summaryrefslogtreecommitdiffstats
path: root/lib/Analysis/ScalarEvolution.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'lib/Analysis/ScalarEvolution.cpp')
-rw-r--r--lib/Analysis/ScalarEvolution.cpp466
1 files changed, 315 insertions, 151 deletions
diff --git a/lib/Analysis/ScalarEvolution.cpp b/lib/Analysis/ScalarEvolution.cpp
index e0ac56c..1d55642 100644
--- a/lib/Analysis/ScalarEvolution.cpp
+++ b/lib/Analysis/ScalarEvolution.cpp
@@ -74,6 +74,7 @@
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/Assembly/Writer.h"
#include "llvm/Target/TargetData.h"
+#include "llvm/Target/TargetLibraryInfo.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/ConstantRange.h"
#include "llvm/Support/Debug.h"
@@ -108,6 +109,7 @@ INITIALIZE_PASS_BEGIN(ScalarEvolution, "scalar-evolution",
"Scalar Evolution Analysis", false, true)
INITIALIZE_PASS_DEPENDENCY(LoopInfo)
INITIALIZE_PASS_DEPENDENCY(DominatorTree)
+INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
INITIALIZE_PASS_END(ScalarEvolution, "scalar-evolution",
"Scalar Evolution Analysis", false, true)
char ScalarEvolution::ID = 0;
@@ -188,6 +190,14 @@ void SCEV::print(raw_ostream &OS) const {
OS << OpStr;
}
OS << ")";
+ switch (NAry->getSCEVType()) {
+ case scAddExpr:
+ case scMulExpr:
+ if (NAry->getNoWrapFlags(FlagNUW))
+ OS << "<nuw>";
+ if (NAry->getNoWrapFlags(FlagNSW))
+ OS << "<nsw>";
+ }
return;
}
case scUDivExpr: {
@@ -249,11 +259,9 @@ Type *SCEV::getType() const {
return cast<SCEVUnknown>(this)->getType();
case scCouldNotCompute:
llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
- return 0;
- default: break;
+ default:
+ llvm_unreachable("Unknown SCEV kind!");
}
- llvm_unreachable("Unknown SCEV kind!");
- return 0;
}
bool SCEV::isZero() const {
@@ -274,6 +282,20 @@ bool SCEV::isAllOnesValue() const {
return false;
}
+/// isNonConstantNegative - Return true if the specified scev is negated, but
+/// not a constant.
+bool SCEV::isNonConstantNegative() const {
+ const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this);
+ if (!Mul) return false;
+
+ // If there is a constant factor, it will be first.
+ const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0));
+ if (!SC) return false;
+
+ // Return true if the value is negative, this matches things like (-42 * V).
+ return SC->getValue()->getValue().isNegative();
+}
+
SCEVCouldNotCompute::SCEVCouldNotCompute() :
SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {}
@@ -587,11 +609,8 @@ namespace {
}
default:
- break;
+ llvm_unreachable("Unknown SCEV kind!");
}
-
- llvm_unreachable("Unknown SCEV kind!");
- return 0;
}
};
}
@@ -2581,7 +2600,7 @@ const SCEV *ScalarEvolution::getSizeOfExpr(Type *AllocTy) {
Constant *C = ConstantExpr::getSizeOf(AllocTy);
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
- if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
+ if (Constant *Folded = ConstantFoldConstantExpression(CE, TD, TLI))
C = Folded;
Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
return getTruncateOrZeroExtend(getSCEV(C), Ty);
@@ -2590,7 +2609,7 @@ const SCEV *ScalarEvolution::getSizeOfExpr(Type *AllocTy) {
const SCEV *ScalarEvolution::getAlignOfExpr(Type *AllocTy) {
Constant *C = ConstantExpr::getAlignOf(AllocTy);
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
- if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
+ if (Constant *Folded = ConstantFoldConstantExpression(CE, TD, TLI))
C = Folded;
Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
return getTruncateOrZeroExtend(getSCEV(C), Ty);
@@ -2607,7 +2626,7 @@ const SCEV *ScalarEvolution::getOffsetOfExpr(StructType *STy,
Constant *C = ConstantExpr::getOffsetOf(STy, FieldNo);
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
- if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
+ if (Constant *Folded = ConstantFoldConstantExpression(CE, TD, TLI))
C = Folded;
Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(STy));
return getTruncateOrZeroExtend(getSCEV(C), Ty);
@@ -2617,7 +2636,7 @@ const SCEV *ScalarEvolution::getOffsetOfExpr(Type *CTy,
Constant *FieldNo) {
Constant *C = ConstantExpr::getOffsetOf(CTy, FieldNo);
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
- if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
+ if (Constant *Folded = ConstantFoldConstantExpression(CE, TD, TLI))
C = Folded;
Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(CTy));
return getTruncateOrZeroExtend(getSCEV(C), Ty);
@@ -3108,7 +3127,7 @@ const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
// PHI's incoming blocks are in a different loop, in which case doing so
// risks breaking LCSSA form. Instcombine would normally zap these, but
// it doesn't have DominatorTree information, so it may miss cases.
