diff options
Diffstat (limited to 'lib/Analysis/ScalarEvolution.cpp')
-rw-r--r-- | lib/Analysis/ScalarEvolution.cpp | 703 |
1 files changed, 349 insertions, 354 deletions
diff --git a/lib/Analysis/ScalarEvolution.cpp b/lib/Analysis/ScalarEvolution.cpp index 68aa595..5cbb5fa 100644 --- a/lib/Analysis/ScalarEvolution.cpp +++ b/lib/Analysis/ScalarEvolution.cpp @@ -14,7 +14,7 @@ // There are several aspects to this library. First is the representation of // scalar expressions, which are represented as subclasses of the SCEV class. // These classes are used to represent certain types of subexpressions that we -// can handle. These classes are reference counted, managed by the SCEVHandle +// can handle. These classes are reference counted, managed by the const SCEV* // class. We only create one SCEV of a particular shape, so pointer-comparisons // for equality are legal. // @@ -76,7 +76,6 @@ #include "llvm/Support/ConstantRange.h" #include "llvm/Support/GetElementPtrTypeIterator.h" #include "llvm/Support/InstIterator.h" -#include "llvm/Support/ManagedStatic.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/raw_ostream.h" #include "llvm/ADT/Statistic.h" @@ -133,9 +132,8 @@ bool SCEV::isOne() const { return false; } -SCEVCouldNotCompute::SCEVCouldNotCompute(const ScalarEvolution* p) : - SCEV(scCouldNotCompute, p) {} -SCEVCouldNotCompute::~SCEVCouldNotCompute() {} +SCEVCouldNotCompute::SCEVCouldNotCompute() : + SCEV(scCouldNotCompute) {} bool SCEVCouldNotCompute::isLoopInvariant(const Loop *L) const { assert(0 && "Attempt to use a SCEVCouldNotCompute object!"); @@ -152,9 +150,9 @@ bool SCEVCouldNotCompute::hasComputableLoopEvolution(const Loop *L) const { return false; } -SCEVHandle SCEVCouldNotCompute:: -replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym, - const SCEVHandle &Conc, +const SCEV* SCEVCouldNotCompute:: +replaceSymbolicValuesWithConcrete(const SCEV* Sym, + const SCEV* Conc, ScalarEvolution &SE) const { return this; } @@ -169,26 +167,20 @@ bool SCEVCouldNotCompute::classof(const SCEV *S) { // SCEVConstants - Only allow the creation of one SCEVConstant for any -// particular value. Don't use a SCEVHandle here, or else the object will +// particular value. Don't use a const SCEV* here, or else the object will // never be deleted! -static ManagedStatic<std::map<ConstantInt*, SCEVConstant*> > SCEVConstants; - -SCEVConstant::~SCEVConstant() { - SCEVConstants->erase(V); -} - -SCEVHandle ScalarEvolution::getConstant(ConstantInt *V) { - SCEVConstant *&R = (*SCEVConstants)[V]; - if (R == 0) R = new SCEVConstant(V, this); +const SCEV* ScalarEvolution::getConstant(ConstantInt *V) { + SCEVConstant *&R = SCEVConstants[V]; + if (R == 0) R = new SCEVConstant(V); return R; } -SCEVHandle ScalarEvolution::getConstant(const APInt& Val) { +const SCEV* ScalarEvolution::getConstant(const APInt& Val) { return getConstant(ConstantInt::get(Val)); } -SCEVHandle +const SCEV* ScalarEvolution::getConstant(const Type *Ty, uint64_t V, bool isSigned) { return getConstant(ConstantInt::get(cast<IntegerType>(Ty), V, isSigned)); } @@ -200,92 +192,62 @@ void SCEVConstant::print(raw_ostream &OS) const { } SCEVCastExpr::SCEVCastExpr(unsigned SCEVTy, - const SCEVHandle &op, const Type *ty, - const ScalarEvolution* p) - : SCEV(SCEVTy, p), Op(op), Ty(ty) {} - -SCEVCastExpr::~SCEVCastExpr() {} + const SCEV* op, const Type *ty) + : SCEV(SCEVTy), Op(op), Ty(ty) {} bool SCEVCastExpr::dominates(BasicBlock *BB, DominatorTree *DT) const { return Op->dominates(BB, DT); } // SCEVTruncates - Only allow the creation of one SCEVTruncateExpr for any -// particular input. Don't use a SCEVHandle here, or else the object will +// particular input. Don't use a const SCEV* here, or else the object will // never be deleted! -static ManagedStatic<std::map<std::pair<const SCEV*, const Type*>, - SCEVTruncateExpr*> > SCEVTruncates; -SCEVTruncateExpr::SCEVTruncateExpr(const SCEVHandle &op, const Type *ty, - const ScalarEvolution* p) - : SCEVCastExpr(scTruncate, op, ty, p) { +SCEVTruncateExpr::SCEVTruncateExpr(const SCEV* op, const Type *ty) + : SCEVCastExpr(scTruncate, op, ty) { assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) && (Ty->isInteger() || isa<PointerType>(Ty)) && "Cannot truncate non-integer value!"); } -SCEVTruncateExpr::~SCEVTruncateExpr() { - SCEVTruncates->erase(std::make_pair(Op, Ty)); -} void SCEVTruncateExpr::print(raw_ostream &OS) const { OS << "(trunc " << *Op->getType() << " " << *Op << " to " << *Ty << ")"; } // SCEVZeroExtends - Only allow the creation of one SCEVZeroExtendExpr for any -// particular input. Don't use a SCEVHandle here, or else the object will never +// particular input. Don't use a const SCEV* here, or else the object will never // be deleted! -static ManagedStatic<std::map<std::pair<const SCEV*, const Type*>, - SCEVZeroExtendExpr*> > SCEVZeroExtends; -SCEVZeroExtendExpr::SCEVZeroExtendExpr(const SCEVHandle &op, const Type *ty, - const ScalarEvolution* p) - : SCEVCastExpr(scZeroExtend, op, ty, p) { +SCEVZeroExtendExpr::SCEVZeroExtendExpr(const SCEV* op, const Type *ty) + : SCEVCastExpr(scZeroExtend, op, ty) { assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) && (Ty->isInteger() || isa<PointerType>(Ty)) && "Cannot zero extend non-integer value!"); } -SCEVZeroExtendExpr::~SCEVZeroExtendExpr() { - SCEVZeroExtends->erase(std::make_pair(Op, Ty)); -} - void SCEVZeroExtendExpr::print(raw_ostream &OS) const { OS << "(zext " << *Op->getType() << " " << *Op << " to " << *Ty << ")"; } // SCEVSignExtends - Only allow the creation of one SCEVSignExtendExpr for any -// particular input. Don't use a SCEVHandle here, or else the object will never +// particular input. Don't use a const SCEV* here, or else the object will never // be deleted! -static ManagedStatic<std::map<std::pair<const SCEV*, const Type*>, - SCEVSignExtendExpr*> > SCEVSignExtends; -SCEVSignExtendExpr::SCEVSignExtendExpr(const SCEVHandle &op, const Type *ty, - const ScalarEvolution* p) - : SCEVCastExpr(scSignExtend, op, ty, p) { +SCEVSignExtendExpr::SCEVSignExtendExpr(const SCEV* op, const Type *ty) + : SCEVCastExpr(scSignExtend, op, ty) { assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) && (Ty->isInteger() || isa<PointerType>(Ty)) && "Cannot sign extend non-integer value!"); } -SCEVSignExtendExpr::~SCEVSignExtendExpr() { - SCEVSignExtends->erase(std::make_pair(Op, Ty)); -} - void SCEVSignExtendExpr::print(raw_ostream &OS) const { OS << "(sext " << *Op->getType() << " " << *Op << " to " << *Ty << ")"; } // SCEVCommExprs - Only allow the creation of one SCEVCommutativeExpr for any -// particular input. Don't use a SCEVHandle here, or else the object will never +// particular input. Don't use a const SCEV* here, or else the object will never // be deleted! -static ManagedStatic<std::map<std::pair<unsigned, std::vector<const SCEV*> >, - SCEVCommutativeExpr*> > SCEVCommExprs; - -SCEVCommutativeExpr::~SCEVCommutativeExpr() { - std::vector<const SCEV*> SCEVOps(Operands.begin(), Operands.end()); - SCEVCommExprs->erase(std::make_pair(getSCEVType(), SCEVOps)); -} void SCEVCommutativeExpr::print(raw_ostream &OS) const { assert(Operands.size() > 1 && "This plus expr shouldn't exist!"); @@ -296,15 +258,15 @@ void SCEVCommutativeExpr::print(raw_ostream &OS) const { OS << ")"; } -SCEVHandle SCEVCommutativeExpr:: -replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym, - const SCEVHandle &Conc, +const SCEV* SCEVCommutativeExpr:: +replaceSymbolicValuesWithConcrete(const SCEV* Sym, + const SCEV* Conc, ScalarEvolution &SE) const { for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { - SCEVHandle H = + const SCEV* H = getOperand(i)->replaceSymbolicValuesWithConcrete(Sym, Conc, SE); if (H != getOperand(i)) { - SmallVector<SCEVHandle, 8> NewOps; + SmallVector<const SCEV*, 8> NewOps; NewOps.reserve(getNumOperands()); for (unsigned j = 0; j != i; ++j) NewOps.push_back(getOperand(j)); @@ -338,14 +300,8 @@ bool SCEVNAryExpr::dominates(BasicBlock *BB, DominatorTree *DT) const { // SCEVUDivs - Only allow the creation of one SCEVUDivExpr for any particular -// input. Don't use a SCEVHandle here, or else the object will never be +// input. Don't use a const SCEV* here, or else the object will never be // deleted! -static ManagedStatic<std::map<std::pair<const SCEV*, const SCEV*>, - SCEVUDivExpr*> > SCEVUDivs; - -SCEVUDivExpr::~SCEVUDivExpr() { - SCEVUDivs->erase(std::make_pair(LHS, RHS)); -} bool SCEVUDivExpr::dominates(BasicBlock *BB, DominatorTree *DT) const { return LHS->dominates(BB, DT) && RHS->dominates(BB, DT); @@ -365,26 +321,18 @@ const Type *SCEVUDivExpr::getType() const { } // SCEVAddRecExprs - Only allow the creation of one SCEVAddRecExpr for any -// particular input. Don't use a SCEVHandle here, or else the object will never +// particular input. Don't use a const SCEV* here, or else the object will never // be deleted! -static ManagedStatic<std::map<std::pair<const Loop *, - std::vector<const SCEV*> >, - SCEVAddRecExpr*> > SCEVAddRecExprs; - -SCEVAddRecExpr::~SCEVAddRecExpr() { - std::vector<const SCEV*> SCEVOps(Operands.begin(), Operands.end()); - SCEVAddRecExprs->erase(std::make_pair(L, SCEVOps)); -} -SCEVHandle SCEVAddRecExpr:: -replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym, - const SCEVHandle &Conc, +const SCEV* SCEVAddRecExpr:: +replaceSymbolicValuesWithConcrete(const SCEV* Sym, + const SCEV* Conc, ScalarEvolution &SE) const { for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { - SCEVHandle H = + const SCEV* H = getOperand(i)->replaceSymbolicValuesWithConcrete(Sym, Conc, SE); if (H != getOperand(i)) { - SmallVector<SCEVHandle, 8> NewOps; + SmallVector<const SCEV*, 8> NewOps; NewOps.reserve(getNumOperands()); for (unsigned j = 0; j != i; ++j) NewOps.push_back(getOperand(j)); @@ -418,11 +366,8 @@ void SCEVAddRecExpr::print(raw_ostream &OS) const { } // SCEVUnknowns - Only allow the creation of one SCEVUnknown for any particular -// value. Don't use a SCEVHandle here, or else the object will never be +// value. Don't use a const SCEV* here, or else the object will never be // deleted! -static ManagedStatic<std::map<Value*, SCEVUnknown*> > SCEVUnknowns; - -SCEVUnknown::~SCEVUnknown() { SCEVUnknowns->erase(V); } bool SCEVUnknown::isLoopInvariant(const Loop *L) const { // All non-instruction values are loop invariant. All instructions are loop @@ -578,7 +523,7 @@ namespace { /// this to depend on where the addresses of various SCEV objects happened to /// land in memory. /// -static void GroupByComplexity(SmallVectorImpl<SCEVHandle> &Ops, +static void GroupByComplexity(SmallVectorImpl<const SCEV*> &Ops, LoopInfo *LI) { if (Ops.size() < 2) return; // Noop if (Ops.size() == 2) { @@ -621,7 +566,7 @@ static void GroupByComplexity(SmallVectorImpl<SCEVHandle> &Ops, /// BinomialCoefficient - Compute BC(It, K). The result has width W. /// Assume, K > 0. -static SCEVHandle BinomialCoefficient(SCEVHandle It, unsigned K, +static const SCEV* BinomialCoefficient(const SCEV* It, unsigned K, ScalarEvolution &SE, const Type* ResultTy) { // Handle the simplest case efficiently. @@ -714,15 +659,15 @@ static SCEVHandle BinomialCoefficient(SCEVHandle It, unsigned K, // Calculate the product, at width T+W const IntegerType *CalculationTy = IntegerType::get(CalculationBits); - SCEVHandle Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy); + const SCEV* Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy); for (unsigned i = 1; i != K; ++i) { - SCEVHandle S = SE.getMinusSCEV(It, SE.getIntegerSCEV(i, It->getType())); + const SCEV* S = SE.getMinusSCEV(It, SE.getIntegerSCEV(i, It->getType())); Dividend = SE.getMulExpr(Dividend, SE.getTruncateOrZeroExtend(S, CalculationTy)); } // Divide by 2^T - SCEVHandle DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor)); + const SCEV* DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor)); // Truncate the result, and divide by K! / 2^T. @@ -739,14 +684,14 @@ static SCEVHandle BinomialCoefficient(SCEVHandle It, unsigned K, /// /// where BC(It, k) stands for binomial coefficient. /// -SCEVHandle SCEVAddRecExpr::evaluateAtIteration(SCEVHandle It, +const SCEV* SCEVAddRecExpr::evaluateAtIteration(const SCEV* It, ScalarEvolution &SE) const { - SCEVHandle Result = getStart(); + const SCEV* Result = getStart(); for (unsigned i = 1, e = getNumOperands(); i != e; ++i) { // The computation is correct in the face of overflow provided that the // multiplication is performed _after_ the evaluation of the binomial // coefficient. - SCEVHandle Coeff = BinomialCoefficient(It, i, SE, getType()); + const SCEV* Coeff = BinomialCoefficient(It, i, SE, getType()); if (isa<SCEVCouldNotCompute>(Coeff)) return Coeff; @@ -759,7 +704,7 @@ SCEVHandle SCEVAddRecExpr::evaluateAtIteration(SCEVHandle It, // SCEV Expression folder implementations //===----------------------------------------------------------------------===// -SCEVHandle ScalarEvolution::getTruncateExpr(const SCEVHandle &Op, +const SCEV* ScalarEvolution::getTruncateExpr(const SCEV* Op, const Type *Ty) { assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) && "This is not a truncating conversion!"); @@ -785,18 +730,18 @@ SCEVHandle ScalarEvolution::getTruncateExpr(const SCEVHandle &Op, // If the input value is a chrec scev, truncate the chrec's operands. if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { - SmallVector<SCEVHandle, 4> Operands; + SmallVector<const SCEV*, 4> Operands; for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty)); return getAddRecExpr(Operands, AddRec->getLoop()); } - SCEVTruncateExpr *&Result = (*SCEVTruncates)[std::make_pair(Op, Ty)]; - if (Result == 0) Result = new SCEVTruncateExpr(Op, Ty, this); + SCEVTruncateExpr *&Result = SCEVTruncates[std::make_pair(Op, Ty)]; + if (Result == 0) Result = new SCEVTruncateExpr(Op, Ty); return Result; } -SCEVHandle ScalarEvolution::getZeroExtendExpr(const SCEVHandle &Op, +const SCEV* ScalarEvolution::getZeroExtendExpr(const SCEV* Op, const Type *Ty) { assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && "This is not an extending conversion!"); @@ -829,28 +774,28 @@ SCEVHandle ScalarEvolution::getZeroExtendExpr(const SCEVHandle &Op, // in infinite recursion. In the later case, the analysis code will // cope with a conservative value, and it will take care to purge // that value once it has finished. - SCEVHandle MaxBECount = getMaxBackedgeTakenCount(AR->getLoop()); + const SCEV* MaxBECount = getMaxBackedgeTakenCount(AR->getLoop()); if (!isa<SCEVCouldNotCompute>(MaxBECount)) { // Manually compute the final value for AR, checking for // overflow. - SCEVHandle Start = AR->getStart(); - SCEVHandle Step = AR->getStepRecurrence(*this); + const SCEV* Start = AR->getStart(); + const SCEV* Step = AR->getStepRecurrence(*this); // Check whether the backedge-taken count can be losslessly casted to // the addrec's type. The count is always unsigned. - SCEVHandle CastedMaxBECount = + const SCEV* CastedMaxBECount = getTruncateOrZeroExtend(MaxBECount, Start->getType()); - SCEVHandle RecastedMaxBECount = + const SCEV* RecastedMaxBECount = getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType()); if (MaxBECount == RecastedMaxBECount) { const Type *WideTy = IntegerType::get(getTypeSizeInBits(Start->getType()) * 2); // Check whether Start+Step*MaxBECount has no unsigned overflow. - SCEVHandle ZMul = + const SCEV* ZMul = getMulExpr(CastedMaxBECount, getTruncateOrZeroExtend(Step, Start->getType())); - SCEVHandle Add = getAddExpr(Start, ZMul); - SCEVHandle OperandExtendedAdd = + const SCEV* Add = getAddExpr(Start, ZMul); + const SCEV* OperandExtendedAdd = getAddExpr(getZeroExtendExpr(Start, WideTy), getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy), getZeroExtendExpr(Step, WideTy))); @@ -862,7 +807,7 @@ SCEVHandle ScalarEvolution::getZeroExtendExpr(const SCEVHandle &Op, // Similar to above, only this time treat the step value as signed. // This covers loops that count down. - SCEVHandle SMul = + const SCEV* SMul = getMulExpr(CastedMaxBECount, getTruncateOrSignExtend(Step, Start->getType())); Add = getAddExpr(Start, SMul); @@ -879,12 +824,12 @@ SCEVHandle ScalarEvolution::getZeroExtendExpr(const SCEVHandle &Op, } } - SCEVZeroExtendExpr *&Result = (*SCEVZeroExtends)[std::make_pair(Op, Ty)]; - if (Result == 0) Result = new SCEVZeroExtendExpr(Op, Ty, this); + SCEVZeroExtendExpr *&Result = SCEVZeroExtends[std::make_pair(Op, Ty)]; + if (Result == 0) Result = new SCEVZeroExtendExpr(Op, Ty); return Result; } -SCEVHandle ScalarEvolution::getSignExtendExpr(const SCEVHandle &Op, +const SCEV* ScalarEvolution::getSignExtendExpr(const SCEV* Op, const Type *Ty) { assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && "This is not an extending conversion!"); @@ -917,28 +862,28 @@ SCEVHandle ScalarEvolution::getSignExtendExpr(const SCEVHandle &Op, // in infinite recursion. In the later case, the analysis code will // cope with a conservative value, and it will take care to purge // that value once it has finished. - SCEVHandle MaxBECount = getMaxBackedgeTakenCount(AR->getLoop()); + const SCEV* MaxBECount = getMaxBackedgeTakenCount(AR->getLoop()); if (!isa<SCEVCouldNotCompute>(MaxBECount)) { // Manually compute the final value for AR, checking for // overflow. - SCEVHandle Start = AR->getStart(); - SCEVHandle Step = AR->getStepRecurrence(*this); + const SCEV* Start = AR->getStart(); + const SCEV* Step = AR->getStepRecurrence(*this); // Check whether the backedge-taken count can be losslessly casted to // the addrec's type. The count is always unsigned. - SCEVHandle CastedMaxBECount = + const SCEV* CastedMaxBECount = getTruncateOrZeroExtend(MaxBECount, Start->getType()); - SCEVHandle RecastedMaxBECount = + const SCEV* RecastedMaxBECount = getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType()); if (MaxBECount == RecastedMaxBECount) { const Type *WideTy = IntegerType::get(getTypeSizeInBits(Start->getType()) * 2); // Check whether Start+Step*MaxBECount has no signed overflow. - SCEVHandle SMul = + const SCEV* SMul = getMulExpr(CastedMaxBECount, getTruncateOrSignExtend(Step, Start->getType())); - SCEVHandle Add = getAddExpr(Start, SMul); - SCEVHandle OperandExtendedAdd = + const SCEV* Add = getAddExpr(Start, SMul); + const SCEV* OperandExtendedAdd = getAddExpr(getSignExtendExpr(Start, WideTy), getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy), getSignExtendExpr(Step, WideTy))); @@ -951,15 +896,15 @@ SCEVHandle ScalarEvolution::getSignExtendExpr(const SCEVHandle &Op, } } - SCEVSignExtendExpr *&Result = (*SCEVSignExtends)[std::make_pair(Op, Ty)]; - if (Result == 0) Result = new SCEVSignExtendExpr(Op, Ty, this); + SCEVSignExtendExpr *&Result = SCEVSignExtends[std::make_pair(Op, Ty)]; + if (Result == 0) Result = new SCEVSignExtendExpr(Op, Ty); return Result; } /// getAnyExtendExpr - Return a SCEV for the given operand extended with /// unspecified bits out to the given type. /// -SCEVHandle ScalarEvolution::getAnyExtendExpr(const SCEVHandle &Op, +const SCEV* ScalarEvolution::getAnyExtendExpr(const SCEV* Op, const Type *Ty) { assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && "This is not an extending conversion!"); @@ -974,19 +919,19 @@ SCEVHandle ScalarEvolution::getAnyExtendExpr(const SCEVHandle &Op, // Peel off a truncate cast. if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) { - SCEVHandle NewOp = T->getOperand(); + const SCEV* NewOp = T->getOperand(); if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty)) return getAnyExtendExpr(NewOp, Ty); return getTruncateOrNoop(NewOp, Ty); } // Next try a zext cast. If the cast is folded, use it. - SCEVHandle ZExt = getZeroExtendExpr(Op, Ty); + const SCEV* ZExt = getZeroExtendExpr(Op, Ty); if (!isa<SCEVZeroExtendExpr>(ZExt)) return ZExt; // Next try a sext cast. If the cast is folded, use it. - SCEVHandle SExt = getSignExtendExpr(Op, Ty); + const SCEV* SExt = getSignExtendExpr(Op, Ty); if (!isa<SCEVSignExtendExpr>(SExt)) return SExt; @@ -1024,10 +969,10 @@ SCEVHandle ScalarEvolution::getAnyExtendExpr(const SCEVHandle &Op, /// is also used as a check to avoid infinite recursion. /// static bool -CollectAddOperandsWithScales(DenseMap<SCEVHandle, APInt> &M, - SmallVector<SCEVHandle, 8> &NewOps, +CollectAddOperandsWithScales(DenseMap<const SCEV*, APInt> &M, + SmallVector<const SCEV*, 8> &NewOps, APInt &AccumulatedConstant, - const SmallVectorImpl<SCEVHandle> &Ops, + const SmallVectorImpl<const SCEV*> &Ops, const APInt &Scale, ScalarEvolution &SE) { bool Interesting = false; @@ -1048,9 +993,9 @@ CollectAddOperandsWithScales(DenseMap<SCEVHandle, APInt> &M, } else { // A multiplication of a constant with some other value. Update // the map. - SmallVector<SCEVHandle, 4> MulOps(Mul->op_begin()+1, Mul->op_end()); - SCEVHandle Key = SE.getMulExpr(MulOps); - std::pair<DenseMap<SCEVHandle, APInt>::iterator, bool> Pair = + SmallVector<const SCEV*, 4> MulOps(Mul->op_begin()+1, Mul->op_end()); + const SCEV* Key = SE.getMulExpr(MulOps); + std::pair<DenseMap<const SCEV*, APInt>::iterator, bool> Pair = M.insert(std::make_pair(Key, APInt())); if (Pair.second) { Pair.first->second = NewScale; @@ -1069,7 +1014,7 @@ CollectAddOperandsWithScales(DenseMap<SCEVHandle, APInt> &M, AccumulatedConstant += Scale * C->getValue()->getValue(); } else { // An ordinary operand. Update the map. - std::pair<DenseMap<SCEVHandle, APInt>::iterator, bool> Pair = + std::pair<DenseMap<const SCEV*, APInt>::iterator, bool> Pair = M.insert(std::make_pair(Ops[i], APInt())); if (Pair.second) { Pair.first->second = Scale; @@ -1096,7 +1041,7 @@ namespace { /// getAddExpr - Get a canonical add expression, or something simpler if /// possible. -SCEVHandle ScalarEvolution::getAddExpr(SmallVectorImpl<SCEVHandle> &Ops) { +const SCEV* ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV*> &Ops) { assert(!Ops.empty() && "Cannot get empty add!"); if (Ops.size() == 1) return Ops[0]; #ifndef NDEBUG @@ -1140,8 +1085,8 @@ SCEVHandle ScalarEvolution::getAddExpr(SmallVectorImpl<SCEVHandle> &Ops) { if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2 // Found a match, merge the two values into a multiply, and add any // remaining values to the result. - SCEVHandle Two = getIntegerSCEV(2, Ty); - SCEVHandle Mul = getMulExpr(Ops[i], Two); + const SCEV* Two = getIntegerSCEV(2, Ty); + const SCEV* Mul = getMulExpr(Ops[i], Two); if (Ops.size() == 2) return Mul; Ops.erase(Ops.begin()+i, Ops.begin()+i+2); @@ -1157,7 +1102,7 @@ SCEVHandle ScalarEvolution::getAddExpr(SmallVectorImpl<SCEVHandle> &Ops) { const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]); const Type *DstType = Trunc->getType(); const Type *SrcType = Trunc->getOperand()->getType(); - SmallVector<SCEVHandle, 8> LargeOps; + SmallVector<const SCEV*, 8> LargeOps; bool Ok = true; // Check all the operands to see if they can be represented in the // source type of the truncate. @@ -1173,7 +1118,7 @@ SCEVHandle ScalarEvolution::getAddExpr(SmallVectorImpl<SCEVHandle> &Ops) { // is much more likely to be foldable here. LargeOps.push_back(getSignExtendExpr(C, SrcType)); } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) { - SmallVector<SCEVHandle, 8> LargeMulOps; + SmallVector<const SCEV*, 8> LargeMulOps; for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) { if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) { @@ -1201,7 +1146,7 @@ SCEVHandle ScalarEvolution::getAddExpr(SmallVectorImpl<SCEVHandle> &Ops) { } if (Ok) { // Evaluate the expression in the larger type. - SCEVHandle Fold = getAddExpr(LargeOps); + const SCEV* Fold = getAddExpr(LargeOps); // If it folds to something simple, use it. Otherwise, don't. if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold)) return getTruncateExpr(Fold, DstType); @@ -1238,23 +1183,23 @@ SCEVHandle ScalarEvolution::getAddExpr(SmallVectorImpl<SCEVHandle> &Ops) { // operands multiplied by constant values. if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) { uint64_t BitWidth = getTypeSizeInBits(Ty); - DenseMap<SCEVHandle, APInt> M; - SmallVector<SCEVHandle, 8> NewOps; + DenseMap<const SCEV*, APInt> M; + SmallVector<const SCEV*, 8> NewOps; APInt AccumulatedConstant(BitWidth, 0); if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, Ops, APInt(BitWidth, 1), *this)) { // Some interesting folding opportunity is present, so its worthwhile to // re-generate the operands list. Group the operands by constant scale, // to avoid multiplying by the same constant scale multiple times. - std::map<APInt, SmallVector<SCEVHandle, 4>, APIntCompare> MulOpLists; - for (SmallVector<SCEVHandle, 8>::iterator I = NewOps.begin(), + std::map<APInt, SmallVector<const SCEV*, 4>, APIntCompare> MulOpLists; + for (SmallVector<const SCEV*, 8>::iterator I = NewOps.begin(), E = NewOps.end(); I != E; ++I) MulOpLists[M.find(*I)->second].push_back(*I); // Re-generate the operands list. Ops.clear(); if (AccumulatedConstant != 0) Ops.push_back(getConstant(AccumulatedConstant)); - for (std::map<APInt, SmallVector<SCEVHandle, 4>, APIntCompare>::iterator I = + for (std::map<APInt, SmallVector<const SCEV*, 4>, APIntCompare>::iterator I = MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I) if (I->first != 0) Ops.push_back(getMulExpr(getConstant(I->first), getAddExpr(I->second))); @@ -1276,17 +1221,17 @@ SCEVHandle ScalarEvolution::getAddExpr(SmallVectorImpl<SCEVHandle> &Ops) { for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp) if (MulOpSCEV == Ops[AddOp] && !isa<SCEVConstant>(Ops[AddOp])) { // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1)) - SCEVHandle InnerMul = Mul->getOperand(MulOp == 0); + const SCEV* InnerMul = Mul->getOperand(MulOp == 0); if (Mul->getNumOperands() != 2) { // If the multiply has more than two operands, we must get the // Y*Z term. - SmallVector<SCEVHandle, 4> MulOps(Mul->op_begin(), Mul->op_end()); + SmallVector<const SCEV*, 4> MulOps(Mul->op_begin(), Mul->op_end()); MulOps.erase(MulOps.begin()+MulOp); InnerMul = getMulExpr(MulOps); } - SCEVHandle One = getIntegerSCEV(1, Ty); - SCEVHandle AddOne = getAddExpr(InnerMul, One); - SCEVHandle OuterMul = getMulExpr(AddOne, Ops[AddOp]); + const SCEV* One = getIntegerSCEV(1, Ty); + const SCEV* AddOne = getAddExpr(InnerMul, One); + const SCEV* OuterMul = getMulExpr(AddOne, Ops[AddOp]); if (Ops.size() == 2) return OuterMul; if (AddOp < Idx) { Ops.erase(Ops.begin()+AddOp); @@ -1310,21 +1255,21 @@ SCEVHandle ScalarEvolution::getAddExpr(SmallVectorImpl<SCEVHandle> &Ops) { OMulOp != e; ++OMulOp) if (OtherMul->getOperand(OMulOp) == MulOpSCEV) { // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E)) - SCEVHandle InnerMul1 = Mul->getOperand(MulOp == 0); + const SCEV* InnerMul1 = Mul->getOperand(MulOp == 0); if (Mul->getNumOperands() != 2) { - SmallVector<SCEVHandle, 4> MulOps(Mul->op_begin(), Mul->op_end()); + SmallVector<const SCEV*, 4> MulOps(Mul->op_begin(), Mul->op_end()); MulOps.erase(MulOps.begin()+MulOp); InnerMul1 = getMulExpr(MulOps); } - SCEVHandle InnerMul2 = OtherMul->getOperand(OMulOp == 0); + const SCEV* InnerMul2 = OtherMul->getOperand(OMulOp == 0); if (OtherMul->getNumOperands() != 2) { - SmallVector<SCEVHandle, 4> MulOps(OtherMul->op_begin(), + SmallVector<const SCEV*, 4> MulOps(OtherMul->op_begin(), OtherMul->op_end()); MulOps.erase(MulOps.begin()+OMulOp); InnerMul2 = getMulExpr(MulOps); } - SCEVHandle InnerMulSum = getAddExpr(InnerMul1,InnerMul2); - SCEVHandle OuterMul = getMulExpr(MulOpSCEV, InnerMulSum); + const SCEV* InnerMulSum = getAddExpr(InnerMul1,InnerMul2); + const SCEV* OuterMul = getMulExpr(MulOpSCEV, InnerMulSum); if (Ops.size() == 2) return OuterMul; Ops.erase(Ops.begin()+Idx); Ops.erase(Ops.begin()+OtherMulIdx-1); @@ -1345,7 +1290,7 @@ SCEVHandle ScalarEvolution::getAddExpr(SmallVectorImpl<SCEVHandle> &Ops) { for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { // Scan all of the other operands to this add and add them to the vector if // they are loop invariant w.r.t. the recurrence. - SmallVector<SCEVHandle, 8> LIOps; + SmallVector<const SCEV*, 8> LIOps; const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); for (unsigned i = 0, e = Ops.size(); i != e; ++i) if (Ops[i]->isLoopInvariant(AddRec->getLoop())) { @@ -1359,11 +1304,11 @@ SCEVHandle ScalarEvolution::getAddExpr(SmallVectorImpl<SCEVHandle> &Ops) { // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step} LIOps.push_back(AddRec->getStart()); - SmallVector<SCEVHandle, 4> AddRecOps(AddRec->op_begin(), + SmallVector<const SCEV*, 4> AddRecOps(AddRec->op_begin(), AddRec->op_end()); AddRecOps[0] = getAddExpr(LIOps); - SCEVHandle NewRec = getAddRecExpr(AddRecOps, AddRec->getLoop()); + const SCEV* NewRec = getAddRecExpr(AddRecOps, AddRec->getLoop()); // If all of the other operands were loop invariant, we are done. if (Ops.size() == 1) return NewRec; @@ -1385,7 +1330,7 @@ SCEVHandle ScalarEvolution::getAddExpr(SmallVectorImpl<SCEVHandle> &Ops) { const SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]); if (AddRec->getLoop() == OtherAddRec->getLoop()) { // Other + {A,+,B} + {C,+,D} --> Other + {A+C,+,B+D} - SmallVector<SCEVHandle, 4> NewOps(AddRec->op_begin(), AddRec->op_end()); + SmallVector<const SCEV*, 4> NewOps(AddRec->op_begin(), AddRec->op_end()); for (unsigned i = 0, e = OtherAddRec->getNumOperands(); i != e; ++i) { if (i >= NewOps.size()) { NewOps.insert(NewOps.end(), OtherAddRec->op_begin()+i, @@ -1394,7 +1339,7 @@ SCEVHandle ScalarEvolution::getAddExpr(SmallVectorImpl<SCEVHandle> &Ops) { } NewOps[i] = getAddExpr(NewOps[i], OtherAddRec->getOperand(i)); } - SCEVHandle NewAddRec = getAddRecExpr(NewOps, AddRec->getLoop()); + const SCEV* NewAddRec = getAddRecExpr(NewOps, AddRec->getLoop()); if (Ops.size() == 2) return NewAddRec; @@ -1412,16 +1357,16 @@ SCEVHandle ScalarEvolution::getAddExpr(SmallVectorImpl<SCEVHandle> &Ops) { // Okay, it looks like we really DO need an add expr. Check to see if we // already have one, otherwise create a new one. std::vector<const SCEV*> SCEVOps(Ops.begin(), Ops.end()); - SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scAddExpr, + SCEVCommutativeExpr *&Result = SCEVCommExprs[std::make_pair(scAddExpr, SCEVOps)]; - if (Result == 0) Result = new SCEVAddExpr(Ops, this); + if (Result == 0) Result = new SCEVAddExpr(Ops); return Result; } /// getMulExpr - Get a canonical multiply expression, or something simpler if /// possible. -SCEVHandle ScalarEvolution::getMulExpr(SmallVectorImpl<SCEVHandle> &Ops) { +const SCEV* ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV*> &Ops) { assert(!Ops.empty() && "Cannot get empty mul!"); #ifndef NDEBUG for (unsigned i = 1, e = Ops.size(); i != e; ++i) @@ -1502,7 +1447,7 @@ SCEVHandle ScalarEvolution::getMulExpr(SmallVectorImpl<SCEVHandle> &Ops) { for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { // Scan all of the other operands to this mul and add them to the vector if // they are loop invariant w.r.t. the recurrence. - SmallVector<SCEVHandle, 8> LIOps; + SmallVector<const SCEV*, 8> LIOps; const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); for (unsigned i = 0, e = Ops.size(); i != e; ++i) if (Ops[i]->isLoopInvariant(AddRec->getLoop())) { @@ -1514,7 +1459,7 @@ SCEVHandle