diff options
Diffstat (limited to 'lib/Analysis/ScalarEvolution.cpp')
-rw-r--r-- | lib/Analysis/ScalarEvolution.cpp | 3824 |
1 files changed, 3824 insertions, 0 deletions
diff --git a/lib/Analysis/ScalarEvolution.cpp b/lib/Analysis/ScalarEvolution.cpp new file mode 100644 index 0000000..f7f1849 --- /dev/null +++ b/lib/Analysis/ScalarEvolution.cpp @@ -0,0 +1,3824 @@ +//===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file contains the implementation of the scalar evolution analysis +// engine, which is used primarily to analyze expressions involving induction +// variables in loops. +// +// There are several aspects to this library. First is the representation of +// scalar expressions, which are represented as subclasses of the SCEV class. +// These classes are used to represent certain types of subexpressions that we +// can handle. These classes are reference counted, managed by the SCEVHandle +// class. We only create one SCEV of a particular shape, so pointer-comparisons +// for equality are legal. +// +// One important aspect of the SCEV objects is that they are never cyclic, even +// if there is a cycle in the dataflow for an expression (ie, a PHI node). If +// the PHI node is one of the idioms that we can represent (e.g., a polynomial +// recurrence) then we represent it directly as a recurrence node, otherwise we +// represent it as a SCEVUnknown node. +// +// In addition to being able to represent expressions of various types, we also +// have folders that are used to build the *canonical* representation for a +// particular expression. These folders are capable of using a variety of +// rewrite rules to simplify the expressions. +// +// Once the folders are defined, we can implement the more interesting +// higher-level code, such as the code that recognizes PHI nodes of various +// types, computes the execution count of a loop, etc. +// +// TODO: We should use these routines and value representations to implement +// dependence analysis! +// +//===----------------------------------------------------------------------===// +// +// There are several good references for the techniques used in this analysis. +// +// Chains of recurrences -- a method to expedite the evaluation +// of closed-form functions +// Olaf Bachmann, Paul S. Wang, Eugene V. Zima +// +// On computational properties of chains of recurrences +// Eugene V. Zima +// +// Symbolic Evaluation of Chains of Recurrences for Loop Optimization +// Robert A. van Engelen +// +// Efficient Symbolic Analysis for Optimizing Compilers +// Robert A. van Engelen +// +// Using the chains of recurrences algebra for data dependence testing and +// induction variable substitution +// MS Thesis, Johnie Birch +// +//===----------------------------------------------------------------------===// + +#define DEBUG_TYPE "scalar-evolution" +#include "llvm/Analysis/ScalarEvolutionExpressions.h" +#include "llvm/Constants.h" +#include "llvm/DerivedTypes.h" +#include "llvm/GlobalVariable.h" +#include "llvm/Instructions.h" +#include "llvm/Analysis/ConstantFolding.h" +#include "llvm/Analysis/Dominators.h" +#include "llvm/Analysis/LoopInfo.h" +#include "llvm/Assembly/Writer.h" +#include "llvm/Target/TargetData.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/Compiler.h" +#include "llvm/Support/ConstantRange.h" +#include "llvm/Support/GetElementPtrTypeIterator.h" +#include "llvm/Support/InstIterator.h" +#include "llvm/Support/ManagedStatic.h" +#include "llvm/Support/MathExtras.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/ADT/Statistic.h" +#include "llvm/ADT/STLExtras.h" +#include <ostream> +#include <algorithm> +using namespace llvm; + +STATISTIC(NumArrayLenItCounts, + "Number of trip counts computed with array length"); +STATISTIC(NumTripCountsComputed, + "Number of loops with predictable loop counts"); +STATISTIC(NumTripCountsNotComputed, + "Number of loops without predictable loop counts"); +STATISTIC(NumBruteForceTripCountsComputed, + "Number of loops with trip counts computed by force"); + +static cl::opt<unsigned> +MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden, + cl::desc("Maximum number of iterations SCEV will " + "symbolically execute a constant derived loop"), + cl::init(100)); + +static RegisterPass<ScalarEvolution> +R("scalar-evolution", "Scalar Evolution Analysis", false, true); +char ScalarEvolution::ID = 0; + +//===----------------------------------------------------------------------===// +// SCEV class definitions +//===----------------------------------------------------------------------===// + +//===----------------------------------------------------------------------===// +// Implementation of the SCEV class. +// +SCEV::~SCEV() {} +void SCEV::dump() const { + print(errs()); + errs() << '\n'; +} + +void SCEV::print(std::ostream &o) const { + raw_os_ostream OS(o); + print(OS); +} + +bool SCEV::isZero() const { + if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) + return SC->getValue()->isZero(); + return false; +} + +bool SCEV::isOne() const { + if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) + return SC->getValue()->isOne(); + return false; +} + +SCEVCouldNotCompute::SCEVCouldNotCompute() : SCEV(scCouldNotCompute) {} +SCEVCouldNotCompute::~SCEVCouldNotCompute() {} + +bool SCEVCouldNotCompute::isLoopInvariant(const Loop *L) const { + assert(0 && "Attempt to use a SCEVCouldNotCompute object!"); + return false; +} + +const Type *SCEVCouldNotCompute::getType() const { + assert(0 && "Attempt to use a SCEVCouldNotCompute object!"); + return 0; +} + +bool SCEVCouldNotCompute::hasComputableLoopEvolution(const Loop *L) const { + assert(0 && "Attempt to use a SCEVCouldNotCompute object!"); + return false; +} + +SCEVHandle SCEVCouldNotCompute:: +replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym, + const SCEVHandle &Conc, + ScalarEvolution &SE) const { + return this; +} + +void SCEVCouldNotCompute::print(raw_ostream &OS) const { + OS << "***COULDNOTCOMPUTE***"; +} + +bool SCEVCouldNotCompute::classof(const SCEV *S) { + return S->getSCEVType() == scCouldNotCompute; +} + + +// SCEVConstants - Only allow the creation of one SCEVConstant for any +// particular value. Don't use a SCEVHandle here, or else the object will +// never be deleted! +static ManagedStatic<std::map<ConstantInt*, SCEVConstant*> > SCEVConstants; + + +SCEVConstant::~SCEVConstant() { + SCEVConstants->erase(V); +} + +SCEVHandle ScalarEvolution::getConstant(ConstantInt *V) { + SCEVConstant *&R = (*SCEVConstants)[V]; + if (R == 0) R = new SCEVConstant(V); + return R; +} + +SCEVHandle ScalarEvolution::getConstant(const APInt& Val) { + return getConstant(ConstantInt::get(Val)); +} + +const Type *SCEVConstant::getType() const { return V->getType(); } + +void SCEVConstant::print(raw_ostream &OS) const { + WriteAsOperand(OS, V, false); +} + +SCEVCastExpr::SCEVCastExpr(unsigned SCEVTy, + const SCEVHandle &op, const Type *ty) + : SCEV(SCEVTy), Op(op), Ty(ty) {} + +SCEVCastExpr::~SCEVCastExpr() {} + +bool SCEVCastExpr::dominates(BasicBlock *BB, DominatorTree *DT) const { + return Op->dominates(BB, DT); +} + +// SCEVTruncates - Only allow the creation of one SCEVTruncateExpr for any +// particular input. Don't use a SCEVHandle here, or else the object will +// never be deleted! +static ManagedStatic<std::map<std::pair<const SCEV*, const Type*>, + SCEVTruncateExpr*> > SCEVTruncates; + +SCEVTruncateExpr::SCEVTruncateExpr(const SCEVHandle &op, const Type *ty) + : SCEVCastExpr(scTruncate, op, ty) { + assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) && + (Ty->isInteger() || isa<PointerType>(Ty)) && + "Cannot truncate non-integer value!"); +} + +SCEVTruncateExpr::~SCEVTruncateExpr() { + SCEVTruncates->erase(std::make_pair(Op, Ty)); +} + +void SCEVTruncateExpr::print(raw_ostream &OS) const { + OS << "(trunc " << *Op->getType() << " " << *Op << " to " << *Ty << ")"; +} + +// SCEVZeroExtends - Only allow the creation of one SCEVZeroExtendExpr for any +// particular input. Don't use a SCEVHandle here, or else the object will never +// be deleted! +static ManagedStatic<std::map<std::pair<const SCEV*, const Type*>, + SCEVZeroExtendExpr*> > SCEVZeroExtends; + +SCEVZeroExtendExpr::SCEVZeroExtendExpr(const SCEVHandle &op, const Type *ty) + : SCEVCastExpr(scZeroExtend, op, ty) { + assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) && + (Ty->isInteger() || isa<PointerType>(Ty)) && + "Cannot zero extend non-integer value!"); +} + +SCEVZeroExtendExpr::~SCEVZeroExtendExpr() { + SCEVZeroExtends->erase(std::make_pair(Op, Ty)); +} + +void SCEVZeroExtendExpr::print(raw_ostream &OS) const { + OS << "(zext " << *Op->getType() << " " << *Op << " to " << *Ty << ")"; +} + +// SCEVSignExtends - Only allow the creation of one SCEVSignExtendExpr for any +// particular input. Don't use a SCEVHandle here, or else the object will never +// be deleted! +static ManagedStatic<std::map<std::pair<const SCEV*, const Type*>, + SCEVSignExtendExpr*> > SCEVSignExtends; + +SCEVSignExtendExpr::SCEVSignExtendExpr(const SCEVHandle &op, const Type *ty) + : SCEVCastExpr(scSignExtend, op, ty) { + assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) && + (Ty->isInteger() || isa<PointerType>(Ty)) && + "Cannot sign extend non-integer value!"); +} + +SCEVSignExtendExpr::~SCEVSignExtendExpr() { + SCEVSignExtends->erase(std::make_pair(Op, Ty)); +} + +void SCEVSignExtendExpr::print(raw_ostream &OS) const { + OS << "(sext " << *Op->getType() << " " << *Op << " to " << *Ty << ")"; +} + +// SCEVCommExprs - Only allow the creation of one SCEVCommutativeExpr for any +// particular input. Don't use a SCEVHandle here, or else the object will never +// be deleted! +static ManagedStatic<std::map<std::pair<unsigned, std::vector<const SCEV*> >, + SCEVCommutativeExpr*> > SCEVCommExprs; + +SCEVCommutativeExpr::~SCEVCommutativeExpr() { + std::vector<const SCEV*> SCEVOps(Operands.begin(), Operands.end()); + SCEVCommExprs->erase(std::make_pair(getSCEVType(), SCEVOps)); +} + +void SCEVCommutativeExpr::print(raw_ostream &OS) const { + assert(Operands.size() > 1 && "This plus expr shouldn't exist!"); + const char *OpStr = getOperationStr(); + OS << "(" << *Operands[0]; + for (unsigned i = 1, e = Operands.size(); i != e; ++i) + OS << OpStr << *Operands[i]; + OS << ")"; +} + +SCEVHandle SCEVCommutativeExpr:: +replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym, + const SCEVHandle &Conc, + ScalarEvolution &SE) const { + for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { + SCEVHandle H = + getOperand(i)->replaceSymbolicValuesWithConcrete(Sym, Conc, SE); + if (H != getOperand(i)) { + std::vector<SCEVHandle> NewOps; + NewOps.reserve(getNumOperands()); + for (unsigned j = 0; j != i; ++j) + NewOps.push_back(getOperand(j)); + NewOps.push_back(H); + for (++i; i != e; ++i) + NewOps.push_back(getOperand(i)-> + replaceSymbolicValuesWithConcrete(Sym, Conc, SE)); + + if (isa<SCEVAddExpr>(this)) + return SE.getAddExpr(NewOps); + else if (isa<SCEVMulExpr>(this)) + return SE.getMulExpr(NewOps); + else if (isa<SCEVSMaxExpr>(this)) + return SE.getSMaxExpr(NewOps); + else if (isa<SCEVUMaxExpr>(this)) + return SE.getUMaxExpr(NewOps); + else + assert(0 && "Unknown commutative expr!"); + } + } + return this; +} + +bool SCEVNAryExpr::dominates(BasicBlock *BB, DominatorTree *DT) const { + for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { + if (!getOperand(i)->dominates(BB, DT)) + return false; + } + return true; +} + + +// SCEVUDivs - Only allow the creation of one SCEVUDivExpr for any particular +// input. Don't use a SCEVHandle here, or else the object will never be +// deleted! +static ManagedStatic<std::map<std::pair<const SCEV*, const SCEV*>, + SCEVUDivExpr*> > SCEVUDivs; + +SCEVUDivExpr::~SCEVUDivExpr() { + SCEVUDivs->erase(std::make_pair(LHS, RHS)); +} + +bool SCEVUDivExpr::dominates(BasicBlock *BB, DominatorTree *DT) const { + return LHS->dominates(BB, DT) && RHS->dominates(BB, DT); +} + +void SCEVUDivExpr::print(raw_ostream &OS) const { + OS << "(" << *LHS << " /u " << *RHS << ")"; +} + +const Type *SCEVUDivExpr::getType() const { + // In most cases the types of LHS and RHS will be the same, but in some + // crazy cases one or the other may be a pointer. ScalarEvolution doesn't + // depend on the type for correctness, but handling types carefully can + // avoid extra casts in the SCEVExpander. The LHS is more likely to be + // a pointer type than the RHS, so use the RHS' type here. + return RHS->getType(); +} + +// SCEVAddRecExprs - Only allow the creation of one SCEVAddRecExpr for any +// particular input. Don't use a SCEVHandle here, or else the object will never +// be deleted! +static ManagedStatic<std::map<std::pair<const Loop *, + std::vector<const SCEV*> >, + SCEVAddRecExpr*> > SCEVAddRecExprs; + +SCEVAddRecExpr::~SCEVAddRecExpr() { + std::vector<const SCEV*> SCEVOps(Operands.begin(), Operands.end()); + SCEVAddRecExprs->erase(std::make_pair(L, SCEVOps)); +} + +SCEVHandle SCEVAddRecExpr:: +replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym, + const SCEVHandle &Conc, + ScalarEvolution &SE) const { + for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { + SCEVHandle H = + getOperand(i)->replaceSymbolicValuesWithConcrete(Sym, Conc, SE); + if (H != getOperand(i)) { + std::vector<SCEVHandle> NewOps; + NewOps.reserve(getNumOperands()); + for (unsigned j = 0; j != i; ++j) + NewOps.push_back(getOperand(j)); + NewOps.push_back(H); + for (++i; i != e; ++i) + NewOps.push_back(getOperand(i)-> + replaceSymbolicValuesWithConcrete(Sym, Conc, SE)); + + return SE.getAddRecExpr(NewOps, L); + } + } + return this; +} + + +bool SCEVAddRecExpr::isLoopInvariant(const Loop *QueryLoop) const { + // This recurrence is invariant w.r.t to QueryLoop iff QueryLoop doesn't + // contain L and if the start is invariant. + // Add recurrences are never invariant in the function-body (null loop). + return QueryLoop && + !QueryLoop->contains(L->getHeader()) && + getOperand(0)->isLoopInvariant(QueryLoop); +} + + +void SCEVAddRecExpr::print(raw_ostream &OS) const { + OS << "{" << *Operands[0]; + for (unsigned i = 1, e = Operands.size(); i != e; ++i) + OS << ",+," << *Operands[i]; + OS << "}<" << L->getHeader()->getName() + ">"; +} + +// SCEVUnknowns - Only allow the creation of one SCEVUnknown for any particular +// value. Don't use a SCEVHandle here, or else the object will never be +// deleted! +static ManagedStatic<std::map<Value*, SCEVUnknown*> > SCEVUnknowns; + +SCEVUnknown::~SCEVUnknown() { SCEVUnknowns->erase(V); } + +bool SCEVUnknown::isLoopInvariant(const Loop *L) const { + // All non-instruction values are loop invariant. All instructions are loop + // invariant if they are not contained in the specified loop. + // Instructions are never considered invariant in the function body + // (null loop) because they are defined within the "loop". + if (Instruction *I = dyn_cast<Instruction>(V)) + return L && !L->contains(I->getParent()); + return true; +} + +bool SCEVUnknown::dominates(BasicBlock *BB, DominatorTree *DT) const { + if (Instruction *I = dyn_cast<Instruction>(getValue())) + return DT->dominates(I->getParent(), BB); + return true; +} + +const Type *SCEVUnknown::getType() const { + return V->getType(); +} + +void SCEVUnknown::print(raw_ostream &OS) const { + WriteAsOperand(OS, V, false); +} + +//===----------------------------------------------------------------------===// +// SCEV Utilities +//===----------------------------------------------------------------------===// + +namespace { + /// SCEVComplexityCompare - Return true if the complexity of the LHS is less + /// than the complexity of the RHS. This comparator is used to canonicalize + /// expressions. + class VISIBILITY_HIDDEN SCEVComplexityCompare { + LoopInfo *LI; + public: + explicit SCEVComplexityCompare(LoopInfo *li) : LI(li) {} + + bool operator()(const SCEV *LHS, const SCEV *RHS) const { + // Primarily, sort the SCEVs by their getSCEVType(). + if (LHS->getSCEVType() != RHS->getSCEVType()) + return LHS->getSCEVType() < RHS->getSCEVType(); + + // Aside from the getSCEVType() ordering, the particular ordering + // isn't very important except that it's beneficial to be consistent, + // so that (a + b) and (b + a) don't end up as different expressions. + + // Sort SCEVUnknown values with some loose heuristics. TODO: This is + // not as complete as it could be. + if (const SCEVUnknown *LU = dyn_cast<SCEVUnknown>(LHS)) { + const SCEVUnknown *RU = cast<SCEVUnknown>(RHS); + + // Order pointer values after integer values. This helps SCEVExpander + // form GEPs. + if (isa<PointerType>(LU->getType()) && !isa<PointerType>(RU->getType())) + return false; + if (isa<PointerType>(RU->getType()) && !isa<PointerType>(LU->getType())) + return true; + + // Compare getValueID values. + if (LU->getValue()->getValueID() != RU->getValue()->getValueID()) + return LU->getValue()->getValueID() < RU->getValue()->getValueID(); + + // Sort arguments by their position. + if (const Argument *LA = dyn_cast<Argument>(LU->getValue())) { + const Argument *RA = cast<Argument>(RU->getValue()); + return LA->getArgNo() < RA->getArgNo(); + } + + // For instructions, compare their loop depth, and their opcode. + // This is pretty loose. + if (Instruction *LV = dyn_cast<Instruction>(LU->getValue())) { + Instruction *RV = cast<Instruction>(RU->getValue()); + + // Compare loop depths. + if (LI->getLoopDepth(LV->getParent()) != + LI->getLoopDepth(RV->getParent())) + return LI->getLoopDepth(LV->getParent()) < + LI->getLoopDepth(RV->getParent()); + + // Compare opcodes. + if (LV->getOpcode() != RV->getOpcode()) + return LV->getOpcode() < RV->getOpcode(); + + // Compare the number of operands. + if (LV->getNumOperands() != RV->getNumOperands()) + return