltok::kw_tail: return ParseCall(Inst, PFS, true); + // Memory. + case lltok::kw_alloca: + case lltok::kw_malloc: return ParseAlloc(Inst, PFS, KeywordVal); + case lltok::kw_free: return ParseFree(Inst, PFS); + case lltok::kw_load: return ParseLoad(Inst, PFS, false); + case lltok::kw_store: return ParseStore(Inst, PFS, false); + case lltok::kw_volatile: + if (EatIfPresent(lltok::kw_load)) + return ParseLoad(Inst, PFS, true); + else if (EatIfPresent(lltok::kw_store)) + return ParseStore(Inst, PFS, true); + else + return TokError("expected 'load' or 'store'"); + case lltok::kw_getresult: return ParseGetResult(Inst, PFS); + case lltok::kw_getelementptr: return ParseGetElementPtr(Inst, PFS); + case lltok::kw_extractvalue: return ParseExtractValue(Inst, PFS); + case lltok::kw_insertvalue: return ParseInsertValue(Inst, PFS); + } +} + +/// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind. +bool LLParser::ParseCmpPredicate(unsigned &P, unsigned Opc) { + // FIXME: REMOVE vicmp/vfcmp! + if (Opc == Instruction::FCmp || Opc == Instruction::VFCmp) { + switch (Lex.getKind()) { + default: TokError("expected fcmp predicate (e.g. 'oeq')"); + case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break; + case lltok::kw_one: P = CmpInst::FCMP_ONE; break; + case lltok::kw_olt: P = CmpInst::FCMP_OLT; break; + case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break; + case lltok::kw_ole: P = CmpInst::FCMP_OLE; break; + case lltok::kw_oge: P = CmpInst::FCMP_OGE; break; + case lltok::kw_ord: P = CmpInst::FCMP_ORD; break; + case lltok::kw_uno: P = CmpInst::FCMP_UNO; break; + case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break; + case lltok::kw_une: P = CmpInst::FCMP_UNE; break; + case lltok::kw_ult: P = CmpInst::FCMP_ULT; break; + case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break; + case lltok::kw_ule: P = CmpInst::FCMP_ULE; break; + case lltok::kw_uge: P = CmpInst::FCMP_UGE; break; + case lltok::kw_true: P = CmpInst::FCMP_TRUE; break; + case lltok::kw_false: P = CmpInst::FCMP_FALSE; break; + } + } else { + switch (Lex.getKind()) { + default: TokError("expected icmp predicate (e.g. 'eq')"); + case lltok::kw_eq: P = CmpInst::ICMP_EQ; break; + case lltok::kw_ne: P = CmpInst::ICMP_NE; break; + case lltok::kw_slt: P = CmpInst::ICMP_SLT; break; + case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break; + case lltok::kw_sle: P = CmpInst::ICMP_SLE; break; + case lltok::kw_sge: P = CmpInst::ICMP_SGE; break; + case lltok::kw_ult: P = CmpInst::ICMP_ULT; break; + case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break; + case lltok::kw_ule: P = CmpInst::ICMP_ULE; break; + case lltok::kw_uge: P = CmpInst::ICMP_UGE; break; + } + } + Lex.Lex(); + return false; +} + +//===----------------------------------------------------------------------===// +// Terminator Instructions. +//===----------------------------------------------------------------------===// + +/// ParseRet - Parse a return instruction. +/// ::= 'ret' void +/// ::= 'ret' TypeAndValue +/// ::= 'ret' TypeAndValue (',' TypeAndValue)+ [[obsolete: LLVM 3.0]] +bool LLParser::ParseRet(Instruction *&Inst, BasicBlock *BB, + PerFunctionState &PFS) { + PATypeHolder Ty(Type::VoidTy); + if (ParseType(Ty, true /*void allowed*/)) return true; + + if (Ty == Type::VoidTy) { + Inst = ReturnInst::Create(); + return false; + } + + Value *RV; + if (ParseValue(Ty, RV, PFS)) return true; + + // The normal case is one return value. + if (Lex.getKind() == lltok::comma) { + // FIXME: LLVM 3.0 remove MRV support for 'ret i32 1, i32 2', requiring use + // of 'ret {i32,i32} {i32 1, i32 2}' + SmallVector<Value*, 8> RVs; + RVs.push_back(RV); + + while (EatIfPresent(lltok::comma)) { + if (ParseTypeAndValue(RV, PFS)) return true; + RVs.push_back(RV); + } + + RV = UndefValue::get(PFS.getFunction().getReturnType()); + for (unsigned i = 0, e = RVs.size(); i != e; ++i) { + Instruction *I = InsertValueInst::Create(RV, RVs[i], i, "mrv"); + BB->getInstList().push_back(I); + RV = I; + } + } + Inst = ReturnInst::Create(RV); + return false; +} + + +/// ParseBr +/// ::= 'br' TypeAndValue +/// ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue +bool LLParser::ParseBr(Instruction *&Inst, PerFunctionState &PFS) { + LocTy Loc, Loc2; + Value *Op0, *Op1, *Op2; + if (ParseTypeAndValue(Op0, Loc, PFS)) return true; + + if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) { + Inst = BranchInst::Create(BB); + return false; + } + + if (Op0->getType() != Type::Int1Ty) + return Error(Loc, "branch condition must have 'i1' type"); + + if (ParseToken(lltok::comma, "expected ',' after branch condition") || + ParseTypeAndValue(Op1, Loc, PFS) || + ParseToken(lltok::comma, "expected ',' after true destination") || + ParseTypeAndValue(Op2, Loc2, PFS)) + return true; + + if (!isa<BasicBlock>(Op1)) + return Error(Loc, "true destination of branch must be a basic block"); + if (!isa<BasicBlock>(Op2)) + return Error(Loc2, "true destination of branch must be a basic block"); + + Inst = BranchInst::Create(cast<BasicBlock>(Op1), cast<BasicBlock>(Op2), Op0); + return false; +} + +/// ParseSwitch +/// Instruction +/// ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']' +/// JumpTable +/// ::= (TypeAndValue ',' TypeAndValue)* +bool LLParser::ParseSwitch(Instruction *&Inst, PerFunctionState &PFS) { + LocTy CondLoc, BBLoc; + Value *Cond, *DefaultBB; + if (ParseTypeAndValue(Cond, CondLoc, PFS) || + ParseToken(lltok::comma, "expected ',' after switch condition") || + ParseTypeAndValue(DefaultBB, BBLoc, PFS) || + ParseToken(lltok::lsquare, "expected '[' with switch table")) + return true; + + if (!isa<IntegerType>(Cond->getType())) + return Error(CondLoc, "switch condition must have integer type"); + if (!isa<BasicBlock>(DefaultBB)) + return Error(BBLoc, "default destination must be a basic block"); + + // Parse the jump table pairs. + SmallPtrSet<Value*, 32> SeenCases; + SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table; + while (Lex.getKind() != lltok::rsquare) { + Value *Constant, *DestBB; + + if (ParseTypeAndValue(Constant, CondLoc, PFS) || + ParseToken(lltok::comma, "expected ',' after case value") || + ParseTypeAndValue(DestBB, BBLoc, PFS)) + return true; + + if (!SeenCases.insert(Constant)) + return Error(CondLoc, "duplicate case value in switch"); + if (!isa<ConstantInt>(Constant)) + return Error(CondLoc, "case value is not a constant integer"); + if (!isa<BasicBlock>(DestBB)) + return Error(BBLoc, "case destination is not a basic block"); + + Table.push_back(std::make_pair(cast<ConstantInt>(Constant), + cast<BasicBlock>(DestBB))); + } + + Lex.Lex(); // Eat the ']'. + + SwitchInst *SI = SwitchInst::Create(Cond, cast<BasicBlock>(DefaultBB), + Table.size()); + for (unsigned i = 0, e = Table.size(); i != e; ++i) + SI->addCase(Table[i].first, Table[i].second); + Inst = SI; + return false; +} + +/// ParseInvoke +/// ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList +/// OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue +bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) { + LocTy CallLoc = Lex.getLoc(); + unsigned CC, RetAttrs, FnAttrs; + PATypeHolder RetType(Type::VoidTy); + LocTy RetTypeLoc; + ValID CalleeID; + SmallVector<ParamInfo, 16> ArgList; + + Value *NormalBB, *UnwindBB; + if (ParseOptionalCallingConv(CC) || + ParseOptionalAttrs(RetAttrs, 