- if (Value *V = SimplifyInstruction(PN, TD, DT))
+ if (Value *V = SimplifyInstruction(PN, TD, TLI, DT))
if (LI->replacementPreservesLCSSAForm(PN, V))
return getSCEV(V);
@@ -3168,7 +3187,7 @@ const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
// Add the total offset from all the GEP indices to the base.
return getAddExpr(BaseS, TotalOffset,
- isInBounds ? SCEV::FlagNSW : SCEV::FlagAnyWrap);
+ isInBounds ? SCEV::FlagNUW : SCEV::FlagAnyWrap);
}
/// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
@@ -3242,9 +3261,8 @@ ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
// For a SCEVUnknown, ask ValueTracking.
unsigned BitWidth = getTypeSizeInBits(U->getType());
- APInt Mask = APInt::getAllOnesValue(BitWidth);
APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
- ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones);
+ ComputeMaskedBits(U->getValue(), Zeros, Ones);
return Zeros.countTrailingOnes();
}
@@ -3382,9 +3400,8 @@ ScalarEvolution::getUnsignedRange(const SCEV *S) {
if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
// For a SCEVUnknown, ask ValueTracking.
- APInt Mask = APInt::getAllOnesValue(BitWidth);
APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
- ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones, TD);
+ ComputeMaskedBits(U->getValue(), Zeros, Ones, TD);
if (Ones == ~Zeros + 1)
return setUnsignedRange(U, ConservativeResult);
return setUnsignedRange(U,
@@ -3584,6 +3601,12 @@ const SCEV *ScalarEvolution::createSCEV(Value *V) {
// because it leads to N-1 getAddExpr calls for N ultimate operands.
// Instead, gather up all the operands and make a single getAddExpr call.
// LLVM IR canonical form means we need only traverse the left operands.
+ //
+ // Don't apply this instruction's NSW or NUW flags to the new
+ // expression. The instruction may be guarded by control flow that the
+ // no-wrap behavior depends on. Non-control-equivalent instructions can be
+ // mapped to the same SCEV expression, and it would be incorrect to transfer
+ // NSW/NUW semantics to those operations.
SmallVector<const SCEV *, 4> AddOps;
AddOps.push_back(getSCEV(U->getOperand(1)));
for (Value *Op = U->getOperand(0); ; Op = U->getOperand(0)) {
@@ -3598,16 +3621,10 @@ const SCEV *ScalarEvolution::createSCEV(Value *V) {
AddOps.push_back(Op1);
}
AddOps.push_back(getSCEV(U->getOperand(0)));
- SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
- OverflowingBinaryOperator *OBO = cast<OverflowingBinaryOperator>(V);
- if (OBO->hasNoSignedWrap())
- setFlags(Flags, SCEV::FlagNSW);
- if (OBO->hasNoUnsignedWrap())
- setFlags(Flags, SCEV::FlagNUW);
- return getAddExpr(AddOps, Flags);
+ return getAddExpr(AddOps);
}
case Instruction::Mul: {
- // See the Add code above.
+ // Don't transfer NSW/NUW for the same reason as AddExpr.
SmallVector<const SCEV *, 4> MulOps;
MulOps.push_back(getSCEV(U->getOperand(1)));
for (Value *Op = U->getOperand(0);
@@ -3641,9 +3658,8 @@ const SCEV *ScalarEvolution::createSCEV(Value *V) {
// knew about to reconstruct a low-bits mask value.