LV->getNumOperands() < RV->getNumOperands(); + } + + return false; + } + + // Constant sorting doesn't matter since they'll be folded. + if (isa<SCEVConstant>(LHS)) + return false; + + // Lexicographically compare n-ary expressions. + if (const SCEVNAryExpr *LC = dyn_cast<SCEVNAryExpr>(LHS)) { + const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS); + for (unsigned i = 0, e = LC->getNumOperands(); i != e; ++i) { + if (i >= RC->getNumOperands()) + return false; + if (operator()(LC->getOperand(i), RC->getOperand(i))) + return true; + if (operator()(RC->getOperand(i), LC->getOperand(i))) + return false; + } + return LC->getNumOperands() < RC->getNumOperands(); + } + + // Lexicographically compare udiv expressions. + if (const SCEVUDivExpr *LC = dyn_cast<SCEVUDivExpr>(LHS)) { + const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS); + if (operator()(LC->getLHS(), RC->getLHS())) + return true; + if (operator()(RC->getLHS(), LC->getLHS())) + return false; + if (operator()(LC->getRHS(), RC->getRHS())) + return true; + if (operator()(RC->getRHS(), LC->getRHS())) + return false; + return false; + } + + // Compare cast expressions by operand. + if (const SCEVCastExpr *LC = dyn_cast<SCEVCastExpr>(LHS)) { + const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS); + return operator()(LC->getOperand(), RC->getOperand()); + } + + assert(0 && "Unknown SCEV kind!"); + return false; + } + }; +} + +/// GroupByComplexity - Given a list of SCEV objects, order them by their +/// complexity, and group objects of the same complexity together by value. +/// When this routine is finished, we know that any duplicates in the vector are +/// consecutive and that complexity is monotonically increasing. +/// +/// Note that we go take special precautions to ensure that we get determinstic +/// results from this routine. In other words, we don't want the results of +/// this to depend on where the addresses of various SCEV objects happened to +/// land in memory. +/// +static void GroupByComplexity(std::vector<SCEVHandle> &Ops, + LoopInfo *LI) { + if (Ops.size() < 2) return; // Noop + if (Ops.size() == 2) { + // This is the common case, which also happens to be trivially simple. + // Special case it. + if (SCEVComplexityCompare(LI)(Ops[1], Ops[0])) + std::swap(Ops[0], Ops[1]); + return; + } + + // Do the rough sort by complexity. + std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI)); + + // Now that we are sorted by complexity, group elements of the same + // complexity. Note that this is, at worst, N^2, but the vector is likely to + // be extremely short in practice. Note that we take this approach because we + // do not want to depend on the addresses of the objects we are grouping. + for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) { + const SCEV *S = Ops[i]; + unsigned Complexity = S->getSCEVType(); + + // If there are any objects of the same complexity and same value as this + // one, group them. + for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) { + if (Ops[j] == S) { // Found a duplicate. + // Move it to immediately after i'th element. + std::swap(Ops[i+1], Ops[j]); + ++i; // no need to rescan it. + if (i == e-2) return; // Done! + } + } + } +} + + + +//===----------------------------------------------------------------------===// +// Simple SCEV method implementations +//===----------------------------------------------------------------------===// + +/// BinomialCoefficient - Compute BC(It, K). The result has width W. +/// Assume, K > 0. +static SCEVHandle BinomialCoefficient(SCEVHandle It, unsigned K, + ScalarEvolution &SE, + const Type* ResultTy) { + // Handle the simplest case efficiently. + if (K == 1) + return SE.getTruncateOrZeroExtend(It, ResultTy); + + // We are using the following formula for BC(It, K): + // + // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K! + // + // Suppose, W is the bitwidth of the return value. We must be prepared for + // overflow. Hence, we must assure that the result of our computation is + // equal to the accurate one modulo 2^W. Unfortunately, division isn't + // safe in modular arithmetic. + // + // However, this code doesn't use exactly that formula; the formula it uses + // is something like the following, where T is the number of factors of 2 in + // K! (i.e. trailing zeros in the binary representation of K!), and ^ is + // exponentiation: + // + // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T) + // + // This formula is trivially equivalent to the previous formula. However, + // this formula can be implemented much more efficiently. The trick is that + // K! / 2^T is odd, and exact division by an odd number *is* safe in modular + // arithmetic. To do exact division in modular arithmetic, all we have + // to do is multiply by the inverse. Therefore, this step can be done at + // width W. + // + // The next issue is how to safely do the division by 2^T. The way this + // is done is by doing the multiplication step at a width of at least W + T + // bits. This way, the bottom W+T bits of the product are accurate. Then, + // when we perform the division by 2^T (which is equivalent to a right shift + // by T), the bottom W bits are accurate. Extra bits are okay; they'll get + // truncated out after the division by 2^T. + // + // In comparison to just directly using the first formula, this technique + // is much more efficient; using the first formula requires W * K bits, + // but this formula less than W + K bits. Also, the first formula requires + // a division step, whereas this formula only requires multiplies and shifts. + // + // It doesn't matter whether the subtraction step is done in the calculation + // width or the input iteration count's width; if the subtraction overflows, + // the result must be zero anyway. We prefer here to do it in the width of + // the induction variable because it helps a lot for certain cases; CodeGen + // isn't smart enough to ignore the overflow, which leads to much less + // efficient code if the width of the subtraction is wider than the native + // register width. + // + // (It's possible to not widen at all by pulling out factors of 2 before + // the multiplication; for example, K=2 can be calculated as + // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires + // extra arithmetic, so it's not an obvious win, and it gets + // much more complicated for K > 3.) + + // Protection from insane SCEVs; this bound is conservative, + // but it probably doesn't matter. + if (K > 1000) + return SE.getCouldNotCompute(); + + unsigned W = SE.getTypeSizeInBits(ResultTy); + + // Calculate K! / 2^T and T; we divide out the factors of two before + // multiplying for calculating K! / 2^T to avoid overflow. + // Other overflow doesn't matter because we only care about the bottom + // W bits of the result. + APInt OddFactorial(W, 1); + unsigned T = 1; + for (unsigned i = 3; i <= K; ++i) { + APInt Mult(W, i); + unsigned TwoFactors = Mult.countTrailingZeros(); + T += TwoFactors; + Mult = Mult.lshr(TwoFactors); + OddFactorial *= Mult; + } + + // We need at least W + T bits for the multiplication step + unsigned CalculationBits = W + T; + + // Calcuate 2^T, at width T+W. + APInt DivFactor = APInt(CalculationBits, 1).shl(T); + + // Calculate the multiplicative inverse of K! / 2^T; + // this multiplication factor will perform the exact division by + // K! / 2^T. + APInt Mod = APInt::getSignedMinValue(W+1); + APInt MultiplyFactor = OddFactorial.zext(W+1); + MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod); + MultiplyFactor = MultiplyFactor.trunc(W); + + // Calculate the product, at width T+W + const IntegerType *CalculationTy = IntegerType::get(CalculationBits); + SCEVHandle Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy); + for (unsigned i = 1; i != K; ++i) { + SCEVHandle S = SE.getMinusSCEV(It, SE.getIntegerSCEV(i, It->getType())); + Dividend = SE.getMulExpr(Dividend, + SE.getTruncateOrZeroExtend(S, CalculationTy)); + } + + // Divide by 2^T + SCEVHandle DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor)); + + // Truncate the result, and divide by K! / 2^T. + + return SE.getMulExpr(SE.getConstant(MultiplyFactor), + SE.getTruncateOrZeroExtend(DivResult, ResultTy)); +} + +/// evaluateAtIteration - Return the value of this chain of recurrences at +/// the specified iteration number. We can evaluate this recurrence by +/// multiplying each element in the chain by the binomial coefficient +/// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as: +/// +/// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3) +/// +/// where BC(It, k) stands for binomial coefficient. +/// +SCEVHandle SCEVAddRecExpr::evaluateAtIteration(SCEVHandle It, + ScalarEvolution &SE) const { + SCEVHandle Result = getStart(); + for (unsigned i = 1, e = getNumOperands(); i != e; ++i) { + // The computation is correct in the face of overflow provided that the + // multiplication is performed _after_ the evaluation of the binomial + // coefficient. + SCEVHandle Coeff = BinomialCoefficient(It, i, SE, getType()); + if (isa<SCEVCouldNotCompute>(Coeff)) + return Coeff; + + Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff)); + } + return Result; +} + +//===----------------------------------------------------------------------===// +// SCEV Expression folder implementations +//===----------------------------------------------------------------------===// + +SCEVHandle ScalarEvolution::getTruncateExpr(const SCEVHandle &Op, + const Type *Ty) { + assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) && + "This is not a truncating conversion!"); + assert(isSCEVable(Ty) && + "This is not a conversion to a SCEVable type!"); + Ty = getEffectiveSCEVType(Ty); + + if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) + return getUnknown( + ConstantExpr::getTrunc(SC->getValue(), Ty)); + + // trunc(trunc(x)) --> trunc(x) + if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) + return getTruncateExpr(ST->getOperand(), Ty); + + // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing + if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) + return getTruncateOrSignExtend(SS->getOperand(), Ty); + + // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing + if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) + return getTruncateOrZeroExtend(SZ->getOperand(), Ty); + + // If the input value is a chrec scev made out of constants, truncate + // all of the constants. + if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { + std::vector<SCEVHandle> Operands; + for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) + Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty)); + return getAddRecExpr(Operands, AddRec->getLoop()); + } + + SCEVTruncateExpr *&Result = (*SCEVTruncates)[std::make_pair(Op, Ty)]; + if (Result == 0) Result = new SCEVTruncateExpr(Op, Ty); + return Result; +} + +SCEVHandle ScalarEvolution::getZeroExtendExpr(const SCEVHandle &Op, + const Type *Ty) { + assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && + "This is not an extending conversion!"); + assert(isSCEVable(Ty) && + "This is not a conversion to a SCEVable type!"); + Ty = getEffectiveSCEVType(Ty); + + if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) { + const Type *IntTy = getEffectiveSCEVType(Ty); + Constant *C = ConstantExpr::getZExt(SC->getValue(), IntTy); + if (IntTy != Ty) C = ConstantExpr::getIntToPtr(C, Ty); + return getUnknown(C); + } + + // zext(zext(x)) --> zext(x) + if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) + return getZeroExtendExpr(SZ->getOperand(), Ty); + + // If the input value is a chrec scev, and we can prove that the value + // did not overflow the old, smaller, value, we can zero extend all of the + // operands (often constants). This allows analysis of something like + // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; } + if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) + if (AR->isAffine()) { + // Check whether the backedge-taken count is SCEVCouldNotCompute. + // Note that this serves two purposes: It filters out loops that are + // simply not analyzable, and it covers the case where this code is + // being called from within backedge-taken count analysis, such that + // attempting to ask for the backedge-taken count would likely result + // in infinite recursion. In the later case, the analysis code will + // cope with a conservative value, and it will take care to purge + // that value once it has finished. + SCEVHandle MaxBECount = getMaxBackedgeTakenCount(AR->getLoop()); + if (!isa<SCEVCouldNotCompute>(MaxBECount)) { + // Manually compute the final value for AR, checking for + // overflow. + SCEVHandle Start = AR->getStart(); + SCEVHandle Step = AR->getStepRecurrence(*this); + + // Check whether the backedge-taken count can be losslessly casted to + // the addrec's type. The count is always unsigned. + SCEVHandle CastedMaxBECount = + getTruncateOrZeroExtend(MaxBECount, Start->getType()); + SCEVHandle RecastedMaxBECount = + getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType()); + if (MaxBECount == RecastedMaxBECount) { + const Type *WideTy = + IntegerType::get(getTypeSizeInBits(Start->getType()) * 2); + // Check whether Start+Step*MaxBECount has no unsigned overflow. + SCEVHandle ZMul = + getMulExpr(CastedMaxBECount, + getTruncateOrZeroExtend(Step, Start->getType())); + SCEVHandle Add = getAddExpr(Start, ZMul); + SCEVHandle OperandExtendedAdd = + getAddExpr(getZeroExtendExpr(Start, WideTy), + getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy), + getZeroExtendExpr(Step, WideTy))); + if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd) + // Return the expression with the addrec on the outside. + return getAddRecExpr(getZeroExtendExpr(Start, Ty), + getZeroExtendExpr(Step, Ty), + AR->getLoop()); + + // Similar to above, only this time treat the step value as signed. + // This covers loops that count down. + SCEVHandle SMul = + getMulExpr(CastedMaxBECount, + getTruncateOrSignExtend(Step, Start->getType())); + Add = getAddExpr(Start, SMul); + OperandExtendedAdd = + getAddExpr(getZeroExtendExpr(Start, WideTy), + getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy), + getSignExtendExpr(Step, WideTy))); + if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd) + // Return the expression with the addrec on the outside. + return getAddRecExpr(getZeroExtendExpr(Start, Ty), + getSignExtendExpr(Step, Ty), + AR->getLoop()); + } + } + } + + SCEVZeroExtendExpr *&Result = (*SCEVZeroExtends)[std::make_pair(Op, Ty)]; + if (Result == 0) Result = new SCEVZeroExtendExpr(Op, Ty); + return Result; +} + +SCEVHandle ScalarEvolution::getSignExtendExpr(const SCEVHandle &Op, + const Type *Ty) { + assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && + "This is not an extending conversion!"); + assert(isSCEVable(Ty) && + "This is not a conversion to a SCEVable type!"); + Ty = getEffectiveSCEVType(Ty); + + if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) { + const Type *IntTy = getEffectiveSCEVType(Ty); + Constant *C = ConstantExpr::getSExt(SC->getValue(), IntTy); + if (IntTy != Ty) C = ConstantExpr::getIntToPtr(C, Ty); + return getUnknown(C); + } + + // sext(sext(x)) --> sext(x) + if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) + return getSignExtendExpr(SS->getOperand(), Ty); + + // If the input value is a chrec scev, and we can prove that the value + // did not overflow the old, smaller, value, we can sign extend all of the + // operands (often constants). This allows analysis of something like + // this: for (signed char X = 0; X < 100; ++X) { int Y = X; } + if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) + if (AR->isAffine()) { + // Check whether the backedge-taken count is SCEVCouldNotCompute. + // Note that this serves two purposes: It filters out loops that are + // simply not analyzable, and it covers the case where this code is + // being called from within backedge-taken count analysis, such that + // attempting to ask for the backedge-taken count would likely result + // in infinite recursion. In the later case, the analysis code will + // cope with a conservative value, and it will take care to purge + // that value once it has finished. + SCEVHandle MaxBECount = getMaxBackedgeTakenCount(AR->getLoop()); + if (!isa<SCEVCouldNotCompute>(MaxBECount)) { + // Manually compute the final value for AR, checking for + // overflow. + SCEVHandle Start = AR->getStart(); + SCEVHandle Step = AR->getStepRecurrence(*this); + + // Check whether the backedge-taken count can be losslessly casted to + // the addrec's type. The count is always unsigned. + SCEVHandle CastedMaxBECount = + getTruncateOrZeroExtend(MaxBECount, Start->getType()); + SCEVHandle RecastedMaxBECount = + getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType()); + if (MaxBECount == RecastedMaxBECount) { + const Type *WideTy = + IntegerType::get(getTypeSizeInBits(Start->getType()) * 2); + // Check whether Start+Step*MaxBECount has no signed overflow. + SCEVHandle SMul = + getMulExpr(CastedMaxBECount, + getTruncateOrSignExtend(Step, Start->getType())); + SCEVHandle Add = getAddExpr(Start, SMul); + SCEVHandle OperandExtendedAdd = + getAddExpr(getSignExtendExpr(Start, WideTy), + getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy), + getSignExtendExpr(Step, WideTy))); + if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd) + // Return the expression with the addrec on the outside. + return getAddRecExpr(getSignExtendExpr(Start, Ty), + getSignExtendExpr(Step, Ty), + AR->getLoop()); + } + } + } + + SCEVSignExtendExpr *&Result = (*SCEVSignExtends)[std::make_pair(Op, Ty)]; + if (Result == 0) Result = new SCEVSignExtendExpr(Op, Ty); + return Result; +} + +/// getAddExpr - Get a canonical add expression, or