1) || + ParseType(RetType, RetTypeLoc, true /*void allowed*/) || + ParseValID(CalleeID) || + ParseParameterList(ArgList, PFS) || + ParseOptionalAttrs(FnAttrs, 2) || + ParseToken(lltok::kw_to, "expected 'to' in invoke") || + ParseTypeAndValue(NormalBB, PFS) || + ParseToken(lltok::kw_unwind, "expected 'unwind' in invoke") || + ParseTypeAndValue(UnwindBB, PFS)) + return true; + + if (!isa<BasicBlock>(NormalBB)) + return Error(CallLoc, "normal destination is not a basic block"); + if (!isa<BasicBlock>(UnwindBB)) + return Error(CallLoc, "unwind destination is not a basic block"); + + // If RetType is a non-function pointer type, then this is the short syntax + // for the call, which means that RetType is just the return type. Infer the + // rest of the function argument types from the arguments that are present. + const PointerType *PFTy = 0; + const FunctionType *Ty = 0; + if (!(PFTy = dyn_cast<PointerType>(RetType)) || + !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) { + // Pull out the types of all of the arguments... + std::vector<const Type*> ParamTypes; + for (unsigned i = 0, e = ArgList.size(); i != e; ++i) + ParamTypes.push_back(ArgList[i].V->getType()); + + if (!FunctionType::isValidReturnType(RetType)) + return Error(RetTypeLoc, "Invalid result type for LLVM function"); + + Ty = FunctionType::get(RetType, ParamTypes, false); + PFTy = PointerType::getUnqual(Ty); + } + + // Look up the callee. + Value *Callee; + if (ConvertValIDToValue(PFTy, CalleeID, Callee, PFS)) return true; + + // FIXME: In LLVM 3.0, stop accepting zext, sext and inreg as optional + // function attributes. + unsigned ObsoleteFuncAttrs = Attribute::ZExt|Attribute::SExt|Attribute::InReg; + if (FnAttrs & ObsoleteFuncAttrs) { + RetAttrs |= FnAttrs & ObsoleteFuncAttrs; + FnAttrs &= ~ObsoleteFuncAttrs; + } + + // Set up the Attributes for the function. + SmallVector<AttributeWithIndex, 8> Attrs; + if (RetAttrs != Attribute::None) + Attrs.push_back(AttributeWithIndex::get(0, RetAttrs)); + + SmallVector<Value*, 8> Args; + + // Loop through FunctionType's arguments and ensure they are specified + // correctly. Also, gather any parameter attributes. + FunctionType::param_iterator I = Ty->param_begin(); + FunctionType::param_iterator E = Ty->param_end(); + for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { + const Type *ExpectedTy = 0; + if (I != E) { + ExpectedTy = *I++; + } else if (!Ty->isVarArg()) { + return Error(ArgList[i].Loc, "too many arguments specified"); + } + + if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) + return Error(ArgList[i].Loc, "argument is not of expected type '" + + ExpectedTy->getDescription() + "'"); + Args.push_back(ArgList[i].V); + if (ArgList[i].Attrs != Attribute::None) + Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs)); + } + + if (I != E) + return Error(CallLoc, "not enough parameters specified for call"); + + if (FnAttrs != Attribute::None) + Attrs.push_back(AttributeWithIndex::get(~0, FnAttrs)); + + // Finish off the Attributes and check them + AttrListPtr PAL = AttrListPtr::get(Attrs.begin(), Attrs.end()); + + InvokeInst *II = InvokeInst::Create(Callee, cast<BasicBlock>(NormalBB), + cast<BasicBlock>(UnwindBB), + Args.begin(), Args.end()); + II->setCallingConv(CC); + II->setAttributes(PAL); + Inst = II; + return false; +} + + + +//===----------------------------------------------------------------------===// +// Binary Operators. +//===----------------------------------------------------------------------===// + +/// ParseArithmetic +/// ::= ArithmeticOps TypeAndValue ',' Value +/// +/// If OperandType is 0, then any FP or integer operand is