unsigned LZ = A.countLeadingZeros();
unsigned BitWidth = A.getBitWidth();
- APInt AllOnes = APInt::getAllOnesValue(BitWidth);
APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
- ComputeMaskedBits(U->getOperand(0), AllOnes, KnownZero, KnownOne, TD);
+ ComputeMaskedBits(U->getOperand(0), KnownZero, KnownOne, TD);
APInt EffectiveMask = APInt::getLowBitsSet(BitWidth, BitWidth - LZ);
@@ -3915,13 +3931,19 @@ const SCEV *ScalarEvolution::createSCEV(Value *V) {
//
/// getSmallConstantTripCount - Returns the maximum trip count of this loop as a
-/// normal unsigned value, if possible. Returns 0 if the trip count is unknown
-/// or not constant. Will also return 0 if the maximum trip count is very large
-/// (>= 2^32)
-unsigned ScalarEvolution::getSmallConstantTripCount(Loop *L,
- BasicBlock *ExitBlock) {
+/// normal unsigned value. Returns 0 if the trip count is unknown or not
+/// constant. Will also return 0 if the maximum trip count is very large (>=
+/// 2^32).
+///
+/// This "trip count" assumes that control exits via ExitingBlock. More
+/// precisely, it is the number of times that control may reach ExitingBlock
+/// before taking the branch. For loops with multiple exits, it may not be the
+/// number times that the loop header executes because the loop may exit
+/// prematurely via another branch.
+unsigned ScalarEvolution::
+getSmallConstantTripCount(Loop *L, BasicBlock *ExitingBlock) {
const SCEVConstant *ExitCount =
- dyn_cast<SCEVConstant>(getExitCount(L, ExitBlock));
+ dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock));
if (!ExitCount)
return 0;
@@ -3944,9 +3966,12 @@ unsigned ScalarEvolution::getSmallConstantTripCount(Loop *L,
/// multiple of a constant (which is also the case if the trip count is simply
/// constant, use getSmallConstantTripCount for that case), Will also return 1
/// if the trip count is very large (>= 2^32).
-unsigned ScalarEvolution::getSmallConstantTripMultiple(Loop *L,
- BasicBlock *ExitBlock) {
- const SCEV *ExitCount = getExitCount(L, ExitBlock);
+///
+/// As explained in the comments for getSmallConstantTripCount, this assumes
+/// that control exits the loop via ExitingBlock.
+unsigned ScalarEvolution::
+getSmallConstantTripMultiple(Loop *L, BasicBlock *ExitingBlock) {
+ const SCEV *ExitCount = getExitCount(L, ExitingBlock);
if (ExitCount == getCouldNotCompute())
return 1;
@@ -4153,13 +4178,19 @@ void ScalarEvolution::forgetValue(Value *V) {
}
/// getExact - Get the exact loop backedge taken count considering all loop
-/// exits. If all exits are computable, this is the minimum computed count.
+/// exits. A computable result can only be return for loops with a single exit.
+/// Returning the minimum taken count among all exits is incorrect because one
+/// of the loop's exit limit's may have been skipped. HowFarToZero assumes that
+/// the limit of each loop test is never skipped. This is a valid assumption as
+/// long as the loop exits via that test. For precise results, it is the
+/// caller's responsibility to specify the relevant loop exit using
+/// getExact(ExitingBlock, SE).
const SCEV *
ScalarEvolution::BackedgeTakenInfo::getExact(ScalarEvolution *SE) const {
// If any exits were not computable, the loop is not computable.
if (!ExitNotTaken.isCompleteList()) return SE->getCouldNotCompute();
- // We need at least one computable exit.
+ // We need exactly one computable exit.
if (!ExitNotTaken.ExitingBlock) return SE->getCouldNotCompute();
assert(ExitNotTaken.ExactNotTaken && "uninitialized not-taken info");
@@ -4171,8 +4202,8 @@ ScalarEvolution::BackedgeTakenInfo::getExact(ScalarEvolution *SE) const {
if (!BECount)
BECount = ENT->ExactNotTaken;
- else
- BECount = SE->getUMinFromMismatchedTypes(BECount, ENT->ExactNotTaken);
+ else if (BECount != ENT->ExactNotTaken)
+ return SE->getCouldNotCompute();
}
assert(BECount && "Invalid not taken count for loop exit");
return BECount;
@@ -4253,8 +4284,15 @@ ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) {
if (MaxBECount == getCouldNotCompute())
MaxBECount = EL.Max;
- else if (EL.Max != getCouldNotCompute())
- MaxBECount = getUMinFromMismatchedTypes(MaxBECount, EL.Max);
+ else if (EL.Max != getCouldNotCompute()) {
+ // We cannot take the "min" MaxBECount, because non-unit stride loops may
+ // skip some loop tests. Taking the max over the exits is sufficiently
+ // conservative. TODO: We could do better taking into consideration
+ // that (1) the loop has unit stride (2) the last loop test is
+ // less-than/greater-than (3) any loop test is less-than/greater-than AND
+ // falls-through some constant times less then the other tests.