something simpler if +/// possible. +SCEVHandle ScalarEvolution::getAddExpr(std::vector<SCEVHandle> &Ops) { + assert(!Ops.empty() && "Cannot get empty add!"); + if (Ops.size() == 1) return Ops[0]; +#ifndef NDEBUG + for (unsigned i = 1, e = Ops.size(); i != e; ++i) + assert(getEffectiveSCEVType(Ops[i]->getType()) == + getEffectiveSCEVType(Ops[0]->getType()) && + "SCEVAddExpr operand types don't match!"); +#endif + + // Sort by complexity, this groups all similar expression types together. + GroupByComplexity(Ops, LI); + + // If there are any constants, fold them together. + unsigned Idx = 0; + if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { + ++Idx; + assert(Idx < Ops.size()); + while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { + // We found two constants, fold them together! + ConstantInt *Fold = ConstantInt::get(LHSC->getValue()->getValue() + + RHSC->getValue()->getValue()); + Ops[0] = getConstant(Fold); + Ops.erase(Ops.begin()+1); // Erase the folded element + if (Ops.size() == 1) return Ops[0]; + LHSC = cast<SCEVConstant>(Ops[0]); + } + + // If we are left with a constant zero being added, strip it off. + if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) { + Ops.erase(Ops.begin()); + --Idx; + } + } + + if (Ops.size() == 1) return Ops[0]; + + // Okay, check to see if the same value occurs in the operand list twice. If + // so, merge them together into an multiply expression. Since we sorted the + // list, these values are required to be adjacent. + const Type *Ty = Ops[0]->getType(); + for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) + if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2 + // Found a match, merge the two values into a multiply, and add any + // remaining values to the result. + SCEVHandle Two = getIntegerSCEV(2, Ty); + SCEVHandle Mul = getMulExpr(Ops[i], Two); + if (Ops.size() == 2) + return Mul; + Ops.erase(Ops.begin()+i, Ops.begin()+i+2); + Ops.push_back(Mul); + return getAddExpr(Ops); + } + + // Check for truncates. If all the operands are truncated from the same + // type, see if factoring out the truncate would permit the result to be + // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n) + // if the contents of the resulting outer trunc fold to something simple. + for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) { + const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]); + const Type *DstType = Trunc->getType(); + const Type *SrcType = Trunc->getOperand()->getType(); + std::vector<SCEVHandle> LargeOps; + bool Ok = true; + // Check all the operands to see if they can be represented in the + // source type of the truncate. + for (unsigned i = 0, e = Ops.size(); i != e; ++i) { + if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) { + if (T->getOperand()->getType() != SrcType) { + Ok = false; + break; + } + LargeOps.push_back(T->getOperand()); + } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { + // This could be either sign or zero extension, but sign extension + // is much more likely to be foldable here. + LargeOps.push_back(getSignExtendExpr(C, SrcType)); + } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) { + std::vector<SCEVHandle> LargeMulOps; + for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) { + if (const SCEVTruncateExpr *T = + dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) { + if (T->getOperand()->getType() != SrcType) { + Ok = false; + break; + } + LargeMulOps.push_back(T->getOperand()); + } else if (const SCEVConstant *C = + dyn_cast<SCEVConstant>(M->getOperand(j))) { + // This could be either sign or zero extension, but sign extension + // is much more likely to be foldable here. + LargeMulOps.push_back(getSignExtendExpr(C, SrcType)); + } else { + Ok = false; + break; + } + } + if (Ok) + LargeOps.push_back(getMulExpr(LargeMulOps)); + } else { + Ok = false; + break; + } + } + if (Ok) { + // Evaluate the expression in the larger type. + SCEVHandle Fold = getAddExpr(LargeOps); + // If it folds to something simple, use it. Otherwise, don't. + if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold)) + return getTruncateExpr(Fold, DstType); + } + } + + // Skip past any other cast SCEVs. + while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr) + ++Idx; + + // If there are add operands they would be next. + if (Idx < Ops.size()) { + bool DeletedAdd = false; + while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) { + // If we have an add, expand the add operands onto the end of the operands + // list. + Ops.insert(Ops.end(), Add->op_begin(), Add->op_end()); + Ops.erase(Ops.begin()+Idx); + DeletedAdd = true; + } + + // If we deleted at least one add, we added operands to the end of the list, + // and they are not necessarily sorted. Recurse to resort and resimplify + // any operands we just aquired. + if (DeletedAdd) + return getAddExpr(Ops); + } + + // Skip over the add expression until we get to a multiply. + while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) + ++Idx; + + // If we are adding something to a multiply expression, make sure the + // something is not already an operand of the multiply. If so, merge it into + // the multiply. + for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) { + const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]); + for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) { + const SCEV *MulOpSCEV = Mul->getOperand(MulOp); + for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp) + if (MulOpSCEV == Ops[AddOp] && !isa<SCEVConstant>(MulOpSCEV)) { + // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1)) + SCEVHandle InnerMul = Mul->getOperand(MulOp == 0); + if (Mul->getNumOperands() != 2) { + // If the multiply has more than two operands, we must get the + // Y*Z term. + std::vector<SCEVHandle> MulOps(Mul->op_begin(), Mul->op_end()); + MulOps.erase(MulOps.begin()+MulOp); + InnerMul = getMulExpr(MulOps); + } + SCEVHandle One = getIntegerSCEV(1, Ty); + SCEVHandle AddOne = getAddExpr(InnerMul, One); + SCEVHandle OuterMul = getMulExpr(AddOne, Ops[AddOp]); + if (Ops.size() == 2) return OuterMul; + if (AddOp < Idx) { + Ops.erase(Ops.begin()+AddOp); + Ops.erase(Ops.begin()+Idx-1); + } else { + Ops.erase(Ops.begin()+Idx); + Ops.erase(Ops.begin()+AddOp-1); + } + Ops.push_back(OuterMul); + return getAddExpr(Ops); + } + + // Check this multiply against other multiplies being added together. + for (unsigned OtherMulIdx = Idx+1; + OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]); + ++OtherMulIdx) { + const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]); + // If MulOp occurs in OtherMul, we can fold the two multiplies + // together. + for (unsigned OMulOp = 0, e = OtherMul->getNumOperands(); + OMulOp != e; ++OMulOp) + if (OtherMul->getOperand(OMulOp) == MulOpSCEV) { + // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E)) + SCEVHandle InnerMul1 = Mul->getOperand(MulOp == 0); + if (Mul->getNumOperands() != 2) { + std::vector<SCEVHandle> MulOps(Mul->op_begin(), Mul->op_end()); + MulOps.erase(MulOps.begin()+MulOp); + InnerMul1 = getMulExpr(MulOps); + } + SCEVHandle InnerMul2 = OtherMul->getOperand(OMulOp == 0); + if (OtherMul->getNumOperands() != 2) { + std::vector<SCEVHandle> MulOps(OtherMul->op_begin(), + OtherMul->op_end()); + MulOps.erase(MulOps.begin()+OMulOp); + InnerMul2 = getMulExpr(MulOps); + } + SCEVHandle InnerMulSum = getAddExpr(InnerMul1,InnerMul2); + SCEVHandle OuterMul = getMulExpr(MulOpSCEV, InnerMulSum); + if (Ops.size() == 2) return OuterMul; + Ops.erase(Ops.begin()+Idx); + Ops.erase(Ops.begin()+OtherMulIdx-1); + Ops.push_back(OuterMul); + return getAddExpr(Ops); + } + } + } + } + + // If there are any add recurrences in the operands list, see if any other + // added values are loop invariant. If so, we can fold them into the + // recurrence. + while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) + ++Idx; + + // Scan over all recurrences, trying to fold loop invariants into them. + for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { + // Scan all of the other operands to this add and add them to the vector if + // they are loop invariant w.r.t. the recurrence. + std::vector<SCEVHandle> LIOps; + const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); + for (unsigned i = 0, e = Ops.size(); i != e; ++i) + if (Ops[i]->isLoopInvariant(AddRec->getLoop())) { + LIOps.push_back(Ops[i]); + Ops.erase(Ops.begin()+i); + --i; --e; + } + + // If we found some loop invariants, fold them into the recurrence. + if (!LIOps.empty()) { + // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step} + LIOps.push_back(AddRec->getStart()); + + std::vector<SCEVHandle> AddRecOps(AddRec->op_begin(), AddRec->op_end()); + AddRecOps[0] = getAddExpr(LIOps); + + SCEVHandle NewRec = getAddRecExpr(AddRecOps, AddRec->getLoop()); + // If all of the other operands were loop invariant, we are done. + if (Ops.size() == 1) return NewRec; + + // Otherwise, add the folded AddRec by the non-liv parts. + for (unsigned i = 0;; ++i) + if (Ops[i] == AddRec) { + Ops[i] = NewRec; + break; + } + return getAddExpr(Ops); + } + + // Okay, if there weren't any loop invariants to be folded, check to see if + // there are multiple AddRec's with the same loop induction variable being + // added together. If so, we can fold them. + for (unsigned OtherIdx = Idx+1; + OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx) + if (OtherIdx != Idx) { + const SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]); + if (AddRec->getLoop() == OtherAddRec->getLoop()) { + // Other + {A,+,B} + {C,+,D} --> Other + {A+C,+,B+D} + std::vector<SCEVHandle> NewOps(AddRec->op_begin(), AddRec->op_end()); + for (unsigned i = 0, e = OtherAddRec->getNumOperands(); i != e; ++i) { + if (i >= NewOps.size()) { + NewOps.insert(NewOps.end(), OtherAddRec->op_begin()+i, + OtherAddRec->op_end()); + break; + } + NewOps[i] = getAddExpr(NewOps[i], OtherAddRec->getOperand(i)); + } + SCEVHandle NewAddRec = getAddRecExpr(NewOps, AddRec->getLoop()); + + if (Ops.size() == 2) return NewAddRec; + + Ops.erase(Ops.begin()+Idx); + Ops.erase(Ops.begin()+OtherIdx-1); + Ops.push_back(NewAddRec); + return getAddExpr(Ops); + } + } + + // Otherwise couldn't fold anything into this recurrence. Move onto the + // next one. + } + + // Okay, it looks like we really DO need an add expr. Check to see if we + // already have one, otherwise create a new one. + std::vector<const SCEV*> SCEVOps(Ops.begin(), Ops.end()); + SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scAddExpr, + SCEVOps)]; + if (Result == 0) Result = new SCEVAddExpr(Ops); + return Result; +} + + +/// getMulExpr - Get a canonical multiply expression, or something simpler if +/// possible. +SCEVHandle ScalarEvolution::getMulExpr(std::vector<SCEVHandle> &Ops) { + assert(!Ops.empty() && "Cannot get empty mul!"); +#ifndef NDEBUG + for (unsigned i = 1, e = Ops.size(); i != e; ++i) + assert(getEffectiveSCEVType(Ops[i]->getType()) == + getEffectiveSCEVType(Ops[0]->getType()) && + "SCEVMulExpr operand types don't match!"); +#endif + + // Sort by complexity, this groups all similar expression types together. + GroupByComplexity(Ops, LI); + + // If there are any constants, fold them together. + unsigned Idx = 0; + if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { + + // C1*(C2+V) -> C1*C2 + C1*V + if (Ops.size() == 2) + if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) + if (Add->getNumOperands() == 2 && + isa<SCEVConstant>(Add->getOperand(0))) + return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)), + getMulExpr(LHSC, Add->getOperand(1))); + + + ++Idx; + while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { + // We found two constants, fold them together! + ConstantInt *Fold = ConstantInt::get(LHSC->getValue()->getValue() * + RHSC->getValue()->getValue()); + Ops[0] = getConstant(Fold); + Ops.erase(Ops.begin()+1); // Erase the folded element + if (Ops.size() == 1) return Ops[0]; + LHSC = cast<SCEVConstant>(Ops[0]); + } + + // If we are left with a constant one being multiplied, strip it off. + if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) { + Ops.erase(Ops.begin()); + --Idx; + } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) { + // If we have a multiply of zero, it will always be zero. + return Ops[0]; + } + } + + // Skip over the add expression until we get to a multiply. + while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) + ++Idx; + + if (Ops.size() == 1) + return Ops[0]; + + // If there are mul operands inline them all into this expression. + if (Idx < Ops.size()) { + bool DeletedMul = false; + while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) { + // If we have an mul, expand the mul operands onto the end of the operands + // list. + Ops.insert(Ops.end(), Mul->op_begin(), Mul->op_end()); + Ops.erase(Ops.begin()+Idx); + DeletedMul = true; + } + + // If we deleted at least one mul, we added operands to the end of the list, + // and they are not necessarily sorted. Recurse to resort and resimplify + // any operands we just aquired. + if (DeletedMul) + return getMulExpr(Ops); + } + + // If there are any add recurrences in the operands list, see if any other + // added values are loop invariant. If so, we can fold them into the + // recurrence. + while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) + ++Idx; + + // Scan over all recurrences, trying to fold loop invariants into them. + for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { + // Scan all of the other operands to this mul and add them to the vector if + // they are loop invariant w.r.t. the recurrence. + std::vector<SCEVHandle> LIOps; + const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); + for (unsigned i = 0, e = Ops.size(); i != e; ++i) + if (Ops[i]->isLoopInvariant(AddRec->getLoop())) { + LIOps.push_back(Ops[i]); + Ops.erase(Ops.begin()+i); + --i; --e; + } + + // If we found some loop invariants, fold them into the recurrence. + if (!LIOps.empty()) { + // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step} + std::vector<SCEVHandle> NewOps; + NewOps.reserve(AddRec->getNumOperands()); + if (LIOps.size() == 1) { + const SCEV *Scale = LIOps[0]; + for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) + NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i))); + } else { + for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { + std::vector<SCEVHandle> MulOps(LIOps); + MulOps.push_back(AddRec->getOperand(i)); + NewOps.push_back(getMulExpr(MulOps)); + } + } + + SCEVHandle NewRec = getAddRecExpr(NewOps, AddRec->getLoop()); + + // If all of the other operands were loop invariant, we are done. + if (Ops.size() == 1) return NewRec; + + // Otherwise, multiply the folded AddRec by the non-liv parts. + for (unsigned i = 0;; ++i) + if (Ops[i] == AddRec) { + Ops[i] = NewRec; + break; + } + return getMulExpr(Ops); + } + + // Okay, if there weren't any loop invariants to be folded, check to see if + // there are multiple AddRec's with the same loop induction variable being + // multiplied together. If so, we can fold them. + for (unsigned OtherIdx = Idx+1; + OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx) + if (OtherIdx != Idx) { + const SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]); + if (AddRec->getLoop() == OtherAddRec->getLoop()) { + // F * G --> {A,+,B} * {C,+,D} --> {A*C,+,F*D + G*B + B*D} + const SCEVAddRecExpr *F = AddRec, *G = OtherAddRec; + SCEVHandle NewStart = getMulExpr(F->getStart(), + G->getStart()); + SCEVHandle B = F->getStepRecurrence(*this); + SCEVHandle D = G->getStepRecurrence(*this); + SCEVHandle NewStep = getAddExpr(getMulExpr(F, D), + getMulExpr(G, B), + getMulExpr(B, D)); + SCEVHandle NewAddRec = getAddRecExpr(NewStart, NewStep, + F->getLoop()); + if (Ops.size() == 2) return NewAddRec; + + Ops.erase(Ops.begin()+Idx); + Ops.erase(Ops.begin()+OtherIdx-1); + Ops.push_back(NewAddRec); + return getMulExpr(Ops); + } + } + + // Otherwise couldn't fold anything into this recurrence. Move onto the + // next one. + } + + // Okay, it looks like we really DO need an mul expr. Check to see if we + // already have one, otherwise create a new one. + std::vector<const SCEV*> SCEVOps(Ops.begin(), Ops.end()); + SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scMulExpr, + SCEVOps)]; + if (Result == 0) + Result = new SCEVMulExpr(Ops); + return Result; +} + +/// getUDivExpr - Get a canonical multiply expression, or something simpler if +/// possible. +SCEVHandle ScalarEvolution::getUDivExpr(const SCEVHandle &LHS, + const SCEVHandle &RHS) { + assert(getEffectiveSCEVType(LHS->getType()) == + getEffectiveSCEVType(RHS->getType()) && + "SCEVUDivExpr operand types don't match!"); + + if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { + if (RHSC->getValue()->equalsInt(1)) + return LHS; // X udiv 1 --> x + if (RHSC->isZero()) + return getIntegerSCEV(0, LHS->getType()); // value is undefined + + // Determine if the division can be folded into the operands of + // its operands. + // TODO: Generalize this to non-constants by using known-bits information. + const Type *Ty = LHS->getType(); + unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros(); + unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ; + // For non-power-of-two values, effectively round the value up to the + // nearest power of two. + if (!RHSC->getValue()->getValue().isPowerOf2()) + ++MaxShiftAmt; + const IntegerType *ExtTy = + IntegerType::get(getTypeSizeInBits(Ty) + MaxShiftAmt); + // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded. + if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) + if (const SCEVConstant *Step = + dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) + if (!Step->getValue()->getValue() + .urem(RHSC->getValue()->getValue()) && + getZeroExtendExpr(AR, ExtTy) == + getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), + getZeroExtendExpr(Step, ExtTy), + AR->getLoop())) { + std::vector<SCEVHandle> Operands; + for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i) + Operands.push_back(getUDivExpr(AR->getOperand(i), RHS)); + return getAddRecExpr(Operands, AR->getLoop()); + } + // (A*B)/C --> A*(B/C) if safe and B/C can be folded. + if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) { + std::vector<SCEVHandle> Operands; + for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) + Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy)); + if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands)) + // Find an operand that's safely divisible. + for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) { + SCEVHandle Op = M->getOperand(i); + SCEVHandle Div = getUDivExpr(Op, RHSC); + if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) { + Operands = M->getOperands(); + Operands[i] = Div; + return getMulExpr(Operands); + } + } + } + // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded. + if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(LHS)) { + std::vector<SCEVHandle> Operands; + for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) + Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy)); + if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) { + Operands.clear(); + for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) { + SCEVHandle Op = getUDivExpr(A->getOperand(i), RHS); + if (isa<SCEVUDivExpr>(Op) || getMulExpr(Op, RHS) != A->getOperand(i)) + break; + Operands.push_back(Op); + } + if (Operands.size() == A->getNumOperands()) + return getAddExpr(Operands); + } + } + + // Fold if both operands are constant. + if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { + Constant *LHSCV = LHSC->getValue(); + Constant *RHSCV = RHSC->getValue(); + return getUnknown(ConstantExpr::getUDiv(LHSCV, RHSCV)); + } + } + + SCEVUDivExpr *&Result = (*SCEVUDivs)[std::make_pair(LHS, RHS)]; + if (Result == 0) Result = new SCEVUDivExpr(LHS, RHS); + return Result; +} + + +/// getAddRecExpr - Get an add recurrence expression for the specified loop. +/// Simplify the expression as much as possible. +SCEVHandle ScalarEvolution::getAddRecExpr(const SCEVHandle &Start, + const SCEVHandle &Step, const Loop *L) { + std::vector<SCEVHandle> Operands; + Operands.push_back(Start); + if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step)) + if (StepChrec->getLoop() == L) { + Operands.insert(Operands.end(), StepChrec->op_begin(), + StepChrec->op_end()); + return getAddRecExpr(Operands, L); + } + + Operands.push_back(Step); + return getAddRecExpr(Operands, L); +} + +/// getAddRecExpr - Get an add recurrence expression for the specified loop. +/// Simplify the expression as much as possible. +SCEVHandle ScalarEvolution::getAddRecExpr(std::vector<SCEVHandle> &Operands, + const Loop *L) { + if (Operands.size() == 1) return Operands[0]; +#ifndef NDEBUG + for (unsigned i = 1, e = Operands.size(); i != e; ++i) + assert(getEffectiveSCEVType(Operands[i]->getType()) == + getEffectiveSCEVType(Operands[0]->getType()) && + "SCEVAddRecExpr operand types don't match!"); +#endif + + if (Operands.back()->isZero()) { + Operands.pop_back(); + return getAddRecExpr(Operands, L); // {X,+,0} --> X + } + + // Canonicalize nested AddRecs in by nesting them in order of loop depth. + if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) { + const Loop* NestedLoop = NestedAR->getLoop(); + if (L->getLoopDepth() < NestedLoop->getLoopDepth()) { + std::vector<SCEVHandle> NestedOperands(NestedAR->op_begin(), + NestedAR->op_end()); + SCEVHandle NestedARHandle(NestedAR); + Operands[0] = NestedAR->getStart(); + NestedOperands[0] = getAddRecExpr(Operands, L); + return getAddRecExpr(NestedOperands, NestedLoop); + } + } + + std::vector<const SCEV*> SCEVOps(Operands.begin(), Operands.end()); + SCEVAddRecExpr *&Result = (*SCEVAddRecExprs)[std::make_pair(L, SCEVOps)]; + if (Result == 0) Result = new SCEVAddRecExpr(Operands, L); + return Result; +} + +SCEVHandle ScalarEvolution::getSMaxExpr(const SCEVHandle &LHS, + const SCEVHandle &RHS) { + std::vector<SCEVHandle> Ops; + Ops.push_back(LHS); + Ops.push_back(RHS); + return getSMaxExpr(Ops); +} + +SCEVHandle ScalarEvolution::getSMaxExpr(std::vector<SCEVHandle> Ops) { + assert(!Ops.empty() && "Cannot get empty smax!"); + if (Ops.size() == 1) return Ops[0]; +#ifndef NDEBUG + for (unsigned i = 1, e = Ops.size(); i != e; ++i) + assert(getEffectiveSCEVType(Ops[i]->getType()) == + getEffectiveSCEVType(Ops[0]->getType()) && + "SCEVSMaxExpr operand types don't match!"); +#endif + + // Sort by complexity, this groups all similar expression types together. + GroupByComplexity(Ops, LI); + + // If there are any constants, fold them together. + unsigned Idx = 0; + if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { + ++Idx; + assert(Idx < Ops.size()); + while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { + // We found two constants, fold them together! + ConstantInt *Fold = ConstantInt::get( + APIntOps::smax(LHSC->getValue()->getValue(), + RHSC->getValue()->getValue())); + Ops[0] = getConstant(Fold); + Ops.erase(Ops.begin()+1); // Erase the folded element + if (Ops.size() == 1) return Ops[0]; + LHSC = cast<SCEVConstant>(Ops[0]); + } + + // If we are left with a constant -inf, strip it off. + if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) { + Ops.erase(Ops.begin()); + --Idx; + } + } + + if (Ops.size() == 1) return Ops[0]; + + // Find the first SMax + while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr) + ++Idx; + + // Check to see if one of the operands is an SMax. If so, expand its operands + // onto our operand list, and recurse to simplify. + if (Idx < Ops.size()) { + bool DeletedSMax = false; + while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) { + Ops.insert(Ops.end(), SMax->op_begin(), SMax->op_end()); + Ops.erase(Ops.begin()+Idx); + DeletedSMax = true; + } + + if (DeletedSMax) + return getSMaxExpr(Ops); + } + + // Okay, check to see if the same value occurs in the operand list twice. If + // so, delete one. Since we sorted the list, these values are required to + // be adjacent. + for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) + if (Ops[i] == Ops[i+1]) { // X smax Y smax Y --> X smax Y + Ops.erase(Ops.begin()+i, Ops.begin()+i+1); + --i; --e; + } + + if (Ops.size() == 1) return Ops[0]; + + assert(!Ops.empty() && "Reduced smax down to nothing!"); + + // Okay, it looks like we really DO need an smax expr. Check to see if we + // already have one, otherwise create a new one. + std::vector<const SCEV*> SCEVOps(Ops.begin(), Ops.end()); + SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scSMaxExpr, + SCEVOps)]; + if (Result == 0) Result = new SCEVSMaxExpr(Ops); + return Result; +} + +SCEVHandle ScalarEvolution::getUMaxExpr(const SCEVHandle &LHS, + const SCEVHandle &RHS) { + std::vector<SCEVHandle> Ops; + Ops.push_back(LHS); + Ops.push_back(RHS); + return getUMaxExpr(Ops); +} + +SCEVHandle ScalarEvolution::getUMaxExpr(std::vector<SCEVHandle> Ops) { + assert(!Ops.empty() && "Cannot get empty umax!"); + if (Ops.size() == 1) return Ops[0]; +#ifndef NDEBUG + for (unsigned i = 1, e = Ops.size(); i != e; ++i) + assert(getEffectiveSCEVType(Ops[i]->getType()) == + getEffectiveSCEVType(Ops[0]->getType()) && + "SCEVUMaxExpr operand types don't match!"); +#endif + + // Sort by complexity, this groups all similar expression types together. + GroupByComplexity(Ops, LI); + + // If there are any constants, fold them together. + unsigned Idx = 0; + if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { + ++Idx; + assert(Idx < Ops.size()); + while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { + // We found two constants, fold them together! + ConstantInt *Fold = ConstantInt::get( + APIntOps::umax(LHSC->getValue()->getValue(), + RHSC->getValue()->getValue())); + Ops[0] = getConstant(Fold); + Ops.erase(Ops.begin()+1); // Erase the folded element + if (Ops.size() == 1) return Ops[0]; + LHSC = cast<SCEVConstant>(Ops[0]); + } + + // If we are left with a constant zero, strip it off. + if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) { + Ops.erase(Ops.begin()); + --Idx; + } + } + + if (Ops.size() == 1) return Ops[0]; + + // Find the first UMax + while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr) + ++Idx; + + // Check to see if one of the operands is a UMax. If so, expand its operands + // onto our operand list, and recurse to simplify. + if (Idx < Ops.size()) { + bool DeletedUMax = false; + while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) { + Ops.insert(Ops.end(), UMax->op_begin(), UMax->op_end()); + Ops.erase(Ops.begin()+Idx); + DeletedUMax = true; + } + + if (DeletedUMax) + return getUMaxExpr(Ops); + } + + // Okay, check to see if the same value occurs in the operand list twice. If + // so, delete one. Since we sorted the list, these values are required to + // be adjacent. + for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) + if (Ops[i] == Ops[i+1]) { // X umax Y umax Y --> X umax Y + Ops.erase(Ops.begin()+i, Ops.begin()+i+1); + --i; --e; + } + + if (Ops.size() == 1) return Ops[0]; + + assert(!Ops.empty() && "Reduced umax down to nothing!"); + + // Okay, it looks like we really DO need a umax expr. Check to see if we + // already have one, otherwise create a new one. + std::vector<const SCEV*> SCEVOps(Ops.begin(), Ops.end()); + SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scUMaxExpr, + SCEVOps)]; + if (Result == 0) Result = new SCEVUMaxExpr(Ops); + return Result; +} + +SCEVHandle ScalarEvolution::getUnknown(Value *V) { + if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) + return getConstant(CI); + if (isa<ConstantPointerNull>(V)) + return getIntegerSCEV(0, V->getType()); + SCEVUnknown *&Result = (*SCEVUnknowns)[V]; + if (Result == 0) Result = new SCEVUnknown(V); + return Result; +} + +//===----------------------------------------------------------------------===// +// Basic SCEV Analysis and PHI Idiom Recognition Code +// + +/// isSCEVable - Test if values of the given type are analyzable within +/// the SCEV framework. This primarily includes integer types, and it +/// can optionally include pointer types if the ScalarEvolution class +/// has access to target-specific information. +bool ScalarEvolution::isSCEVable(const Type *Ty) const { + // Integers are always SCEVable. + if (Ty->isInteger()) + return true; + + // Pointers are SCEVable if TargetData information is available + // to provide pointer size information. + if (isa<PointerType>(Ty)) + return TD != NULL; + + // Otherwise it's not SCEVable. + return false; +} + +/// getTypeSizeInBits - Return the size in bits of the specified type, +/// for which isSCEVable must return true. +uint64_t ScalarEvolution::getTypeSizeInBits(const Type *Ty) const { + assert(isSCEVable(Ty) && "Type is not SCEVable!"); + + // If we have a TargetData, use it! + if (TD) + return TD->getTypeSizeInBits(Ty); + + // Otherwise, we support only integer types. + assert(Ty->isInteger() && "isSCEVable permitted a non-SCEVable type!"); + return Ty->getPrimitiveSizeInBits(); +} + +/// getEffectiveSCEVType - Return a type with the same bitwidth as +/// the given type and which represents how SCEV will treat the given +/// type, for which isSCEVable must return true. For pointer types, +/// this is the pointer-sized integer type. +const Type *ScalarEvolution::getEffectiveSCEVType(const Type *Ty) const { + assert(isSCEVable(Ty) && "Type is not SCEVable!"); + + if (Ty->isInteger()) + return Ty; + + assert(isa<PointerType>(Ty) && "Unexpected non-pointer non-integer type!"); + return TD->getIntPtrType(); +} + +SCEVHandle ScalarEvolution::getCouldNotCompute() { + return UnknownValue; +} + +/// hasSCEV - Return true if the SCEV for this value has already been +/// computed. +bool ScalarEvolution::hasSCEV(Value *V) const { + return Scalars.count(V); +} + +/// getSCEV - Return an existing SCEV if it exists, otherwise analyze the +/// expression and create a new one. +SCEVHandle ScalarEvolution::getSCEV(Value *V) { + assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); + + std::map<SCEVCallbackVH, SCEVHandle>::iterator I = Scalars.find(V); + if (I != Scalars.end()) return I->second; + SCEVHandle S = createSCEV(V); + Scalars.insert(std::make_pair(SCEVCallbackVH(V, this), S)); + return S; +} + +/// getIntegerSCEV - Given an integer or FP type, create a constant for the +/// specified signed integer value and return a SCEV for the constant. +SCEVHandle ScalarEvolution::getIntegerSCEV(int Val, const Type *Ty) { + Ty = getEffectiveSCEVType(Ty); + Constant *C; + if (Val == 0) + C = Constant::getNullValue(Ty); + else if (Ty->isFloatingPoint()) + C = ConstantFP::get(APFloat(Ty==Type::FloatTy ? APFloat::IEEEsingle : + APFloat::IEEEdouble, Val)); + else + C = ConstantInt::get(Ty, Val); + return getUnknown(C); +} + +/// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V +/// +SCEVHandle ScalarEvolution::getNegativeSCEV(const SCEVHandle &V) { + if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) + return getUnknown(ConstantExpr::getNeg(VC->getValue())); + + const Type *Ty = V->getType(); + Ty = getEffectiveSCEVType(Ty); + return getMulExpr(V, getConstant(ConstantInt::getAllOnesValue(Ty))); +} + +/// getNotSCEV - Return a SCEV corresponding to ~V = -1-V +SCEVHandle ScalarEvolution::getNotSCEV(const SCEVHandle &V) { + if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) + return getUnknown(ConstantExpr::getNot(VC->getValue())); + + const Type *Ty = V->getType(); + Ty = getEffectiveSCEVType(Ty); + SCEVHandle AllOnes = getConstant(ConstantInt::getAllOnesValue(Ty)); + return getMinusSCEV(AllOnes, V); +} + +/// getMinusSCEV - Return a SCEV corresponding to LHS - RHS. +/// +SCEVHandle ScalarEvolution::getMinusSCEV(const SCEVHandle &LHS, + const SCEVHandle &RHS) { + // X - Y --> X + -Y + return getAddExpr(LHS, getNegativeSCEV(RHS)); +} + +/// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the +/// input value to the specified type. If the type must be extended, it is zero +/// extended. +SCEVHandle +ScalarEvolution::getTruncateOrZeroExtend(const SCEVHandle &V, + const Type *Ty) { + const Type *SrcTy = V->getType(); + assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) && + (Ty->isInteger() || (TD && isa<PointerType>(Ty))) && + "Cannot truncate or zero extend with non-integer arguments!"); + if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) + return V; // No conversion + if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) + return getTruncateExpr(V, Ty); + return getZeroExtendExpr(V, Ty); +} + +/// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the +/// input value to the specified type. If the type must be extended, it is sign +/// extended. +SCEVHandle +ScalarEvolution::getTruncateOrSignExtend(const SCEVHandle &V, + const Type *Ty) { + const Type *SrcTy = V->getType(); + assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) && + (Ty->isInteger() || (TD && isa<PointerType>(Ty))) && + "Cannot truncate or zero extend with non-integer arguments!"); + if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) + return V; // No conversion + if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) + return getTruncateExpr(V, Ty); + return getSignExtendExpr(V, Ty); +} + +/// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the +/// input value to the specified type. If the type must be extended, it is zero +/// extended. The conversion must not be narrowing. +SCEVHandle +ScalarEvolution::getNoopOrZeroExtend(const SCEVHandle &V, const Type *Ty) { + const Type *SrcTy = V->getType(); + assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) && + (Ty->isInteger() || (TD && isa<PointerType>(Ty))) && + "Cannot noop or zero extend with non-integer arguments!"); + assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && + "getNoopOrZeroExtend cannot truncate!"); + if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) + return V; // No conversion + return getZeroExtendExpr(V, Ty); +} + +/// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the +/// input value to the specified type. If the type must be extended, it is sign +/// extended. The conversion must not be narrowing. +SCEVHandle +ScalarEvolution::getNoopOrSignExtend(const SCEVHandle &V, const Type *Ty) { + const Type *SrcTy = V->getType(); + assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) && + (Ty->isInteger() || (TD && isa<PointerType>(Ty))) && + "Cannot noop or sign extend with non-integer arguments!"); + assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && + "getNoopOrSignExtend cannot truncate!"); + if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) + return V; // No conversion + return getSignExtendExpr(V, Ty); +} + +/// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the +/// input value to the specified type. The conversion must not be widening. +SCEVHandle +ScalarEvolution::getTruncateOrNoop(const SCEVHandle &V, const Type *Ty) { + const Type *SrcTy = V->getType(); + assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) && + (Ty->isInteger() || (TD && isa<PointerType>(Ty))) && + "Cannot truncate or noop with non-integer arguments!"); + assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) && + "getTruncateOrNoop cannot extend!"); + if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) + return V; // No conversion + return getTruncateExpr(V, Ty); +} + +/// ReplaceSymbolicValueWithConcrete - This looks up the computed SCEV value for +/// the specified instruction and replaces any references to the symbolic value +/// SymName with the specified value. This is used during PHI resolution. +void ScalarEvolution:: +ReplaceSymbolicValueWithConcrete(Instruction *I, const SCEVHandle &SymName, + const SCEVHandle &NewVal) { + std::map<SCEVCallbackVH, SCEVHandle>::iterator SI = + Scalars.find(SCEVCallbackVH(I, this)); + if (SI == Scalars.end()) return; + + SCEVHandle NV = + SI->second->replaceSymbolicValuesWithConcrete(SymName, NewVal, *this); + if (NV == SI->second) return; // No change. + + SI->second = NV; // Update the scalars map! + + // Any instruction values that use this instruction might also need to be + // updated! + for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); + UI != E; ++UI) + ReplaceSymbolicValueWithConcrete(cast<Instruction>(*UI), SymName, NewVal); +} + +/// createNodeForPHI - PHI nodes have two cases. Either the PHI node exists in +/// a loop header, making it a potential recurrence, or it doesn't. +/// +SCEVHandle ScalarEvolution::createNodeForPHI(PHINode *PN) { + if (PN->getNumIncomingValues() == 2) // The loops have been canonicalized. + if (const Loop *L = LI->getLoopFor(PN->getParent())) + if (L->getHeader() == PN->getParent()) { + // If it lives in the loop header, it has two incoming values, one + // from outside the loop, and one from inside. + unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0)); + unsigned BackEdge = IncomingEdge^1; + + // While we are analyzing this PHI node, handle its value symbolically. + SCEVHandle SymbolicName = getUnknown(PN); + assert(Scalars.find(PN) == Scalars.end() && + "PHI node already processed?"); + Scalars.