allowed. If it is 1, +/// then any integer operand is allowed, if it is 2, any fp operand is allowed. +bool LLParser::ParseArithmetic(Instruction *&Inst, PerFunctionState &PFS, + unsigned Opc, unsigned OperandType) { + LocTy Loc; Value *LHS, *RHS; + if (ParseTypeAndValue(LHS, Loc, PFS) || + ParseToken(lltok::comma, "expected ',' in arithmetic operation") || + ParseValue(LHS->getType(), RHS, PFS)) + return true; + + bool Valid; + switch (OperandType) { + default: assert(0 && "Unknown operand type!"); + case 0: // int or FP. + Valid = LHS->getType()->isIntOrIntVector() || + LHS->getType()->isFPOrFPVector(); + break; + case 1: Valid = LHS->getType()->isIntOrIntVector(); break; + case 2: Valid = LHS->getType()->isFPOrFPVector(); break; + } + + if (!Valid) + return Error(Loc, "invalid operand type for instruction"); + + Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); + return false; +} + +/// ParseLogical +/// ::= ArithmeticOps TypeAndValue ',' Value { +bool LLParser::ParseLogical(Instruction *&Inst, PerFunctionState &PFS, + unsigned Opc) { + LocTy Loc; Value *LHS, *RHS; + if (ParseTypeAndValue(LHS, Loc, PFS) || + ParseToken(lltok::comma, "expected ',' in logical operation") || + ParseValue(LHS->getType(), RHS, PFS)) + return true; + + if (!LHS->getType()->isIntOrIntVector()) + return Error(Loc,"instruction requires integer or integer vector operands"); + + Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); + return false; +} + + +/// ParseCompare +/// ::= 'icmp' IPredicates TypeAndValue ',' Value +/// ::= 'fcmp' FPredicates TypeAndValue ',' Value +/// ::= 'vicmp' IPredicates TypeAndValue ',' Value +/// ::= 'vfcmp' FPredicates TypeAndValue ',' Value +bool LLParser::ParseCompare(Instruction *&Inst, PerFunctionState &PFS, + unsigned Opc) { + // Parse the integer/fp comparison predicate. + LocTy Loc; + unsigned Pred; + Value *LHS, *RHS; + if (ParseCmpPredicate(Pred, Opc) || + ParseTypeAndValue(LHS, Loc, PFS) || + ParseToken(lltok::comma, "expected ',' after compare value") || + ParseValue(LHS->getType(), RHS, PFS)) + return true; + + if (Opc == Instruction::FCmp) { + if (!LHS->getType()->isFPOrFPVector()) + return Error(Loc, "fcmp requires floating point operands"); + Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS); + } else if (Opc == Instruction::ICmp) { + if (!LHS->getType()->isIntOrIntVector() && + !isa<PointerType>(LHS->getType())) + return Error(Loc, "icmp requires integer operands"); + Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS); + } else if (Opc == Instruction::VFCmp) { + if (!LHS->getType()->isFPOrFPVector() || !isa<VectorType>(LHS->getType())) + return Error(Loc, "vfcmp requires vector floating point operands"); + Inst = new VFCmpInst(CmpInst::Predicate(Pred), LHS, RHS); + } else if (Opc == Instruction::VICmp) { + if (!LHS->getType()->isIntOrIntVector() || !isa<VectorType>(LHS->getType())) + return Error(Loc, "vicmp requires vector floating point operands"); + Inst = new VICmpInst(CmpInst::Predicate(Pred), LHS, RHS); + } + return false; +} + +//===----------------------------------------------------------------------===// +// Other Instructions. +//===----------------------------------------------------------------------===// + + +/// ParseCast +/// ::= CastOpc TypeAndValue 'to' Type +bool LLParser::ParseCast(Instruction *&Inst, PerFunctionState &PFS, + unsigned Opc) { + LocTy Loc; Value *Op; + PATypeHolder DestTy(Type::VoidTy); + if (ParseTypeAndValue(Op, Loc, PFS) || + ParseToken(lltok::kw_to, "expected 'to' after cast value") || + ParseType(DestTy)) + return true; + + if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) { + CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy); + return