+ MaxBECount = getUMaxFromMismatchedTypes(MaxBECount, EL.Max);
+ }
}
return BackedgeTakenInfo(ExitCounts, CouldComputeBECount, MaxBECount);
@@ -4539,40 +4577,6 @@ EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
return cast<SCEVConstant>(Val)->getValue();
}
-/// GetAddressedElementFromGlobal - Given a global variable with an initializer
-/// and a GEP expression (missing the pointer index) indexing into it, return
-/// the addressed element of the initializer or null if the index expression is
-/// invalid.
-static Constant *
-GetAddressedElementFromGlobal(GlobalVariable *GV,
- const std::vector<ConstantInt*> &Indices) {
- Constant *Init = GV->getInitializer();
- for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
- uint64_t Idx = Indices[i]->getZExtValue();
- if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) {
- assert(Idx < CS->getNumOperands() && "Bad struct index!");
- Init = cast<Constant>(CS->getOperand(Idx));
- } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) {
- if (Idx >= CA->getNumOperands()) return 0; // Bogus program
- Init = cast<Constant>(CA->getOperand(Idx));
- } else if (isa<ConstantAggregateZero>(Init)) {
- if (StructType *STy = dyn_cast<StructType>(Init->getType())) {
- assert(Idx < STy->getNumElements() && "Bad struct index!");
- Init = Constant::getNullValue(STy->getElementType(Idx));
- } else if (ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) {
- if (Idx >= ATy->getNumElements()) return 0; // Bogus program
- Init = Constant::getNullValue(ATy->getElementType());
- } else {
- llvm_unreachable("Unknown constant aggregate type!");
- }
- return 0;
- } else {
- return 0; // Unknown initializer type
- }
- }
- return Init;
-}
-
/// ComputeLoadConstantCompareExitLimit - Given an exit condition of
/// 'icmp op load X, cst', try to see if we can compute the backedge
/// execution count.
@@ -4600,7 +4604,7 @@ ScalarEvolution::ComputeLoadConstantCompareExitLimit(
// Okay, we allow one non-constant index into the GEP instruction.
Value *VarIdx = 0;
- std::vector<ConstantInt*> Indexes;
+ std::vector<Constant*> Indexes;
unsigned VarIdxNum = 0;
for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
@@ -4612,6 +4616,10 @@ ScalarEvolution::ComputeLoadConstantCompareExitLimit(
Indexes.push_back(0);
}
+ // Loop-invariant loads may be a byproduct of loop optimization. Skip them.
+ if (!VarIdx)
+ return getCouldNotCompute();
+
// Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
// Check to see if X is a loop variant variable value now.
const SCEV *Idx = getSCEV(VarIdx);
@@ -4634,7 +4642,8 @@ ScalarEvolution::ComputeLoadConstantCompareExitLimit(
// Form the GEP offset.
Indexes[VarIdxNum] = Val;
- Constant *Result = GetAddressedElementFromGlobal(GV, Indexes);
+ Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(),
+ Indexes);
if (Result == 0) break; // Cannot compute!
// Evaluate the condition for this iteration.
@@ -4658,7 +4667,8 @@ ScalarEvolution::ComputeLoadConstantCompareExitLimit(
/// specified type, assuming that all operands were constants.
static bool CanConstantFold(const Instruction *I) {
if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
- isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I))
+ isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
+ isa<LoadInst>(I))
return true;
if (const CallInst *CI = dyn_cast<CallInst>(I))
@@ -4748,16 +4758,23 @@ static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
/// reason, return null.
static Constant *EvaluateExpression(Value *V, const Loop *L,
DenseMap<Instruction *, Constant *> &Vals,
- const TargetData *TD) {
+ const TargetData *TD,
+ const TargetLibraryInfo *TLI) {
// Convenient constant check, but redundant for recursive calls.
if (Constant *C = dyn_cast<Constant>(V)) return C;
+ Instruction *I = dyn_cast<Instruction>(V);
+ if (!I) return 0;
- Instruction *I = cast<Instruction>(V);
if (Constant *C = Vals.lookup(I)) return C;
- assert(!isa<PHINode>(I) && "loop header phis should be mapped to constant");
- assert(canConstantEvolve(I, L) && "cannot evaluate expression in this loop");
- (void)L;
+ // An instruction inside the loop depends on a value outside the loop that we
+ // weren't given a mapping for, or a value such as a call inside the loop.