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName)); + + // Using this symbolic name for the PHI, analyze the value coming around + // the back-edge. + SCEVHandle BEValue = getSCEV(PN->getIncomingValue(BackEdge)); + + // NOTE: If BEValue is loop invariant, we know that the PHI node just + // has a special value for the first iteration of the loop. + + // If the value coming around the backedge is an add with the symbolic + // value we just inserted, then we found a simple induction variable! + if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) { + // If there is a single occurrence of the symbolic value, replace it + // with a recurrence. + unsigned FoundIndex = Add->getNumOperands(); + for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) + if (Add->getOperand(i) == SymbolicName) + if (FoundIndex == e) { + FoundIndex = i; + break; + } + + if (FoundIndex != Add->getNumOperands()) { + // Create an add with everything but the specified operand. + std::vector<SCEVHandle> Ops; + for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) + if (i != FoundIndex) + Ops.push_back(Add->getOperand(i)); + SCEVHandle Accum = getAddExpr(Ops); + + // This is not a valid addrec if the step amount is varying each + // loop iteration, but is not itself an addrec in this loop. + if (Accum->isLoopInvariant(L) || + (isa<SCEVAddRecExpr>(Accum) && + cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) { + SCEVHandle StartVal = getSCEV(PN->getIncomingValue(IncomingEdge)); + SCEVHandle PHISCEV = getAddRecExpr(StartVal, Accum, L); + + // Okay, for the entire analysis of this edge we assumed the PHI + // to be symbolic. We now need to go back and update all of the + // entries for the scalars that use the PHI (except for the PHI + // itself) to use the new analyzed value instead of the "symbolic" + // value. + ReplaceSymbolicValueWithConcrete(PN, SymbolicName, PHISCEV); + return PHISCEV; + } + } + } else if (const SCEVAddRecExpr *AddRec = + dyn_cast<SCEVAddRecExpr>(BEValue)) { + // Otherwise, this could be a loop like this: + // i = 0; for (j = 1; ..; ++j) { .... i = j; } + // In this case, j = {1,+,1} and BEValue is j. + // Because the other in-value of i (0) fits the evolution of BEValue + // i really is an addrec evolution. + if (AddRec->getLoop() == L && AddRec->isAffine()) { + SCEVHandle StartVal = getSCEV(PN->getIncomingValue(IncomingEdge)); + + // If StartVal = j.start - j.stride, we can use StartVal as the + // initial step of the addrec evolution. + if (StartVal == getMinusSCEV(AddRec->getOperand(0), + AddRec->getOperand(1))) { + SCEVHandle PHISCEV = + getAddRecExpr(StartVal, AddRec->getOperand(1), L); + + // Okay, for the entire analysis of this edge we assumed the PHI + // to be symbolic. We now need to go back and update all of the + // entries for the scalars that use the PHI (except for the PHI + // itself) to use the new analyzed value instead of the "symbolic" + // value. + ReplaceSymbolicValueWithConcrete(PN, SymbolicName, PHISCEV); + return PHISCEV; + } + } + } + + return SymbolicName; + } + + // If it's not a loop phi, we can't handle it yet. + return getUnknown(PN); +} + +/// createNodeForGEP - Expand GEP instructions into add and multiply +/// operations. This allows them to be analyzed by regular SCEV code. +/// +SCEVHandle ScalarEvolution::createNodeForGEP(User *GEP) { + + const Type *IntPtrTy = TD->getIntPtrType(); + Value *Base = GEP->getOperand(0); + // Don't attempt to analyze GEPs over unsized objects. + if (!cast<PointerType>(Base->getType())->getElementType()->isSized()) + return getUnknown(GEP); + SCEVHandle TotalOffset = getIntegerSCEV(0, IntPtrTy); + gep_type_iterator GTI = gep_type_begin(GEP); + for (GetElementPtrInst::op_iterator I = next(GEP->op_begin()), + E = GEP->op_end(); + I != E; ++I) { + Value *Index = *I; + // Compute the (potentially symbolic) offset in bytes for this index. + if (const StructType *STy = dyn_cast<StructType>(*GTI++)) { + // For a struct, add the member offset. + const StructLayout &SL = *TD->getStructLayout(STy); + unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue(); + uint64_t Offset = SL.getElementOffset(FieldNo); + TotalOffset = getAddExpr(TotalOffset, + getIntegerSCEV(Offset, IntPtrTy)); + } else { + // For an array, add the element offset, explicitly scaled. + SCEVHandle LocalOffset = getSCEV(Index); + if (!isa<PointerType>(LocalOffset->getType())) + // Getelementptr indicies are signed. + LocalOffset = getTruncateOrSignExtend(LocalOffset, + IntPtrTy); + LocalOffset = + getMulExpr(LocalOffset, + getIntegerSCEV(TD->getTypeAllocSize(*GTI), + IntPtrTy)); + TotalOffset = getAddExpr(TotalOffset, LocalOffset); + } + } + return getAddExpr(getSCEV(Base), TotalOffset); +} + +/// GetMinTrailingZeros - Determine the minimum number of zero bits that S is +/// guaranteed to end in (at every loop iteration). It is, at the same time, +/// the minimum number of times S is divisible by 2. For example, given {4,+,8} +/// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S. +static uint32_t GetMinTrailingZeros(SCEVHandle S, const ScalarEvolution &SE) { + if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) + return C->getValue()->getValue().countTrailingZeros(); + + if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S)) + return std::min(GetMinTrailingZeros(T->getOperand(), SE), + (uint32_t)SE.getTypeSizeInBits(T->getType())); + + if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) { + uint32_t OpRes = GetMinTrailingZeros(E->getOperand(), SE); + return OpRes == SE.getTypeSizeInBits(E->getOperand()->getType()) ? + SE.getTypeSizeInBits(E->getType()) : OpRes; + } + + if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) { + uint32_t OpRes = GetMinTrailingZeros(E->getOperand(), SE); + return OpRes == SE.getTypeSizeInBits(E->getOperand()->getType()) ? + SE.getTypeSizeInBits(E->getType()) : OpRes; + } + + if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) { + // The result is the min of all operands results. + uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0), SE); + for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) + MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i), SE)); + return MinOpRes; + } + + if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) { + // The result is the sum of all operands results. + uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0), SE); + uint32_t BitWidth = SE.getTypeSizeInBits(M->getType()); + for (unsigned i = 1, e = M->getNumOperands(); + SumOpRes != BitWidth && i != e; ++i) + SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i), SE), + BitWidth); + return SumOpRes; + } + + if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) { + // The result is the min of all operands results. + uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0), SE); + for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) + MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i), SE)); + return MinOpRes; + } + + if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) { + // The result is the min of all operands results. + uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0), SE); + for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) + MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i), SE)); + return MinOpRes; + } + + if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) { + // The result is the min of all operands results. + uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0), SE); + for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) + MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i), SE)); + return MinOpRes; + } + + // SCEVUDivExpr, SCEVUnknown + return 0; +} + +/// createSCEV - We know that there is no SCEV for the specified value. +/// Analyze the expression. +/// +SCEVHandle ScalarEvolution::createSCEV(Value *V) { + if (!isSCEVable(V->getType())) + return getUnknown(V); + + unsigned Opcode = Instruction::UserOp1; + if (Instruction *I = dyn_cast<Instruction>(V)) + Opcode = I->getOpcode(); + else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) + Opcode = CE->getOpcode(); + else + return getUnknown(V); + + User *U = cast<User>(V); + switch (Opcode) { + case Instruction::Add: + return getAddExpr(getSCEV(U->getOperand(0)), + getSCEV(U->getOperand(1))); + case Instruction::Mul: + return getMulExpr(getSCEV(U->getOperand(0)), + getSCEV(U->getOperand(1))); + case Instruction::UDiv: + return getUDivExpr(getSCEV(U->getOperand(0)), + getSCEV(U->getOperand(1))); + case Instruction::Sub: + return getMinusSCEV(getSCEV(U->getOperand(0)), + getSCEV(U->getOperand(1))); + case Instruction::And: + // For an expression like x&255 that merely masks off the high bits, + // use zext(trunc(x)) as the SCEV expression. + if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { + if (CI->isNullValue()) + return getSCEV(U->getOperand(1)); + if (CI->isAllOnesValue()) + return getSCEV(U->getOperand(0)); + const APInt &A = CI->getValue(); + unsigned Ones = A.countTrailingOnes(); + if (APIntOps::isMask(Ones, A)) + return + getZeroExtendExpr(getTruncateExpr(getSCEV(U->getOperand(0)), + IntegerType::get(Ones)), + U->getType()); + } + break; + case Instruction::Or: + // If the RHS of the Or is a constant, we may have something like: + // X*4+1 which got turned into X*4|1. Handle this as an Add so loop + // optimizations will transparently handle this case. + // + // In order for this transformation to be safe, the LHS must be of the + // form X*(2^n) and the Or constant must be less than 2^n. + if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { + SCEVHandle LHS = getSCEV(U->getOperand(0)); + const APInt &CIVal = CI->getValue(); + if (GetMinTrailingZeros(LHS, *this) >= + (CIVal.getBitWidth() - CIVal.countLeadingZeros())) + return getAddExpr(LHS, getSCEV(U->getOperand(1))); + } + break; + case Instruction::Xor: + if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { + // If the RHS of the xor is a signbit, then this is just an add. + // Instcombine turns add of signbit into xor as a strength reduction step. + if (CI->getValue().isSignBit()) + return getAddExpr(getSCEV(U->getOperand(0)), + getSCEV(U->getOperand(1))); + + // If the RHS of xor is -1, then this is a not operation. + if (CI->isAllOnesValue()) + return getNotSCEV(getSCEV(U->getOperand(0))); + + // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask. + // This is a variant of the check for xor with -1, and it handles + // the case where instcombine has trimmed non-demanded bits out + // of an xor with -1. + if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0))) + if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1))) + if (BO->getOpcode() == Instruction::And && + LCI->getValue() == CI->getValue()) + if (const SCEVZeroExtendExpr *Z = + dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) + return getZeroExtendExpr(getNotSCEV(Z->getOperand()), + U->getType()); + } + break; + + case Instruction::Shl: + // Turn shift left of a constant amount into a multiply. + if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) { + uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth(); + Constant *X = ConstantInt::get( + APInt(BitWidth, 1).shl(SA->getLimitedValue(BitWidth))); + return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X)); + } + break; + + case Instruction::LShr: + // Turn logical shift right of a constant into a unsigned divide. + if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) { + uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth(); + Constant *X = ConstantInt::get( + APInt(BitWidth, 1).shl(SA->getLimitedValue(BitWidth))); + return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X)); + } + break; + + case Instruction::AShr: + // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression. + if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) + if (Instruction *L = dyn_cast<Instruction>(U->getOperand(0))) + if (L->getOpcode() == Instruction::Shl && + L->getOperand(1) == U->getOperand(1)) { + unsigned BitWidth = getTypeSizeInBits(U->getType()); + uint64_t Amt = BitWidth - CI->getZExtValue(); + if (Amt == BitWidth) + return getSCEV(L->getOperand(0)); // shift by zero --> noop + if (Amt > BitWidth) + return getIntegerSCEV(0, U->getType()); // value is undefined + return + getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)), + IntegerType::get(Amt)), + U->getType()); + } + break; + + case Instruction::Trunc: + return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType()); + + case Instruction::ZExt: + return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType()); + + case Instruction::SExt: + return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType()); + + case Instruction::BitCast: + // BitCasts are no-op casts so we just eliminate the cast. + if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType())) + return getSCEV(U->getOperand(0)); + break; + + case Instruction::IntToPtr: + if (!TD) break; // Without TD we can't analyze pointers. + return getTruncateOrZeroExtend(getSCEV(U->getOperand(0)), + TD->getIntPtrType()); + + case Instruction::PtrToInt: + if (!TD) break; // Without TD we can't analyze pointers. + return getTruncateOrZeroExtend(getSCEV(U->getOperand(0)), + U->getType()); + + case Instruction::GetElementPtr: + if (!TD) break; // Without TD we can't analyze pointers. + return createNodeForGEP(U); + + case Instruction::PHI: + return createNodeForPHI(cast<PHINode>(U)); + + case Instruction::Select: + // This could be a smax or umax that was lowered earlier. + // Try to recover it. + if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) { + Value *LHS = ICI->getOperand(0); + Value *RHS = ICI->getOperand(1); + switch (ICI->getPredicate()) { + case ICmpInst::ICMP_SLT: + case ICmpInst::ICMP_SLE: + std::swap(LHS, RHS); + // fall through + case ICmpInst::ICMP_SGT: + case ICmpInst::ICMP_SGE: + if (LHS == U->getOperand(1) && RHS == U->getOperand(2)) + return getSMaxExpr(getSCEV(LHS), getSCEV(RHS)); + else if (LHS == U->getOperand(2) && RHS == U->getOperand(1)) + // ~smax(~x, ~y) == smin(x, y). + return getNotSCEV(getSMaxExpr( + getNotSCEV(getSCEV(LHS)), + getNotSCEV(getSCEV(RHS)))); + break; + case ICmpInst::ICMP_ULT: + case ICmpInst::ICMP_ULE: + std::swap(LHS, RHS); + // fall through + case ICmpInst::ICMP_UGT: + case ICmpInst::ICMP_UGE: + if (LHS == U->getOperand(1) && RHS == U->getOperand(2)) + return getUMaxExpr(getSCEV(LHS), getSCEV(RHS)); + else if (LHS == U->getOperand(2) && RHS == U->getOperand(1)) + // ~umax(~x, ~y) == umin(x, y) + return getNotSCEV(getUMaxExpr(getNotSCEV(getSCEV(LHS)), + getNotSCEV(getSCEV(RHS)))); + break; + default: + break; + } + } + + default: // We cannot analyze this expression. + break; + } + + return getUnknown(V); +} + + + +//===----------------------------------------------------------------------===// +// Iteration Count Computation Code +// + +/// getBackedgeTakenCount - If the specified loop has a predictable +/// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute +/// object. The backedge-taken count is the number of times the loop header +/// will be branched to from within the loop. This is one less than the +/// trip count of the loop, since it doesn't count the first iteration, +/// when the header is branched to from outside the loop. +/// +/// Note that it is not valid to call this method on a loop without a +/// loop-invariant backedge-taken count (see +/// hasLoopInvariantBackedgeTakenCount). +/// +SCEVHandle ScalarEvolution::getBackedgeTakenCount(const Loop *L) { + return getBackedgeTakenInfo(L).Exact; +} + +/// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except +/// return the least SCEV value that is known never to be less than the +/// actual backedge taken count. +SCEVHandle ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) { + return getBackedgeTakenInfo(L).Max; +} + +const ScalarEvolution::BackedgeTakenInfo & +ScalarEvolution::getBackedgeTakenInfo(const Loop *L) { + // Initially insert a CouldNotCompute for this loop. If the insertion + // succeeds, procede to actually compute a backedge-taken count and + // update the value. The temporary CouldNotCompute value tells SCEV + // code elsewhere that it shouldn't attempt to request a new + // backedge-taken count, which