ScalarEvolution::getMulExpr(SmallVectorImpl<SCEVHandle> &Ops) { // If we found some loop invariants, fold them into the recurrence. if (!LIOps.empty()) { // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step} - SmallVector<SCEVHandle, 4> NewOps; + SmallVector<const SCEV*, 4> NewOps; NewOps.reserve(AddRec->getNumOperands()); if (LIOps.size() == 1) { const SCEV *Scale = LIOps[0]; @@ -1522,13 +1467,13 @@ SCEVHandle ScalarEvolution::getMulExpr(SmallVectorImpl<SCEVHandle> &Ops) { NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i))); } else { for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { - SmallVector<SCEVHandle, 4> MulOps(LIOps.begin(), LIOps.end()); + SmallVector<const SCEV*, 4> MulOps(LIOps.begin(), LIOps.end()); MulOps.push_back(AddRec->getOperand(i)); NewOps.push_back(getMulExpr(MulOps)); } } - SCEVHandle NewRec = getAddRecExpr(NewOps, AddRec->getLoop()); + const SCEV* NewRec = getAddRecExpr(NewOps, AddRec->getLoop()); // If all of the other operands were loop invariant, we are done. if (Ops.size() == 1) return NewRec; @@ -1552,14 +1497,14 @@ SCEVHandle ScalarEvolution::getMulExpr(SmallVectorImpl<SCEVHandle> &Ops) { if (AddRec->getLoop() == OtherAddRec->getLoop()) { // F * G --> {A,+,B} * {C,+,D} --> {A*C,+,F*D + G*B + B*D} const SCEVAddRecExpr *F = AddRec, *G = OtherAddRec; - SCEVHandle NewStart = getMulExpr(F->getStart(), + const SCEV* NewStart = getMulExpr(F->getStart(), G->getStart()); - SCEVHandle B = F->getStepRecurrence(*this); - SCEVHandle D = G->getStepRecurrence(*this); - SCEVHandle NewStep = getAddExpr(getMulExpr(F, D), + const SCEV* B = F->getStepRecurrence(*this); + const SCEV* D = G->getStepRecurrence(*this); + const SCEV* NewStep = getAddExpr(getMulExpr(F, D), getMulExpr(G, B), getMulExpr(B, D)); - SCEVHandle NewAddRec = getAddRecExpr(NewStart, NewStep, + const SCEV* NewAddRec = getAddRecExpr(NewStart, NewStep, F->getLoop()); if (Ops.size() == 2) return NewAddRec; @@ -1577,17 +1522,17 @@ SCEVHandle ScalarEvolution::getMulExpr(SmallVectorImpl<SCEVHandle> &Ops) { // Okay, it looks like we really DO need an mul expr. Check to see if we // already have one, otherwise create a new one. std::vector<const SCEV*> SCEVOps(Ops.begin(), Ops.end()); - SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scMulExpr, + SCEVCommutativeExpr *&Result = SCEVCommExprs[std::make_pair(scMulExpr, SCEVOps)]; if (Result == 0) - Result = new SCEVMulExpr(Ops, this); + Result = new SCEVMulExpr(Ops); return Result; } /// getUDivExpr - Get a canonical multiply expression, or something simpler if /// possible. -SCEVHandle ScalarEvolution::getUDivExpr(const SCEVHandle &LHS, - const SCEVHandle &RHS) { +const SCEV* ScalarEvolution::getUDivExpr(const SCEV* LHS, + const SCEV* RHS) { assert(getEffectiveSCEVType(LHS->getType()) == getEffectiveSCEVType(RHS->getType()) && "SCEVUDivExpr operand types don't match!"); @@ -1620,24 +1565,24 @@ SCEVHandle ScalarEvolution::getUDivExpr(const SCEVHandle &LHS, getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), getZeroExtendExpr(Step, ExtTy), AR->getLoop())) { - SmallVector<SCEVHandle, 4> Operands; + SmallVector<const SCEV*, 4> Operands; for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i) Operands.push_back(getUDivExpr(AR->getOperand(i), RHS)); return getAddRecExpr(Operands, AR->getLoop()); } // (A*B)/C --> A*(B/C) if safe and B/C can be folded. if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) { - SmallVector<SCEVHandle, 4> Operands; + SmallVector<const SCEV*, 4> Operands; for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy)); if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands)) // Find an operand that's safely divisible. for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) { - SCEVHandle Op = M->getOperand(i); - SCEVHandle Div = getUDivExpr(Op, RHSC); + const SCEV* Op = M->getOperand(i); + const SCEV* Div = getUDivExpr(Op, RHSC); if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) { - const SmallVectorImpl<SCEVHandle> &MOperands = M->getOperands(); - Operands = SmallVector<SCEVHandle, 4>(MOperands.begin(), + const SmallVectorImpl<const SCEV*> &MOperands = M->getOperands(); + Operands = SmallVector<const SCEV*, 4>(MOperands.begin(), MOperands.end()); Operands[i] = Div; return getMulExpr(Operands); @@ -1646,13 +1591,13 @@ SCEVHandle ScalarEvolution::getUDivExpr(const SCEVHandle &LHS, } // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded. if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(LHS)) { - SmallVector<SCEVHandle, 4> Operands; + SmallVector<const SCEV*, 4> Operands; for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy)); if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) { Operands.clear(); for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) { - SCEVHandle Op = getUDivExpr(A->getOperand(i), RHS); + const SCEV* Op = getUDivExpr(A->getOperand(i), RHS); if (isa<SCEVUDivExpr>(Op) || getMulExpr(Op, RHS) != A->getOperand(i)) break; Operands.push_back(Op); @@ -1670,17 +1615,17 @@ SCEVHandle ScalarEvolution::getUDivExpr(const SCEVHandle &LHS, } } - SCEVUDivExpr *&Result = (*SCEVUDivs)[std::make_pair(LHS, RHS)]; - if (Result == 0) Result = new SCEVUDivExpr(LHS, RHS, this); + SCEVUDivExpr *&Result = SCEVUDivs[std::make_pair(LHS, RHS)]; + if (Result == 0) Result = new SCEVUDivExpr(LHS, RHS); return Result; } /// getAddRecExpr - Get an add recurrence expression for the specified loop. /// Simplify the expression as much as possible. -SCEVHandle ScalarEvolution::getAddRecExpr(const SCEVHandle &Start, - const SCEVHandle &Step, const Loop *L) { - SmallVector<SCEVHandle, 4> Operands; +const SCEV* ScalarEvolution::getAddRecExpr(const SCEV* Start, + const SCEV* Step, const Loop *L) { + SmallVector<const SCEV*, 4> Operands; Operands.push_back(Start); if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step)) if (StepChrec->getLoop() == L) { @@ -1695,7 +1640,7 @@ SCEVHandle ScalarEvolution::getAddRecExpr(const SCEVHandle &Start, /// getAddRecExpr - Get an add recurrence expression for the specified loop. /// Simplify the expression as much as possible. -SCEVHandle ScalarEvolution::getAddRecExpr(SmallVectorImpl<SCEVHandle> &Operands, +const SCEV* ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV*> &Operands, const Loop *L) { if (Operands.size() == 1) return Operands[0]; #ifndef NDEBUG @@ -1714,9 +1659,8 @@ SCEVHandle ScalarEvolution::getAddRecExpr(SmallVectorImpl<SCEVHandle> &Operands, if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) { const Loop* NestedLoop = NestedAR->getLoop(); if (L->getLoopDepth() < NestedLoop->getLoopDepth()) { - SmallVector<SCEVHandle, 4> NestedOperands(NestedAR->op_begin(), + SmallVector<const SCEV*, 4> NestedOperands(NestedAR->op_begin(), NestedAR->op_end()); - SCEVHandle NestedARHandle(NestedAR); Operands[0] = NestedAR->getStart(); NestedOperands[0] = getAddRecExpr(Operands, L); return getAddRecExpr(NestedOperands, NestedLoop); @@ -1724,21 +1668,21 @@ SCEVHandle ScalarEvolution::getAddRecExpr(SmallVectorImpl<SCEVHandle> &Operands, } std::vector<const SCEV*> SCEVOps(Operands.begin(), Operands.end()); - SCEVAddRecExpr *&Result = (*SCEVAddRecExprs)[std::make_pair(L, SCEVOps)]; - if (Result == 0) Result = new SCEVAddRecExpr(Operands, L, this); + SCEVAddRecExpr *&Result = SCEVAddRecExprs[std::make_pair(L, SCEVOps)]; + if (Result == 0) Result = new SCEVAddRecExpr(Operands, L); return Result; } -SCEVHandle ScalarEvolution::getSMaxExpr(const SCEVHandle &LHS, - const SCEVHandle &RHS) { - SmallVector<SCEVHandle, 2> Ops; +const SCEV* ScalarEvolution::getSMaxExpr(const SCEV* LHS, + const SCEV* RHS) { + SmallVector<const SCEV*, 2> Ops; Ops.push_back(LHS); Ops.push_back(RHS); return getSMaxExpr(Ops); } -SCEVHandle -ScalarEvolution::getSMaxExpr(SmallVectorImpl<SCEVHandle> &Ops) { +const SCEV* +ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV*> &Ops) { assert(!Ops.empty() && "Cannot get empty smax!"); if (Ops.size() == 1) return Ops[0]; #ifndef NDEBUG @@ -1810,22 +1754,22 @@ ScalarEvolution::getSMaxExpr(SmallVectorImpl<SCEVHandle> &Ops) { // Okay, it looks like we really DO need an smax expr. Check to see if we // already have one, otherwise create a new one. std::vector<const SCEV*> SCEVOps(Ops.begin(), Ops.end()); - SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scSMaxExpr, + SCEVCommutativeExpr *&Result = SCEVCommExprs[std::make_pair(scSMaxExpr, SCEVOps)]; - if (Result == 0) Result = new SCEVSMaxExpr(Ops, this); + if (Result == 0) Result = new SCEVSMaxExpr(Ops); return Result; } -SCEVHandle ScalarEvolution::getUMaxExpr(const SCEVHandle &LHS, - const SCEVHandle &RHS) { - SmallVector<SCEVHandle, 2> Ops; +const SCEV* ScalarEvolution::getUMaxExpr(const SCEV* LHS, + const SCEV* RHS) { + SmallVector<const SCEV*, 2> Ops; Ops.push_back(LHS); Ops.push_back(RHS); return getUMaxExpr(Ops); } -SCEVHandle -ScalarEvolution::getUMaxExpr(SmallVectorImpl<SCEVHandle> &Ops) { +const SCEV* +ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV*> &Ops) { assert(!Ops.empty() && "Cannot get empty umax!"); if (Ops.size() == 1) return Ops[0]; #ifndef NDEBUG @@ -1897,31 +1841,31 @@ ScalarEvolution::getUMaxExpr(SmallVectorImpl<SCEVHandle> &Ops) { // Okay, it looks like we really DO need a umax expr. Check to see if we // already have one, otherwise create a new one. std::vector<const SCEV*> SCEVOps(Ops.begin(), Ops.end()); - SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scUMaxExpr, + SCEVCommutativeExpr *&Result = SCEVCommExprs[std::make_pair(scUMaxExpr, SCEVOps)]; - if (Result == 0) Result = new SCEVUMaxExpr(Ops, this); + if (Result == 0) Result = new SCEVUMaxExpr(Ops); return Result; } -SCEVHandle ScalarEvolution::getSMinExpr(const SCEVHandle &LHS, - const SCEVHandle &RHS) { +const SCEV* ScalarEvolution::getSMinExpr(const SCEV* LHS, + const SCEV* RHS) { // ~smax(~x, ~y) == smin(x, y). return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS))); } -SCEVHandle ScalarEvolution::getUMinExpr(const SCEVHandle &LHS, - const SCEVHandle &RHS) { +const SCEV* ScalarEvolution::getUMinExpr(const SCEV* LHS, + const SCEV* RHS) { // ~umax(~x, ~y) == umin(x, y) return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS))); } -SCEVHandle ScalarEvolution::getUnknown(Value *V) { +const SCEV* ScalarEvolution::getUnknown(Value *V) { if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) return getConstant(CI); if (isa<ConstantPointerNull>(V)) return