+ if (!canConstantEvolve(I, L)) return 0;
+
+ // An unmapped PHI can be due to a branch or another loop inside this loop,
+ // or due to this not being the initial iteration through a loop where we
+ // couldn't compute the evolution of this particular PHI last time.
+ if (isa<PHINode>(I)) return 0;
std::vector<Constant*> Operands(I->getNumOperands());
@@ -4768,16 +4785,21 @@ static Constant *EvaluateExpression(Value *V, const Loop *L,
if (!Operands[i]) return 0;
continue;
}
- Constant *C = EvaluateExpression(Operand, L, Vals, TD);
+ Constant *C = EvaluateExpression(Operand, L, Vals, TD, TLI);
Vals[Operand] = C;
if (!C) return 0;
Operands[i] = C;
}
- if (const CmpInst *CI = dyn_cast<CmpInst>(I))
+ if (CmpInst *CI = dyn_cast<CmpInst>(I))
return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
- Operands[1], TD);
- return ConstantFoldInstOperands(I->getOpcode(), I->getType(), Operands, TD);
+ Operands[1], TD, TLI);
+ if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
+ if (!LI->isVolatile())
+ return ConstantFoldLoadFromConstPtr(Operands[0], TD);
+ }
+ return ConstantFoldInstOperands(I->getOpcode(), I->getType(), Operands, TD,
+ TLI);
}
/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
@@ -4798,23 +4820,26 @@ ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
- // FIXME: Nick's fix for PR11034 will seed constants for multiple header phis.
DenseMap<Instruction *, Constant *> CurrentIterVals;
+ BasicBlock *Header = L->getHeader();
+ assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
// Since the loop is canonicalized, the PHI node must have two entries. One
// entry must be a constant (coming in from outside of the loop), and the
// second must be derived from the same PHI.
bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
- Constant *StartCST =
- dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
- if (StartCST == 0)
- return RetVal = 0; // Must be a constant.
- CurrentIterVals[PN] = StartCST;
+ PHINode *PHI = 0;
+ for (BasicBlock::iterator I = Header->begin();
+ (PHI = dyn_cast<PHINode>(I)); ++I) {
+ Constant *StartCST =
+ dyn_cast<Constant>(PHI->getIncomingValue(!SecondIsBackedge));
+ if (StartCST == 0) continue;
+ CurrentIterVals[PHI] = StartCST;
+ }
+ if (!CurrentIterVals.count(PN))
+ return RetVal = 0;
Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
- if (getConstantEvolvingPHI(BEValue, L) != PN &&
- !isa<Constant>(BEValue))
- return RetVal = 0; // Not derived from same PHI.
// Execute the loop symbolically to determine the exit value.
if (BEs.getActiveBits() >= 32)
@@ -4826,15 +4851,46 @@ ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
if (IterationNum == NumIterations)
return RetVal = CurrentIterVals[PN]; // Got exit value!
- // Compute the value of the PHI node for the next iteration.
+ // Compute the value of the PHIs for the next iteration.
// EvaluateExpression adds non-phi values to the CurrentIterVals map.
- Constant *NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, TD);
- if (NextPHI == CurrentIterVals[PN])
- return RetVal = NextPHI; // Stopped evolving!
+ DenseMap<Instruction *, Constant *> NextIterVals;
+ Constant *NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, TD,
+ TLI);
if (NextPHI == 0)
return 0; // Couldn't evaluate!
- DenseMap<Instruction *, Constant *> NextIterVals;
NextIterVals[PN] = NextPHI;
+
+ bool StoppedEvolving = NextPHI == CurrentIterVals[PN];
+
+ // Also evaluate the other PHI nodes. However, we don't get to stop if we
+ // cease to be able to evaluate one of them or if they stop evolving,
+ // because that doesn't necessarily prevent us from computing PN.
+ SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute;
+ for (DenseMap<Instruction *, Constant *>::const_iterator
+ I = CurrentIterVals.begin(), E = CurrentIterVals.end(); I != E; ++I){
+ PHINode *PHI = dyn_cast<PHINode>(I->first);
+ if (!PHI || PHI == PN || PHI->getParent() != Header) continue;
+ PHIsToCompute.push_back(std::make_pair(PHI, I->second));
+ }
+ // We use two distinct loops because EvaluateExpression may invalidate any
+ // iterators into CurrentIterVals.