could result in infinite recursion. + std::pair<std::map<const Loop*, BackedgeTakenInfo>::iterator, bool> Pair = + BackedgeTakenCounts.insert(std::make_pair(L, getCouldNotCompute())); + if (Pair.second) { + BackedgeTakenInfo ItCount = ComputeBackedgeTakenCount(L); + if (ItCount.Exact != UnknownValue) { + assert(ItCount.Exact->isLoopInvariant(L) && + ItCount.Max->isLoopInvariant(L) && + "Computed trip count isn't loop invariant for loop!"); + ++NumTripCountsComputed; + + // Update the value in the map. + Pair.first->second = ItCount; + } else if (isa<PHINode>(L->getHeader()->begin())) { + // Only count loops that have phi nodes as not being computable. + ++NumTripCountsNotComputed; + } + + // Now that we know more about the trip count for this loop, forget any + // existing SCEV values for PHI nodes in this loop since they are only + // conservative estimates made without the benefit + // of trip count information. + if (ItCount.hasAnyInfo()) + forgetLoopPHIs(L); + } + return Pair.first->second; +} + +/// forgetLoopBackedgeTakenCount - This method should be called by the +/// client when it has changed a loop in a way that may effect +/// ScalarEvolution's ability to compute a trip count, or if the loop +/// is deleted. +void ScalarEvolution::forgetLoopBackedgeTakenCount(const Loop *L) { + BackedgeTakenCounts.erase(L); + forgetLoopPHIs(L); +} + +/// forgetLoopPHIs - Delete the memoized SCEVs associated with the +/// PHI nodes in the given loop. This is used when the trip count of +/// the loop may have changed. +void ScalarEvolution::forgetLoopPHIs(const Loop *L) { + BasicBlock *Header = L->getHeader(); + + // Push all Loop-header PHIs onto the Worklist stack, except those + // that are presently represented via a SCEVUnknown. SCEVUnknown for + // a PHI either means that it has an unrecognized structure, or it's + // a PHI that's in the progress of being computed by createNodeForPHI. + // In the former case, additional loop trip count information isn't + // going to change anything. In the later case, createNodeForPHI will + // perform the necessary updates on its own when it gets to that point. + SmallVector<Instruction *, 16> Worklist; + for (BasicBlock::iterator I = Header->begin(); + PHINode *PN = dyn_cast<PHINode>(I); ++I) { + std::map<SCEVCallbackVH, SCEVHandle>::iterator It = Scalars.find((Value*)I); + if (It != Scalars.end() && !isa<SCEVUnknown>(It->second)) + Worklist.push_back(PN); + } + + while (!Worklist.empty()) { + Instruction *I = Worklist.pop_back_val(); + if (Scalars.erase(I)) + for (Value::use_iterator UI = I->use_begin(), UE = I->use_end(); + UI != UE; ++UI) + Worklist.push_back(cast<Instruction>(UI)); + } +} + +/// ComputeBackedgeTakenCount - Compute the number of times the backedge +/// of the specified loop will execute. +ScalarEvolution::BackedgeTakenInfo +ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) { + // If the loop has a non-one exit block count, we can't analyze it. + SmallVector<BasicBlock*, 8> ExitBlocks; + L->getExitBlocks(ExitBlocks); + if (ExitBlocks.size() != 1) return UnknownValue; + + // Okay, there is one exit block. Try to find the condition that causes the + // loop to be exited. + BasicBlock *ExitBlock = ExitBlocks[0]; + + BasicBlock *ExitingBlock = 0; + for (pred_iterator PI = pred_begin(ExitBlock), E = pred_end(ExitBlock); + PI != E; ++PI) + if (L->contains(*PI)) { + if (ExitingBlock == 0) + ExitingBlock = *PI; + else + return UnknownValue; // More than one block exiting! + } + assert(ExitingBlock && "No exits from loop, something is broken!"); + + // Okay, we've computed the exiting block. See what condition causes us to + // exit. + // + // FIXME: we should be able to handle switch instructions (with a single exit) + BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator()); + if (ExitBr == 0) return UnknownValue; + assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!"); + + // At this point, we know we have a conditional branch that determines whether + // the loop is exited. However, we don't know if the branch is executed each + // time through the loop. If not, then the execution count of the branch will + // not be equal to the trip count of the loop. + // + // Currently we check for this by checking to see if the Exit branch goes to + // the loop header. If so, we know it will always execute the same number of + // times as the loop. We also handle the case where the exit block *is* the + // loop header. This is common for un-rotated loops. More extensive analysis + // could be done to handle more cases here. + if (ExitBr->getSuccessor(0) != L->getHeader() && + ExitBr->getSuccessor(1) != L->getHeader() && + ExitBr->getParent() != L->getHeader()) + return UnknownValue; + + ICmpInst *ExitCond = dyn_cast<ICmpInst>(ExitBr->getCondition()); + + // If it's not an integer or pointer comparison then compute it the hard way. + if (ExitCond == 0) + return ComputeBackedgeTakenCountExhaustively(L, ExitBr->getCondition(), + ExitBr->getSuccessor(0) == ExitBlock); + + // If the condition was exit on true, convert the condition to exit on false + ICmpInst::Predicate Cond; + if (ExitBr->getSuccessor(1) == ExitBlock) + Cond = ExitCond->getPredicate(); + else + Cond = ExitCond->getInversePredicate(); + + // Handle common loops like: for (X = "string"; *X; ++X) + if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0))) + if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) { + SCEVHandle ItCnt = + ComputeLoadConstantCompareBackedgeTakenCount(LI, RHS, L, Cond); + if (!isa<SCEVCouldNotCompute>(ItCnt)) return ItCnt; + } + + SCEVHandle LHS = getSCEV(ExitCond->getOperand(0)); + SCEVHandle RHS = getSCEV(ExitCond->getOperand(1)); + + // Try to evaluate any dependencies out of the loop. + LHS = getSCEVAtScope(LHS, L); + RHS = getSCEVAtScope(RHS, L); + + // At this point, we would like to compute how many iterations of the + // loop the predicate will return true for these inputs. + if (LHS->isLoopInvariant(L) && !RHS->isLoopInvariant(L)) { + // If there is a loop-invariant, force it into the RHS. + std::swap(LHS, RHS); + Cond = ICmpInst::getSwappedPredicate(Cond); + } + + // If we have a comparison of a chrec against a constant, try to use value + // ranges to answer this query. + if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) + if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS)) + if (AddRec->getLoop() == L) { + // Form the constant range. + ConstantRange CompRange( + ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue())); + + SCEVHandle Ret = AddRec->getNumIterationsInRange(CompRange, *this); + if (!isa<SCEVCouldNotCompute>(Ret)) return Ret; + } + + switch (Cond) { + case ICmpInst::ICMP_NE: { // while (X != Y) + // Convert to: while (X-Y != 0) + SCEVHandle TC = HowFarToZero(getMinusSCEV(LHS, RHS), L); + if (!isa<SCEVCouldNotCompute>(TC)) return TC; + break; + } + case ICmpInst::ICMP_EQ: { + // Convert to: while (X-Y == 0) // while (X == Y) + SCEVHandle TC = HowFarToNonZero(getMinusSCEV(LHS, RHS), L); + if (!isa<SCEVCouldNotCompute>(TC)) return TC; + break; + } + case ICmpInst::ICMP_SLT: { + BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, true); + if (BTI.hasAnyInfo()) return BTI; + break; + } + case ICmpInst::ICMP_SGT: { + BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS), + getNotSCEV(RHS), L, true); + if (BTI.hasAnyInfo()) return BTI; + break; + } + case ICmpInst::ICMP_ULT: { + BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, false); + if (BTI.hasAnyInfo()) return BTI; + break; + } + case ICmpInst::ICMP_UGT: { + BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS), + getNotSCEV(RHS), L, false); + if (BTI.hasAnyInfo()) return BTI; + break; + } + default: +#if 0 + errs() << "ComputeBackedgeTakenCount "; + if (ExitCond->getOperand(0)->getType()->isUnsigned()) + errs() << "[unsigned] "; + errs() << *LHS << " " + << Instruction::getOpcodeName(Instruction::ICmp) + << " " << *RHS << "\n"; +#endif + break; + } + return + ComputeBackedgeTakenCountExhaustively(L, ExitCond, + ExitBr->getSuccessor(0) == ExitBlock); +} + +static ConstantInt * +EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C, + ScalarEvolution &SE) { + SCEVHandle InVal = SE.getConstant(C); + SCEVHandle Val = AddRec->evaluateAtIteration(InVal, SE); + assert(isa<SCEVConstant>(Val) && + "Evaluation of SCEV at constant didn't fold correctly?"); + return cast<SCEVConstant>(Val)->getValue(); +} + +/// GetAddressedElementFromGlobal - Given a global variable with an initializer +/// and a GEP expression (missing the pointer index) indexing into it, return +/// the addressed element of the initializer or null if the index expression is +/// invalid. +static Constant * +GetAddressedElementFromGlobal(GlobalVariable *GV, + const std::vector<ConstantInt*> &Indices) { + Constant *Init = GV->getInitializer(); + for (unsigned i = 0, e = Indices.size(); i != e; ++i) { + uint64_t Idx = Indices[i]->getZExtValue(); + if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) { + assert(Idx < CS->getNumOperands() && "Bad struct index!"); + Init = cast<Constant>(CS->getOperand(Idx)); + } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) { + if (Idx >= CA->getNumOperands()) return 0; // Bogus program + Init = cast<Constant>(CA->getOperand(Idx)); + } else if (isa<ConstantAggregateZero>(Init)) { + if (const StructType *STy = dyn_cast<StructType>(Init->getType())) { + assert(Idx < STy->getNumElements() && "Bad struct index!"); + Init = Constant::getNullValue(STy->getElementType(Idx)); + } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) { + if (Idx >= ATy->getNumElements()) return 0; // Bogus program + Init = Constant::getNullValue(ATy->getElementType()); + } else { + assert(0 && "Unknown constant aggregate type!"); + } + return 0; + } else { + return 0; // Unknown initializer type + } + } + return Init; +} + +/// ComputeLoadConstantCompareBackedgeTakenCount - Given an exit condition of +/// 'icmp op load X, cst', try to see if we can compute the backedge +/// execution count. +SCEVHandle ScalarEvolution:: +ComputeLoadConstantCompareBackedgeTakenCount(LoadInst *LI, Constant *RHS, + const Loop *L, + ICmpInst::Predicate predicate) { + if (LI->isVolatile()) return UnknownValue; + + // Check to see if the loaded pointer is a getelementptr of a global. + GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0)); + if (!GEP) return UnknownValue; + + // Make sure that it is really a constant global we are gepping, with an + // initializer, and make sure the first IDX is really 0. + GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)); + if (!GV || !GV->isConstant() || !GV->hasInitializer() || + GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) || + !cast<Constant>(GEP->getOperand(1))->isNullValue()) + return UnknownValue; + + // Okay, we allow one non-constant index into the GEP instruction. + Value *VarIdx = 0; + std::vector<ConstantInt*> Indexes; + unsigned VarIdxNum = 0; + for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i) + if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) { + Indexes.push_back(CI); + } else if (!isa<ConstantInt>(GEP->getOperand(i))) { + if (VarIdx) return UnknownValue; // Multiple non-constant idx's. + VarIdx = GEP->getOperand(i); + VarIdxNum = i-2; + Indexes.push_back(0); + } + + // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant. + // Check to see if X is a loop variant variable value now. + SCEVHandle Idx = getSCEV(VarIdx); + Idx = getSCEVAtScope(Idx, L); + + // We can only recognize very limited forms of loop index expressions, in + // particular, only affine AddRec's like {C1,+,C2}. + const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx); + if (!IdxExpr || !IdxExpr->isAffine() || IdxExpr->isLoopInvariant(L) || + !isa<SCEVConstant>(IdxExpr->getOperand(0)) || + !isa<SCEVConstant>(IdxExpr->getOperand(1))) + return UnknownValue; + + unsigned MaxSteps = MaxBruteForceIterations; + for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) { + ConstantInt *ItCst = + ConstantInt::get(IdxExpr->getType(), IterationNum); + ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this); + + // Form the GEP offset. + Indexes[VarIdxNum] = Val; + + Constant *Result = GetAddressedElementFromGlobal(GV, Indexes); + if (Result == 0) break; // Cannot compute! + + // Evaluate the condition for this iteration. + Result = ConstantExpr::getICmp(predicate, Result, RHS); + if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure + if (cast<ConstantInt>(Result)->getValue().isMinValue()) { +#if 0 + errs() << "\n***\n*** Computed loop count " << *ItCst + << "\n*** From global " << *GV << "*** BB: " << *L->getHeader() + << "***\n"; +#endif + ++NumArrayLenItCounts; + return getConstant(ItCst); // Found terminating iteration! + } + } + return UnknownValue; +} + + +/// CanConstantFold - Return true if we can constant fold an instruction of the +/// specified type, assuming that all operands were constants. +static bool CanConstantFold(const Instruction *I) { + if (isa<BinaryOperator>(I) || isa<CmpInst>(I) || + isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I)) + return true; + + if (const CallInst *CI = dyn_cast<CallInst>(I)) + if (const Function *F = CI->getCalledFunction()) + return canConstantFoldCallTo(F); + return false; +} + +/// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node +/// in the loop that V is derived from. We allow arbitrary operations along the +/// way, but the operands of an operation must either be constants or a value +/// derived from a constant PHI. If this expression does not fit with these +/// constraints, return null. +static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) { + // If this is not an instruction, or if this is an instruction outside of the + // loop, it can't be derived from a loop PHI. + Instruction *I = dyn_cast<Instruction>(V); + if (I == 0 || !L->contains(I->getParent())) return 0; + + if (PHINode *PN = dyn_cast<PHINode>(I)) { + if (L->getHeader() == I->getParent()) + return PN; + else + // We don't currently keep track of the control flow needed to evaluate + // PHIs, so we cannot handle PHIs inside of loops. + return 0; + } + + // If we won't be able to constant fold this expression even if the operands + // are constants, return early. + if (!CanConstantFold(I)) return 0; + + // Otherwise, we can evaluate this instruction if all of its operands are + // constant or derived from a PHI node themselves. + PHINode *PHI = 0; + for (unsigned Op = 0, e = I->getNumOperands(); Op != e; ++Op) + if (!(isa<Constant>(I->getOperand(Op)) || + isa<GlobalValue>(I->getOperand(Op)))) { + PHINode *P = getConstantEvolvingPHI(I->getOperand(Op), L); + if (P == 0) return 0; // Not evolving from PHI + if (PHI == 0) + PHI = P; + else if (PHI != P) + return 0; // Evolving from multiple different PHIs. + } + + // This is a expression evolving from a constant PHI! + return PHI; +} + +/// EvaluateExpression - Given an expression that passes the +/// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node +/// in the loop has the value PHIVal. If we can't fold this expression for some +/// reason, return null. +static Constant *EvaluateExpression(Value *V, Constant *PHIVal) { + if (isa<PHINode>(V)) return PHIVal; + if (Constant *C = dyn_cast<Constant>(V)) return C; + if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) return GV; + Instruction *I = cast<Instruction>(V); + + std::vector<Constant*> Operands; + Operands.resize(I->getNumOperands()); + + for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { + Operands[i] = EvaluateExpression(I->getOperand(i), PHIVal); + if (Operands[i] == 0) return 0; + } + + if (const CmpInst *CI = dyn_cast<CmpInst>(I)) + return ConstantFoldCompareInstOperands(CI->getPredicate(), + &Operands[0], Operands.size()); + else + return ConstantFoldInstOperands(I->getOpcode(), I->getType(), + &Operands[0], Operands.size()); +} + +/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is +/// in the header of its containing loop, we know the loop executes a +/// constant number of times, and the PHI node is just a recurrence +/// involving constants, fold it. +Constant *ScalarEvolution:: +getConstantEvolutionLoopExitValue(PHINode *PN, const APInt& BEs, const Loop *L){ + std::map<PHINode*, Constant*>::iterator I = + ConstantEvolutionLoopExitValue.find(PN); + if (I != ConstantEvolutionLoopExitValue.end()) + return I->second; + + if (BEs.ugt(APInt(BEs.getBitWidth(),MaxBruteForceIterations))) + return ConstantEvolutionLoopExitValue[PN] = 0; // Not going to evaluate it. + + Constant *&RetVal = ConstantEvolutionLoopExitValue[PN]; + + // Since the loop is canonicalized, the PHI node must have two entries. One + // entry must be a constant (coming in from outside of the loop), and the + // second must be derived from the same PHI. + bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1)); + Constant *StartCST = + dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge)); + if (StartCST == 0) + return RetVal = 0; // Must be a constant. + + Value *BEValue = PN->getIncomingValue(SecondIsBackedge); + PHINode *PN2 = getConstantEvolvingPHI(BEValue, L); + if (PN2 != PN) + return RetVal = 0; // Not derived from same PHI. + + // Execute the loop symbolically to determine the exit value. + if (BEs.getActiveBits() >= 32) + return RetVal = 0; // More than 2^32-1 iterations?? Not doing it! + + unsigned NumIterations = BEs.getZExtValue(); // must be in range + unsigned IterationNum = 0; + for (Constant *PHIVal = StartCST; ; ++IterationNum) { + if (IterationNum == NumIterations) + return RetVal = PHIVal; // Got exit value! + + // Compute the value of the PHI node for the next iteration. + Constant *NextPHI = EvaluateExpression(BEValue, PHIVal); + if (NextPHI == PHIVal) + return RetVal = NextPHI; // Stopped evolving! + if (NextPHI == 0) + return 0; // Couldn't evaluate! + PHIVal = NextPHI; + } +} + +/// ComputeBackedgeTakenCountExhaustively - If the trip is known to execute a +/// constant number of times (the condition evolves only from constants), +/// try to evaluate a few iterations of the loop until we get the exit +/// condition gets a value of ExitWhen (true or false). If we cannot +/// evaluate the trip count of the loop, return UnknownValue. +SCEVHandle ScalarEvolution:: +ComputeBackedgeTakenCountExhaustively(const Loop *L, Value *Cond, bool ExitWhen) { + PHINode *PN = getConstantEvolvingPHI(Cond, L); + if (PN == 0) return UnknownValue; + + // Since the loop is canonicalized, the PHI node must have two entries. One + // entry must be a constant (coming in from outside of the loop), and the + // second must be derived from the same PHI. + bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1)); + Constant *StartCST = + dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge)); + if (StartCST == 0) return UnknownValue; // Must be a constant. + + Value *BEValue = PN->getIncomingValue(SecondIsBackedge); + PHINode *PN2 = getConstantEvolvingPHI(BEValue, L); + if (PN2 != PN) return UnknownValue; // Not derived from same PHI. + + // Okay, we find a PHI node that defines the trip count of this loop. Execute + // the loop symbolically to determine when the condition gets a value of + // "ExitWhen". + unsigned IterationNum = 0; + unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis. + for (Constant *PHIVal = StartCST; + IterationNum != MaxIterations; ++IterationNum) { + ConstantInt *CondVal = + dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, PHIVal)); + + // Couldn't symbolically evaluate. + if (!CondVal) return UnknownValue; + + if (CondVal->getValue() == uint64_t(ExitWhen)) { + ConstantEvolutionLoopExitValue[PN] = PHIVal; + ++NumBruteForceTripCountsComputed; + return getConstant(ConstantInt::get(Type::Int32Ty, IterationNum)); + } + + // Compute the value of the PHI node for the next iteration. + Constant *NextPHI = EvaluateExpression(BEValue, PHIVal); + if (NextPHI == 0 || NextPHI == PHIVal) + return UnknownValue; // Couldn't evaluate or not making progress... + PHIVal = NextPHI; + } + + // Too many iterations were needed to evaluate. + return UnknownValue; +} + +/// getSCEVAtScope - Return a SCEV expression handle for the specified value +/// at the specified scope in the program. The L value specifies a loop +/// nest to evaluate the expression at, where null is the top-level or a +/// specified loop is immediately inside of the loop. +/// +/// This method can be used to compute the exit value for a variable defined +/// in a loop by querying what the value will hold in the parent loop. +/// +/// In the case that a relevant loop exit value cannot be computed, the +/// original value V is returned. +SCEVHandle ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) { + // FIXME: this should be turned into a virtual method on SCEV! + + if (isa<SCEVConstant>(V)) return V; + + // If this instruction is evolved from a constant-evolving PHI, compute the + // exit value from the loop without using SCEVs. + if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) { + if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) { + const Loop *LI = (*this->LI)[I->getParent()]; + if (LI && LI->getParentLoop() == L) // Looking for loop exit value. + if (PHINode *PN = dyn_cast<PHINode>(I)) + if (PN->getParent() == LI->getHeader()) { + // Okay, there is no closed form solution for the PHI node. Check + // to see if the loop that contains it has a known backedge-taken + // count. If so, we may be able to force computation of the exit + // value. + SCEVHandle BackedgeTakenCount = getBackedgeTakenCount(LI); + if (const SCEVConstant *BTCC = + dyn_cast<SCEVConstant>(BackedgeTakenCount)) { + // Okay, we know how many times the containing loop executes. If + // this is a constant evolving PHI node, get the final value at + // the specified iteration number. + Constant *RV = getConstantEvolutionLoopExitValue(PN, + BTCC->getValue()->getValue(), + LI); + if (RV) return getUnknown(RV); + } + } + + // Okay, this is an expression that we cannot symbolically evaluate + // into a SCEV. Check to see if it's possible to symbolically evaluate + // the arguments into constants, and if so, try to constant propagate the + // result. This is particularly useful for computing loop exit values. + if (CanConstantFold(I)) { + // Check to see if we've folded this instruction at this loop before. + std::map<const Loop *, Constant *> &Values = ValuesAtScopes[I]; + std::pair<std::map<const Loop *, Constant *>::iterator, bool> Pair = + Values.insert(std::make_pair(L, static_cast<Constant *>(0))); + if (!Pair.second) + return Pair.first->second ? &*getUnknown(Pair.first->second) : V; + + std::vector<Constant*> Operands; + Operands.reserve(I->getNumOperands()); + for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { + Value *Op = I->getOperand(i); + if (Constant *C = dyn_cast<Constant>(Op)) { + Operands.push_back(C); + } else { + // If any of the operands is non-constant and if they are + // non-integer and non-pointer, don't even try to analyze them + // with scev techniques. + if (!isSCEVable(Op->getType())) + return V; + + SCEVHandle OpV = getSCEVAtScope(getSCEV(Op), L); + if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(OpV)) { + Constant *C = SC->getValue(); + if (C->getType() != Op->getType()) + C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, + Op->getType(), + false), + C, Op->getType()); + Operands.push_back(C); + } else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(OpV)) { + if (Constant *C = dyn_cast<Constant>(SU->getValue())) { + if (C->getType() != Op->getType()) + C = + ConstantExpr::getCast(CastInst::getCastOpcode(C, false, + Op->getType(), + false), + C, Op->getType()); + Operands.push_back(C); + } else + return V; + } else { + return V; + } + } + } + + Constant *C; + if (const CmpInst *CI = dyn_cast<CmpInst>(I)) + C = ConstantFoldCompareInstOperands(CI->getPredicate(), + &Operands[0], Operands.size()); + else + C = ConstantFoldInstOperands(I->getOpcode(), I->getType(), + &Operands[0], Operands.size()); + Pair.first->second = C; + return getUnknown(C); + } + } + + // This is some other type of SCEVUnknown, just return it. + return V; + } + + if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) { + // Avoid performing the look-up in the common case where the specified + // expression has no loop-variant portions. + for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) { + SCEVHandle OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); + if (OpAtScope != Comm->getOperand(i)) { + // Okay, at least one of these operands is loop variant but might be + // foldable. Build a new instance of the folded commutative expression. + std::vector<SCEVHandle> NewOps(Comm->op_begin(), Comm->op_begin()+i); + NewOps.push_back(OpAtScope); + + for (++i; i != e; ++i) { + OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); + NewOps.push_back(OpAtScope); + } + if (isa<SCEVAddExpr>(Comm)) + return getAddExpr(NewOps); + if (isa<SCEVMulExpr>(Comm)) + return getMulExpr(NewOps); + if (isa<SCEVSMaxExpr>(Comm)) + return getSMaxExpr(NewOps); + if (isa<SCEVUMaxExpr>(Comm)) + return getUMaxExpr(NewOps); + assert(0 && "Unknown commutative SCEV type!"); + } + } + // If we got here, all operands are loop invariant. + return Comm; + } + + if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) { + SCEVHandle LHS = getSCEVAtScope(Div->getLHS(), L); + SCEVHandle RHS = getSCEVAtScope(Div->getRHS(), L); + if (LHS == Div->getLHS() && RHS == Div->getRHS()) + return Div; // must be loop invariant + return getUDivExpr(LHS, RHS); + } + + // If this is a loop recurrence for a loop that does not contain L, then we + // are dealing with the final value computed by the loop. + if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) { + if (!L || !AddRec->getLoop()->contains(L->getHeader())) { + // To evaluate this recurrence, we need to know how many times the AddRec + // loop iterates. Compute this now. + SCEVHandle BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop()); + if (BackedgeTakenCount == UnknownValue) return AddRec; + + // Then, evaluate the AddRec. + return AddRec->evaluateAtIteration(BackedgeTakenCount, *this); + } + return AddRec; + } + + if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) { + SCEVHandle Op = getSCEVAtScope(Cast->getOperand(), L); + if (Op == Cast->getOperand()) + return Cast; // must be loop invariant + return getZeroExtendExpr(Op, Cast->getType()); + } + + if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) { + SCEVHandle Op = getSCEVAtScope(Cast->getOperand(), L); + if (Op == Cast->getOperand()) + return Cast; // must be loop invariant + return getSignExtendExpr(Op, Cast->getType()); + } + + if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) { + SCEVHandle Op = getSCEVAtScope(Cast->getOperand(), L); + if (Op == Cast->getOperand()) + return Cast; // must be loop invariant + return getTruncateExpr(Op, Cast->getType()); + } + + assert(0 && "Unknown SCEV type!"); + return 0; +} + +/// getSCEVAtScope - This is a convenience function which does +/// getSCEVAtScope(getSCEV(V), L). +SCEVHandle ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) { + return getSCEVAtScope(getSCEV(V), L); +} + +/// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the +/// following equation: +/// +/// A * X = B (mod N) +/// +/// where N = 2^BW and BW is the common bit width of A and B. The signedness of +/// A and B isn't important. +/// +/// If the equation does not have a solution, SCEVCouldNotCompute is returned. +static SCEVHandle SolveLinEquationWithOverflow(const APInt &A, const APInt &B, + ScalarEvolution &SE) { + uint32_t BW = A.getBitWidth(); + assert(BW == B.getBitWidth() && "Bit widths must be the same."); + assert(A != 0 && "A must be non-zero."); + + // 1. D = gcd(A, N) + // + // The gcd of A and N may have only one prime factor: 2. The number of + // trailing zeros in A is its multiplicity + uint32_t Mult2 = A.countTrailingZeros(); + // D = 2^Mult2 + + // 2. Check if B is divisible by D. + // + // B is divisible by D if and only if the multiplicity of prime factor 2 for B + // is not less than multiplicity of this prime factor for D. + if (B.countTrailingZeros() < Mult2) + return SE.getCouldNotCompute(); + + // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic + // modulo (N / D). + // + // (N / D) may need BW+1 bits in its representation. Hence, we'll use this + // bit width during computations. + APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D + APInt Mod(BW + 1, 0); + Mod.set(BW - Mult2); // Mod = N / D + APInt I = AD.multiplicativeInverse(Mod); + + // 4. Compute the minimum unsigned root of the equation: + // I * (B / D) mod (N / D) + APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod); + + // The result is guaranteed to be less than 2^BW so we may truncate it to BW + // bits. + return SE.getConstant(Result.trunc(BW)); +} + +/// SolveQuadraticEquation - Find the roots of the quadratic equation for the +/// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which +/// might be the same) or two SCEVCouldNotCompute objects. +/// +static std::pair<SCEVHandle,SCEVHandle> +SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) { + assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!"); + const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0)); + const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1)); + const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2)); + + // We currently can only solve this if the coefficients are constants. + if (!LC || !MC || !NC) { + const SCEV *CNC = SE.getCouldNotCompute(); + return std::make_pair(CNC, CNC); + } + + uint32_t BitWidth = LC->getValue()->getValue().getBitWidth(); + const APInt &L = LC->getValue()->getValue(); + const APInt &M = MC->getValue()->getValue(); + const APInt &N = NC->getValue()->getValue(); + APInt Two(BitWidth, 2); + APInt Four(BitWidth, 4); + + { + using namespace APIntOps; + const APInt& C = L; + // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C + // The B coefficient is M-N/2 + APInt B(M); + B -= sdiv(N,Two); + + // The A coefficient is N/2 + APInt A(N.sdiv(Two)); + + // Compute the B^2-4ac term. + APInt SqrtTerm(B); + SqrtTerm *= B; + SqrtTerm -= Four * (A * C); + + // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest + // integer value or else APInt::sqrt() will assert. + APInt SqrtVal(SqrtTerm.sqrt()); + + // Compute the two solutions for the quadratic formula. + // The divisions must be performed as signed divisions. + APInt NegB(-B); + APInt TwoA( A << 1 ); + if (TwoA.isMinValue()) { + const SCEV *CNC = SE.getCouldNotCompute(); + return std::make_pair(CNC, CNC); + } + + ConstantInt *Solution1 = ConstantInt::get((NegB + SqrtVal).sdiv(TwoA)); + ConstantInt *Solution2 = ConstantInt::get((NegB - SqrtVal).sdiv(TwoA)); + + return std::make_pair(SE.getConstant(Solution1), + SE.getConstant(Solution2)); + } // end APIntOps namespace +} + +/// HowFarToZero - Return the number of times a backedge comparing the specified +/// value to zero will execute. If not computable, return UnknownValue. +SCEVHandle ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L) { + // If the value is a constant + if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { + // If the value is already zero, the branch will execute zero times. + if (C->getValue()->isZero()) return C; + return UnknownValue; // Otherwise it will loop infinitely. + } + + const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V); + if (!AddRec || AddRec->getLoop() != L) + return UnknownValue; + + if (AddRec->isAffine()) { + // If this is an affine expression, the execution count of this branch is + // the minimum unsigned root of the following equation: + // + // Start + Step*N = 0 (mod 2^BW) + // + // equivalent to: + // + // Step*N = -Start (mod 2^BW) + // + // where BW is the common bit width of Start and Step. + + // Get the initial value for the loop. + SCEVHandle Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop()); + SCEVHandle Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop()); + + if (const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step)) { + // For now we handle only constant steps. + + // First, handle unitary steps. + if (StepC->getValue()->equalsInt(1)) // 1*N = -Start (mod 2^BW), so: + return getNegativeSCEV(Start); // N = -Start (as unsigned) + if (StepC->getValue()->isAllOnesValue()) // -1*N = -Start (mod 2^BW), so: + return Start; // N = Start (as unsigned) + + // Then, try to solve the above equation provided that Start is constant. + if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start)) + return SolveLinEquationWithOverflow(StepC->getValue()->getValue(), + -StartC->getValue()->getValue(), + *this); + } + } else if (AddRec->isQuadratic() && AddRec->getType()->isInteger()) { + // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of + // the quadratic equation to solve it. + std::pair<SCEVHandle,SCEVHandle> Roots = SolveQuadraticEquation(AddRec, + *this); + const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first); + const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second); + if (R1) { +#if 0 + errs() << "HFTZ: " << *V << " - sol#1: " << *R1 + << " sol#2: " << *R2 << "\n"; +#endif + // Pick the smallest positive root value. + if (ConstantInt *CB = + dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT, + R1->getValue(), R2->getValue()))) { + if (CB->getZExtValue() == false) + std::swap(R1, R2); // R1 is the minimum root now. + + // We can only use this value if the chrec ends up with an exact zero + // value at this index. When solving for "X*X != 5", for example, we + // should not accept a root of 2. + SCEVHandle Val = AddRec->evaluateAtIteration(R1, *this); + if (Val->isZero()) + return R1; // We found a quadratic root! + } + } + } + + return UnknownValue; +} + +/// HowFarToNonZero - Return the number of times a backedge checking the +/// specified value for nonzero will execute. If not computable, return +/// UnknownValue +SCEVHandle ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) { + // Loops that look like: while (X == 0) are very strange indeed. We don't + // handle them yet except for the trivial case. This could be expanded in the + // future as needed. + + // If the value is a constant, check to see if it is known to be non-zero + // already. If so, the backedge will execute zero times. + if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { + if (!C->getValue()->isNullValue()) + return getIntegerSCEV(0, C->getType()); + return UnknownValue; // Otherwise it will loop infinitely. + } + + // We could implement others, but I really doubt anyone writes loops like + // this, and if they did, they would already be constant folded. + return UnknownValue; +} + +/// getLoopPredecessor - If the given loop's header has exactly one unique +/// predecessor outside the loop, return it. Otherwise return null. +/// +BasicBlock *ScalarEvolution::getLoopPredecessor(const Loop *L) { + BasicBlock *Header = L->getHeader(); + BasicBlock *Pred = 0; + for (pred_iterator PI = pred_begin(Header), E = pred_end(Header); + PI != E; ++PI) + if (!L->contains(*PI)) { + if (Pred && Pred != *PI) return 0; // Multiple predecessors. + Pred = *PI; + } + return Pred; +} + +/// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB +/// (which may not be an immediate predecessor) which has exactly one +/// successor from which BB is reachable, or null if no such block is +/// found. +/// +BasicBlock * +ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) { + // If