getIntegerSCEV(0, V->getType()); - SCEVUnknown *&Result = (*SCEVUnknowns)[V]; - if (Result == 0) Result = new SCEVUnknown(V, this); + SCEVUnknown *&Result = SCEVUnknowns[V]; + if (Result == 0) Result = new SCEVUnknown(V); return Result; } @@ -1975,7 +1919,7 @@ const Type *ScalarEvolution::getEffectiveSCEVType(const Type *Ty) const { return TD->getIntPtrType(); } -SCEVHandle ScalarEvolution::getCouldNotCompute() { +const SCEV* ScalarEvolution::getCouldNotCompute() { return CouldNotCompute; } @@ -1987,19 +1931,19 @@ bool ScalarEvolution::hasSCEV(Value *V) const { /// getSCEV - Return an existing SCEV if it exists, otherwise analyze the /// expression and create a new one. -SCEVHandle ScalarEvolution::getSCEV(Value *V) { +const SCEV* ScalarEvolution::getSCEV(Value *V) { assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); - std::map<SCEVCallbackVH, SCEVHandle>::iterator I = Scalars.find(V); + std::map<SCEVCallbackVH, const SCEV*>::iterator I = Scalars.find(V); if (I != Scalars.end()) return I->second; - SCEVHandle S = createSCEV(V); + const SCEV* S = createSCEV(V); Scalars.insert(std::make_pair(SCEVCallbackVH(V, this), S)); return S; } /// getIntegerSCEV - Given an integer or FP type, create a constant for the /// specified signed integer value and return a SCEV for the constant. -SCEVHandle ScalarEvolution::getIntegerSCEV(int Val, const Type *Ty) { +const SCEV* ScalarEvolution::getIntegerSCEV(int Val, const Type *Ty) { Ty = getEffectiveSCEVType(Ty); Constant *C; if (Val == 0) @@ -2014,7 +1958,7 @@ SCEVHandle ScalarEvolution::getIntegerSCEV(int Val, const Type *Ty) { /// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V /// -SCEVHandle ScalarEvolution::getNegativeSCEV(const SCEVHandle &V) { +const SCEV* ScalarEvolution::getNegativeSCEV(const SCEV* V) { if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) return getUnknown(ConstantExpr::getNeg(VC->getValue())); @@ -2024,20 +1968,20 @@ SCEVHandle ScalarEvolution::getNegativeSCEV(const SCEVHandle &V) { } /// getNotSCEV - Return a SCEV corresponding to ~V = -1-V -SCEVHandle ScalarEvolution::getNotSCEV(const SCEVHandle &V) { +const SCEV* ScalarEvolution::getNotSCEV(const SCEV* V) { if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) return getUnknown(ConstantExpr::getNot(VC->getValue())); const Type *Ty = V->getType(); Ty = getEffectiveSCEVType(Ty); - SCEVHandle AllOnes = getConstant(ConstantInt::getAllOnesValue(Ty)); + const SCEV* AllOnes = getConstant(ConstantInt::getAllOnesValue(Ty)); return getMinusSCEV(AllOnes, V); } /// getMinusSCEV - Return a SCEV corresponding to LHS - RHS. /// -SCEVHandle ScalarEvolution::getMinusSCEV(const SCEVHandle &LHS, - const SCEVHandle &RHS) { +const SCEV* ScalarEvolution::getMinusSCEV(const SCEV* LHS, + const SCEV* RHS) { // X - Y --> X + -Y return getAddExpr(LHS, getNegativeSCEV(RHS)); } @@ -2045,8 +1989,8 @@ SCEVHandle ScalarEvolution::getMinusSCEV(const SCEVHandle &LHS, /// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the /// input value to the specified type. If the type must be extended, it is zero /// extended. -SCEVHandle -ScalarEvolution::getTruncateOrZeroExtend(const SCEVHandle &V, +const SCEV* +ScalarEvolution::getTruncateOrZeroExtend(const SCEV* V, const Type *Ty) { const Type *SrcTy = V->getType(); assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) && @@ -2062,8 +2006,8 @@ ScalarEvolution::getTruncateOrZeroExtend(const SCEVHandle &V, /// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the /// input value to the specified type. If the type must be extended, it is sign /// extended. -SCEVHandle -ScalarEvolution::getTruncateOrSignExtend(const SCEVHandle &V, +const SCEV* +ScalarEvolution::getTruncateOrSignExtend(const SCEV* V, const Type *Ty) { const Type *SrcTy = V->getType(); assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) && @@ -2079,8 +2023,8 @@ ScalarEvolution::getTruncateOrSignExtend(const SCEVHandle &V, /// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the /// input value to the specified type. If the type must be extended, it is zero /// extended. The conversion must not be narrowing. -SCEVHandle -ScalarEvolution::getNoopOrZeroExtend(const SCEVHandle &V, const Type *Ty) { +const SCEV* +ScalarEvolution::getNoopOrZeroExtend(const SCEV* V, const Type *Ty) { const Type *SrcTy = V->getType(); assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) && (Ty->isInteger() || (TD && isa<PointerType>(Ty))) && @@ -2095,8 +2039,8 @@ ScalarEvolution::getNoopOrZeroExtend(const SCEVHandle &V, const Type *Ty) { /// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the /// input value to the specified type. If the type must be extended, it is sign /// extended. The conversion must not be narrowing. -SCEVHandle -ScalarEvolution::getNoopOrSignExtend(const SCEVHandle &V, const Type *Ty) { +const SCEV* +ScalarEvolution::getNoopOrSignExtend(const SCEV* V, const Type *Ty) { const Type *SrcTy = V->getType(); assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) && (Ty->isInteger() || (TD && isa<PointerType>(Ty))) && @@ -2112,8 +2056,8 @@ ScalarEvolution::getNoopOrSignExtend(const SCEVHandle &V, const Type *Ty) { /// the input value to the specified type. If the type must be extended, /// it is extended with unspecified bits. The conversion must not be /// narrowing. -SCEVHandle -ScalarEvolution::getNoopOrAnyExtend(const SCEVHandle &V, const Type *Ty) { +const SCEV* +ScalarEvolution::getNoopOrAnyExtend(const SCEV* V, const Type *Ty) { const Type *SrcTy = V->getType(); assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) && (Ty->isInteger() || (TD && isa<PointerType>(Ty))) && @@ -2127,8 +2071,8 @@ ScalarEvolution::getNoopOrAnyExtend(const SCEVHandle &V, const Type *Ty) { /// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the /// input value to the specified type. The conversion must not be widening. -SCEVHandle -ScalarEvolution::getTruncateOrNoop(const SCEVHandle &V, const Type *Ty) { +const SCEV* +ScalarEvolution::getTruncateOrNoop(const SCEV* V, const Type *Ty) { const Type *SrcTy = V->getType(); assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) && (Ty->isInteger() || (TD && isa<PointerType>(Ty))) && @@ -2143,10 +2087,10 @@ ScalarEvolution::getTruncateOrNoop(const SCEVHandle &V, const Type *Ty) { /// getUMaxFromMismatchedTypes - Promote the operands to the wider of /// the types using zero-extension, and then perform a umax operation /// with them. -SCEVHandle ScalarEvolution::getUMaxFromMismatchedTypes(const SCEVHandle &LHS, - const SCEVHandle &RHS) { - SCEVHandle PromotedLHS = LHS; - SCEVHandle PromotedRHS = RHS; +const SCEV* ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV* LHS, + const SCEV* RHS) { + const SCEV* PromotedLHS = LHS; + const SCEV* PromotedRHS = RHS; if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); @@ -2156,17 +2100,33 @@ SCEVHandle ScalarEvolution::getUMaxFromMismatchedTypes(const SCEVHandle &LHS, return getUMaxExpr(PromotedLHS, PromotedRHS); } +/// getUMinFromMismatchedTypes - Promote the operands to the wider of +/// the types using zero-extension, and then perform a umin operation +/// with them. +const SCEV* ScalarEvolution::getUMinFromMismatchedTypes(const SCEV* LHS, + const SCEV* RHS) { + const SCEV* PromotedLHS = LHS; + const SCEV* PromotedRHS = RHS; + + if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) + PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); + else + PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); + + return getUMinExpr(PromotedLHS, PromotedRHS); +} + /// ReplaceSymbolicValueWithConcrete - This looks up the computed SCEV value for /// the specified instruction and replaces any references to the symbolic value /// SymName with the specified value. This is used during PHI resolution. void ScalarEvolution:: -ReplaceSymbolicValueWithConcrete(Instruction *I, const SCEVHandle &SymName, - const SCEVHandle &NewVal) { - std::map<SCEVCallbackVH, SCEVHandle>::iterator SI = +ReplaceSymbolicValueWithConcrete(Instruction *I, const SCEV* SymName, + const SCEV* NewVal) { + std::map<SCEVCallbackVH, const SCEV*>::iterator SI = Scalars.find(SCEVCallbackVH(I, this)); if (SI == Scalars.end()) return; - SCEVHandle NV = + const SCEV* NV = SI->second->replaceSymbolicValuesWithConcrete(SymName, NewVal, *this); if (NV == SI->second) return; // No change. @@ -2182,7 +2142,7 @@ ReplaceSymbolicValueWithConcrete(Instruction *I, const SCEVHandle &SymName, /// createNodeForPHI - PHI nodes have two cases. Either the PHI node exists in /// a loop header, making it a potential recurrence, or it doesn't. /// -SCEVHandle ScalarEvolution::createNodeForPHI(PHINode *PN) { +const SCEV* ScalarEvolution::createNodeForPHI(PHINode *PN) { if (PN->getNumIncomingValues() == 2) // The loops have been canonicalized. if (const Loop *L = LI->getLoopFor(PN->getParent())) if (L->getHeader() == PN->getParent()) { @@ -2192,14 +2152,14 @@ SCEVHandle ScalarEvolution::createNodeForPHI(PHINode *PN) { unsigned BackEdge = IncomingEdge^1; // While we are analyzing this PHI node, handle its value symbolically. - SCEVHandle SymbolicName = getUnknown(PN); + const SCEV* SymbolicName = getUnknown(PN); assert(Scalars.find(PN) == Scalars.end() && "PHI node already processed?"); Scalars.