diff options
Diffstat (limited to 'lib/Analysis/ValueTracking.cpp')
-rw-r--r-- | lib/Analysis/ValueTracking.cpp | 70 |
1 files changed, 68 insertions, 2 deletions
diff --git a/lib/Analysis/ValueTracking.cpp b/lib/Analysis/ValueTracking.cpp index 1060bc5..8f18dd2 100644 --- a/lib/Analysis/ValueTracking.cpp +++ b/lib/Analysis/ValueTracking.cpp @@ -429,6 +429,29 @@ void llvm::ComputeMaskedBits(Value *V, const APInt &Mask, KnownZero |= LHSKnownZero & Mask; KnownOne |= LHSKnownOne & Mask; } + + // Are we still trying to solve for the sign bit? + if (Mask.isNegative() && !KnownZero.isNegative() && !KnownOne.isNegative()){ + OverflowingBinaryOperator *OBO = cast<OverflowingBinaryOperator>(I); + if (OBO->hasNoSignedWrap()) { + if (I->getOpcode() == Instruction::Add) { + // Adding two positive numbers can't wrap into negative + if (LHSKnownZero.isNegative() && KnownZero2.isNegative()) + KnownZero |= APInt::getSignBit(BitWidth); + // and adding two negative numbers can't wrap into positive. + else if (LHSKnownOne.isNegative() && KnownOne2.isNegative()) + KnownOne |= APInt::getSignBit(BitWidth); + } else { + // Subtracting a negative number from a positive one can't wrap + if (LHSKnownZero.isNegative() && KnownOne2.isNegative()) + KnownZero |= APInt::getSignBit(BitWidth); + // neither can subtracting a positive number from a negative one. + else if (LHSKnownOne.isNegative() && KnownZero2.isNegative()) + KnownOne |= APInt::getSignBit(BitWidth); + } + } + } + return; } case Instruction::SRem: @@ -460,6 +483,19 @@ void llvm::ComputeMaskedBits(Value *V, const APInt &Mask, assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); } } + + // The sign bit is the LHS's sign bit, except when the result of the + // remainder is zero. + if (Mask.isNegative() && KnownZero.isNonNegative()) { + APInt Mask2 = APInt::getSignBit(BitWidth); + APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0); + ComputeMaskedBits(I->getOperand(0), Mask2, LHSKnownZero, LHSKnownOne, TD, + Depth+1); + // If it's known zero, our sign bit is also zero. + if (LHSKnownZero.isNegative()) + KnownZero |= LHSKnownZero; + } + break; case Instruction::URem: { if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { @@ -597,6 +633,10 @@ void llvm::ComputeMaskedBits(Value *V, const APInt &Mask, // Otherwise take the unions of the known bit sets of the operands, // taking conservative care to avoid excessive recursion. if (Depth < MaxDepth - 1 && !KnownZero && !KnownOne) { + // Skip if every incoming value references to ourself. + if (P->hasConstantValue() == P) + break; + KnownZero = APInt::getAllOnesValue(BitWidth); KnownOne = APInt::getAllOnesValue(BitWidth); for (unsigned i = 0, e = P->getNumIncomingValues(); i != e; ++i) { @@ -684,6 +724,16 @@ bool llvm::isPowerOfTwo(Value *V, const TargetData *TD, unsigned Depth) { return isPowerOfTwo(SI->getTrueValue(), TD, Depth) && isPowerOfTwo(SI->getFalseValue(), TD, Depth); + // An exact divide or right shift can only shift off zero bits, so the result + // is a power of two only if the first operand is a power of two and not + // copying a sign bit (sdiv int_min, 2). + if (match(V, m_LShr(m_Value(), m_Value())) || + match(V, m_UDiv(m_Value(), m_Value()))) { + PossiblyExactOperator *PEO = cast<PossiblyExactOperator>(V); + if (PEO->isExact()) + return isPowerOfTwo(PEO->getOperand(0), TD, Depth); + } + return false; } @@ -720,6 +770,11 @@ bool llvm::isKnownNonZero(Value *V, const TargetData *TD, unsigned Depth) { // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined // if the lowest bit is shifted off the end. if (BitWidth && match(V, m_Shl(m_Value(X), m_Value(Y)))) { + // shl nuw can't remove any non-zero bits. + BinaryOperator *BO = cast<BinaryOperator>(V); + if (BO->hasNoUnsignedWrap()) + return isKnownNonZero(X, TD, Depth); + APInt KnownZero(BitWidth, 0); APInt KnownOne(BitWidth, 0); ComputeMaskedBits(X, APInt(BitWidth, 1), KnownZero, KnownOne, TD, Depth); @@ -729,11 +784,22 @@ bool llvm::isKnownNonZero(Value *V, const TargetData *TD, unsigned Depth) { // shr X, Y != 0 if X is negative. Note that the value of the shift is not // defined if the sign bit is shifted off the end. else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) { + // shr exact can only shift out zero bits. + BinaryOperator *BO = cast<BinaryOperator>(V); + if (BO->isExact()) + return isKnownNonZero(X, TD, Depth); + bool XKnownNonNegative, XKnownNegative; ComputeSignBit(X, XKnownNonNegative, XKnownNegative, TD, Depth); if (XKnownNegative) return true; } + // div exact can only produce a zero if the dividend is zero. + else if (match(V, m_IDiv(m_Value(X), m_Value()))) { + BinaryOperator *BO = cast<BinaryOperator>(V); + if (BO->isExact()) + return isKnownNonZero(X, TD, Depth); + } // X + Y. else if (match(V, m_Add(m_Value(X), m_Value(Y)))) { bool XKnownNonNegative, XKnownNegative; @@ -1262,7 +1328,7 @@ static Value *BuildSubAggregate(Value *From, Value* To, const Type *IndexedType, break; } } - // If we succesfully found a value for each of our subaggregates + // If we successfully found a value for each of our subaggregates if (To) return To; } @@ -1691,7 +1757,7 @@ llvm::GetUnderlyingObject(Value *V, const TargetData *TD, unsigned MaxLookup) { } else { // See if InstructionSimplify knows any relevant tricks. if (Instruction *I = dyn_cast<Instruction>(V)) - // TODO: Aquire a DominatorTree and use it. + // TODO: Acquire a DominatorTree and use it. if (Value *Simplified = SimplifyInstruction(I, TD, 0)) { V = Simplified; continue; |