the block has a unique predecessor, then there is no path from the + // predecessor to the block that does not go through the direct edge + // from the predecessor to the block. + if (BasicBlock *Pred = BB->getSinglePredecessor()) + return Pred; + + // A loop's header is defined to be a block that dominates the loop. + // If the header has a unique predecessor outside the loop, it must be + // a block that has exactly one successor that can reach the loop. + if (Loop *L = LI->getLoopFor(BB)) + return getLoopPredecessor(L); + + return 0; +} + +/// isLoopGuardedByCond - Test whether entry to the loop is protected by +/// a conditional between LHS and RHS. This is used to help avoid max +/// expressions in loop trip counts. +bool ScalarEvolution::isLoopGuardedByCond(const Loop *L, + ICmpInst::Predicate Pred, + const SCEV *LHS, const SCEV *RHS) { + // Interpret a null as meaning no loop, where there is obviously no guard + // (interprocedural conditions notwithstanding). + if (!L) return false; + + BasicBlock *Predecessor = getLoopPredecessor(L); + BasicBlock *PredecessorDest = L->getHeader(); + + // Starting at the loop predecessor, climb up the predecessor chain, as long + // as there are predecessors that can be found that have unique successors + // leading to the original header. + for (; Predecessor; + PredecessorDest = Predecessor, + Predecessor = getPredecessorWithUniqueSuccessorForBB(Predecessor)) { + + BranchInst *LoopEntryPredicate = + dyn_cast<BranchInst>(Predecessor->getTerminator()); + if (!LoopEntryPredicate || + LoopEntryPredicate->isUnconditional()) + continue; + + ICmpInst *ICI = dyn_cast<ICmpInst>(LoopEntryPredicate->getCondition()); + if (!ICI) continue; + + // Now that we found a conditional branch that dominates the loop, check to + // see if it is the comparison we are looking for. + Value *PreCondLHS = ICI->getOperand(0); + Value *PreCondRHS = ICI->getOperand(1); + ICmpInst::Predicate Cond; + if (LoopEntryPredicate->getSuccessor(0) == PredecessorDest) + Cond = ICI->getPredicate(); + else + Cond = ICI->getInversePredicate(); + + if (Cond == Pred) + ; // An exact match. + else if (!ICmpInst::isTrueWhenEqual(Cond) && Pred == ICmpInst::ICMP_NE) + ; // The actual condition is beyond sufficient. + else + // Check a few special cases. + switch (Cond) { + case ICmpInst::ICMP_UGT: + if (Pred == ICmpInst::ICMP_ULT) { + std::swap(PreCondLHS, PreCondRHS); + Cond = ICmpInst::ICMP_ULT; + break; + } + continue; + case ICmpInst::ICMP_SGT: + if (Pred == ICmpInst::ICMP_SLT) { + std::swap(PreCondLHS, PreCondRHS); + Cond = ICmpInst::ICMP_SLT; + break; + } + continue; + case ICmpInst::ICMP_NE: + // Expressions like (x >u 0) are often canonicalized to (x != 0), + // so check for this case by checking if the NE is comparing against + // a minimum or maximum constant. + if (!ICmpInst::isTrueWhenEqual(Pred)) + if (ConstantInt *CI = dyn_cast<ConstantInt>(PreCondRHS)) { + const APInt &A = CI->getValue(); + switch (Pred) { + case ICmpInst::ICMP_SLT: + if (A.isMaxSignedValue()) break; + continue; + case ICmpInst::ICMP_SGT: + if (A.isMinSignedValue()) break; + continue; + case ICmpInst::ICMP_ULT: + if (A.isMaxValue()) break; + continue; + case ICmpInst::ICMP_UGT: + if (A.isMinValue()) break; + continue; + default: + continue; + } + Cond = ICmpInst::ICMP_NE; + // NE is symmetric but the original comparison may not be. Swap + // the operands if necessary so that they match below. + if (isa<SCEVConstant>(LHS)) + std::swap(PreCondLHS, PreCondRHS); + break; + } + continue; + default: + // We weren't able to reconcile the condition. + continue; + } + + if (!PreCondLHS->getType()->isInteger()) continue; + + SCEVHandle PreCondLHSSCEV = getSCEV(PreCondLHS); + SCEVHandle PreCondRHSSCEV = getSCEV(PreCondRHS); + if ((LHS == PreCondLHSSCEV && RHS == PreCondRHSSCEV) || + (LHS == getNotSCEV(PreCondRHSSCEV) && + RHS == getNotSCEV(PreCondLHSSCEV))) + return true; + } + + return false; +} + +/// HowManyLessThans - Return the number of times a backedge containing the +/// specified less-than comparison will execute. If not computable, return +/// UnknownValue. +ScalarEvolution::BackedgeTakenInfo ScalarEvolution:: +HowManyLessThans(const SCEV *LHS, const SCEV *RHS, + const Loop *L, bool isSigned) { + // Only handle: "ADDREC < LoopInvariant". + if (!RHS->isLoopInvariant(L)) return UnknownValue; + + const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS); + if (!AddRec || AddRec->getLoop() != L) + return UnknownValue; + + if (AddRec->isAffine()) { + // FORNOW: We only support unit strides. + unsigned BitWidth = getTypeSizeInBits(AddRec->getType()); + SCEVHandle Step = AddRec->getStepRecurrence(*this); + SCEVHandle NegOne = getIntegerSCEV(-1, AddRec->getType()); + + // TODO: handle non-constant strides. + const SCEVConstant *CStep = dyn_cast<SCEVConstant>(Step); + if (!CStep || CStep->isZero()) + return UnknownValue; + if (CStep->isOne()) { + // With unit stride, the iteration never steps past the limit value. + } else if (CStep->getValue()->getValue().isStrictlyPositive()) { + if (const SCEVConstant *CLimit = dyn_cast<SCEVConstant>(RHS)) { + // Test whether a positive iteration iteration can step past the limit + // value and past the maximum value for its type in a single step. + if (isSigned) { + APInt Max = APInt::getSignedMaxValue(BitWidth); + if ((Max - CStep->getValue()->getValue()) + .slt(CLimit->getValue()->getValue())) + return UnknownValue; + } else { + APInt Max = APInt::getMaxValue(BitWidth); + if ((Max - CStep->getValue()->getValue()) + .ult(CLimit->getValue()->getValue())) + return UnknownValue; + } + } else + // TODO: handle non-constant limit values below. + return UnknownValue; + } else + // TODO: handle negative strides below. + return UnknownValue; + + // We know the LHS is of the form {n,+,s} and the RHS is some loop-invariant + // m. So, we count the number of iterations in which {n,+,s} < m is true. + // Note that we cannot simply return max(m-n,0)/s because it's not safe to + // treat m-n as signed nor unsigned due to overflow possibility. + + // First, we get the value of the LHS in the first iteration: n + SCEVHandle Start = AddRec->getOperand(0); + + // Determine the minimum constant start value. + SCEVHandle MinStart = isa<SCEVConstant>(Start) ? Start : + getConstant(isSigned ? APInt::getSignedMinValue(BitWidth) : + APInt::getMinValue(BitWidth)); + + // If we know that the condition is true in order to enter the loop, + // then we know that it will run exactly (m-n)/s times. Otherwise, we + // only know that it will execute (max(m,n)-n)/s times. In both cases, + // the division must round up. + SCEVHandle End = RHS; + if (!isLoopGuardedByCond(L, + isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT, + getMinusSCEV(Start, Step), RHS)) + End = isSigned ? getSMaxExpr(RHS, Start) + : getUMaxExpr(RHS, Start); + + // Determine the maximum constant end value. + SCEVHandle MaxEnd = isa<SCEVConstant>(End) ? End : + getConstant(isSigned ? APInt::getSignedMaxValue(BitWidth) : + APInt::getMaxValue(BitWidth)); + + // Finally, we subtract these two values and divide, rounding up, to get + // the number of times the backedge is executed. + SCEVHandle BECount = getUDivExpr(getAddExpr(getMinusSCEV(End, Start), + getAddExpr(Step, NegOne)), + Step); + + // The maximum backedge count is similar, except using the minimum start + // value and the maximum end value. + SCEVHandle MaxBECount = getUDivExpr(getAddExpr(getMinusSCEV(MaxEnd, + MinStart), + getAddExpr(Step, NegOne)), + Step); + + return BackedgeTakenInfo(BECount, MaxBECount); + } + + return UnknownValue; +} + +/// getNumIterationsInRange - Return the number of iterations of this loop that +/// produce values in the specified constant range. Another way of looking at +/// this is that it returns the first iteration number where the value is not in +/// the condition, thus computing the exit count. If the iteration count can't +/// be computed, an instance of SCEVCouldNotCompute is returned. +SCEVHandle SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range, + ScalarEvolution &SE) const { + if (Range.isFullSet()) // Infinite loop. + return SE.getCouldNotCompute(); + + // If the start is a non-zero constant, shift the range to simplify things. + if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart())) + if (!SC->getValue()->isZero()) { + std::vector<SCEVHandle> Operands(op_begin(), op_end()); + Operands[0] = SE.getIntegerSCEV(0, SC->getType()); + SCEVHandle Shifted = SE.getAddRecExpr(Operands, getLoop()); + if (const SCEVAddRecExpr *ShiftedAddRec = + dyn_cast<SCEVAddRecExpr>(Shifted)) + return ShiftedAddRec->getNumIterationsInRange( + Range.subtract(SC->getValue()->getValue()), SE); + // This is strange and shouldn't happen. + return SE.getCouldNotCompute(); + } + + // The only time we can solve this is when we have all constant indices. + // Otherwise, we cannot determine the overflow conditions. + for (unsigned i = 0, e = getNumOperands(); i != e; ++i) + if (!isa<SCEVConstant>(getOperand(i))) + return SE.getCouldNotCompute(); + + + // Okay at this point we know that all elements of the chrec are constants and + // that the start element is zero. + + // First check to see if the range contains zero. If not, the first + // iteration exits. + unsigned BitWidth = SE.getTypeSizeInBits(getType()); + if (!Range.contains(APInt(BitWidth, 0))) + return SE.getConstant(ConstantInt::get(getType(),0)); + + if (isAffine()) { + // If this is an affine expression then we have this situation: + // Solve {0,+,A} in Range === Ax in Range + + // We know that zero is in the range. If A is positive then we know that + // the upper value of the range must be the first possible exit value. + // If A is negative then the lower of the range is the last possible loop + // value. Also note that we already checked for a full range. + APInt One(BitWidth,1); + APInt A = cast<SCEVConstant>(getOperand(1))->getValue()->getValue(); + APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower(); + + // The exit value should be (End+A)/A. + APInt ExitVal = (End + A).udiv(A); + ConstantInt *ExitValue = ConstantInt::get(ExitVal); + + // Evaluate at the exit value. If we really did fall out of the valid + // range, then we computed our trip count, otherwise wrap around or other + // things must have happened. + ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE); + if (Range.contains(Val->getValue())) + return SE.getCouldNotCompute(); // Something strange happened + + // Ensure that the previous value is in the range. This is a sanity check. + assert(Range.contains( + EvaluateConstantChrecAtConstant(this, + ConstantInt::get(ExitVal - One), SE)->getValue()) && + "Linear scev computation is off in a bad way!"); + return SE.getConstant(ExitValue); + } else if (isQuadratic()) { + // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the + // quadratic equation to solve it. To do this, we must frame our problem in + // terms of figuring out when zero is crossed, instead of when + // Range.getUpper() is crossed. + std::vector<SCEVHandle> NewOps(op_begin(), op_end()); + NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper())); + SCEVHandle NewAddRec = SE.getAddRecExpr(NewOps, getLoop()); + + // Next, solve the constructed addrec + std::pair<SCEVHandle,SCEVHandle> Roots = + SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE); + const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first); + const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second); + if (R1) { + // Pick the smallest positive root value. + if (ConstantInt *CB = + dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT, + R1->getValue(), R2->getValue()))) { + if (CB->getZExtValue() == false) + std::swap(R1, R2); // R1 is the minimum root now. + + // Make sure the root is not off by one. The returned iteration should + // not be in the range, but the previous one should be. When solving + // for "X*X < 5", for example, we should not return a root of 2. + ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this, + R1->getValue(), + SE); + if (Range.contains(R1Val->getValue())) { + // The next iteration must be out of the range... + ConstantInt *NextVal = ConstantInt::get(R1->getValue()->getValue()+1); + + R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE); + if (!Range.contains(R1Val->getValue())) + return SE.getConstant(NextVal); + return SE.getCouldNotCompute(); // Something strange happened + } + + // If R1 was not in the range, then it is a good return value. Make + // sure that R1-1 WAS in the range though, just in case. + ConstantInt *NextVal = ConstantInt::get(R1->getValue()->getValue()-1); + R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE); + if (Range.contains(R1Val->getValue())) + return R1; + return SE.getCouldNotCompute(); // Something strange happened + } + } + } + + return SE.getCouldNotCompute(); +} + + + +//===----------------------------------------------------------------------===// +// SCEVCallbackVH Class Implementation +//===----------------------------------------------------------------------===// + +void ScalarEvolution::SCEVCallbackVH::deleted() { + assert(SE && "SCEVCallbackVH called with a non-null ScalarEvolution!"); + if (PHINode *PN = dyn_cast<PHINode>(getValPtr())) + SE->ConstantEvolutionLoopExitValue.erase(PN); + if (Instruction *I = dyn_cast<Instruction>(getValPtr())) + SE->ValuesAtScopes.erase(I); + SE->Scalars.erase(getValPtr()); + // this now dangles! +} + +void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *) { + assert(SE && "SCEVCallbackVH called with a non-null ScalarEvolution!"); + + // Forget all the expressions associated with users of the old value, + // so that future queries will recompute the expressions using the new + // value. + SmallVector<User *, 16> Worklist; + Value *Old = getValPtr(); + bool DeleteOld = false; + for (Value::use_iterator UI = Old->use_begin(), UE = Old->use_end(); + UI != UE; ++UI) + Worklist.push_back(*UI); + while (!Worklist.empty()) { + User *U = Worklist.pop_back_val(); + // Deleting the Old value will cause this to dangle. Postpone + // that until everything else is done. + if (U == Old) { + DeleteOld = true; + continue; + } + if (PHINode *PN = dyn_cast<PHINode>(U)) + SE->ConstantEvolutionLoopExitValue.erase(PN); + if (Instruction *I = dyn_cast<Instruction>(U)) + SE->ValuesAtScopes.erase(I); + if (SE->Scalars.erase(U)) + for (Value::use_iterator UI = U->use_begin(), UE = U->use_end(); + UI != UE; ++UI) + Worklist.push_back(*UI); + } + if (DeleteOld) { + if (PHINode *PN = dyn_cast<PHINode>(Old)) + SE->ConstantEvolutionLoopExitValue.erase(PN); + if (Instruction *I = dyn_cast<Instruction>(Old)) + SE->ValuesAtScopes.erase(I); + SE->Scalars.erase(Old); + // this now dangles! + } + // this may dangle! +} + +ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se) + : CallbackVH(V), SE(se) {} + +//===----------------------------------------------------------------------===// +// ScalarEvolution Class Implementation +//===----------------------------------------------------------------------===// + +ScalarEvolution::ScalarEvolution() + : FunctionPass(&ID), UnknownValue(new SCEVCouldNotCompute()) { +} + +bool ScalarEvolution::runOnFunction(Function &F) { + this->F = &F; + LI = &getAnalysis<LoopInfo>(); + TD = getAnalysisIfAvailable<TargetData>(); + return false; +} + +void ScalarEvolution::releaseMemory() { + Scalars.clear(); + BackedgeTakenCounts.clear(); + ConstantEvolutionLoopExitValue.clear(); + ValuesAtScopes.clear(); +} + +void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const { + AU.setPreservesAll(); + AU.addRequiredTransitive<LoopInfo>(); +} + +bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) { + return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L)); +} + +static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE, + const Loop *L) { + // Print all inner loops first + for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) + PrintLoopInfo(OS, SE, *I); + + OS << "Loop " << L->getHeader()->getName() << ": "; + + SmallVector<BasicBlock*, 8> ExitBlocks; + L->getExitBlocks(ExitBlocks); + if (ExitBlocks.size() != 1) + OS << "<multiple exits> "; + + if (SE->hasLoopInvariantBackedgeTakenCount(L)) { + OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L); + } else { + OS << "Unpredictable backedge-taken count. "; + } + + OS << "\n"; +} + +void ScalarEvolution::print(raw_ostream &OS, const Module* ) const { + // ScalarEvolution's implementaiton of the print method is to print + // out SCEV values of all instructions that are interesting. Doing + // this potentially causes it to create new SCEV objects though, + // which technically conflicts with the const qualifier. This isn't + // observable from outside the class though (the hasSCEV function + // notwithstanding), so casting away the const isn't dangerous. + ScalarEvolution &SE = *const_cast<ScalarEvolution*>(this); + + OS << "Classifying expressions for: " << F->getName() << "\n"; + for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I) + if (isSCEVable(I->getType())) { + OS << *I; + OS << " --> "; + SCEVHandle SV = SE.getSCEV(&*I); + SV->print(OS); + OS << "\t\t"; + + if (const Loop *L = LI->getLoopFor((*I).getParent())) { + OS << "Exits: "; + SCEVHandle ExitValue = SE.getSCEVAtScope(&*I, L->getParentLoop()); + if (!ExitValue->isLoopInvariant(L)) { + OS << "<<Unknown>>"; + } else { + OS << *ExitValue; + } + } + + OS << "\n"; + } + + OS << "Determining loop execution counts for: " << F->getName() << "\n"; + for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I) + PrintLoopInfo(OS, &SE, *I); +} + +void ScalarEvolution::print(std::ostream &o, const Module *M) const { + raw_os_ostream OS(o); + print(OS, M); +} |