+ for (SmallVectorImpl<std::pair<PHINode *, Constant*> >::const_iterator
+ I = PHIsToCompute.begin(), E = PHIsToCompute.end(); I != E; ++I) {
+ PHINode *PHI = I->first;
+ Constant *&NextPHI = NextIterVals[PHI];
+ if (!NextPHI) { // Not already computed.
+ Value *BEValue = PHI->getIncomingValue(SecondIsBackedge);
+ NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, TD, TLI);
+ }
+ if (NextPHI != I->second)
+ StoppedEvolving = false;
+ }
+
+ // If all entries in CurrentIterVals == NextIterVals then we can stop
+ // iterating, the loop can't continue to change.
+ if (StoppedEvolving)
+ return RetVal = CurrentIterVals[PN];
+
CurrentIterVals.swap(NextIterVals);
}
}
@@ -4844,9 +4900,9 @@ ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
/// try to evaluate a few iterations of the loop until we get the exit
/// condition gets a value of ExitWhen (true or false). If we cannot
/// evaluate the trip count of the loop, return getCouldNotCompute().
-const SCEV * ScalarEvolution::ComputeExitCountExhaustively(const Loop *L,
- Value *Cond,
- bool ExitWhen) {
+const SCEV *ScalarEvolution::ComputeExitCountExhaustively(const Loop *L,
+ Value *Cond,
+ bool ExitWhen) {
PHINode *PN = getConstantEvolvingPHI(Cond, L);
if (PN == 0) return getCouldNotCompute();
@@ -4854,29 +4910,33 @@ const SCEV * ScalarEvolution::ComputeExitCountExhaustively(const Loop *L,
// That's the only form we support here.
if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
+ DenseMap<Instruction *, Constant *> CurrentIterVals;
+ BasicBlock *Header = L->getHeader();
+ assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
+
// One entry must be a constant (coming in from outside of the loop), and the
// second must be derived from the same PHI.
bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
- Constant *StartCST =
- dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
- if (StartCST == 0) return getCouldNotCompute(); // Must be a constant.
-
- Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
- if (getConstantEvolvingPHI(BEValue, L) != PN &&
- !isa<Constant>(BEValue))
- return getCouldNotCompute(); // Not derived from same PHI.
+ PHINode *PHI = 0;
+ for (BasicBlock::iterator I = Header->begin();
+ (PHI = dyn_cast<PHINode>(I)); ++I) {
+ Constant *StartCST =
+ dyn_cast<Constant>(PHI->getIncomingValue(!SecondIsBackedge));
+ if (StartCST == 0) continue;
+ CurrentIterVals[PHI] = StartCST;
+ }
+ if (!CurrentIterVals.count(PN))
+ return getCouldNotCompute();
// Okay, we find a PHI node that defines the trip count of this loop. Execute
// the loop symbolically to determine when the condition gets a value of
// "ExitWhen".
- unsigned IterationNum = 0;
+
unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis.
- for (Constant *PHIVal = StartCST;
- IterationNum != MaxIterations; ++IterationNum) {
- DenseMap<Instruction *, Constant *> PHIValMap;
- PHIValMap[PN] = PHIVal;
+ for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){
ConstantInt *CondVal =
- dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, L, PHIValMap, TD));
+ dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, L, CurrentIterVals,
+ TD, TLI));
// Couldn't symbolically evaluate.
if (!CondVal) return getCouldNotCompute();
@@ -4886,11 +4946,29 @@ const SCEV * ScalarEvolution::ComputeExitCountExhaustively(const Loop *L,
return getConstant(Type::getInt32Ty(getContext()), IterationNum);
}
- // Compute the value of the PHI node for the next iteration.
- Constant *NextPHI = EvaluateExpression(BEValue, L, PHIValMap, TD);
- if (NextPHI == 0 || NextPHI == PHIVal)
- return getCouldNotCompute();// Couldn't evaluate or not making progress...
- PHIVal = NextPHI;
+ // Update all the PHI nodes for the next iteration.
+ DenseMap<Instruction *, Constant *> NextIterVals;
+
+ // Create a list of which PHIs we need to compute. We want to do this before
+ // calling EvaluateExpression on them because that may invalidate iterators
+ // into CurrentIterVals.