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName)); // Using this symbolic name for the PHI, analyze the value coming around // the back-edge. - SCEVHandle BEValue = getSCEV(PN->getIncomingValue(BackEdge)); + const SCEV* BEValue = getSCEV(PN->getIncomingValue(BackEdge)); // NOTE: If BEValue is loop invariant, we know that the PHI node just // has a special value for the first iteration of the loop. @@ -2219,19 +2179,19 @@ SCEVHandle ScalarEvolution::createNodeForPHI(PHINode *PN) { if (FoundIndex != Add->getNumOperands()) { // Create an add with everything but the specified operand. - SmallVector<SCEVHandle, 8> Ops; + SmallVector<const SCEV*, 8> Ops; for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) if (i != FoundIndex) Ops.push_back(Add->getOperand(i)); - SCEVHandle Accum = getAddExpr(Ops); + const SCEV* Accum = getAddExpr(Ops); // This is not a valid addrec if the step amount is varying each // loop iteration, but is not itself an addrec in this loop. if (Accum->isLoopInvariant(L) || (isa<SCEVAddRecExpr>(Accum) && cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) { - SCEVHandle StartVal = getSCEV(PN->getIncomingValue(IncomingEdge)); - SCEVHandle PHISCEV = getAddRecExpr(StartVal, Accum, L); + const SCEV* StartVal = getSCEV(PN->getIncomingValue(IncomingEdge)); + const SCEV* PHISCEV = getAddRecExpr(StartVal, Accum, L); // Okay, for the entire analysis of this edge we assumed the PHI // to be symbolic. We now need to go back and update all of the @@ -2250,13 +2210,13 @@ SCEVHandle ScalarEvolution::createNodeForPHI(PHINode *PN) { // Because the other in-value of i (0) fits the evolution of BEValue // i really is an addrec evolution. if (AddRec->getLoop() == L && AddRec->isAffine()) { - SCEVHandle StartVal = getSCEV(PN->getIncomingValue(IncomingEdge)); + const SCEV* StartVal = getSCEV(PN->getIncomingValue(IncomingEdge)); // If StartVal = j.start - j.stride, we can use StartVal as the // initial step of the addrec evolution. if (StartVal == getMinusSCEV(AddRec->getOperand(0), AddRec->getOperand(1))) { - SCEVHandle PHISCEV = + const SCEV* PHISCEV = getAddRecExpr(StartVal, AddRec->getOperand(1), L); // Okay, for the entire analysis of this edge we assumed the PHI @@ -2280,14 +2240,14 @@ SCEVHandle ScalarEvolution::createNodeForPHI(PHINode *PN) { /// createNodeForGEP - Expand GEP instructions into add and multiply /// operations. This allows them to be analyzed by regular SCEV code. /// -SCEVHandle ScalarEvolution::createNodeForGEP(User *GEP) { +const SCEV* ScalarEvolution::createNodeForGEP(User *GEP) { const Type *IntPtrTy = TD->getIntPtrType(); Value *Base = GEP->getOperand(0); // Don't attempt to analyze GEPs over unsized objects. if (!cast<PointerType>(Base->getType())->getElementType()->isSized()) return getUnknown(GEP); - SCEVHandle TotalOffset = getIntegerSCEV(0, IntPtrTy); + const SCEV* TotalOffset = getIntegerSCEV(0, IntPtrTy); gep_type_iterator GTI = gep_type_begin(GEP); for (GetElementPtrInst::op_iterator I = next(GEP->op_begin()), E = GEP->op_end(); @@ -2303,7 +2263,7 @@ SCEVHandle ScalarEvolution::createNodeForGEP(User *GEP) { getIntegerSCEV(Offset, IntPtrTy)); } else { // For an array, add the element offset, explicitly scaled. - SCEVHandle LocalOffset = getSCEV(Index); + const SCEV* LocalOffset = getSCEV(Index); if (!isa<PointerType>(LocalOffset->getType())) // Getelementptr indicies are signed. LocalOffset = getTruncateOrSignExtend(LocalOffset, @@ -2323,7 +2283,7 @@ SCEVHandle ScalarEvolution::createNodeForGEP(User *GEP) { /// the minimum number of times S is divisible by 2. For example, given {4,+,8} /// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S. uint32_t -ScalarEvolution::GetMinTrailingZeros(const SCEVHandle &S) { +ScalarEvolution::GetMinTrailingZeros(const SCEV* S) { if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) return C->getValue()->getValue().countTrailingZeros(); @@ -2400,7 +2360,7 @@ ScalarEvolution::GetMinTrailingZeros(const SCEVHandle &S) { } uint32_t -ScalarEvolution::GetMinLeadingZeros(const SCEVHandle &S) { +ScalarEvolution::GetMinLeadingZeros(const SCEV* S) { // TODO: Handle other SCEV expression types here. if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) @@ -2426,7 +2386,7 @@ ScalarEvolution::GetMinLeadingZeros(const SCEVHandle &S) { } uint32_t -ScalarEvolution::GetMinSignBits(const SCEVHandle &S) { +ScalarEvolution::GetMinSignBits(const SCEV* S) { // TODO: Handle other SCEV expression types here. if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) { @@ -2453,7 +2413,7 @@ ScalarEvolution::GetMinSignBits(const SCEVHandle &S) { /// createSCEV - We know that there is no SCEV for the specified value. /// Analyze the expression. /// -SCEVHandle ScalarEvolution::createSCEV(Value *V) { +const SCEV* ScalarEvolution::createSCEV(Value *V) { if (!isSCEVable(V->getType())) return getUnknown(V); @@ -2517,7 +2477,7 @@ SCEVHandle ScalarEvolution::createSCEV(Value *V) { // In order for this transformation to be safe, the LHS must be of the // form X*(2^n) and the Or constant must be less than 2^n. if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { - SCEVHandle LHS = getSCEV(U->getOperand(0)); + const SCEV* LHS = getSCEV(U->getOperand(0)); const APInt &CIVal = CI->getValue(); if (GetMinTrailingZeros(LHS) >= (CIVal.getBitWidth() - CIVal.countLeadingZeros())) @@ -2547,7 +2507,7 @@ SCEVHandle ScalarEvolution::createSCEV(Value *V) { if (const SCEVZeroExtendExpr *Z = dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) { const Type *UTy = U->getType(); - SCEVHandle Z0 = Z->getOperand(); + const SCEV* Z0 = Z->getOperand(); const Type *Z0Ty = Z0->getType(); unsigned Z0TySize = getTypeSizeInBits(Z0Ty); @@ -2716,14 +2676,14 @@ SCEVHandle ScalarEvolution::createSCEV(Value *V) { /// loop-invariant backedge-taken count (see /// hasLoopInvariantBackedgeTakenCount). /// -SCEVHandle ScalarEvolution::getBackedgeTakenCount(const Loop *L) { +const SCEV* ScalarEvolution::getBackedgeTakenCount(const Loop *L) { return getBackedgeTakenInfo(L).Exact; } /// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except /// return the least SCEV value that is known never to be less than the /// actual backedge taken count. -SCEVHandle ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) { +const SCEV* ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) { return getBackedgeTakenInfo(L).Max; } @@ -2790,7 +2750,7 @@ void ScalarEvolution::forgetLoopPHIs(const Loop *L) { SmallVector<Instruction *, 16> Worklist; for (BasicBlock::iterator I = Header->begin(); PHINode *PN = dyn_cast<PHINode>(I); ++I) { - std::map<SCEVCallbackVH, SCEVHandle>::iterator It = Scalars.find((Value*)I); + std::map<SCEVCallbackVH, const SCEV*>::iterator It = Scalars.find((Value*)I); if (It != Scalars.end() && !isa<SCEVUnknown>(It->second)) Worklist.push_back(PN); } @@ -2812,8 +2772,8 @@ ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) { L->getExitingBlocks(ExitingBlocks); // Examine all exits and pick the most conservative values. - SCEVHandle BECount = CouldNotCompute; - SCEVHandle MaxBECount = CouldNotCompute; + const SCEV* BECount = CouldNotCompute; + const SCEV* MaxBECount = CouldNotCompute; bool CouldNotComputeBECount = false; bool CouldNotComputeMaxBECount = false; for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { @@ -2822,7 +2782,7 @@ ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) { if (NewBTI.Exact == CouldNotCompute) { // We couldn't compute an exact value for this exit, so - // we don't be able to compute an exact value for the loop. + // we won't be able to compute an exact value for the loop. CouldNotComputeBECount = true; BECount = CouldNotCompute; } else if (!CouldNotComputeBECount) { @@ -2838,7 +2798,7 @@ ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) { } if (NewBTI.Max == CouldNotCompute) { // We couldn't compute an maximum value for this exit, so - // we don't be able to compute an maximum value for the loop. + // we won't be able to compute an maximum value for the loop. CouldNotComputeMaxBECount = true; MaxBECount = CouldNotCompute; } else if (!CouldNotComputeMaxBECount) { @@ -2937,23 +2897,21 @@ ScalarEvolution::ComputeBackedgeTakenCountFromExitCond(const Loop *L, ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB); BackedgeTakenInfo BTI1 = ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB); - SCEVHandle BECount = CouldNotCompute; - SCEVHandle MaxBECount = CouldNotCompute; + const SCEV* BECount = CouldNotCompute; + const SCEV* MaxBECount = CouldNotCompute; if (L->contains(TBB)) { // Both conditions must be true for the loop to continue executing. // Choose the less conservative count. - // TODO: Take the minimum of the exact counts. - if (BTI0.Exact == BTI1.Exact) - BECount = BTI0.Exact; - // TODO: Take the minimum of the maximum counts. + if (BTI0.Exact == CouldNotCompute || BTI1.Exact == CouldNotCompute) + BECount = CouldNotCompute; + else + BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact); if (BTI0.Max == CouldNotCompute) MaxBECount = BTI1.Max; else if (BTI1.Max == CouldNotCompute) MaxBECount = BTI0.Max; - else if (const SCEVConstant *C0 = dyn_cast<SCEVConstant>(BTI0.Max)) - if (const SCEVConstant *C1 = dyn_cast<SCEVConstant>(BTI1.Max)) - MaxBECount = getConstant(APIntOps::umin(C0->getValue()->getValue(), - C1->getValue()->getValue())); + else + MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max); } else { // Both conditions must be true for the loop to exit. assert(L->contains(FBB) && "Loop block has no successor in loop!"); @@ -2971,23 +2929,21 @@ ScalarEvolution::ComputeBackedgeTakenCountFromExitCond(const Loop *L, ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB); BackedgeTakenInfo BTI1 = ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB); - SCEVHandle BECount = CouldNotCompute; - SCEVHandle MaxBECount = CouldNotCompute; + const SCEV* BECount = CouldNotCompute; + const SCEV* MaxBECount = CouldNotCompute; if (L->contains(FBB)) { // Both conditions must be false for the loop to continue executing. // Choose the less conservative count. - // TODO: Take the minimum of the exact counts. - if (BTI0.Exact == BTI1.Exact) - BECount = BTI0.Exact; - // TODO: Take the minimum of the maximum counts. + if (BTI0.Exact == CouldNotCompute || BTI1.Exact == CouldNotCompute) + BECount = CouldNotCompute; + else + BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact); if (BTI0.Max == CouldNotCompute) MaxBECount = BTI1.Max; else if (BTI1.Max == CouldNotCompute) MaxBECount = BTI0.Max; - else if (const SCEVConstant *C0 = dyn_cast<SCEVConstant>(BTI0.Max)) - if (const SCEVConstant *C1 = dyn_cast<SCEVConstant>(BTI1.Max)) - MaxBECount = getConstant(APIntOps::umin(C0->getValue()->getValue(), - C1->getValue()->getValue())); + else + MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max); } else { // Both conditions must be false for the loop to exit. assert(L->contains(TBB) && "Loop block has no successor in loop!"); @@ -3029,7 +2985,7 @@ ScalarEvolution::ComputeBackedgeTakenCountFromExitCondICmp(const Loop *L, // Handle common loops like: for (X = "string"; *X; ++X) if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0))) if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) { - SCEVHandle ItCnt = + const SCEV* ItCnt = ComputeLoadConstantCompareBackedgeTakenCount(LI, RHS, L, Cond); if (!isa<SCEVCouldNotCompute>(ItCnt)) { unsigned BitWidth = getTypeSizeInBits(ItCnt->getType()); @@ -3039,8 +2995,8 @@ ScalarEvolution::ComputeBackedgeTakenCountFromExitCondICmp(const Loop *L, } } - SCEVHandle