Error(Loc, "invalid cast opcode for cast from '" + + Op->getType()->getDescription() + "' to '" + + DestTy->getDescription() + "'"); + } + Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy); + return false; +} + +/// ParseSelect +/// ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue +bool LLParser::ParseSelect(Instruction *&Inst, PerFunctionState &PFS) { + LocTy Loc; + Value *Op0, *Op1, *Op2; + if (ParseTypeAndValue(Op0, Loc, PFS) || + ParseToken(lltok::comma, "expected ',' after select condition") || + ParseTypeAndValue(Op1, PFS) || + ParseToken(lltok::comma, "expected ',' after select value") || + ParseTypeAndValue(Op2, PFS)) + return true; + + if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2)) + return Error(Loc, Reason); + + Inst = SelectInst::Create(Op0, Op1, Op2); + return false; +} + +/// ParseVA_Arg +/// ::= 'va_arg' TypeAndValue ',' Type +bool LLParser::ParseVA_Arg(Instruction *&Inst, PerFunctionState &PFS) { + Value *Op; + PATypeHolder EltTy(Type::VoidTy); + LocTy TypeLoc; + if (ParseTypeAndValue(Op, PFS) || + ParseToken(lltok::comma, "expected ',' after vaarg operand") || + ParseType(EltTy, TypeLoc)) + return true; + + if (!EltTy->isFirstClassType()) + return Error(TypeLoc, "va_arg requires operand with first class type"); + + Inst = new VAArgInst(Op, EltTy); + return false; +} + +/// ParseExtractElement +/// ::= 'extractelement' TypeAndValue ',' TypeAndValue +bool LLParser::ParseExtractElement(Instruction *&Inst, PerFunctionState &PFS) { + LocTy Loc; + Value *Op0, *Op1; + if (ParseTypeAndValue(Op0, Loc, PFS) || + ParseToken(lltok::comma, "expected ',' after extract value") || + ParseTypeAndValue(Op1, PFS)) + return true; + + if (!ExtractElementInst::isValidOperands(Op0, Op1)) + return Error(Loc, "invalid extractelement operands"); + + Inst = new ExtractElementInst(Op0, Op1); + return false; +} + +/// ParseInsertElement +/// ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue +bool LLParser::ParseInsertElement(Instruction *&Inst, PerFunctionState &PFS) { + LocTy Loc; + Value *Op0, *Op1, *Op2; + if (ParseTypeAndValue(Op0, Loc, PFS) || + ParseToken(lltok::comma, "expected ',' after insertelement value") || + ParseTypeAndValue(Op1, PFS) || + ParseToken(lltok::comma, "expected ',' after insertelement value") || + ParseTypeAndValue(Op2, PFS)) + return true; + + if (!InsertElementInst::isValidOperands(Op0, Op1, Op2)) + return Error(Loc, "invalid extractelement operands"); + + Inst = InsertElementInst::Create(Op0, Op1, Op2); + return false; +} + +/// ParseShuffleVector +/// ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue +bool LLParser::ParseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) { + LocTy Loc; + Value *Op0, *Op1, *Op2; + if (ParseTypeAndValue(Op0, Loc, PFS) || + ParseToken(lltok::comma, "expected ',' after shuffle mask") || + ParseTypeAndValue(Op1, PFS) || + ParseToken(lltok::comma, "expected ',' after shuffle value") || + ParseTypeAndValue(Op2, PFS)) + return true; + + if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2)) + return Error(Loc, "invalid extractelement operands"); + + Inst = new ShuffleVectorInst(Op0, Op1, Op2); + return false; +} + +/// ParsePHI +/// ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Valueß ']')* +bool LLParser::ParsePHI(Instruction *&Inst, PerFunctionState &PFS) { + PATypeHolder Ty(Type::VoidTy); + Value *Op0, *Op1; + LocTy TypeLoc = Lex.getLoc(); + + if (ParseType(Ty) || + ParseToken(lltok::lsquare, "expected '[' in phi value list") || + ParseValue(Ty, Op0, PFS) || + ParseToken(lltok::comma, "expected ',' after insertelement