+ SmallVector<PHINode *, 8> PHIsToCompute;
+ for (DenseMap<Instruction *, Constant *>::const_iterator
+ I = CurrentIterVals.begin(), E = CurrentIterVals.end(); I != E; ++I){
+ PHINode *PHI = dyn_cast<PHINode>(I->first);
+ if (!PHI || PHI->getParent() != Header) continue;
+ PHIsToCompute.push_back(PHI);
+ }
+ for (SmallVectorImpl<PHINode *>::const_iterator I = PHIsToCompute.begin(),
+ E = PHIsToCompute.end(); I != E; ++I) {
+ PHINode *PHI = *I;
+ Constant *&NextPHI = NextIterVals[PHI];
+ if (NextPHI) continue; // Already computed!
+
+ Value *BEValue = PHI->getIncomingValue(SecondIsBackedge);
+ NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, TD, TLI);
+ }
+ CurrentIterVals.swap(NextIterVals);
}
// Too many iterations were needed to evaluate.
@@ -4921,6 +4999,98 @@ const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
return C;
}
+/// This builds up a Constant using the ConstantExpr interface. That way, we
+/// will return Constants for objects which aren't represented by a
+/// SCEVConstant, because SCEVConstant is restricted to ConstantInt.
+/// Returns NULL if the SCEV isn't representable as a Constant.
+static Constant *BuildConstantFromSCEV(const SCEV *V) {
+ switch (V->getSCEVType()) {
+ default: // TODO: smax, umax.
+ case scCouldNotCompute:
+ case scAddRecExpr:
+ break;
+ case scConstant:
+ return cast<SCEVConstant>(V)->getValue();
+ case scUnknown:
+ return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue());
+ case scSignExtend: {
+ const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V);
+ if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand()))
+ return ConstantExpr::getSExt(CastOp, SS->getType());
+ break;
+ }
+ case scZeroExtend: {
+ const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V);
+ if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand()))
+ return ConstantExpr::getZExt(CastOp, SZ->getType());
+ break;
+ }
+ case scTruncate: {
+ const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V);
+ if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand()))
+ return ConstantExpr::getTrunc(CastOp, ST->getType());
+ break;
+ }
+ case scAddExpr: {
+ const SCEVAddExpr *SA = cast<SCEVAddExpr>(V);
+ if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) {
+ if (C->getType()->isPointerTy())
+ C = ConstantExpr::getBitCast(C, Type::getInt8PtrTy(C->getContext()));
+ for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) {
+ Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i));
+ if (!C2) return 0;
+
+ // First pointer!
+ if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) {
+ std::swap(C, C2);
+ // The offsets have been converted to bytes. We can add bytes to an
+ // i8* by GEP with the byte count in the first index.
+ C = ConstantExpr::getBitCast(C,Type::getInt8PtrTy(C->getContext()));
+ }
+
+ // Don't bother trying to sum two pointers. We probably can't
+ // statically compute a load that results from it anyway.
+ if (C2->getType()->isPointerTy())
+ return 0;
+
+ if (C->getType()->isPointerTy()) {
+ if (cast<PointerType>(C->getType())->getElementType()->isStructTy())
+ C2 = ConstantExpr::getIntegerCast(
+ C2, Type::getInt32Ty(C->getContext()), true);
+ C = ConstantExpr::getGetElementPtr(C, C2);
+ } else
+ C = ConstantExpr::getAdd(C, C2);
+ }
+ return C;
+ }
+ break;
+ }
+ case scMulExpr: {
+ const SCEVMulExpr *SM = cast<SCEVMulExpr>(V);
+ if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) {
+ // Don't bother with pointers at all.