LHS = getSCEV(ExitCond->getOperand(0)); - SCEVHandle RHS = getSCEV(ExitCond->getOperand(1)); + const SCEV* LHS = getSCEV(ExitCond->getOperand(0)); + const SCEV* RHS = getSCEV(ExitCond->getOperand(1)); // Try to evaluate any dependencies out of the loop. LHS = getSCEVAtScope(LHS, L); @@ -3063,20 +3019,20 @@ ScalarEvolution::ComputeBackedgeTakenCountFromExitCondICmp(const Loop *L, ConstantRange CompRange( ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue())); - SCEVHandle Ret = AddRec->getNumIterationsInRange(CompRange, *this); + const SCEV* Ret = AddRec->getNumIterationsInRange(CompRange, *this); if (!isa<SCEVCouldNotCompute>(Ret)) return Ret; } switch (Cond) { case ICmpInst::ICMP_NE: { // while (X != Y) // Convert to: while (X-Y != 0) - SCEVHandle TC = HowFarToZero(getMinusSCEV(LHS, RHS), L); + const SCEV* TC = HowFarToZero(getMinusSCEV(LHS, RHS), L); if (!isa<SCEVCouldNotCompute>(TC)) return TC; break; } case ICmpInst::ICMP_EQ: { // Convert to: while (X-Y == 0) // while (X == Y) - SCEVHandle TC = HowFarToNonZero(getMinusSCEV(LHS, RHS), L); + const SCEV* TC = HowFarToNonZero(getMinusSCEV(LHS, RHS), L); if (!isa<SCEVCouldNotCompute>(TC)) return TC; break; } @@ -3120,8 +3076,8 @@ ScalarEvolution::ComputeBackedgeTakenCountFromExitCondICmp(const Loop *L, static ConstantInt * EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C, ScalarEvolution &SE) { - SCEVHandle InVal = SE.getConstant(C); - SCEVHandle Val = AddRec->evaluateAtIteration(InVal, SE); + const SCEV* InVal = SE.getConstant(C); + const SCEV* Val = AddRec->evaluateAtIteration(InVal, SE); assert(isa<SCEVConstant>(Val) && "Evaluation of SCEV at constant didn't fold correctly?"); return cast<SCEVConstant>(Val)->getValue(); @@ -3164,7 +3120,7 @@ GetAddressedElementFromGlobal(GlobalVariable *GV, /// ComputeLoadConstantCompareBackedgeTakenCount - Given an exit condition of /// 'icmp op load X, cst', try to see if we can compute the backedge /// execution count. -SCEVHandle ScalarEvolution:: +const SCEV* ScalarEvolution:: ComputeLoadConstantCompareBackedgeTakenCount(LoadInst *LI, Constant *RHS, const Loop *L, ICmpInst::Predicate predicate) { @@ -3198,7 +3154,7 @@ ComputeLoadConstantCompareBackedgeTakenCount(LoadInst *LI, Constant *RHS, // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant. // Check to see if X is a loop variant variable value now. - SCEVHandle Idx = getSCEV(VarIdx); + const SCEV* Idx = getSCEV(VarIdx); Idx = getSCEVAtScope(Idx, L); // We can only recognize very limited forms of loop index expressions, in @@ -3374,7 +3330,7 @@ getConstantEvolutionLoopExitValue(PHINode *PN, const APInt& BEs, const Loop *L){ /// try to evaluate a few iterations of the loop until we get the exit /// condition gets a value of ExitWhen (true or false). If we cannot /// evaluate the trip count of the loop, return CouldNotCompute. -SCEVHandle ScalarEvolution:: +const SCEV* ScalarEvolution:: ComputeBackedgeTakenCountExhaustively(const Loop *L, Value *Cond, bool ExitWhen) { PHINode *PN = getConstantEvolvingPHI(Cond, L); if (PN == 0) return CouldNotCompute; @@ -3431,7 +3387,7 @@ ComputeBackedgeTakenCountExhaustively(const Loop *L, Value *Cond, bool ExitWhen) /// /// In the case that a relevant loop exit value cannot be computed, the /// original value V is returned. -SCEVHandle ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) { +const SCEV* ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) { // FIXME: this should be turned into a virtual method on SCEV! if (isa<SCEVConstant>(V)) return V; @@ -3448,7 +3404,7 @@ SCEVHandle ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) { // to see if the loop that contains it has a known backedge-taken // count. If so, we may be able to force computation of the exit // value. - SCEVHandle BackedgeTakenCount = getBackedgeTakenCount(LI); + const SCEV* BackedgeTakenCount = getBackedgeTakenCount(LI); if (const SCEVConstant *BTCC = dyn_cast<SCEVConstant>(BackedgeTakenCount)) { // Okay, we know how many times the containing loop executes. If @@ -3486,7 +3442,7 @@ SCEVHandle ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) { if (!isSCEVable(Op->getType())) return V; - SCEVHandle OpV = getSCEVAtScope(getSCEV(Op), L); + const SCEV* OpV = getSCEVAtScope(getSCEV(Op), L); if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(OpV)) { Constant *C = SC->getValue(); if (C->getType() != Op->getType()) @@ -3532,11 +3488,11 @@ SCEVHandle ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) { // Avoid performing the look-up in the common case where the specified // expression has no loop-variant portions. for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) { - SCEVHandle OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); + const SCEV* OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); if (OpAtScope != Comm->getOperand(i)) { // Okay, at least one of these operands is loop variant but might be // foldable. Build a new instance of the folded commutative expression. - SmallVector<SCEVHandle, 8> NewOps(Comm->op_begin(), Comm->op_begin()+i); + SmallVector<const SCEV*, 8> NewOps(Comm->op_begin(), Comm->op_begin()+i); NewOps.push_back(OpAtScope); for (++i; i != e; ++i) { @@ -3559,8 +3515,8 @@ SCEVHandle ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) { } if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) { - SCEVHandle LHS = getSCEVAtScope(Div->getLHS(), L); - SCEVHandle RHS = getSCEVAtScope(Div->getRHS(), L); + const SCEV* LHS = getSCEVAtScope(Div->getLHS(), L); + const SCEV* RHS = getSCEVAtScope(Div->getRHS(), L); if (LHS == Div->getLHS() && RHS == Div->getRHS()) return Div; // must be loop invariant return getUDivExpr(LHS, RHS); @@ -3572,7 +3528,7 @@ SCEVHandle ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) { if (!L || !AddRec->getLoop()->contains(L->getHeader())) { // To evaluate this recurrence, we need to know how many times the AddRec // loop iterates. Compute this now. - SCEVHandle BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop()); + const SCEV* BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop()); if (BackedgeTakenCount == CouldNotCompute) return AddRec; // Then, evaluate the AddRec. @@ -3582,21 +3538,21 @@ SCEVHandle ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) { } if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) { - SCEVHandle Op = getSCEVAtScope(Cast->getOperand(), L); + const SCEV* Op = getSCEVAtScope(Cast->getOperand(), L); if (Op == Cast->getOperand()) return Cast; // must be loop invariant return getZeroExtendExpr(Op, Cast->getType()); } if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) { - SCEVHandle Op = getSCEVAtScope(Cast->getOperand(), L); + const SCEV* Op = getSCEVAtScope(Cast->getOperand(), L); if (Op == Cast->getOperand()) return Cast; // must be loop invariant return getSignExtendExpr(Op, Cast->getType()); } if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) { - SCEVHandle Op = getSCEVAtScope(Cast->getOperand(), L); + const SCEV* Op = getSCEVAtScope(Cast->getOperand(), L); if (Op == Cast->getOperand()) return Cast; // must be loop invariant return getTruncateExpr(Op, Cast->getType()); @@ -3608,7 +3564,7 @@ SCEVHandle ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) { /// getSCEVAtScope - This is a convenience function which does /// getSCEVAtScope(getSCEV(V), L). -SCEVHandle ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) { +const SCEV* ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) { return getSCEVAtScope(getSCEV(V), L); } @@ -3621,7 +3577,7 @@ SCEVHandle ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) { /// A and B isn't important. /// /// If the equation does not have a solution, SCEVCouldNotCompute is returned. -static SCEVHandle SolveLinEquationWithOverflow(const APInt &A, const APInt &B, +static const SCEV* SolveLinEquationWithOverflow(const APInt &A, const APInt &B, ScalarEvolution &SE) { uint32_t BW = A.getBitWidth(); assert(BW == B.getBitWidth() && "Bit widths must be the same."); @@ -3664,7 +3620,7 @@ static SCEVHandle SolveLinEquationWithOverflow(const APInt &A, const APInt &B, /// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which /// might be the same) or two SCEVCouldNotCompute objects. /// -static std::pair<SCEVHandle,SCEVHandle> +static std::pair<const SCEV*,const SCEV*> SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) { assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!"); const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0)); @@ -3723,7 +3679,7 @@ SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) { /// HowFarToZero - Return the number of times a backedge comparing the specified /// value to zero will execute. If not computable, return CouldNotCompute. -SCEVHandle ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L) { +const SCEV* ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L) { // If the value is a constant if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { // If the value is already zero, the branch will execute zero times. @@ -3748,8 +3704,8 @@ SCEVHandle ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L) { // where BW is the common bit width of Start and Step. // Get the initial value for the loop. - SCEVHandle Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop()); - SCEVHandle Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop()); + const SCEV* Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop()); + const SCEV* Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop()); if (const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step)) { // For now we handle only constant steps. @@ -3769,7 +3725,7 @@ SCEVHandle ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L) { } else if (AddRec->isQuadratic() && AddRec->getType()->isInteger()) { // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of // the quadratic equation to solve it. - std::pair<SCEVHandle,SCEVHandle> Roots = SolveQuadraticEquation(AddRec, + std::pair<const SCEV*,const SCEV*> Roots = SolveQuadraticEquation(AddRec, *this); const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first); const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second); @@ -3788,7 +3744,7 @@ SCEVHandle ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L) { // We can only use this value if the chrec ends up with an exact zero // value at this index. When solving for "X*X != 5", for