value") || + ParseValue(Type::LabelTy, Op1, PFS) || + ParseToken(lltok::rsquare, "expected ']' in phi value list")) + return true; + + SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals; + while (1) { + PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1))); + + if (!EatIfPresent(lltok::comma)) + break; + + if (ParseToken(lltok::lsquare, "expected '[' in phi value list") || + ParseValue(Ty, Op0, PFS) || + ParseToken(lltok::comma, "expected ',' after insertelement value") || + ParseValue(Type::LabelTy, Op1, PFS) || + ParseToken(lltok::rsquare, "expected ']' in phi value list")) + return true; + } + + if (!Ty->isFirstClassType()) + return Error(TypeLoc, "phi node must have first class type"); + + PHINode *PN = PHINode::Create(Ty); + PN->reserveOperandSpace(PHIVals.size()); + for (unsigned i = 0, e = PHIVals.size(); i != e; ++i) + PN->addIncoming(PHIVals[i].first, PHIVals[i].second); + Inst = PN; + return false; +} + +/// ParseCall +/// ::= 'tail'? 'call' OptionalCallingConv OptionalAttrs Type Value +/// ParameterList OptionalAttrs +bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS, + bool isTail) { + unsigned CC, RetAttrs, FnAttrs; + PATypeHolder RetType(Type::VoidTy); + LocTy RetTypeLoc; + ValID CalleeID; + SmallVector<ParamInfo, 16> ArgList; + LocTy CallLoc = Lex.getLoc(); + + if ((isTail && ParseToken(lltok::kw_call, "expected 'tail call'")) || + ParseOptionalCallingConv(CC) || + ParseOptionalAttrs(RetAttrs, 1) || + ParseType(RetType, RetTypeLoc, true /*void allowed*/) || + ParseValID(CalleeID) || + ParseParameterList(ArgList, PFS) || + ParseOptionalAttrs(FnAttrs, 2)) + return true; + + // If RetType is a non-function pointer type, then this is the short syntax + // for the call, which means that RetType is just the return type. Infer the + // rest of the function argument types from the arguments that are present. + const PointerType *PFTy = 0; + const FunctionType *Ty = 0; + if (!(PFTy = dyn_cast<PointerType>(RetType)) || + !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) { + // Pull out the types of all of the arguments... + std::vector<const Type*> ParamTypes; + for (unsigned i = 0, e = ArgList.size(); i != e; ++i) + ParamTypes.push_back(ArgList[i].V->getType()); + + if (!FunctionType::isValidReturnType(RetType)) + return Error(RetTypeLoc, "Invalid result type for LLVM function"); + + Ty = FunctionType::get(RetType, ParamTypes, false); + PFTy = PointerType::getUnqual(Ty); + } + + // Look up the callee. + Value *Callee; + if (ConvertValIDToValue(PFTy, CalleeID, Callee, PFS)) return true; + + // FIXME: In LLVM 3.0, stop accepting zext, sext and inreg as optional + // function attributes. + unsigned ObsoleteFuncAttrs = Attribute::ZExt|Attribute::SExt|Attribute::InReg; + if (FnAttrs & ObsoleteFuncAttrs) { + RetAttrs |= FnAttrs & ObsoleteFuncAttrs; + FnAttrs &= ~ObsoleteFuncAttrs; + } + + // Set up the Attributes for the function. + SmallVector<AttributeWithIndex, 8> Attrs; + if (RetAttrs != Attribute::None) + Attrs.push_back(AttributeWithIndex::get(0, RetAttrs)); + + SmallVector<Value*, 8> Args; + + // Loop through FunctionType's arguments and ensure they are specified + // correctly. Also, gather any parameter attributes. + FunctionType::param_iterator I = Ty->param_begin(); + FunctionType::param_iterator E = Ty->param_end(); + for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { + const Type *ExpectedTy = 0; + if (I != E) { + ExpectedTy = *I++; + } else if (!Ty->isVarArg()) { + return Error(ArgList[i].Loc, "too many arguments specified"); + } + + if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) + return Error(ArgList[i].Loc, "argument is not of expected type '" + + ExpectedTy->getDescription() + "'"); + Args.push_back(ArgList[i].V); + if (ArgList[i].Attrs != Attribute::None) + Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs)); + } + + if (I != E) + return Error(CallLoc, "not enough parameters specified for call"); + + if (FnAttrs != Attribute::None) + Attrs.push_back(AttributeWithIndex::get(~0, FnAttrs)); + + // Finish off the Attributes and check them + AttrListPtr PAL = AttrListPtr::get(Attrs.begin(), Attrs.end()); + + CallInst *CI = CallInst::Create(Callee, Args.begin(), Args.end()); + CI->setTailCall(isTail); + CI->setCallingConv(CC); + CI->setAttributes(PAL); + Inst = CI; + return false; +} + +//===----------------------------------------------------------------------===// +// Memory Instructions. +//===----------------------------------------------------------------------===// + +/// ParseAlloc +/// ::= 'malloc' Type (',' TypeAndValue)? (',' OptionalAlignment)? +/// ::= 'alloca' Type (',' TypeAndValue)? (',' OptionalAlignment)? +bool LLParser::ParseAlloc(Instruction *&Inst, PerFunctionState &PFS, + unsigned Opc) { + PATypeHolder Ty(Type::VoidTy); + Value *Size = 0; + LocTy SizeLoc = 0; + unsigned Alignment = 0; + if (ParseType(Ty)) return true; + + if (EatIfPresent(lltok::comma)) { + if (Lex.getKind() == lltok::kw_align) { + if (ParseOptionalAlignment(Alignment)) return true; + } else if (ParseTypeAndValue(Size, SizeLoc, PFS) || + ParseOptionalCommaAlignment(Alignment)) { + return true; + } + } + + if (Size && Size->getType() != Type::Int32Ty) + return Error(SizeLoc, "element count must be i32"); + + if (Opc == Instruction::Malloc) + Inst = new MallocInst(Ty, Size, Alignment); + else + Inst = new AllocaInst(Ty, Size, Alignment); + return false; +} + +/// ParseFree +/// ::= 'free' TypeAndValue +bool LLParser::ParseFree(Instruction *&Inst, PerFunctionState &PFS) { + Value *Val; LocTy Loc; + if (ParseTypeAndValue(Val, Loc, PFS)) return true; + if (!isa<PointerType>(Val->getType())) + return Error(Loc, "operand to free must be a pointer"); + Inst = new FreeInst(Val); + return false; +} + +/// ParseLoad +/// ::= 'volatile'? 'load' TypeAndValue (',' 'align' uint)? +bool LLParser::ParseLoad(Instruction *&Inst, PerFunctionState &PFS, + bool isVolatile) { + Value *Val; LocTy Loc; + unsigned Alignment; + if (ParseTypeAndValue(Val, Loc, PFS) || + ParseOptionalCommaAlignment(Alignment)) + return true; + + if (!isa<PointerType>(Val->getType()) || + !cast<PointerType>(Val->getType())->getElementType()->isFirstClassType()) + return Error(Loc, "load operand must be a pointer to a first class type"); + + Inst = new LoadInst(Val, "", isVolatile, Alignment); + return false; +} + +/// ParseStore +/// ::= 'volatile'? 'store' TypeAndValue ',' TypeAndValue (',' 'align' uint)? +bool LLParser::ParseStore(Instruction *&Inst, PerFunctionState &PFS, + bool isVolatile) { + Value *Val, *Ptr; LocTy Loc, PtrLoc; + unsigned Alignment; + if (ParseTypeAndValue(Val, Loc, PFS) || + ParseToken(lltok::comma, "expected ',' after store operand") || + ParseTypeAndValue(Ptr, PtrLoc, PFS) || + ParseOptionalCommaAlignment(Alignment)) + return true; + + if (!isa<PointerType>(Ptr->getType())) + return Error(PtrLoc, "store operand must be a pointer"); + if (!Val->getType()->isFirstClassType()) + return Error(Loc, "store operand must be a first class value"); + if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType()) + return Error(Loc, "stored value and pointer type do not match"); + + Inst = new StoreInst(Val, Ptr, isVolatile, Alignment); + return false; +} + +/// ParseGetResult +/// ::= 'getresult' TypeAndValue ',' uint +/// FIXME: Remove support for getresult in LLVM 3.0 +bool LLParser::ParseGetResult(Instruction *&Inst, PerFunctionState &PFS) { + Value *Val; LocTy ValLoc, EltLoc; + unsigned Element; + if (ParseTypeAndValue(Val, ValLoc, PFS) || + ParseToken(lltok::comma, "expected ',' after getresult operand") || + ParseUInt32(Element, EltLoc)) + return true; + + if (!isa<StructType>(Val->getType()) && !isa<ArrayType>(Val->getType())) + return Error(ValLoc, "getresult inst requires an aggregate operand"); + if (!ExtractValueInst::getIndexedType(Val->getType(), Element)) + return Error(EltLoc, "invalid getresult index for value"); + Inst = ExtractValueInst::Create(Val, Element); + return false; +} + +/// ParseGetElementPtr +/// ::= 'getelementptr' TypeAndValue (',' TypeAndValue)* +bool LLParser::ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) { + Value *Ptr, *Val; LocTy Loc, EltLoc; + if (ParseTypeAndValue(Ptr, Loc, PFS)) return true; + + if (!isa<PointerType>(Ptr->getType())) + return Error(Loc, "base of getelementptr must be a pointer"); + + SmallVector<Value*, 16> Indices; + while (EatIfPresent(lltok::comma)) { + if (ParseTypeAndValue(Val, EltLoc, PFS)) return true; + if (!isa<IntegerType>(Val->getType())) + return Error(EltLoc, "getelementptr index must be an integer"); + Indices.push_back(Val); + } + + if (!GetElementPtrInst::getIndexedType(Ptr->getType(), + Indices.begin(), Indices.end())) + return Error(Loc, "invalid getelementptr indices"); + Inst = GetElementPtrInst::Create(Ptr, Indices.begin(), Indices.end()); + return false; +} + +/// ParseExtractValue +/// ::= 'extractvalue' TypeAndValue (',' uint32)+ +bool LLParser::ParseExtractValue(Instruction *&Inst, PerFunctionState &PFS) { + Value *Val; LocTy Loc; + SmallVector<unsigned, 4> Indices; + if (ParseTypeAndValue(Val, Loc, PFS) || + ParseIndexList(Indices)) + return true; + + if (!isa<StructType>(Val->getType()) && !isa<ArrayType>(Val->getType())) + return Error(Loc, "extractvalue operand must be array or struct"); + + if (!ExtractValueInst::getIndexedType(Val->getType(), Indices.begin(), + Indices.end())) + return Error(Loc, "invalid indices for extractvalue"); + Inst = ExtractValueInst::Create(Val, Indices.begin(), Indices.end()); + return false; +} + +/// ParseInsertValue +/// ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+ +bool LLParser::ParseInsertValue(Instruction *&Inst, PerFunctionState &PFS) { + Value *Val0, *Val1; LocTy Loc0, Loc1; + SmallVector<unsigned, 4> Indices; + if (ParseTypeAndValue(Val0, Loc0, PFS) || + ParseToken(lltok::comma, "expected comma after insertvalue operand") || + ParseTypeAndValue(Val1, Loc1, PFS) || + ParseIndexList(Indices)) + return true; + + if (!isa<StructType>(Val0->getType()) && !isa<ArrayType>(Val0->getType())) + return Error(Loc0, "extractvalue operand must be array or struct"); + + if (!ExtractValueInst::getIndexedType(Val0->getType(), Indices.begin(), + Indices.end())) + return Error(Loc0, "invalid indices for insertvalue"); + Inst = InsertValueInst::Create(Val0, Val1, Indices.begin(), Indices.end()); + return false; +} + +//===----------------------------------------------------------------------===// +// Embedded metadata. +//===----------------------------------------------------------------------===// + +/// ParseMDNodeVector +/// ::= Element (',' Element)* +/// Element +/// ::= 'null' | TypeAndValue +bool LLParser::ParseMDNodeVector(SmallVectorImpl<Value*> &Elts) { + assert(Lex.getKind() == lltok::lbrace); + Lex.Lex(); + do { + Value *V; + if (Lex.getKind() == lltok::kw_null) { + Lex.Lex(); + V = 0; + } else { + Constant *C; + if (ParseGlobalTypeAndValue(C)) return true; + V = C; + } + Elts.push_back(V); + } while (EatIfPresent(lltok::comma)); + + return false; +} |