+ if (C->getType()->isPointerTy()) return 0;
+ for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) {
+ Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i));
+ if (!C2 || C2->getType()->isPointerTy()) return 0;
+ C = ConstantExpr::getMul(C, C2);
+ }
+ return C;
+ }
+ break;
+ }
+ case scUDivExpr: {
+ const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V);
+ if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS()))
+ if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS()))
+ if (LHS->getType() == RHS->getType())
+ return ConstantExpr::getUDiv(LHS, RHS);
+ break;
+ }
+ }
+ return 0;
+}
+
const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
if (isa<SCEVConstant>(V)) return V;
@@ -4973,11 +5143,7 @@ const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
const SCEV *OpV = getSCEVAtScope(OrigV, L);
MadeImprovement |= OrigV != OpV;
- Constant *C = 0;
- if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(OpV))
- C = SC->getValue();
- if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(OpV))
- C = dyn_cast<Constant>(SU->getValue());
+ Constant *C = BuildConstantFromSCEV(OpV);
if (!C) return V;
if (C->getType() != Op->getType())
C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
@@ -4992,10 +5158,14 @@ const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
Constant *C = 0;
if (const CmpInst *CI = dyn_cast<CmpInst>(I))
C = ConstantFoldCompareInstOperands(CI->getPredicate(),
- Operands[0], Operands[1], TD);
- else
+ Operands[0], Operands[1], TD,
+ TLI);
+ else if (const LoadInst *LI = dyn_cast<LoadInst>(I)) {
+ if (!LI->isVolatile())
+ C = ConstantFoldLoadFromConstPtr(Operands[0], TD);
+ } else
C = ConstantFoldInstOperands(I->getOpcode(), I->getType(),
- Operands, TD);
+ Operands, TD, TLI);
if (!C) return V;
return getSCEV(C);
}
@@ -5113,7 +5283,6 @@ const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
}
llvm_unreachable("Unknown SCEV type!");
- return 0;
}
/// getSCEVAtScope - This is a convenience function which does
@@ -5350,10 +5519,10 @@ ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L) {
// behavior. Loops must exhibit defined behavior until a wrapped value is
// actually used. So the trip count computed by udiv could be smaller than the
// number of well-defined iterations.
- if (AddRec->getNoWrapFlags(SCEV::FlagNW))
+ if (AddRec->getNoWrapFlags(SCEV::FlagNW)) {
// FIXME: We really want an "isexact" bit for udiv.
return getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step);
-
+ }
// Then, try to solve the above equation provided that Start is constant.
if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start))
return SolveLinEquationWithOverflow(StepC->getValue()->getValue(),
@@ -5744,7 +5913,6 @@ ScalarEvolution::isKnownPredicateWithRanges(ICmpInst::Predicate Pred,
switch (Pred) {
default:
llvm_unreachable("Unexpected ICmpInst::Predicate value!");
- break;
case ICmpInst::ICMP_SGT:
Pred = ICmpInst::ICMP_SLT;
std::swap(LHS, RHS);
@@ -6089,8 +6257,9 @@ ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
return getCouldNotCompute();
// Check to see if we have a flag which makes analysis easy.
- bool NoWrap = isSigned ? AddRec->getNoWrapFlags(SCEV::FlagNSW) :
- AddRec->getNoWrapFlags(SCEV::FlagNUW);
+ bool NoWrap = isSigned ?
+ AddRec->getNoWrapFlags((SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNW)) :
+ AddRec->getNoWrapFlags((SCEV::NoWrapFlags)(SCEV::FlagNUW | SCEV::FlagNW));
if (AddRec->isAffine()) {
unsigned BitWidth = getTypeSizeInBits(AddRec->getType());
@@ -6381,6 +6550,7 @@ bool ScalarEvolution::runOnFunction(Function &F) {
this->F = &F;
LI = &getAnalysis<LoopInfo>();
TD = getAnalysisIfAvailable<TargetData>();
+ TLI = &getAnalysis<TargetLibraryInfo>();
DT = &getAnalysis<DominatorTree>();
return false;
}
@@ -6417,6 +6587,7 @@ void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesAll();
AU.addRequiredTransitive<LoopInfo>();
AU.addRequiredTransitive<DominatorTree>();
+ AU.addRequired<TargetLibraryInfo>();
}
bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
@@ -6592,11 +6763,8 @@ ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) {
return LoopInvariant;
case scCouldNotCompute:
llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
- return LoopVariant;
- default: break;
+ default: llvm_unreachable("Unknown SCEV kind!");
}
- llvm_unreachable("Unknown SCEV kind!");
- return LoopVariant;
}
bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) {
@@ -6678,11 +6846,9 @@ ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) {
return ProperlyDominatesBlock;
case scCouldNotCompute:
llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
- return DoesNotDominateBlock;
- default: break;
+ default:
+ llvm_unreachable("Unknown SCEV kind!");
}
- llvm_unreachable("Unknown SCEV kind!");
- return DoesNotDominateBlock;
}
bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) {
@@ -6728,11 +6894,9 @@ bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const {
return false;
case scCouldNotCompute:
llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
- return false;
- default: break;
+ default:
+ llvm_unreachable("Unknown SCEV kind!");
}
- llvm_unreachable("Unknown SCEV kind!");
- return false;
}
void ScalarEvolution::forgetMemoizedResults(const SCEV *S) {
OpenPOWER on IntegriCloud