example, we // should not accept a root of 2. - SCEVHandle Val = AddRec->evaluateAtIteration(R1, *this); + const SCEV* Val = AddRec->evaluateAtIteration(R1, *this); if (Val->isZero()) return R1; // We found a quadratic root! } @@ -3801,7 +3757,7 @@ SCEVHandle ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L) { /// HowFarToNonZero - Return the number of times a backedge checking the /// specified value for nonzero will execute. If not computable, return /// CouldNotCompute -SCEVHandle ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) { +const SCEV* ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) { // Loops that look like: while (X == 0) are very strange indeed. We don't // handle them yet except for the trivial case. This could be expanded in the // future as needed. @@ -3862,7 +3818,7 @@ ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) { /// more general, since a front-end may have replicated the controlling /// expression. /// -static bool HasSameValue(const SCEVHandle &A, const SCEVHandle &B) { +static bool HasSameValue(const SCEV* A, const SCEV* B) { // Quick check to see if they are the same SCEV. if (A == B) return true; @@ -3977,8 +3933,8 @@ bool ScalarEvolution::isLoopGuardedByCond(const Loop *L, if (!PreCondLHS->getType()->isInteger()) continue; - SCEVHandle PreCondLHSSCEV = getSCEV(PreCondLHS); - SCEVHandle PreCondRHSSCEV = getSCEV(PreCondRHS); + const SCEV* PreCondLHSSCEV = getSCEV(PreCondLHS); + const SCEV* PreCondRHSSCEV = getSCEV(PreCondRHS); if ((HasSameValue(LHS, PreCondLHSSCEV) && HasSameValue(RHS, PreCondRHSSCEV)) || (HasSameValue(LHS, getNotSCEV(PreCondRHSSCEV)) && @@ -3992,22 +3948,22 @@ bool ScalarEvolution::isLoopGuardedByCond(const Loop *L, /// getBECount - Subtract the end and start values and divide by the step, /// rounding up, to get the number of times the backedge is executed. Return /// CouldNotCompute if an intermediate computation overflows. -SCEVHandle ScalarEvolution::getBECount(const SCEVHandle &Start, - const SCEVHandle &End, - const SCEVHandle &Step) { +const SCEV* ScalarEvolution::getBECount(const SCEV* Start, + const SCEV* End, + const SCEV* Step) { const Type *Ty = Start->getType(); - SCEVHandle NegOne = getIntegerSCEV(-1, Ty); - SCEVHandle Diff = getMinusSCEV(End, Start); - SCEVHandle RoundUp = getAddExpr(Step, NegOne); + const SCEV* NegOne = getIntegerSCEV(-1, Ty); + const SCEV* Diff = getMinusSCEV(End, Start); + const SCEV* RoundUp = getAddExpr(Step, NegOne); // Add an adjustment to the difference between End and Start so that // the division will effectively round up. - SCEVHandle Add = getAddExpr(Diff, RoundUp); + const SCEV* Add = getAddExpr(Diff, RoundUp); // Check Add for unsigned overflow. // TODO: More sophisticated things could be done here. const Type *WideTy = IntegerType::get(getTypeSizeInBits(Ty) + 1); - SCEVHandle OperandExtendedAdd = + const SCEV* OperandExtendedAdd = getAddExpr(getZeroExtendExpr(Diff, WideTy), getZeroExtendExpr(RoundUp, WideTy)); if (getZeroExtendExpr(Add, WideTy) != OperandExtendedAdd) @@ -4032,7 +3988,7 @@ HowManyLessThans(const SCEV *LHS, const SCEV *RHS, if (AddRec->isAffine()) { // FORNOW: We only support unit strides. unsigned BitWidth = getTypeSizeInBits(AddRec->getType()); - SCEVHandle Step = AddRec->getStepRecurrence(*this); + const SCEV* Step = AddRec->getStepRecurrence(*this); // TODO: handle non-constant strides. const SCEVConstant *CStep = dyn_cast<SCEVConstant>(Step); @@ -4068,10 +4024,10 @@ HowManyLessThans(const SCEV *LHS, const SCEV *RHS, // treat m-n as signed nor unsigned due to overflow possibility. // First, we get the value of the LHS in the first iteration: n - SCEVHandle Start = AddRec->getOperand(0); + const SCEV* Start = AddRec->getOperand(0); // Determine the minimum constant start value. - SCEVHandle MinStart = isa<SCEVConstant>(Start) ? Start : + const SCEV* MinStart = isa<SCEVConstant>(Start) ? Start : getConstant(isSigned ? APInt::getSignedMinValue(BitWidth) : APInt::getMinValue(BitWidth)); @@ -4079,7 +4035,7 @@ HowManyLessThans(const SCEV *LHS, const SCEV *RHS, // then we know that it will run exactly (m-n)/s times. Otherwise, we // only know that it will execute (max(m,n)-n)/s times. In both cases, // the division must round up. - SCEVHandle End = RHS; + const SCEV* End = RHS; if (!isLoopGuardedByCond(L, isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT, getMinusSCEV(Start, Step), RHS)) @@ -4087,7 +4043,7 @@ HowManyLessThans(const SCEV *LHS, const SCEV *RHS, : getUMaxExpr(RHS, Start); // Determine the maximum constant end value. - SCEVHandle MaxEnd = + const SCEV* MaxEnd = isa<SCEVConstant>(End) ? End : getConstant(isSigned ? APInt::getSignedMaxValue(BitWidth) .ashr(GetMinSignBits(End) - 1) : @@ -4096,11 +4052,11 @@ HowManyLessThans(const SCEV *LHS, const SCEV *RHS, // Finally, we subtract these two values and divide, rounding up, to get // the number of times the backedge is executed. - SCEVHandle BECount = getBECount(Start, End, Step); + const SCEV* BECount = getBECount(Start, End, Step); // The maximum backedge count is similar, except using the minimum start // value and the maximum end value. - SCEVHandle MaxBECount = getBECount(MinStart, MaxEnd, Step);; + const SCEV* MaxBECount = getBECount(MinStart, MaxEnd, Step);; return BackedgeTakenInfo(BECount, MaxBECount); } @@ -4113,7 +4069,7 @@ HowManyLessThans(const SCEV *LHS, const SCEV *RHS, /// this is that it returns the first iteration number where the value is not in /// the condition, thus computing the exit count. If the iteration count can't /// be computed, an instance of SCEVCouldNotCompute is returned. -SCEVHandle SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range, +const SCEV* SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range, ScalarEvolution &SE) const { if (Range.isFullSet()) // Infinite loop. return SE.getCouldNotCompute(); @@ -4121,9 +4077,9 @@ SCEVHandle SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range, // If the start is a non-zero constant, shift the range to simplify things. if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart())) if (!SC->getValue()->isZero()) { - SmallVector<SCEVHandle, 4> Operands(op_begin(), op_end()); + SmallVector<const SCEV*, 4> Operands(op_begin(), op_end()); Operands[0] = SE.getIntegerSCEV(0, SC->getType()); - SCEVHandle Shifted = SE.getAddRecExpr(Operands, getLoop()); + const SCEV* Shifted = SE.getAddRecExpr(Operands, getLoop()); if (const SCEVAddRecExpr *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted)) return ShiftedAddRec->getNumIterationsInRange( @@ -4182,12 +4138,12 @@ SCEVHandle SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range, // quadratic equation to solve it. To do this, we must frame our problem in // terms of figuring out when zero is crossed, instead of when // Range.getUpper() is crossed. - SmallVector<SCEVHandle, 4> NewOps(op_begin(), op_end()); + SmallVector<const SCEV*, 4> NewOps(op_begin(), op_end()); NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper())); - SCEVHandle NewAddRec = SE.getAddRecExpr(NewOps, getLoop()); + const SCEV* NewAddRec = SE.getAddRecExpr(NewOps, getLoop()); // Next, solve the constructed addrec - std::pair<SCEVHandle,SCEVHandle> Roots = + std::pair<const SCEV*,const SCEV*> Roots = SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE); const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first); const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second); @@ -4293,7 +4249,7 @@ ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se) //===----------------------------------------------------------------------===// ScalarEvolution::ScalarEvolution() - : FunctionPass(&ID), CouldNotCompute(new SCEVCouldNotCompute(0)) { + : FunctionPass(&ID), CouldNotCompute(new SCEVCouldNotCompute()) { } bool ScalarEvolution::runOnFunction(Function &F) { @@ -4308,6 +4264,45 @@ void ScalarEvolution::releaseMemory() { BackedgeTakenCounts.clear(); ConstantEvolutionLoopExitValue.clear(); ValuesAtScopes.clear(); + + for (std::map<ConstantInt*, SCEVConstant*>::iterator + I = SCEVConstants.begin(), E = SCEVConstants.end(); I != E; ++I) + delete I->second; + for (std::map<std::pair<const SCEV*, const Type*>, + SCEVTruncateExpr*>::iterator I = SCEVTruncates.begin(), + E = SCEVTruncates.end(); I != E; ++I) + delete I->second; + for (std::map<std::pair<const SCEV*, const Type*>, + SCEVZeroExtendExpr*>::iterator I = SCEVZeroExtends.begin(), + E = SCEVZeroExtends.end(); I != E; ++I) + delete I->second; + for (std::map<std::pair<unsigned, std::vector<const SCEV*> >, + SCEVCommutativeExpr*>::iterator I = SCEVCommExprs.begin(), + E = SCEVCommExprs.end(); I != E; ++I) + delete I->second; + for (std::map<std::pair<const SCEV*, const SCEV*>, SCEVUDivExpr*>::iterator + I = SCEVUDivs.begin(), E = SCEVUDivs.end(); I != E; ++I) + delete I->second; + for (std::map<std::pair<const SCEV*, const Type*>, + SCEVSignExtendExpr*>::iterator I = SCEVSignExtends.begin(), + E = SCEVSignExtends.end(); I != E; ++I) + delete I->second; + for (std::map<std::pair<const Loop *, std::vector<const SCEV*> >, + SCEVAddRecExpr*>::iterator I = SCEVAddRecExprs.begin(), + E = SCEVAddRecExprs.end(); I != E; ++I) + delete I->second; + for (std::map<Value*, SCEVUnknown*>::iterator I = SCEVUnknowns.begin(), + E = SCEVUnknowns.end(); I != E; ++I) + delete I->second; + + SCEVConstants.clear(); + SCEVTruncates.clear(); + SCEVZeroExtends.clear(); + SCEVCommExprs.clear(); + SCEVUDivs.clear(); + SCEVSignExtends.clear(); + SCEVAddRecExprs.clear(); + SCEVUnknowns.clear(); } void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const { @@ -4355,12 +4350,12 @@ void ScalarEvolution::print(raw_ostream &OS, const Module* ) const { if (isSCEVable(I->getType())) { OS << *I; OS << " --> "; - SCEVHandle SV = SE.getSCEV(&*I); + const SCEV* SV = SE.getSCEV(&*I); SV->print(OS); const Loop *L = LI->getLoopFor((*I).getParent()); - SCEVHandle AtUse = SE.getSCEVAtScope(SV, L); + const SCEV* AtUse = SE.getSCEVAtScope(SV, L); if (AtUse != SV) { OS << " --> "; AtUse->print(OS); @@ -4368,7 +4363,7 @@ void ScalarEvolution::print(raw_ostream &OS, const Module* ) const { if (L) { OS << "\t\t" "Exits: "; - SCEVHandle ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop()); + const SCEV* ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop()); if (!ExitValue->isLoopInvariant(L)) { OS << "<<Unknown>>"; } else { |